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Abstract

Predictive posterior densities (PPDs) are essential
in approximate inference for quantifying predic-
tive uncertainty and comparing inference methods.
Typically, PPDs are estimated by simple Monte
Carlo (MC) averages. In this paper, we expose
a critical under-recognized issue: the signal-to-
noise ratio (SNR) of the simple MC estimator
can sometimes be extremely low, leading to un-
reliable estimates. Our main contribution is a
theoretical analysis demonstrating that even with
exact inference, SNR can decay rapidly with an
increase in (a) the mismatch between training and
test data, (b) the dimensionality of the latent space,
or (c) the size of test data relative to training data.
Through several examples, we empirically verify
these claims and show that these factors indeed
lead to poor SNR and unreliable PPD estimates
(sometimes, estimates are off by hundreds of nats
even with a million samples). While not the pri-
mary focus, we also explore an adaptive impor-
tance sampling approach as an illustrative way to
mitigate the problem, where we learn the proposal
distribution by maximizing a variational proxy to
the SNR. Taken together, our findings highlight an
important challenge and provide essential insights
for reliable estimation.

1. Introduction
Given a model with prior p(z) and likelihood p(D|z), train-
ing data D, and an approximate posterior qD(z), the predic-
tive posterior density (PPD) of some test data set D∗ under
qD is defined as

PPDq :=

∫
p(D∗|z)qD(z)dz. (1)
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PPDq is used extensively in approximate inference for mak-
ing predictions and forecasts (Filos et al., 2019; Kompa et al.,
2021; Immer et al., 2021; Petropoulos et al., 2022; Tyralis
& Papacharalampous, 2022; Martin et al., 2024) and evalu-
ating inference methods where higher PPDq values indicate
better results (Wu et al., 2017; Wenzel et al., 2020; Izmailov
et al., 2021b; Kim et al., 2022; Reichelt et al., 2022b; Yu
& Zhang, 2023; Zimmermann et al., 2023; Sendera et al.,
2024; Cheng et al., 2024). (Note, PPDq in eq. (1) is different
from the PPD under the true posterior, see section A for a
discussion.) The integral in eq. (1) is typically estimated via
the simple Monte Carlo (MC) estimator

RK =
1

K

K∑
k=1

p(D∗|zk) where zk ∼ qD. (2)

It is typical to work in log-space and use logRK to estimate
log PPDq. From Jensen’s inequality, we know logRK is a
biased estimator of log PPDq (with a bias related to RK’s
variance, see section A). This paper is motivated by the
observation that this bias can be extremely large, leading to
unreliable PPDq estimates.
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Figure 1: Unreliable PPDq estimates. log PPDq estimates for
a user-preference model on the MovieLens-25M dataset (Harper
& Konstan, 2015), with approximate posterior qD produced from
variational inference (VI) with either a Gaussian or flow-based
family. Lines show the mean logRK and shaded regions show
95% intervals (uses 1000 repetitions.) Even with a million samples
(K = 106), we do not appear to have accurate estimates.

Figure 1 shows log PPDq estimates for a user-preference
model on the MovieLens-25M dataset (Harper & Konstan,
2015), with approximate posterior qD produced from varia-
tional inference (VI) with either a Gaussian or flow-based
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family (see section 5.4 for setup). Even with a million sam-
ples, the curves are still increasing, indicating bias remains
and comparisons between the two VI methods are unreliable.
Such failures raise the question: Why and when is simple
MC unreliable for PPDq estimation?

The main contribution of this paper is to develop a better
understanding of the PPDq estimation problem. To do this,
we focus our analysis on the signal-to-noise ratio (SNR)
of RK defined as SNR (RK) = E[RK ]/

√
V[RK ]. This

definition captures how high or low is the variance relative
to the target value, and becomes crucial when the target
value is small. SNR has been used in the past to study
gradient estimators when gradient values can be extremely
small (Roberts & Tedrake, 2008; Rainforth et al., 2018;
Tucker et al., 2019; Finke & Thiery, 2019; Liévin et al.,
2020; Geffner & Domke, 2021; Rudner et al., 2021). Since
PPDq values are (generally) numerically small, we focus on
studying SNR (see section A for more discussion),

In section 2, we first provide a general expression for the
SNR in any model assuming exact inference. Our subse-
quent analyses (eq. (5), theorem 2.2, and corollary 2.3) finds
that SNR decays quickly with increase in (1) the degree
of “mismatch” between the test and training data, (2) the
dimensionality of the latent variable space, and (3) the size
of the test data relative to training data. Several illustrative
examples (figs. 4 to 6) empirically validate these findings
(see fig. 2 for demonstration on a linear regression model).
In section 3, we also extend our analysis to approximate
inference where qD ̸= p(z|D).
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Figure 2: Error worsens with the three factors. PPDq estima-
tion error for a linear regression model. For baseline, none of the
three factors influencing the SNR are high and the estimation error
is low. Error increases dramatically when either of three factors is
high (see section 5.2 for setup).

We also explore the use of adaptive importance sampling
(IS) as an illustrative way to resolve poor estimation, where
we learn a parameterized proposal by optimizing a varia-
tional proxy to the SNR (section 4). This strategy, referred
to as learned IS, vastly improves estimates, including a five-
fold improvement in the estimated difference between the
VI methods from fig. 1 (see table 4).

2. Analysis With Exact Inference
This section focuses on understanding the SNR of the
naive estimator from eq. (2) under exact inference; that
is, qD(z) = p(z|D). Working with exact inference removes
the confounding effects of the posterior approximations. We
start by deriving SNR expressions in any model and then
analyze these expressions to identify the influential factors.

Let D = {y1, y2, . . . , y|D|} be the training data, D∗ =
{y∗1 , y∗2 , . . . , y∗|D∗|} be a test dataset, where y can be dis-
crete, continuous, or mixed. Then, the following result
gives two equivalent expressions for SNR (RK). (Note: We
use multiset notation, so D + D∗ is the multiset addition
with 2D = D +D (Costa, 2021)).

Theorem 2.1. Let RK be as in eq. (2) with exact inference;
that is, qD(z) = p(z|D). Let p(z,D) = p(z)

∏
y∈Dp(y|z).

Then, SNR (RK) =
√
K/
√
exp(δ)2 − 1 for

δ =
1

2
KL (p(z|D +D∗) ∥ p(z|D))

+
1

2
KL (p(z|D +D∗) ∥ p(z|D + 2D∗)) (3)

=
V (D) + V (D + 2D∗)

2
− V (D +D∗) (4)

where V is the log-normalization function V (D) =
log
∫
p(D|z)p(z)dz.

Proof sketch. A simple calculation gives SNR(R1) =√
K/
√
exp(δ)2 − 1 where δ := 1

2 logE[R
2
1]− logE[R1]

2

(lemma C.1). Using p(D|z) =
∏

y∈D p(y|z) and sim-
ple algebra, gives E[Rc

1] = expV (D + cD∗)/ expV (D) for
all non-negative integers c and V (D) = log

∫
p(D|z)p(z)dz

(lemma C.3). Plugging E[Rc
1] with c = 1 and c = 2 in δ, and

simplifying gives eq. (4). Then, some simple observations
give an expression for KL-divergence between two poste-
riors in terms of likelihood ratios and log-normalization
constants (see lemma C.4). Applying this to each KL diver-
gence in eq. (3) and averaging gives eq. (4). (For a formal
proof, see section C.)
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Figure 3: SNR rapidly de-
cays with δ.

To understand this result,
note that if δ is reasonably
large, then SNR (RK) ≈√
K exp(−δ) (see fig. 3).

So, we can focus on δ to un-
derstand SNR. The rest of
this section analyzes δ as in
eq. (3) to determine the in-
fluential factors.

KL-divergences in eq. (3)
show that SNR is determined by how different the pos-
terior p(z|D + D∗) is from the posteriors p(z|D) and

2



Understanding the difficulties of posterior predictive estimation

p(z|D + 2D∗). This gives us the first factor: mismatch be-
tween training and test data. Intuitively, if datasets mismatch
such that adding or subtracting D∗ significantly changes the
posterior p(z|D +D∗), then the SNR will be small.

It is important to also analyze the case when datasets match;
that is, when adding or subtracting D∗ would not have a
significant effect on p(z|D+D∗). Intuitively, if the training
and test data are similar and large such that the posteriors
involving D∗ are concentrated similar to p(z|D), then the
divergence in eq. (3) will be small. To understand what re-
maining factors influence SNR in such conditions, we make
some simplifying assumptions and provide an informal re-
sult. Assume the following hold.

A1: The datasets D∗ and D are large enough that the
KL-divergence between the posteriors in eq. (4) is
well-approximated by the KL-divergence between the
corresponding Bayesian CLT approximations.

A2: The datasets D, D + D∗, and D + 2D∗ are similar
enough that MLE and Hessian of the average log-
likelihood are the same for all three.

Then, if d is the number of dimensions of z, we have

δ ≈ d

2
log

1 + |D∗| / |D|√
1 + 2 |D∗| / |D|

. (5)

In section D, we provide a detailed version of this result
(alongside the discussion for why we need A1 than simply
applying Bayesian CLT). Here, we focus on the implica-
tion of eq. (5). The right-hand-side of the eq. (5) is well
approximated by d

4 log (|D∗|/|D|) when |D∗|/|D| is large.
Therefore, when datasets match, the SNR still depends on di-
mensionality of the latent space and the relative sizes of the
datasets: δ increases linearly in the number of dimensions
and logarithmically in |D∗| / |D|. This completes identifi-
cation of the three factors that influence the SNR: dataset
mismatch, dimensionality, and relative size of D∗.

2.1. Example: Gaussian Linear Regression

While theorem 2.1 provides a general expression for SNR,
it required some intuition to see the impact of the three
factors. With the aim to make these relationships more
explicit, this section considers a linear regression model with
analytically tractable Gaussian posteriors. The closed-form
δ expression for this model also remain terse and we make
some simplifying assumptions (like, D∗ contains copies of
training data) to gather more intuition. The following result
provides a single expression capturing the the impact of the
three factors on SNR.
Theorem 2.2. Let p(z) = N (z|µ0,Σ0) and p(yD|z) =
N (yD|XDz, σ

2I), where yD ∈ R|D| are the responses,
XD ∈ R|D|×d are the features, z ∈ Rd are the weights,
and σ2 is the known variance. Let δ be as in eq. (3).

B1: The test features XD∗ consist of m copies of XD and
responses yD∗ consist of m copies of yD +∆ where
∆ is the mismatch vector of size |D|.

B2: For a sequence of increasingly large training datasets,
posterior is dominated by data. Mathematically, as
|D| → ∞,

(
X⊤

DXD
)−1

Σ−1
0 → 0.

Assume B1 and B2. Then, lim
|D|→∞

|δ − δlim| = 0 and

δlim =
d

2
log

1 +m√
1 + 2m

+
1

2σ2

m2

2m2 + 3m+ 1
∆⊤XD

(
X⊤

DXD
)−1

X⊤
D∆. (6)

We discuss the proof for this result in section E. B1 is nec-
essary to simplify the expressions and B2 essentially means
the posteriors in eq. (3) are dominated by data. This is
analogous to (but weaker than) A1. In fact, if there is no
dataset mismatch (∆ = 0), then the right-hand side of eq. (6)
reduces exactly to that of eq. (5).

The expressions in eq. (6) explicitly combine the three fac-
tors: mismatch (∆), dimensionality (d), and relative size
of D∗ (m). With some manipulation, the following bounds
hold that bring out these relationships even more clearly
(see section E.1 for derivation of the bounds).

d

4
log

m

2
≤ δlim ≤ d

4
log
(m
2

+ 1
)
+

1

4σ2
||∆||22. (7)

Overall, eqs. (6) and (7) capture the strength of the three
factors: δ is affected quadratically by mismatch, linearly by
the dimensionality, and logarithmically by the relative size.
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Figure 4: SNR isocontours. SNR for the Gaussian linear regres-
sion model where the mismatch ∆ and the dimensionality of z are
varied, keeping relative size of D∗ fixed (m = 1).

We consider an instance of the linear regression model from
theorem 2.2 in figs. 2 and 4. Figure 4 shows SNR decays
quickly with an increase in mismatch and dimensionality.
Figure 2 shows the average difference between log PPDq
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and logRK when the three factors influencing SNR are in-
creased independently. As any factor increases, estimation
error remains high and even using as many as a million sam-
ples does not help much (see section 5.2 for setup details).
Moreover, the steepness of the slopes in fig. 2 correlates
inversely with the relative impact of the three factors. For
instance, δ scales quadratically with the mismatch, and con-
sequently, the corresponding error slope is the least steep,
indicating this error is harder to reduce with more samples.

2.2. Analysis With Exact Inference And Conjugacy

This section considers theorem 2.1 for conjugate models.
These models enjoy nice analytical properties, allowing us
further insights into the low SNR problem. First, we discuss
some conjugate model notation and then present the result.

Consider an exponential family

p(y|z) = h(y) exp(T (y)⊤ϕ(z)−A(z)),

A(z) = log

∫
h(y) exp(T (y)⊤ϕ(z))dy, (8)

where h(y) is the base measure, T (y) is the sufficient statis-
tic, ϕ is a one-to-one parameter map, and A is the log-
partition function ensuring normalization. The correspond-
ing conjugate family is

s(z|ξ) = exp

(
ξ⊤
[
ϕ(z)
−A(z)

]
−B(ξ)

)
,

B(ξ) = log

∫
exp

(
ξ⊤
[
ϕ(z)
−A(z)

])
dz, (9)

where ξ is the conjugate family parameter. s is ”conjugate”
because if the prior is p(z) = s(z|ξ0) and the likelihood is
p(D|z) =∏y∈D p(y|z), then posterior is within the family
and given by p(z|D) = s(z|ξD) where

ξD = ξ0 +
[∑

y∈D T (y)

|D|

]
. (10)

Corollary 2.3. Take a model with likelihood p(D|z) in an
exponential family (eq. (8)) and prior p(z) = s(z|ξ0) in the
conjugate family (eq. (9)). Let RK be as in eq. (2). Then,
SNR (RK) =

√
K/
√
exp(δ)2 − 1 for

δ =
1

2
KL (s(z|ξD+D∗) ∥ s(z|ξD))

+
1

2
KL (s(z|ξD+D∗) ∥ s(z|ξD+2D∗)) (11)

=
B (ξD) +B(ξD+2D∗)

2
−B (ξD+D∗) , (12)

where ξD is as in eq. (10) and B is as in eq. (9).

This result is similar to theorem 2.1 (see section F for a
standalone proof). The main advantage of this new result is

that the second form for δ in terms of log partition functions
(eq. (12)) allows additional insight. Figure 5 plots the SNR
for three conjugate models using eq. (12).

To understand eq. (12), note that ξD+D∗ = 1
2 (ξD +

ξD+2D∗). Since B is convex, δ is the looseness in Jensen’s
inequality: the mean of B(ξD) and B(ξD+2D∗) versus B
applied to the mean of ξD and ξD+2D∗ .

Jensen’s inequality is tight when the function is nearly linear
in the range evaluated. Imagine evaluating B(aξ) for a > 0,
i.e., along a ray emanating from the origin. B has a ”log-
sum-exp” form, so as a becomes large, B(aξ) becomes
nearly linear along this ray (Boyd & Vandenberghe, 2004).
So, when ξD and ξD+2D∗ are large and lie along the ray, δ
is small. In summary, δ is small (and the SNR large) when:

1. ξD is large (so that B is locally ”flat” near ξD).

2. ξD and ξD+2D∗ lie close to a ray emanating from the
origin. This happens when the statistics T (D) and
T (D∗) are similar, and the prior parameters ξ0 are
either small or nearly proportional to ξD.

Overall, corollary 2.3 corroborates the results from theo-
rem 2.1 and eq. (5). The log-partition function B behaves
like a ”soft-max” function or, very informally, a ”rounded
cone.” We know it is ”rounded” near the origin, but if you
follow any ray away from the origin, it becomes ”flat.” In
these flat regions, Jensen’s inequality is tight and SNR is
high. Therefore, the impact of relative dataset size and mis-
match of data statistics on SNR can be understood in terms
of how they position points along the surface of the ”cone”
—small datasets position you near the origin where the log
partition function is rounded, while different moments mean
the points do not lie on a ray pointing near the origin. Either
of these cases lead to a poor SNR. Below, we provide an
example to visually demonstrate this phenomenon.

Example: A Gaussian Conjugate Model

Take the conjugate normal model with p(z) = N (z|0, 1)
and p(y|z) = N (y|z, 1). Let T (D) denote the mean
sufficient statistics of y ∈ D. Take a training
dataset D with T (D) = 10, a ”matching” test dataset
with T (D∗

1) = 10 and a ”mismatched” test dataset
with T (D∗

2) = 5. All datasets have 100 examples
(|D| = |D∗

1 | = |D∗
2 | = 100).
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Figure 5: SNR isocontours. See section B for model details. For each model, we derive the log-normalization constant B and use
expressions from eq. (12) to calculate the SNR in closed form. We set the mean sufficient statistics T (D) to 10 (denoted in red dotted line)
and the number of data points |D| to 1000. Setting these values theoretically is sufficient to calculate the SNR since eq. (12) requires the
natural parameter ξ under different datasets, which can be evaluated using eq. (10). Dataset mismatch increases as we move away from
the red dotted line, and the relative size of D∗ increases as we move along the horizontal axis. Either way, SNR decreases exponentially.

Figure 6: Left: Isocontours of the log partition function
B(ξ) (eq. (9)). Right. The values of B(ξ) along the lines
joining ξD to ξD+D∗

1
and ξD+D∗

2
.

Figure 6 shows B(ξ) along with the values of natural pa-
rameter ξ for each dataset. Notice how ξD, ξD+D∗

1
, and

ξD+2D∗
1

are equidistant on a ”ray” pointing to near the
origin (left panel), meaning Jensen’s inequality is nearly
tight (right panel), but the line joining ξD and ξD+D∗

2

does not point towards the origin, meaning Jensen’s in-
equality is not tight, resulting in d ≈ 200.56 and an
astronomically small SNR of SNR (R1) ≈ 7.9× 10−88.

3. Analysis With Approximate Inference
In the previous section, we assumed that inference was
exact, i.e., qD(z) = p(z|D). This allowed us to uncover the
factors that affect the SNR. However, in practice, methods
like VI or Laplace’s approximation are not exact. This
section generalizes our analysis to cases where qD may not
be the same as p(z|D). We start by generalizing theorem 2.1
and then specialize it to conjugate models.
Theorem 3.1. Let RK be as in eq. (2). Then, SNR (RK) =√
K/
√
exp(δ)2 − 1 for

δ =
1

2
KL (qD(z|D∗) ∥ qD(z))

+
1

2
KL (qD(z|D∗) ∥ qD(z|2D∗)) (13)

=
1

2
ZD(2D∗)− ZD(D∗), (14)

where ZD(D∗) = log
∫
p(D∗|z)qD(z)dz and qD(z|D∗) ∝

p(D∗|z)qD(z).

For a standalone proof, check section G. As before, eq. (13)
determines δ in terms of divergences, but these distributions
are unusual. One may think of qD(z|D∗) as the posterior

when using qD(z) as a prior and conditioning on D∗. When
inference is exact, qD(z|D∗) = p(z|D + D∗) and eq. (13)
reduces to eq. (3).

Similarly, eq. (14) is a generalization of eq. (4). To see
this, write δ = 1/2 (ZD(∅) + ZD(2D∗))− ZD(D∗) where
ZD(∅) = log

∫
qD(z)dz = 0. When inference is exact, sim-

ple manipulations make the two expressions equal.

Next corollary specializes theorem 3.1 to the case of conju-
gate models. For simplicity, we assume that approximate
distribution lies in the conjugate family.
Corollary 3.2. Let p(D|z) and p(z) be as in corollary 2.3.
Let qD(z) = s(z|η) be in the conjugate family (eq. (9))
with parameters η, and let RK be as in eq. (2). Then,
SNR(RK) =

√
K/
√
exp(δ)2 − 1 for

δ =
1

2
KL (s(z|η + U(D∗)) ∥ s(z|η))

+
1

2
KL (s(z|η + U(D∗)) ∥ s(z|η + U(2D∗))) (15)

=
B (η) +B(η + U(2D∗))

2
−B (η + U(D∗)) , (16)

where B is as in eq. (9) and U(D) =
[
T (D), |D|

]
.

See section H for a proof. This result has the same func-
tional form as corollary 2.3 and differs only in the canonical
parameters. Now, η are the parameters of qD and η+U(D∗)
are the parameters of the posterior obtained by condition-
ing on D∗ with qD as prior. When the inference is exact,
η = ξD, the above expressions reduce to corollary 2.3.

Note δ as in eq. (16) is again the looseness in Jensen’s
inequality: mean of B(η) and B(η + U(2D∗)) versus B
applied to mean of η and η + U(2D∗). So, when test data
statistics U(D∗) are such that η and η + U(2D∗) lie along
a ray originating at the origin, the Jensen’s inequality in
eq. (16) is tight and δ is small. Otherwise, we expect δ to be
large and the SNR to be low.
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Overall, theorem 3.1 and corollary 3.2 tell us that when
approximate posterior closely resembles the true posterior,
the relationships from section 2 hold as is. However, for
arbitrary approximations, we can only reason about the
SNR in terms of how much the “posteriors qD(z|D∗) and
qD(z|2D∗)” differ from the “prior qD(z)” as making more
precise statements in terms of the datasets, like we did in
section 2, will require specific assumptions on qD.

4. Learned Importance Sampling
The previous sections analyzed the SNR expressions for
the simple MC estimator and found it decays quickly with
increase in mismatch, dimensionality, and relative size of
D∗. When the SNR is poor, even with a large number of
samples the estimation error remains high (fig. 2). This
section considers an instance of the adaptive importance
sampling idea (Owen, 2013, Chapter 10) as an illustrative
way to mitigate the poor estimation error.

In general, when an MC estimator has high variance, a
standard solution is to replace it with importance sampling
(IS). For a valid proposal r, the IS estimator for PPDq can
be written as

RIS
K =

1

K

K∑
k=1

p(D∗|zk)qD(zk)
r(zk)

where zk ∼ r. (17)

The choice of the proposal is delicate. Setting r(z) = qD(z)
reduces eq. (17) to the simple MC estimator, while using
rOpt ∝ p(D∗|z)q(z|D)—the optimal IS proposal—results
in infinite SNR (Rainforth et al., 2020). The idea of adaptive
IS is to somehow learn a good proposal r (since rOpt is often
intractable). Converting this idea into an algorithm is non-
trivial as it requires making several decisions, like choosing
the family of proposal distributions, an update scheme, and
a stopping criterion (Owen, 2013, Algorithm 10.1).

One straightforward way to learn r, based on our analysis
from sections 2 and 3, is to learn a parameterized proposal
rw, with parameters w, by optimizing the SNR of the es-
timator in eq. (17). However, maximizing SNR (RIS

K) is
equivalent to minimizing the variance of RIS

K , which in turn
is equivalent to minimizing the χ2-divergence between rOpt

and rw (Dieng et al., 2017), and recent research suggests
gradients for χ2 themselves suffer from poor SNR, making
this direct optimization difficult (Geffner & Domke, 2021).

We take an alternative approach and learn rw by optimizing
the importance weighted evidence lower-bound (IW-ELBO)
(Burda et al., 2016). Let zm ∼ rw. Then

IW-ELBOM [rw(z) ∥ p(D∗|z)qD(z)]
:= E

[
log 1

M

∑M
m=1

p(D∗|zm)qD(zm)
rw(zm)

]
. (18)

It is known that maximizing IW-ELBO in eq. (18) is asymp-
totically equivalent to minimizing the variance of RIS,

or equivalently, maximizing SNR
(
RIS
)

(Maddison et al.,
2017; Dieng et al., 2017; Rainforth et al., 2018; Domke &
Sheldon, 2018). More formally,

lim
M→∞

M (log PPDq − IW-ELBOM )

= V[RIS]/(2PPD2
q). (19)

So, optimizing the IW-ELBO in eq. (18) can be thought of as
a surrogate for optimizing the SNR of the IS estimator. The
naive gradient estimator of IW-ELBO also has poor SNR
(Rainforth et al., 2018; Finke & Thiery, 2019). Fortunately,
a recently proposed re-parameterized gradient estimator
circumvents this issue (Tucker et al., 2019; Finke & Thiery,
2019) and offers a practical option (Agrawal et al., 2020).

We refer to our specific instance of adaptive IS as the
Learned IS (LIS). Figure 7 provides the pseudocode.

LearnedIS(D∗,K)

w ← Optimize(IW-ELBO)

zk ∼ rw ∀k ∈ {1, . . . ,K}
RIS

K ← 1
K

∑K
k=1

p(D∗|zk)qD(zk)
rw(zk)

Figure 7: Evaluating PPDq with Learned IS.

5. Examples
We consider four models: exponential family, linear re-
gression, logistic regression, and a hierarchical model (see
section B for more details of the setups). For each model,
we use the simple MC estimator and demonstrate whenever
either of the three factors is high, SNR is poor and PPDq

estimates are biased even after using a large number of sam-
ples. We then use the learned IS estimator from fig. 7 and
show that it enjoys significantly higher SNR and provides
accurate estimates with fewer samples.

5.1. Exponential Family Models

Tables 1 and 2 show the results of PPDq estimation under
exact inference and approximate inference, respectively. In
both the cases, simple MC estimator suffers from low SNR
and high estimation error even after using a million samples.
The empirical SNR of RIS

K is much higher than RK . Under
exact inference, RIS

K is deterministically equal to PPDq , and
under approximate inference, the learned IS estimates are
hundreds of nats higher than the simple MC estimates.

For the proposal and the variational families, we use full-
rank Gaussians. For learned IS, we set M = 16 for the
IW-ELBO and optimize for 1000 iterations with Adam
(Kingma & Ba, 2015) and a learning rate of 0.001. (See
section J for details, and table 6 for computation of logR
and SNR (R) in tables 1 and 2).
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Table 1: Results for log PPDq estimation under exact inference (see table 5 for dataset details). We use K = 106 for simple
MC and K = 103 for learned IS. Mean and standard deviation reported over ten runs. (See section B for model details.)

Model Ground truth log PPDq Lower bound on log PPDq (↑) Signal-to-noise ratio (↑)
Simple MC Learned IS Simple MC Learned IS
(E[logRK ]) (E[logRIS

K ]) (SNR(RK)) (SNR(RIS
K ))

Normal -774.64 -1183.98 ± 0.34 -774.64 ± 0.00 0.35 ± 0.02 76.5 ± 23.43
Exp -527.44 -559.98 ± 0.16 -527.44 ± 0.00 0.34 ± 0.01 222.76 ± 147.59
Binomial -327.42 -487.13 ± 1.29 -327.41 ± 0.00 0.03 ± 0.00 173.06 ± 104.2

Table 2: Results for log PPDq estimation under approximate inference (see table 5 for dataset details). We use K = 106 for
simple MC and K = 103 for learned IS. Mean and standard deviation reported over ten runs.

Model Ground truth log PPDq Lower bound on log PPDq (↑) Signal-to-noise ratio (↑)
Simple MC Learned IS Simple MC Learned IS
(E[logRK ]) (E[logRIS

K ]) (SNR(RK)) (SNR(RIS
K ))

Normal – -1194.32 ± 0.41 -775.23 ± 0.00 0.35 ± 0.02 238.79 ± 172.46
Exp – -576.27 ± 0.14 -542.34 ± 0.00 0.36 ± 0.01 215.09 ± 140.52
Binomial – -382.46 ± 0.74 -322.66 ± 0.00 0.34 ± 0.02 70.13 ± 35.29

Table 3: Results for log PPDq estimation for logistic regression (section 5.3). We use K = 106 for simple MC and K = 103

for IS estimators. Mean and standard deviation reported over ten runs.

Model Ground truth log PPDq Lower bound on log PPDq (↑) Signal-to-noise ratio (↑)
Simple MC Learned IS Simple MC Learned IS
(E[logRK ]) (E[logRIS

K ]) (SNR(RK)) (SNR(RIS
K ))

Baseline - -525.25 ± 0.01 -525.12 ± 0.00 1.35 ± 0.20 645.67 ± 14.99
More dimension - -702.07 ± 0.28 -543.00 ± 0.00 0.04 ± 0.01 57.78 ± 1.37
More mismatch - -1687.98 ± 0.96 -734.32 ± 0.00 0.03 ± 0.00 728.63 ± 16.01
More test data - -5143.69 ± 0.34 -5097.60 ± 0.00 0.04 ± 0.01 802.34 ± 18.37

Table 4: Results for log PPDq estimation for MovieLens 25M dataset (section 5.4). Mean and standard deviation reported
over ten runs.

Method No. of samples (K) Lower bound on log PPDq (↑) Signal-to-noise ratio (↑)
Simple MC Learned IS Simple MC Learned IS
(E[logRK ]) (E[logRIS

K ]) (SNR(RK)) (SNR(RIS
K))

Flow VI K = 103 -796.24 ± 0.13 -779.39 ± 0.02 0.05 ± 0.02 0.11 ± 0.04
K = 106 -787.27 ± 0.08 -777.73 ± 0.01 0.04 ± 0.01 0.48 ± 0.29

Gaussian VI K = 103 -828.22 ± 0.17 -783.89 ± 0.03 0.04 ± 0.00 0.12 ± 0.01
K = 106 -811.61 ± 0.13 -781.88 ± 0.02 0.04 ± 0.01 0.32 ± 0.13
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Figure 8: Estimation Error. We plot the estimation error, log PPDq− logRK , against the number of samples K for the linear regression
model (section 5.2). The fifth and the ninety-fifth percentiles are represented as the filled regions. Across the scenarios, the estimation
error worsens as either of the three factors increase. LIS significantly reduces the error. See section K for more details on scenarios.

5.2. Linear Regression

We take the linear regression model with exact inference as
described in theorem 2.2 and construct four scenarios. We
start with a baseline where none of the three factors influ-
encing SNR are too high. We then independently increase
mismatch, dimensionality, and relative size (see section K).

In fig. 8, we plot the error in evaluating log PPDq under
exact inference using simple MC and learned IS. For the
baseline (first panel), the simple MC has high enough SNR,
and the estimation is accurate for K = 106. This error in-
creases dramatically when either of the factors increase (see
red curves in last three panels). The learned IS consistently
evaluates accurately across all scenarios (see blue curves).
(See section K for details of learned IS settings).

5.3. Logistic Regression

We construct four scenarios similar to section 5.2—the base-
line where none of the three factors are too high and addi-
tional scenarios where each factor is increased individually.

Table 3 reports the results from estimating PPDq using the
simple MC estimator and the learned IS estimator. For
baseline, the simple MC estimator has reasonably high SNR
but for other scenarios it suffers from low SNR and poor
estimation error. The learned IS consistently provides higher
SNRs and better estimates. See section L for setup details.

5.4. Hierarchical Model

We consider a hierarchical user-preference model for the
MovieLens 25M dataset. Here, we have no dataset shift and
the relative size is small (|D∗|/|D| = 0.1). However, the di-
mensionality is moderately high (d = 1065) and simple MC
estimator can still suffer from low SNR. We consider two
posterior variational approximations—full-rank Gaussians
and normalizing flows—for learning qD.

Table 4 reports log PPDq estimates using simple MC and
learned IS for different values of K. When using the simple
MC with K = 106, flow VI reports PPDq more than 20 nats
higher than Gaussian VI (second column). However, the

SNR of these estimates is extremely low. With learned IS,
flow VI is only 4 nats higher than the Gaussian VI, with
much higher SNR (fourth column). So, while flow VI may
be better, the difference is not as large as it seems initially.
(See section M for setup details.)

6. Discussion
Related Work. Wu et al. (2017) explored the use of An-
nealed Importance Sampling (AIS) (Neal, 2001) for estimat-
ing the posterior predictive density in decoder based models.
In particular, they used AIS for estimating the normalization
constant of the unnormalized density p(y∗i |zi)q(zi|D) for
each data point yi in the test data set D∗. Different from
them, we focus on black-box treatment of probabilistic mod-
els (Ranganath et al., 2014; Kucukelbir et al., 2017) and
exploit BBVI schemes (Kucukelbir et al., 2017; Agrawal
et al., 2020) for estimating the posterior predictive densi-
ties over D∗. Recent theoretical advances (Domke, 2019;
2020; Domke et al., 2024; Kim et al., 2023; 2024b;a) make
BBVI a general purpose inference method that is reliably
applicable to a wide range of problems (Carpenter et al.,
2017).

Other research has explored learning approximate posterior
distributions qD to calibrate for test-time utilities (Stoy-
anov et al., 2011; Lopez et al., 2020; Lacoste–Julien et al.,
2011; Morais & Pillow, 2022; Kuśmierczyk et al., 2019;
Knoblauch et al., 2022; Kuśmierczyk et al., 2020; Vadera
et al., 2021). Such methods aim to learn a distribution q′

that is different from qD and optimizes the expectation of
some utility function under qD at test-time. We focus on the
problem of estimating the posterior predictive density for a
given qD at test-time, and do not change the given posterior;
we simply focus on accurate estimation.

Ruiz et al. (2016) explored learning an importance sampling
estimator for estimating the gradients for BBVI (Ranganath
et al., 2014). They learn a proposal distribution r while
learning the parameters of the variational distribution qD,
and rely on exponential families for closed-form updates.
We do not focus on learning the variational distribution
qD, and use BBVI methods for learning the proposal that
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can be in any suitable family of distributions (Rezende &
Mohamed, 2015; Papamakarios et al., 2021; Webb et al.,
2019; Agrawal et al., 2020).

Vehtari et al. (2016) evaluate predictive accuracy using met-
rics that involve leave-one-out ”point wise” predictive den-
sity of the type p(yi|D−i) over the training data D. To
estimate p(yi|D−i) =

∫
p(yi|z)p(z|D−i)dz, the authors

consider using the full posterior distribution p(z|D) as the
proposal. However, p(z|D) can have thinner tails than
p(z|D−i) leading to large importance weights. To remedy
this, the authors fit a Pareto distribution to the importance
weights and then use statistics from the fitted distribution for
final estimation. While the PSIS-LOO setting differs from
our focus, one can use PSIS ideas to improve LIS estimates
if r is suspected of thin tails.

Rainforth et al. (2020) propose a framework for target-aware
Bayesian inference (TABI) in which they decompose the
posterior expectations into three components. Each of the
three components is then computed as an instance of impor-
tance sampling using the Annealed Importance Sampling
(AIS) or Nested Importance Sampling (NIS). One can ap-
ply the TABI framework for PPDq estimation; however,
after some simple observations, this reduces to estimating∫
p(D|z)qD(z)dz with AIS or NIS (and is same as the ap-

proach from Wu et al. (2017)). In recent work, Llorente
et al. (2023) extend the TABI framework by employing
the generalized thermodynamic integration scheme (GIS)
for solving the posterior expectations. When placing these
TABI approaches in context, it is crucial to note that we
focus on approximate inference problems. Running MCMC
procedures like AIS or thermodynamic integrations proce-
dures like GIS is often infeasible or extremely slow on such
problems (due to a large number of data points or dimen-
sions), and view the MCMC procedures as orthogonal to
our variational approach.

Reichelt et al. (2022a) propose the concept of expectation
programming, where a probabilistic programming system
considers the target posterior expectation as a first-class citi-
zen. They aim to build an efficient estimation pipeline when
target functions are previously known. In their implemen-
tation, they currently use Annealed Importance Sampling
as the choice of inference scheme. Our proposed methodol-
ogy can join their suite of inference options when the target
functions are more amenable to a variational formulation.

Izmailov et al. (2021a) point out that the posteriors in
Bayesian neural network can be bad at generalizing un-
der specific dataset shifts. They uncover pathologies in the
BNN posteriors that lead to poor generalization and present
techniques that can possibly mitigate these. Different from
them, we focus on understanding the problem of inaccurate
PPDq estimation and how to improve estimation without
changing the properties of the posterior.

Kristiadi et al. (2022) hypothesize that the inaccuracy of the
posterior predictive estimation is related to the inaccuracy of
the approximate posterior. The authors explore this empiri-
cally and consider the use of normalizing flows to get better
posterior approximations. We find this work orthogonal to
ours. We lay out the conditions that lead to poor posterior
predictive estimations (including when inference is exact)
and provide a post hoc method for improving the estimation
without changing the approximate posterior.

Conclusions. This paper develops a theoretical understand-
ing of why the SNR of the naive PPD estimator can be
extremely poor. We demonstrate that even if the inference
is exact, SNR suffers when either of the following quanti-
ties increases: mismatch between the training and test data,
dimensionality of the latent space, or the size of the test
data relative to training data. We hope our work serves as a
strong cautionary note and more practitioners monitor (and
report) the SNR value of their PPD estimates. Moreover,
whenever the SNR values of the naive estimator is low, our
work shows that this does not necessarily reflect on the accu-
racy of the approximate posterior but simply on our ability
to accurately estimate PPD. In cases of low SNR, we sug-
gest practitioners use approaches like LIS to improve the
reliability of the estimates.

Limitations. The primary contribution of this work is the-
oretical. Our explorative strategy performs favorably and
can be developed further in the future work. The proposal
learning can be computationally expensive when the test
data is large. Further, learned IS requires evaluating the
approximate distribution and does not immediately extend
to Markov chain Monte Carlo methods.
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A. Additional Comments
Here we offer some additional comments on the different aspects of our formulation that we could not cover in the main text.

A.1. True posterior predictive distribution vs. PPDq

In this paper, we are not interested in estimating the posterior predictive distribution under the true posterior
(
∫
p(D∗|z)p(z|D)dz). We are interested in estimating the posterior predictive distribution under the approximate posterior as

defined in eq. (1). Accurate measurements of the PPDq are of independent interest and are used for forecasting, predictions,
and inference method comparisons (see citations in discussion after eq. (1)).

A.2. Relationship of estimation error and variance of RK

Let G be an unbiased estimator of the PPDq such that E[G] = PPDq. Then, using Jensen’s inequality, we know that
E[logG] ≤ log PPDq, making logG a biased estimator of log PPDq. This bias or the looseness in Jensen’s inequality is
directly related to the variance or inversely related to the SNR of G. To see this, consider the K sample estimator GK . A
second-order Taylor series approximation in the vicinity of log PPDq (as done in the second-order delta method) gives the
following about the bias or the looseness in Jensen’s inequality:

log PPDq − E[logGK ] ≈ 1

2K

V [G]

PPD2
q

=
1

2K

1

SNR(G)2
.

These relationships hold when G is unbiased and apply to the estimators in eqs. (2) and (17). Therefore, we want the SNR
to be high for lower estimation errors.

A.3. SNR vs variance of RK

In this paper, we use signal-to-noise ratio (SNR) of RK defined as SNR (RK) = E[RK ]/
√
V[RK ]. We study SNR because

it is equivalent to relative variance and bakes in the idea of how large the estimator variance is relative to the target
quantity. The idea of relative variance becomes crucial when the target quantity is numerically small, as in the case of
PPDq values. To make this precise, let’s consider an example where the log PPDq = −100 (for reference, all estimates
of log PPDq in tables 1 to 4 are lower than −100). Also, consider an unbiased estimator R with variance V(R) = 10−20.
In the absolute sense, the variance of this estimator is low; however, R carries more noise than signal. To see why,
note that PPDq = exp(−100) ≈ 3.72 × 10−44. Intuitively, R varies on the scale of 10−10 (standard deviation) and
will produce noisy approximations of the target value that is the order of 10−44. SNR naturally captures this intuition:
SNR(R) = PPDq/

√
V(R) ≈ 3.72× 10−34 and flags the estimator as poor.

A.4. Joint vs. Marginal PPD

The usage of “joint” PPD (as in eq. (1)) depends on both—the model and the modeler’s preference. The joint PPD
(
∫
p(D∗|z)qD(z)dz) is a natural metric whenever the test data are not IID (Williams et al., 2020) or one wants to measure

correlations between new data points (Wang et al., 2021). It also shows up in the conditional log marginal likelihood metric,
where a fraction of observations is used to evaluate the conditional likelihood over the remaining observations (Lotfi et al.,
2022). The “margina” PPD (

∫
p(y∗|z)qD(z)dz) is a natural metric when one wants to measure the model’s ability to predict

a single data point. Moreover, the dependence of SNR on the size of the test data is relatively weaker than the dependence
on the mismatch and dimensionality (eqs. (6) and (7)).

B. Model Details
This section provides high-level overview of the models considered throughout the paper. For the first three models, we use
synthetic data sampled from the model. For the hierarchical model, we use the MovieLens 25M dataset. For more details of
the setup, see sections J to M.

Exponential Family Models. We consider three exponential family models. A binomial model where p(y|z) is a binomial
distribution with a known number of trials n and unknown success probability z ∈ [0, 1], and p(z) is a beta distribution.
An exponential model where p(y|z) is an exponential distribution with the unknown rate z ∈ R+, and p(z) is a gamma
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distribution. A normal model where p(y|z) is a normal distribution with known variance σ2 and unknown mean z ∈ R, and
p(z) is also a normal distribution. See table 9 in section J for full model details.

Table 5: Summary of the data sets used for results in tables 1 and 2.

Model T (D) |D| T (D∗) |D∗| δ

Normal 10.08 100 4.96 100 210.85
Exp 7.00 100 39.37 100 11.74
Binomial 8.96 100 41.06 100 23.32

Linear Regression. We set p(y|z) = N (y|z⊤x, 1) and p(z) = N (z|0, I), where x ∈ Rd and y ∈ R in model from
section 2.1. We use this model for the example in figs. 2 and 4 and experiments in section 5.2. For more details on the
scenarios in figs. 2 and 8, see section K

Logistic Regression. The non-conjugate model with p(y|z) = B(y|sigmoid(z⊤x)) and p(z) = N (z|0, I) where response
y ∈ {0, 1}, latent variable z ∈ Rd, and feature vector x ∈ Rd. We use this model in section 5.3 experiments. For
approximate inference, we use a full-rank Gaussian variational posterior. For more details, see section L

Hierarchical Model. The hierarchical model using the MovieLens 25M—a dataset of 25 million movie ratings along with
a set of features for each movie (Vig et al., 2012). We randomly select 100 users after filtering those with more than 1000
ratings. We keep one-tenth of the ratings for test data, and PCA the features to ten dimensions (see section M for more
details).

The task is to model rating yi,j ∈ {0, 1} of user i for movie j with given features xi,j . We use the model

p(θ, λ, y|x) = N (θ|0, I)×∏100
i=1N (λi|µ(θ),Σ(θ))∏ni

i=1B(yi,j |sigmoid(λ⊤
i xi,j)) (20)

where θ and λ together represent latent variables z; θ are the global latent variables capturing preferences over users and λi

are the local latent variables capturing preferences for user i. µ and Σ are functions such that if θ = [θµ, θΣ], µ(θ) = θµ
and Σ(θ) = tril(θΣ)

⊤tril(θΣ), where tril takes an unconstrained vector and outputs a lower-triangular positive definite
matrix. ni is the number of ratings for user i. B is the Bernoulli distribution. We use this model for illustration in fig. 1 and
experiments in Section 5.4.
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C. Proof for Theorem 2.1
For the proof sketch, see the theorem 2.1 in the main text. Here, we first provide the lemmas and corollaries needed for the
proof and then provide the proof itself. Lemma C.1 rewrites the SNR of the naive Monte Carlo estimator from eq. (2) as a
function of moments of the estimators. Lemma C.3 then provides the general expression for the moments of the naive Monte
Carlo estimator. Combining lemmas C.1 and C.3, gives the SNR in the form normalizing constants as in eq. (4). Lemma C.4
gives the KL divergence between any two posterior distributions. Lemma C.5 then uses the result in lemma C.4 to give the
expression for the sum of the KL divergences between three posterior distributions, where the first distribution is the same
between the two KL terms (this is the general structure that appears in the eq. (3)). Corollary C.6 simplifies this sum KL
expression for datasets with a particular structure. Finally, we prove the theorem 2.1 by combining all the above results.

Lemma C.1. Let RK be the Monte Carlo estimator in eq. (2). Then,

SNR (RK) =

√
K√

exp (δ)
2 − 1

, where δ =
1

2
log

(
E[R2

1]

E[R1]2

)
(21)

Proof. The proof follows naturally from the definition of SNR (RK).

SNR (RK) =
√
KSNR (R1) =

√
K

E[R1]√
V[R1]

(22)

=
√
K

E[R1]√
E[R2

1]− E[R1]2
(23)

(a)
=

√
K√(

E[R2
1]

E[R1]2
− 1

) (24)

(b)
=

√
K√

exp (2δ)− 1
=

√
K√

exp (δ)
2 − 1

, (25)

where (a) follows from the fact LHS and RHS of (a)
= are equal for E[R1] > 0 and limit is the same at E[R1] = 0; and (b)

follows from the definition of δ.

Definition C.2 (Log-normalization function). Let D be some dataset. Let p(D|z) be the likelihood and p(z) be the prior.
Then, posterior distribution p(z|D) = p(D|z)p(z)

expV (D) , where

V (D) := log

∫
p(D|z)p(z)dz. (26)

Lemma C.3. Let p(D|z) be the likelihood and p(z) be the prior. Let D∗ be some test data. Let p(D + D∗|z) =
p(D|z)p(D∗|z) for any D and D∗. Let R1 be the Monte Carlo estimator for the PPDq under exact inference (eq. (2) with
K = 1 and qD(z) = p(z|D)). Then,

E [Rc
1] =

expV (D + cD∗)

expV (D) , (27)

where c is a non-negative integer and V is as in definition C.2.
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Proof. The proof is straightforward for c = 0. For c ≥ 1, we have

E [Rc
1]

(a)
= E [p(D∗|z)c] (b)= E [p(cD∗|z)] (28)

=

∫
p(cD∗|z)p(z|D)dz (29)

=

∫
p(cD∗|z)p(D|z)p(z)dz

expV (D) (30)

(c)
=

∫
p(D + cD∗|z)p(z)dz

expV (D) (31)

(d)
=

expV (D + cD∗)

expV (D) . (32)

where (a) follows from definition of eq. (2), (b) and (c) follow from the i.i.d assumption on the datasets, and (d) follows
from definition C.2. Note: we do not require points within a dataset to be i.i.d.

Lemma C.4. Let p(D|z), p(z), and p(z|D) be as in definition C.2. Let Da and Db be the two multisets of data. Then,

KL (p(z|Da) ∥ p(z|Db)) (33)

= E
[
log

p(Da|z)
p(Db|z)

]
− V (Da) + V (Db) (34)

(35)

Proof.

KL (p(z|Da) ∥ p(z|Db)) (36)

= E
[
log

p(z|Da)

p(z|Db)

]
(37)

= E

log p(Da|z)p(z)
exp(V (Da))

p(Db)p(z)
expV (Db)

 (38)

= E
[
log

p(Da|z)
p(Db|z)

]
− V (Da) + V (Db) (39)

(40)

Lemma C.5. Let p(D|z), p(z), and p(z|D) be as in definition C.2. Let D1, D2, and D3 be the three multisets of data. Then,

1

2
KL (p(z|D3) ∥ p(z|D1)) +

1

2
KL (p(z|D3) ∥ p(z|D2)) (41)

= E
[
log p(D3|z)−

1

2
log p(D1|z)−

1

2
log p(D2|z)

]
(42)

+
V (D1) + V (D2)

2
− V (D3). (43)

Proof. Applying lemma C.4 to D3 and D1 gives

KL (p(z|D3) ∥ p(z|D1)) (44)
= E [log p(D3|z)− log p(D1|z)]− V (D3) + V (D1) (45)

(46)
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and applying it to D3 and D2 gives

KL (p(z|D3) ∥ p(z|D2)) (47)
= E [log p(D3|z)− log p(D2|z)]− V (D3) + V (D2). (48)

(49)

Now, multiplying the above two equations by 1
2 and adding them gives

1

2
KL (p(z|D3) ∥ p(z|D1)) +

1

2
KL (p(z|D3) ∥ p(z|D2)) (50)

=
1

2
E [log p(D3|z)− log p(D1|z)]−

1

2
V (D3) +

1

2
V (D1) (51)

+
1

2
E [log p(D3|z)− log p(D2|z)]−

1

2
V (D3) +

1

2
V (D2) (52)

= E
[
log p(D3|z)−

1

2
log p(D1|z)−

1

2
log p(D2|z)

]
(53)

+
V (D1) + V (D2)

2
− V (D3). (54)

Corollary C.6. Let p(D|z), p(z), and p(z|D) be as in definition C.2. Let D1 = caD, D2 = caD + 2cbD∗, and
D3 = caD + cbD∗ be the three multisets of data where ca and cb are non-negative integers. Then,

1

2
KL (p(z|D3) ∥ p(z|D1)) +

1

2
KL (p(z|D3) ∥ p(z|D2)) (55)

=
V (D1) + V (D2)

2
− V (D3). (56)

Theorem C.7 (Repeated for convenience). Let p(D|z) be the likelihood and p(z) be the prior. Let D∗ be some test data.
Let p(D +D∗|z) = p(D|z)p(D∗|z) for any D and D∗. Let RK (as in eq. (2)) be the Monte Carlo estimator for the PPDq

under exact inference. Then, the signal-to-noise ratio of RK is given by SNR (RK) =
√
K/
√

exp(δ)2 − 1 where

δ =
1

2
KL (p(z|D +D∗) ∥ p(z|D)) + KL (p(z|D +D∗) ∥ p(z|D + 2D∗)) (57)

=
V (D) + V (D + 2D∗)

2
− V (D +D∗) (58)

where V is as in definition C.2.

Proof.

δ
(a)
=

1

2
log

E[R2
1]

E[R1]2
(59)

=
1

2
logE

[
R2

1

]
− logE [R1] (60)

(b)
=

1

2
log

expV (D + 2D∗)

expV (D) − log
expV (D +D∗)

expV (D) (61)

(c)
=

V (D + 2D∗) + V (D)
2

− V (D +D∗) (62)

(a) follows from lemma C.1, (b) follows from lemma C.3, and (c) follows from some simple algebraic manipulations.
Now, for the KL-divergence result, if we take the expression in corollary C.6, and plug D1 = D and D2 = D + 2D∗ and
D3 = D +D∗, then we get the same expression as eq. (58).
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D. Discussion for informal result in eq. (5)
In this section, we provide a detailed discussion for the informal result in eq. (5). First, we provide a lemma and a
corollary that will be used in arriving at the main result: Lemma D.1 gives the KL divergence between any two Gaussians
and Corollary D.2 simplifies the expression for the sum of the KL divergences between three Gaussians, where the first
distribution is the same between the two KL terms (this structure appears in the SNR expressions in eq. (3)). Finally, we
restate the assumptions and calculate the result in eq. (5) using these results.

At the end of the section, we provide a note on the convergence of KL divergence and why it requires additional assumptions
than just the convergence of the distributions.

Lemma D.1. Let N (µ0,Σ0) and N (µ1,Σ1) be two Gaussian distributions of dimensionality d with Σ0,Σ1 ≻ 0. Then,

KL (N (µ0,Σ0) ∥ N (µ1,Σ1)) = tr

(
1

2
Σ−1

1 Σ0

)
− 1

2
d

+
1

2
(µ1 − µ0)

⊤Σ−1
1 (µ1 − µ0)

+
1

2
ln |detΣ1| −

1

2
ln |detΣ0| . (63)

Corollary D.2. Let N (µ0,Σ0), N (µ1,Σ1), and N (µ2,Σ2) be three Gaussian distributions of dimensionality d with
Σ0,Σ1, and Σ2 ≻ 0. Then,

KL (N (µ0,Σ0) ∥ N (µ1,Σ1))

+KL (N (µ0,Σ0) ∥ N (µ2,Σ2))

= tr

((
1

2
Σ−1

1 +
1

2
Σ−1

2

)
Σ0

)
− d

+
1

2
(µ1 − µ0)

⊤Σ−1
1 (µ1 − µ0) +

1

2
(µ2 − µ0)

⊤Σ−1
2 (µ2 − µ0)

+
1

2
ln |detΣ1|+

1

2
ln |detΣ2| − ln |detΣ0|

For any dataset D, let ẑD be the maximum likelihood estimate and −S−1
D be the Hessian evaluated at the maximum

likelihood estimate ∇2
z log p(D|ẑD), such that,

ẑD = argmax
z

log p(D|z), and S−1
D = −∇2

z log p(D|ẑD). (64)

The idea behind eq. (3) is to use the Berstein-von Misses theorem, also known as the Bayesian central limit theorem. While
there are several variants of this theorem, Theorem 10.1 from Vaart (1998) suffices for our usecase. Note that Theorem 10.1
states the result in terms of the true parameters. For the extension to the maximum-likelihood estimate, see the discussion
after Lemma 10.3 (Vaart, 1998).

Under eq. (3), we essentially assume that the posterior p(z|D) ≈ N (zMLE,
1

|D|I
−1(zMLE)), where I is the estimate

of the Fisher information matrix evaluated at the maximum likelihood estimate. Since the estimate I−1(zMLE) =
−( 1

|D|∇2
z log p(D|zMLE))

−1, the |D| cancels out and we get

p(z|D) ≈ N (z|ẑD, SD) , (65)
p(z|D +D∗) ≈ N (z|ẑD+D∗ , SD+D∗) , and (66)
p(z|D + 2D∗) ≈ N (z|ẑD+2D∗ , SD+2D∗) . (67)

Now, assuming that the posteriors can be approximated by their corresponding Gaussian approximations under Bayesian
CLT is not sufficient to guarantee that the KL divergence between the original posteriors will also converge to the KL
divergence between the Gaussian approximations. Convergence of KL divergences requires additional assumptions (to be
precise, we need to additionally assume absolute continuity and uniform integrability, see section D.1 for discussion). For
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simplicity, we side-step the convergence of KL-divergence discussion and directly analyze the expression for the sum of
KL-divergences between the Bayesian CLT approximations. Using Corollary D.2, we can simplify as follows.

KL (N (ẑD+D∗ , SD+D∗) ∥ N (ẑD, SD))

+ KL (N (ẑD+D∗ , SD+D∗) ∥ N (ẑD+2D∗ , SD+2D∗))

= tr

((
1

2
S−1
D +

1

2
S−1
D+2D∗

)
SD+D∗

)
− d

+
1

2
(ẑD − ẑD+D∗)⊤S−1

D (ẑD − ẑD+D∗) +
1

2
(ẑD+2D∗ − ẑD+D∗)⊤S−1

D+2D∗(ẑD+2D∗ − ẑD+D∗)

+
1

2
ln |detSD|+

1

2
ln |detSD+2D∗ | − ln |detSD+D∗ | . (68)

The above expression is terse and hides the relationship of SNR to the dimensionality of the problem and the relative size
of the datasets. To bring out these relationships, we make the simplifying assumption that the datasets D, D + D∗, and
D+2D∗ are similar enough such that the maximum likelihood estimate and the estimate of the Fisher Information matrix is
similar under the three datasets. Mathematically, we assume that

ẑD ≈ ẑD+D∗ ≈ ẑD+2D∗ (69)

and empirical Fisher Information matrix (or the scaled Hessian) is given by

1

|D|S
−1
D ≈ 1

|D +D∗|S
−1
D+D∗ ≈ 1

|D + 2D∗|S
−1
D+2D∗ . (70)

Substituting from eqs. (69) and (70) into eq. (68), and simplifying as in section D.2, we get

KL (N (ẑD+D∗ , SD+D∗) ∥ N (ẑD, SD))

+ KL (N (ẑD+D∗ , SD+D∗) ∥ N (ẑD+2D∗ , SD+2D∗))

≈ d log
|D +D∗|√
|D| |D + 2D∗|

. (71)

Finally, plugging the KL-divergences from eq. (71) into the definition of δ in eq. (3), we get the result

δ ≈ 1

2
d log

|D +D∗|√
|D| |D + 2D∗|

=
1

2
d log

1 + |D∗| / |D|√
1 + 2 |D∗| / |D|

. (72)

As we can see, the assumption about the similarity of the empirical Fisher Information matrix and the MLE is necessary to
bring out the dependence of SNR on dimensionality and the relative size of datasets. This assumption over the datasets is
relatively strong and the main reason we keep the above result informal. Note that the middle term in the above equation
shows that δ is positive—the quantity inside the logarithm is larger than one since |D +D∗| is the arithmetic mean of |D|
and |D + 2D∗| which is always larger than the geometric mean

√
|D| |D + 2D∗|. The right term clarifies that only the

dimensionality and ratio of |D| and |D∗| matters.

D.1. Note on convergence of KL-divergence

Although the Bayesian CLT or (Bernstein–von Mises theorem) provides convergence in total variation between each
posterior distribution and its normal approximation, this convergence alone is not sufficient to guarantee the convergence of
the KL-divergence between two sequences of posterior distributions. KL divergence is highly sensitive to differences in how
probability mass is allocated, especially in regions where one distribution assigns significant probability and the other does
not. This sensitivity means that even with total variation convergence, the KL divergence between the sequences can diverge
or fail to converge to the KL divergence between the limits.

To ensure convergence of the KL divergence, additional assumptions of absolute continuity and uniform integrability
are required. Absolute continuity guarantees that wherever one distribution assigns positive probability, the other does
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too—preventing the KL divergence from becoming infinite due to zero probabilities in the denominator of the density ratio.
Uniform integrability of the log-density ratios is also required; it controls the contributions to the KL divergence from
regions where the density ratios become extreme (either very large or very small). By ensuring that these extreme values do
not disproportionately influence the KL divergence, it prevents divergence caused by small probabilities or heavy tails.

Collectively, these assumptions ensure that the differences between the distributions are well-behaved for the KL divergence
to converge. We skip the formal proof as it is not the focus of this paper.

D.2. Note for the simplification from eq. (68) to eq. (71)

When the datasets D∗ and D have the matching mean statistics, we have the relations in eqs. (69) and (70). Under eq. (69),
the quadratic terms in eq. (68) are zero. We can simplify the term involving trace as follows:

tr

((
1

2
S−1
D +

1

2
S−1
D+2D∗

)
SD+D∗

)
=

1

2
tr
(
S−1
D SD+D∗

)
+

1

2
tr
(
S−1
D+2D∗SD+D∗

)
(a)≈ 1

2
tr

(
S−1
D

( |D +D∗|
|D| S−1

D

)−1
)

+
1

2
tr

(( |D + 2D∗|
|D| S−1

D

)( |D +D∗|
|D| S−1

D

)−1
)

=
1

2

|D|
|D +D∗| tr

(
S−1
D SD

)
+

1

2

|D + 2D∗|
|D|

|D|
|D +D∗| tr

(
S−1
D SD

)
=

1

2

|D|
|D +D∗|d+

1

2

|D + 2D∗|
|D +D∗| d

(b)
=

1
2 |D|+ 1

2 |D + 2D∗|
|D +D∗| d

=
|D +D∗|
|D +D∗|d

= d,

where (a) follows from the relation in eq. (70) and (b) follows from the multiset notation (Costa, 2021).

Therefore, the first and the second term (d and −d) in eq. (68) cancel out, and the only remaining terms are the ones
involving the logarithms of the determinants of the covariance matrices. These remaining terms can be simplified as follows:

1

2
ln det (SD) +

1

2
ln det (SD+2D∗)− ln det (SD+D∗)

(c)≈ 1

2
ln det (SD) +

1

2
ln det

( |D|
|D + 2D∗|SD

)
− ln det

( |D|
|D +D∗|SD

)
(d)
=

1

2
ln det (SD) +

1

2
ln det (SD) +

d

2
log

( |D|
|D + 2D∗|

)
− ln det (SD)− d log

( |D|
|D +D∗|

)
=

d

2
log

( |D|
|D + 2D∗|

)
− d log

( |D|
|D +D∗|

)
(f)
= d

(
log |D +D∗| − 1

2
log |D| − 1

2
log |D + 2D∗|

)
= d log

|D +D∗|√
|D| |D + 2D∗|

,

where (f) follows from eq. (70); (d) follows from log det (aX) = d log a+ log detX for any non-negative scalar a; this
gives the final result in eq. (71); and (c) follows from simple algebraic manipulations.
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E. Proof for Theorem 2.2
This section presents a proof for theorem 2.2 about the SNR in the linear regression model. First, we formally define
the Bayesian linear regression models in definition E.1. We then restate the assumptions in theorem 2.2 for convenience.
Lemma E.2 presents the expression for the posterior distribution where we consider both training and test data under
the assumption B1. Lemma E.3 presents the KL divergence between two posterior distributions with test data under the
assumptions B1 and B2. Finally, we use the KL expression from lemmas E.2 and E.3 to prove theorem 2.2.

Definition E.1 (Bayesian Linear Regression Model). Consider the linear regression model with a Gaussian likelihood such
that

p(yD|z) = N (yD|XDz, σ
2I). (73)

where yD ∈ R|D| is the response vector, XD ∈ R|D|×d is feature matrix, and σ2 is the variance.

The conjugate prior is a Gaussian distribution such that

p(z) = N (z|µ0,Σ0) (74)

where µ0 is the mean and Σ0 is the covariance. Then, the posterior distribution is given by

p(z|yD) = N (z|µD,ΣD), (75)

where

ΣD =

(
1

σ2
X⊤

DXD +Σ−1
0

)−1

and µD = ΣD

(
1

σ2
X⊤

DyD +Σ−1
0 µ0

)
. (76)

Lemma E.2. Let p be the Bayesian linear regression model from definition E.1. Let B1 and B2 hold. Let c be a non-negative
integer. Then,

p(z|D + cD∗) = N (z|µD+cD∗ ,ΣD+cD∗), (77)

where as |D| → ∞,

ΣD+cD∗ → 1

c+ 1

(
1

σ2
X⊤

DXD

)−1

and µD+cD∗ →
(
X⊤

DXD
)−1

X⊤
D

(
yD +

c

c+ 1
∆

)
. (78)

Proof. We first massage the expressions for the covariance and the mean of the posterior distribution such that we can use
the B1 and B2.

ΣD

=

(
1

σ2
X⊤

DXD +Σ−1
0

)−1

(79)

=

((
X⊤

DXD
)( 1

σ2
I +

(
X⊤

DXD
)−1

Σ−1
0

))−1

(80)

Based on the B1, we have

X⊤
D+cD∗XD+cD∗ =


XD
XD

...
XD


⊤ 

XD
XD

...
XD

 = (c+ 1)X⊤
DXD (81)

Plugging eq. (81) into eq. (80) gives

ΣD+cD∗ =

((
(c+ 1)X⊤

DXD
)( 1

σ2
I +

(
(c+ 1)X⊤

DXD
)−1

Σ−1
0

))−1

. (82)
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A similar massaging of expressions for the mean gives us

µD

= ΣD

(
1

σ2
X⊤

DyD +Σ−1
0 µ0

)
(83)

=

(
1

σ2
X⊤

DXD +Σ−1
0

)−1(
1

σ2
X⊤

DyD +Σ−1
0 µ0

)
(84)

=

((
X⊤

DXD
)( 1

σ2
I +

(
X⊤

DXD
)−1

Σ−1
0

))−1(
1

σ2
X⊤

DyD +Σ−1
0 µ0

)
(85)

=

(
1

σ2
I +

(
X⊤

DXD
)−1

Σ−1
0

)−1 (
X⊤

DXD
)−1

(
1

σ2
X⊤

DyD +Σ−1
0 µ0

)
(86)

=

(
1

σ2
I +

(
X⊤

DXD
)−1

Σ−1
0

)−1(
1

σ2

(
X⊤

DXD
)−1

X⊤
DyD +

(
X⊤

DXD
)−1

Σ−1
0 µ0

)
(87)

Now, based on the B1, we have eq. (88).

X⊤
D+cD∗yD+cD∗ =


XD
XD

...
XD


⊤ 

yD
yD +∆

...
yD +∆

 = X⊤
D ((c+ 1)yD + c∆) (88)

Plugging eq. (81) and eq. (88) into eq. (87) gives

µD+cD∗ =

(
1

σ2
I +

(
(c+ 1)X⊤

DXD
)−1

Σ−1
0

)−1

(
1

σ2

(
(c+ 1)X⊤

DXD
)−1

X⊤
D ((c+ 1)yD + c∆) +

(
(c+ 1)X⊤

DXD
)−1

Σ−1
0 µ0

)
, (89)

Now, taking limits (as |D| → ∞ implies
(
X⊤

DXD
)−1

Σ−1
0 → 0 from B2) on both sides of eq. (89) leads to simplification of

terms inside the brackets and gives us

lim
|D|→∞

ΣD+cD∗

= lim
|D|→∞

((
(c+ 1)X⊤

DXD
)( 1

σ2
I +

(
(c+ 1)X⊤

DXD
)−1

Σ−1
0

))−1

(90)

=
1

c+ 1

(
1

σ2
X⊤

DXD

)−1

. (91)

Similarly, taking the limits on both sides of eq. (87) leads to simplification of terms inside the brackets (under the obvious
assumption that µ0 is finite) and gives us

lim
|D|→∞

µD+cD∗

= lim
|D|→∞

(
1

σ2
I +

(
(c+ 1)X⊤

DXD
)−1

Σ−1
0

)−1

(
1

σ2

(
(c+ 1)X⊤

DXD
)−1

X⊤
D ((c+ 1)yD + c∆) +

(
(c+ 1)X⊤

DXD
)−1

Σ−1
0 µ0

)
, (92)

=
(
X⊤

DXD
)−1

X⊤
D (yD +

c

c+ 1
∆). (93)
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Lemma E.3. Let p be the Bayesian linear regression model from definition E.1. Let B1 and B2 hold. Let α and β be two
non-negative integers. Then, as |D| → ∞,

KL (p(z|D + αD∗) ∥ p(z|D + βD∗))→ 1

2

(
kα,βd+∆⊤Mα,β∆

)
, (94)

where kα,β is a positive constant and Mα,β is a positive definite matrix such that

kα,β =
β + 1

α+ 1
+ log

α+ 1

β + 1
− 1 and Mα,β =

(β − α)
2

(α+ 1)
2
(β + 1)

1

σ2
XD

(
X⊤

DXD
)−1

X⊤
D . (95)

Proof. The result follows directly from plugging the mean and the covariance into the expression for KL divergence between
the two Gaussians, taking limits, and following simple algebraic manipulations. We know that

KL (N (µ1,Σ1) ∥ N (µ2,Σ2)) =
1

2

(
tr(Σ−1

2 Σ1) + log
detΣ2

detΣ1
− d+ (µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1)

)
. (96)

Collecting the transpose terms, plugging in the covariance expressions from eq. (82) for the distributions p(z|D+ αD∗) and
p(z|D + βD∗), and taking the limits (as |D| → ∞ implies

(
X⊤

DXD
)−1

Σ−1
0 → 0 from B2) we get

lim
|D|→∞

tr(Σ−1
2 Σ1) =

β + 1

α+ 1
d. (97)

See section E.2.1 for details of the calculations. Collecting the determinant terms, plugging the covariance expressions from
eq. (82) for the distributions p(z|D + αD∗) and p(z|D + βD∗), and taking the limits we get

lim
|D|→∞

log
detΣ2

detΣ1
=

(
log

α+ 1

β + 1

)
d. (98)

See section E.2.2 for details of the calculations.

Finally, plugging in the expressions for the covariance and the mean from eqs. (82) and (89) for p(z|D + αD∗) and
p(z|D + βD∗) in the quadratic term, and taking the limits we get

lim
|D|→∞

(µ2 − µ1)
⊤Σ−1

2 (µ2 − µ1) =
(β − α)

2

(α+ 1)
2
(β + 1)

1

σ2
∆⊤XD

(
X⊤

DXD
)−1

X⊤
D∆. (99)

See section E.2.3 for details of the calculations. Plugging the aforementioned limit results back into the KL-divergence
expression and identifying the correct coefficients gives the result.

Theorem E.4 (Repeated for convenience). Let p(z) = N (z|µ0,Σ0) and p(yD|z) = N (yD|XDz, σ
2I), where yD ∈ R|D| are

the responses, XD ∈ R|D|×d are the features, z ∈ Rd are the weights, and σ2 is the known variance. Let δ be as in eq. (3).

B1: The test features XD∗ consist of m copies of XD and responses yD∗ consist of m copies of yD +∆ where ∆ is the
mismatch vector of size |D|.

B2: For a sequence of increasingly large training datasets, posterior is dominated by data. Mathematically, as |D| → ∞,(
X⊤

DXD
)−1

Σ−1
0 → 0.

Assume B1 and B2. Then, lim
|D|→∞

|δ − δlim| = 0 and

δlim =
d

2
log

1 +m√
1 + 2m

+
1

2σ2

m2

2m2 + 3m+ 1
∆⊤XD

(
X⊤

DXD
)−1

X⊤
D∆. (100)
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Proof. δ can be written as an average of the KL-divergences between the posteriors p(z|D +D∗) and p(z|D) and between
the posteriors p(z|D +D∗) and p(z|D + 2D∗). From the expressions of KL divergences in lemma E.3, we get

lim
|D|→∞

δ =
1

2

[
1

2

(
km,0d+∆⊤Mm,0∆

)
+

1

2

(
km,2md+∆⊤Mm,2m∆

)]
, (101)

=
1

2

[
1

2
(km,0 + km,2m) d+

1

2
∆⊤ (Mm,0 +Mm,2m)∆

]
, (102)

Simplifying the expressions, we get

km,0 + km,2m (103)

= log
1 +m

1
+

1

1 +m
− 1 + log

1 +m

1 + 2m
+

1 + 2m

1 +m
− 1 (104)

= log
1 +m

1
+ log

1 +m

1 + 2m
(105)

= log
(1 +m)

2

1 + 2m
(106)

= 2 log
1 +m√
1 + 2m

(107)

(108)

and

Mm,0 +Mm,2m (109)

=
m2

(m+ 1)2
1

σ2
XD

(
X⊤

DXD
)−1

X⊤
D +

m2

(m+ 1)
2
(2m+ 1)

1

σ2
XD

(
X⊤

DXD
)−1

X⊤
D (110)

=
m2

(m+ 1)2
1

σ2
XD

(
X⊤

DXD
)−1

X⊤
D

(
1 +

1

2m+ 1

)
(111)

=
m2

(m+ 1)2
2 (m+ 1)

2m+ 1

1

σ2
XD

(
X⊤

DXD
)−1

X⊤
D (112)

=
2m2

(m+ 1) (2m+ 1)

1

σ2
XD

(
X⊤

DXD
)−1

X⊤
D (113)

(114)

Plugging these back in eq. (102) we get the results.

E.1. Bounding the δlim in theorem 2.2

δlim can be bounded by bounding three individual terms. First, log(1 +m)/
√
1 + 2m is lower-bounded by d/4 log(m/2)

and upper-bounded by d/4 log(m/2 + 1). Second, m2/
(
2m2 + 3m+ 1

)
is lower-bounded by 1/6 and upper-bounded by

1/2. Third, we have

∆⊤XD
(
X⊤

DXD
)−1

X⊤
D∆ = ∆⊤UU⊤∆ (115)

where U is the left singular matrix of XD containing d singular left vectors. Then, from the properties of the left-singular
vectors, ||U⊤∆||22 terms is lower-bounded by 0 and upper-bounded by ||∆||22. Combining these bounds, we get the bounds
in eq. (7).

E.2. Note for the calculation of the KL terms in lemma E.3

We will consider the calculations for the three terms in KL divergence between two Gaussian distributions.
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E.2.1. TRANSPOSE TERMS

The first term we focus on is the one involving transpose.

tr(Σ−1
2 Σ1) (116)

= tr(Σ−1
D+βD∗ΣD+αD∗) (117)

= tr

[(
(β + 1)X⊤

DXD
)( 1

σ2
I +

(
(β + 1)X⊤

DXD
)−1

Σ−1
0

)
((

(α+ 1)X⊤
DXD

)( 1

σ2
I +

(
(α+ 1)X⊤

DXD
)−1

Σ−1
0

))−1
]

(118)

= tr

[(
(β + 1)X⊤

DXD
)( 1

σ2
I +

(
(β + 1)X⊤

DXD
)−1

Σ−1
0

)
1

α+ 1

(
X⊤

DXD
)−1

(
1

σ2
I +

(
(α+ 1)X⊤

DXD
)−1

Σ−1
0

)−1
]

(119)

= tr

[
β + 1

α+ 1

(
1

σ2
I +

(
(β + 1)X⊤

DXD
)−1

Σ−1
0

)(
1

σ2
I +

(
(α+ 1)X⊤

DXD
)−1

Σ−1
0

)−1
]

(120)

=
β + 1

α+ 1
tr

[(
1

σ2
I +

(
(β + 1)X⊤

DXD
)−1

Σ−1
0

)(
1

σ2
I +

(
(α+ 1)X⊤

DXD
)−1

Σ−1
0

)−1
]

(121)

(122)

On taking limits as |D| → ∞ (which is equivalent to
(
X⊤

DXD
)−1

Σ−1
0 → 0 from B2) for the above expression and doing

some simple manipulations gives

lim
|D|→∞

tr(Σ−1
2 Σ1)

=
β + 1

α+ 1
tr

[(
1

σ2
I

)(
1

σ2
I

)−1
]
=

β + 1

α+ 1
d. (123)

E.2.2. DETERMINANT TERMS

The second term we consider is the one involving determinants.

log
detΣ2

detΣ1
(124)

= log detΣ2 − log detΣ1 (125)

= − log det
(
(β + 1)X⊤

DXD
)( 1

σ2
I +

(
(β + 1)X⊤

DXD
)−1

Σ−1
0

)
(126)

+ log det
(
(α+ 1)X⊤

DXD
)( 1

σ2
I +

(
(α+ 1)X⊤

DXD
)−1

Σ−1
0

)
(127)

= −d log(β + 1)− log detX⊤
DXD − log det

(
1

σ2
I +

(
(β + 1)X⊤

DXD
)−1

Σ−1
0

)
(128)

+ d log(α+ 1) + log detX⊤
DXD + log det

(
1

σ2
I +

(
(α+ 1)X⊤

DXD
)−1

Σ−1
0

)
(129)

= d log
α+ 1

β + 1
− log det

(
1

σ2
I +

(
(β + 1)X⊤

DXD
)−1

Σ−1
0

)
(130)

+ log det

(
1

σ2
I +

(
(α+ 1)X⊤

DXD
)−1

Σ−1
0

)
(131)
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On taking limits for the above expression and doing some simple manipulations gives

lim
|D|→∞

log
detΣ2

detΣ1
= d log

α+ 1

β + 1
(132)

E.2.3. QUADRATIC TERMS

Noting that the terms involved are well-behaved functions of mean and covariance, we directly plug the limit expressions for
mean and covariance from Lemma E.2.

lim
|D|→∞

(µ2 − µ1)
⊤Σ−1

2 (µ2 − µ1) (133)

=

((
X⊤

DXD
)−1

X⊤
D (yD +

β

β + 1
∆)−

(
X⊤

DXD
)−1

X⊤
D (yD +

α

α+ 1
∆)

)⊤

(β + 1)

(
1

σ2
X⊤

DXD

)
((

X⊤
DXD

)−1
X⊤

D (yD +
β

β + 1
∆)−

(
X⊤

DXD
)−1

X⊤
D (yD +

α

α+ 1
∆)

)
(134)

=

((
X⊤

DXD
)−1

X⊤
D

(
β

β + 1
− α

α+ 1

)
∆

)⊤

(β + 1)

(
1

σ2
X⊤

DXD

)
((

X⊤
DXD

)−1
X⊤

D

(
β

β + 1
− α

α+ 1

)
∆

)
(135)

=
(β + 1) (β − α)

2

(α+ 1)
2
(β + 1)

2

1

σ2
∆⊤XD

(
X⊤

DXD
)−⊤ (

X⊤
DXD

) (
X⊤

DXD
)−1

X⊤
D∆ (136)

=
(β − α)

2

(α+ 1)
2
(β + 1)

1

σ2
∆⊤XD

(
X⊤

DXD
)−1

X⊤
D∆ (137)
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F. Proof for Corollary 2.3
This section contains the proof for corollary 2.3. The overall idea of the proof is similar to the proof of theorem 2.1 in
section C. Lemma F.1 provides the expression for the moments of the naive MC estimator for the conjugate exponential
family models. Lemma F.2 provides the expression for the sum of KL divergences between three posterior distributions in
the conjugate exponential family models, where the first distribution is the same for the two KL terms. Finally, we prove
corollary 2.3 using these two results.

Lemma F.1. Let the likelihood p(y|z) be in exponential family (eq. (8)) and prior p(z) = s(z|ξ0) be in the corresponding
conjugate family (eq. (9)). Let D be a multiset of training data, D∗ a multiset of test data, and let R1 be the Monte Carlo
estimator for the PPD with exact inference (eq. (2) with K = 1). Let h(D∗) =

∏
y∈D∗

h(y). Then,

E[R1]
c = h(D∗)c

expB(D + cD∗)

expB(D) , (138)

where c is a non-negative integer and B is as in eq. (9).

Proof. Starting from the definition of R1 we have,

E[Rc
1] = E [(p(D∗|z))c] = E

 ∏
y∈D∗

p(y|z)

c (139)

= E

 ∏
y∈D∗

h(y) exp
(
T (y)⊤ϕ(z)−A(z)

)c (140)

(a)
= E

[(
h(D∗) exp

(
T (D∗)⊤ϕ(z)− |D∗|A(z)

))c]
, (141)

(142)

where (a) follows from T (D∗) =
∑

y∈D∗ T (y) and h(D∗) =
∏

y∈D∗ h(y). Doing some basic manipulations, we get

E
[(
h(D∗) exp

(
T (D∗)⊤ϕ(z)− |D∗|A(z)

))c]
(143)

= h(D∗)c E
[
exp

(
cT (D∗)⊤ϕ(z)− c|D∗|A(z)

)]
(144)

(b)
= h(D∗)c

∫
exp

(
cT (D∗)⊤ϕ(z)− c|D∗|A(z)

)
s(z|ξD)dz (145)

(c)
= h(D∗)c

∫
exp

(
cT (D∗)⊤ϕ(z)− c|D∗|A(z)

)
exp

(
T (D)⊤ϕ(z)− |D|A(z)

)
dz

exp(B(ξD))
(146)

(d)
= h(D∗)c

∫
exp

(
T (D + cD∗)⊤ϕ(z)− (|D + cD∗|)A(z)

)
dz

exp(B(ξD))
(147)

(e)
= h(D∗)c

exp(B(ξD+cD∗))

exp(B(ξD))
(148)

(149)

where (b) and (c) follow from the definition of s(z|ξD) (eq. (9)) and the fact that the expectation is under the posterior; (d)
follows from the multiset notation (Costa, 2021); (e) follows from the definition of B in eq. (9).

Lemma F.2. In a canonical exponential family p(x|η) = h(x) exp
(
T (x)⊤η −A(η)

)
, the looseness of Jensen’s equality

applied to the log-partition function A at points v, w, and u = v+w
2 is

1

2
(A(v) +A(w))−A(u) =

1

2
KL (p(x|u) ∥ p(x|v)) + 1

2
KL (p(x|u) ∥ p(x|w)) .
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Proof. The KL-divergence between two canonical exponential family distributions with parameters v and w is given by

KL (p(x|w) ∥ p(x|v)) = E
p(x|w)

log
p(x|w)
p(x|v) = E

p(x|w)

(
T (x)⊤w − T (x)⊤v −A(w) +A(v)

)
(150)

= (w − v)
⊤ E

p(x|w)
[T (x)]−A(w) +A(v) (151)

(a)
= (w − v)

⊤∇A(w)−A(w) +A(v), (152)

where (a) follows from the definition of the gradient of A.

Now, rearranging terms in eq. (152) gives an expression for log-partition function A at any point w in terms of the
log-partition function A at any other point v and the KL-divergence between the two distributions:

A(w) = A(v) + (w − v)
⊤∇A(w)− KL (p(x|w) ∥ p(x|v)) (153)

Replacing w with u in eq. (153), gives

A(u) = A(v) + (u− v)
⊤∇A(u)− KL (p(x|u) ∥ p(x|v)) , (154)

and replacing w with u and v with w in eq. (153) gives

A(u) = A(w) + (u− w)
⊤∇A(u)− KL (p(x|u) ∥ p(x|w)) . (155)

On averaging eq. (154) and eq. (155) the ∇A(u) terms cancel out, and we get

A(u) =
1

2
(A(v) +A(w))

−1

2
KL (p(x|u) ∥ p(x|v))− 1

2
KL (p(x|u) ∥ p(x|w)) (156)

Finally, rearranging the terms, proves the result:

1

2
(A(v) +A(w))−A(u) =

1

2
(KL (p(x|u) ∥ p(x|v)) + KL (p(x|u) ∥ p(x|w))) . (157)

Theorem F.3 (Repeated). Take a model with a likelihood p(y|z) in an exponential family (eq. (8)) and a prior p(z) = s(z|ξ0)
in the corresponding conjugate family (eq. (9)). Let D∗ be some test data. Let RK be the Monte Carlo estimator for the

PPD under exact inference (eq. (2)). Then, the signal-to-noise ratio is SNR(RK) =
√
K/

√
exp (δ)

2 − 1 for

δ =
1

2
KL (s(z|D +D∗) ∥ s(z|D)) + 1

2
KL (s(z|D +D∗) ∥ s(z|D + 2D∗)) (158)

=
B (ξD) +B(ξD+2D∗)

2
−B (ξD+D∗) , (159)

where for any dataset D, ξD are the parameters that make the conjugate family s(z|ξD) equal to the posterior density
p(z|D) (eq. (10)), and B is as in eq. (9).

Proof. From Lemma C.1 we get SNR (RK) =
√
K√

exp(δ)2−1
for δ = 1

2 log(E[R
2
1]/E[R1]

2). Using Lemma F.1, for c = 1

and c = 2, we can simplify δ as

δ =
1

2
log

E[R2
1]

E[R1]2
=

1

2
logE

[
R2

1

]
− logE [R1] (160)

(a)
=

1

2
log h(D∗)2

expB(D + 2D∗)

expB(D) − log h(D∗)
expB(D +D∗)

expB(D) (161)

(b)
=

1

2
log

expB(D + 2D∗)

expB(D) − log
expB(D +D∗)

expB(D) (162)

(c)
=

B(ξD+2D∗) +B(ξD)

2
−B(ξD+D∗), (163)
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where (a) follows from Lemma F.1 for c = 1 and c = 2, (b) follows from cancellations of log h(D∗), and (c) follows from
simple algebra.

Now, observe B in eq. (9) is the log-partition function of a canonical exponential family. Using Lemma F.2, and plugging
v = ξD, u = ξD+D∗ , and w = ξD+2D∗ for conjugate prior family gives eq. (11).
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G. Proof for Theorem 3.1
This section contains the proof for theorem 3.1. The idea of the proof is similar to the proof of theorem 2.1 in section C.
Definition G.1 defines the log constant and the posterior distribution for the augmented posterior with test data. Lemma G.2
provides the expression for the moments of the naive MC estimator under the approximate inference. Lemma G.3 provides
the expression for the KL divergence between two augmented posteriors. Lemma G.4 provides the expression for the sum of
KL divergences between three augmented posterior distributions, where the first distribution is the same for the two KL
terms. Corollary G.5 simplifies the expression for the sum of KL divergences when the datasets have a specific structure.
Finally, we use these four results to prove theorem 3.1.

Definition G.1. Let p(D|z) be the likelihood and p(z) be the prior distribution. Let qD(z) be the variational distribution.
Let D∗ be some test data. Then,

ZD(D∗) := log

∫
p(D∗|z)qD(z)dz and qD(z|D∗) :=

p(D∗|z)qD(z)
ZD(D∗)

(164)

Lemma G.2. Let p(D|z) be the likelihood and p(z) be the prior distribution. Let qD(z) be the variational distribution.
Let D∗ be some test data. Let p(D + D∗|z) = p(D|z)p(D∗|z) for any datasets D and D∗. Let RK be the Monte Carlo
estimator for the PPDq under approximate inference (eq. (2) with K = 1). Then,

E [Rc
1] = expZD(cD∗), (165)

where c is a non-negative integer.

Proof. The proof is straightforward for c = 0 as ZD(∅) = log
∫
qD(z)dz = 0. For c ≥ 1, we have

E [Rc
1] = E [p(D∗|z)c] (166)

= E [p(cD∗|z)] (167)

=

∫
p(cD∗|z)qD(z)dz (168)

= expZD(cD∗). (169)

Lemma G.3. Let p(D|z), p(z), and qD(z) be as in definition G.1. Let Da and Db be the three multisets of data. Then,

KL (qD(z|Da) ∥ qD(z|Db)) = E [log p(Da|z)− log p(Db|z)]− ZD(Da) + ZD(Db) (170)
(171)

Proof.

KL (qD(z|Da) ∥ qD(z|Db)) (172)

= E

log p(Da|z)qD(z)
expZD(Da)

p(Db|z)qD(z)
expZD(Db)

 (173)

= E
[
log

p(Da|z)
p(Db|z)

]
− log

expZD(Da)

expZD(Db)
(174)

= E
[
log

p(Da|z)
p(Db|z)

]
− ZD(Da) + ZD(Db) (175)

(176)
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Lemma G.4. Let p(D|z), p(z), and qD(z) be as in definition G.1. Let D1, D2, and D3 be the three multisets of data. Let
D1, D2, and D3 be the three multisets of data. Then,

1

2
KL (qD(z|D3) ∥ qD(z|D∗

1)) +
1

2
KL (qD(z|D3) ∥ qD(z|D∗

2)) (177)

= E
[
log p(D3|z)−

1

2
log p(D1|z)−

1

2
log p(D2|z)

]
(178)

+
ZD(D1) + ZD(D2)

2
− ZD(D3). (179)

Proof. Applying the lemma G.3 to D3 and D1 gives

KL (qD(z|D3) ∥ qD(z|D∗
1)) (180)

= E [log p(D3|z)− log p(D1|z)]− ZD(D3) + ZD(D1) (181)
(182)

and applying it to D3 and D2 gives

KL (qD(z|D3) ∥ qD(z|D∗
2)) (183)

= E [log p(D3|z)− log p(D2|z)]− ZD(D3) + ZD(D2). (184)
(185)

Now, multiplying the above two equations by 1
2 and adding them gives

1

2
KL (qD(z|D3) ∥ qD(z|D∗

1)) (186)

+
1

2
KL (qD(z|D3) ∥ qD(z|D∗

2)) (187)

= E
[
log p(D3|z)−

1

2
log p(D1|z)−

1

2
log p(D2|z)

]
(188)

+
ZD(D1) + ZD(D2)

2
− ZD(D3). (189)

Corollary G.5. Let p(D|z), p(z), and qD(z) be as in definition G.1. Let D1 = caD, D2 = caD + 2cbD∗, and D3 =
caD + cbD∗ be the three multisets of data where ca and cb are non-negative integers. Then,

1

2
KL (qD(z|D3) ∥ qD(z|D∗

1)) +
1

2
KL (qD(z|D3) ∥ qD(z|D∗

2)) (190)

=
ZD(D1) + ZD(D2)

2
− ZD(D3). (191)

Theorem G.6 (Repeated for convenience). Let p(D|z) be the likelihood and p(z) be the prior distribution. Let qD(z) be the
variational distribution. Let D∗ be some test data. Let p(D +D∗|z) = p(D|z)p(D∗|z) for any datasets D and D∗. Let RK

be the Monte Carlo estimator for the PPDq under approximate inference (eq. (2) with K = 1). Then, the signal-to-noise
ratio of RK is given by SNR (RK) =

√
K/
√
exp(δ)2 − 1 where

δ =
1

2
KL (qD(z|D∗) ∥ qD(z)) +

1

2
KL (qD(z|D∗) ∥ qD(z|2D∗)) (192)

=
1

2
ZD(2D∗)− ZD(D∗) (193)

where ZD and qD(z|D∗) are as in definition G.1.
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Proof.

δ
(a)
=

1

2
log

E[R2
1]

E[R1]2
(194)

=
1

2
logE

[
R2

1

]
− logE [R1] (195)

(b)
=

1

2
ZD(2D∗)− ZD(D∗) (196)

Where (a) follows from lemma C.1 and (b) follows from lemma G.2. Lastly, pluggingD1 = ∅ andD2 = 2D∗ andD3 = D∗

into corollary G.5 and observing ZD(∅) = 0 gives the result.
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H. Proof for Corollary 3.2
This section contains the proof for corollary 3.2. The proof follow the same structure as the proof for theorem 2.1 in
section C. Lemma H.1 provides the expression for the moments of the naive MC estimator under the approximate inference
in the conjugate exponential family models. We use these results to prove corollary 3.2.

Lemma H.1. Let the likelihood p(y|z) be as in eq. (8) and a prior p(z) = s(z|ξ0) be as in eq. (9). Let qD(z) = s(z|η) be
in the conjugate family (eq. (9)). Let D∗ be some test data and let R1 be the Monte Carlo estimator for the PPDq under
approximate inference (eq. (2) with K = 1). Then,

E[Rc
1] = h(D∗)c exp (B (η + U(cD∗))−B (η)) , (197)

c is a non-negative integer, B is as in eq. (9), and U(cD) = c

[
T (D)
|D|

]
for any dataset D.

Proof. Starting from the definition of Rq,1 we have,

E[Rc
q,1] = E [(p(D∗|z))c] = E

 ∏
y∈D∗

p(y|z)

c (198)

= E

 ∏
y∈D∗

h(y) exp
(
T (y)⊤ϕ(z)−A(z)

)c (199)

(a)
= E

[(
h(D∗) exp

(
T (D∗)⊤ϕ(z)− |D∗|A(z)

))c]
, (200)

where (a) follows from T (D∗) =
∑

y∈D∗ T (y) and h(D∗) =
∏

y∈D∗ h(y). Doing some basic manipulations, we get

E
[(
h(D∗) exp

(
T (D∗)⊤ϕ(z)− |D∗|A(z)

))c]
(201)

= h(D∗)c E
[
exp

(
cT (D∗)⊤ϕ(z)− c|D∗|A(z)

)]
(202)

(b)
= h(D∗)c E

[
exp

(
c

([
T (D∗)
|D∗|

])⊤ [
ϕ(z)
−A(z)

])]
(203)

(c)
= h(D∗)c E

[
exp

(
U(cD∗)⊤

[
ϕ(z)
−A(z)

])]
(204)

(d)
= h(D∗)c

∫
exp

(
U(cD∗)⊤

[
ϕ(z)
−A(z)

])
s(z|η)dz (205)

(e)
= h(D∗)c

∫
exp

(
U(cD∗)⊤

[
ϕ(z)
−A(z)

])
exp

(
η⊤
[
ϕ(z)
−A(z)

])
dz

expB(η)
(206)

(f)
= h(D∗)c

∫
exp

(
(U(cD∗) + η)

⊤
[
ϕ(z)
−A(z)

])
dz

expB(η)
(207)

(g)
= h(D∗)c

exp(B(η + U(cD∗)))

exp(B(η))
(208)

= h(D∗)c exp(B(η + U(cD∗))−B(η)) (209)

where (b) just collects the terms in the exponent into a single vector; (c) defines U(cD) = c

[
T (D)
|D|

]
for any dataset D;

(d) and (e) follows as expectation is under the variational distribution and the definition of conjugate family in eq. (9); (f)
follows from some simple algebra; (g) follows from the definition of B in eq. (9).

Theorem H.2. Take a model with a likelihood p(y|z) in an exponential family (eq. (8)) and a prior p(z) = s(z|ξ0) in
the corresponding conjugate family (eq. (9)). Let qD(z) = s(z|η) be an approximate distribution in the corresponding
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conjugate family (eq. (9)) with parameters η. Let D∗ be a multiset of test data and let R1,q be the Monte Carlo estimator for
the PPDq (eq. (2) with K = 1). Then, the signal-to-noise ratio is SNR(R1,q) =

1√
exp(δ)2−1

for

δ =
1

2
KL (s(z|η + U(D∗)) ∥ s(z|η)) + 1

2
KL (s(z|η + U(D∗)) ∥ s(z|η + U(2D∗))) (210)

=
B (η) +B(η + U(2D∗))

2
−B (η + U(D∗)) , (211)

where B is as in eq. (9) and U(cD) = c

[
T (D)
|D|

]
for any dataset D and non-negative integer c.

Proof. From Lemma C.1 we get SNR (RK) =
√
K√

exp(δ)2−1
for δ = 1

2 log(E[R
2
1]/E[R1]

2). Then

δ =
1

2
log

E[R2
1]

E[R1]2
=

1

2
logE

[
R2

1

]
− logE [R1] (212)

(a)
=

1

2
(B(η + U(2D∗))−B(η))− (B(η + U(D∗))−B(η)) (213)

(b)
=

B(η + U(2D∗)) +B(η)

2
−B(η + U(D∗)), (214)

where (a) follows from Lemma H.1 for c = 1 and c = 2 and cancellations of log h(D∗) terms and (b) form simple algebraic
manipulations.

Now, observe B in eq. (9) is the log-partition function of a canonical exponential family. Using Lemma F.2, and plugging
v = η, u = η + U(D∗), and w = η + U(2D∗) for conjugate prior family gives the eq. (15).

34



Understanding the difficulties of posterior predictive estimation

I. General experimental details
All our code is implemented in JAX (Bradbury et al., 2018) and run on a single NVIDIA A100 GPU. In table 6, we provide
the expressions for computation of different metrics from the results in tables 1 to 3 and section 5.4.

Note on BBVI. We rely on using standard BBVI techniques for most of our experiments. The hope of BBVI is to allow
practitioners to not worry about designing special approximation families for each model p(D, z) (Ranganath et al., 2014;
Kucukelbir et al., 2017; Agrawal et al., 2020; Ambrogioni et al., 2021a;b; Burroni et al., 2024). Instead, BBVI treats models
as black boxes—only requiring access to ∇z log p(D, z) to update the variational parameters using the stochastic gradients
of a variational objective (for instance, IW-ELBO). Ongoing research in BBVI focuses on automating other algorithmic
choices (Kucukelbir et al., 2017; Agrawal et al., 2020; Ambrogioni et al., 2021a;b; Burroni et al., 2024). Such optimization
schemes greatly improve the applicability of BBVI and come pre-implemented in popular probabilistic programming
languages like Pyro (Bingham et al., 2019), NumPyro (Phan et al., 2019), and Stan (Carpenter et al., 2017). While we
implement our own inference schemes for this paper, we expect the results to be similar if we use the aforementioned
libraries.

Table 6: Summary of the expressions of metrics and their computations for the table Tables 1 to 4. We report SNR (R) in
terms of E[R] and V[R] and report explicit form in tables 7 and 8. We use S = 1000 for all our experiments. The results are
then averaged over ten independent trials to generate mean and standard deviation numbers in tables 1 to 4

Expression Computation Expression Computation

E[logRK ] zs,k ∼ qD,
1
S

∑S
s=1

[
log 1

K

∑K
k=1 p(D∗|zs,k)

]
SNR (RK) E[RK ]

/√
V[RK ]

E[logRIS
K ] zs,k ∼ rw,

1
S

∑S
s=1

[
log 1

K

∑K
k=1

p(D∗|zs,k)q(zs,k|D)
rw(zs,k)

]
SNR

(
RIS

K

)
E[RIS

K ]

/√
V[RIS

K ]

Table 7: Mean of SNR for different estimators.

Expression Computation

E[RK ] zs,k ∼ qD,
1
S

∑S
s=1

[
1
K

∑K
k=1 p(D∗|zs,k)

]
E[RIS

K ] zs,k ∼ rw,
1
S

∑S
s=1

[
1
K

∑K
k=1

p(D∗|zs,k)q(zs,k|D)
rw(zs,k)

]

Table 8: Variance of SNR for different estimators.

Expression Computation

V[RK ] zs,k ∼ qD,
1

S−1

∑S
s=1

[
1
K

∑K
k=1 p(D∗|zs,k)− E[RK ]

]2
V[RIS

K ] zs,k ∼ rw,
1

S−1

∑S
s=1

[
1
K

∑K
k=1

p(D∗|zs,k)q(zs,k|D)
rw(zs,k)

− E[RIS
K ]
]2
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J. Exponential Family models: Additional Details
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Figure 9: δ contours. Setting exactly the same as Figure 5
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Figure 10: SNR contours. (Repeated for easier reference). Setting is the same as the Figure 5.

For each of the three models, we fix the number of training data points |D| = 100 and number of test data points |D∗| = 100.
Then, to sample the training data such that the mean statistics of the data T (D) ≈ 10, we sample from the likelihood
distributions by carefully adjusting the parameters. This means, for normal we sample from N (10, 1); for Exp we sample
from Exp(0.1); and for Binomial we sample from Binomial(100, 0.1).

Then, to sample the test data, we first select the region of high δ from the Figure 5 and then roughly try to match the target
mean statistics by carefully adjusting the parameters. For Normal, we sample from N (5, 1) to target T (D∗) ≈ 5; for
Exp we sample from Exp(0.025) to target T (D∗) ≈ 40; and for Binomial we sample from Binomial(100, 0.4) to target
T (D∗) ≈ 40. This strategy leads to the numbers in table 5. Note, we only use one test and train setting for our experiments.
The results reported in tables 1 and 2 are averaged our ten independent estimations for a single data setting.

Table 9: For the three models: Normal, Exp, and Binomial, we identify the exponential family form from Section 2. For
likelihood in eq. (8), we identify base measure h(y), one-to-one parameter mapping ϕ(z), and log-partition function A(z).
Note, the sufficient statistics T (y) = y for all models. For the conjugate prior in eq. (9), we identify the log partition
function B(ξ), where ξ = (ξT , ξn)

⊤.

Model p(y|z) h(y) ϕ(z) A(z) B(ξ)

Normal N (y|z, σ2)
exp(− y2

2σ2 )
√
2πσ2

z
σ2

z2

2σ2
1
2

[
log 2πσ2

ξn
+

ξ2T
σ2ξn

]
Exp Exp(y|z) 1 −z − log z log Γ(ξn+1)

ξξn+1
T

Binomial Bin(y|n, z)
(
n
y

)
log z

1−z −n log(1− z) log Γ(ξT+1)Γ(nξn−ξT+1)
Γ(nξn+2)
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Figure 11: (Repeated for easier reference). δ contours. Settings exactly the same as Figure 5.
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Figure 12: δ contours. For each model, we first fix the training data set such that T (D) = 10 (shown with red dotted line)
and |D| = 1000. For all the models, increasing the number of training data points results in lower δ for a given test data
statistics when compared to Figure 11.

We learn a Gaussian variational approximation for each of the three models from Table 2. For the models with constrained
latent variables (Exponential and Binomial), we transform z to an unconstrained space and then adjust the logarithm of
the determinant of the Jacobian for correct density estimation (please, see (Kucukelbir et al., 2017, Section 2.3) for more
details on such transformations). Our variational family has two unconstrained parameters: µ and σ. To ensure positivity of
standard deviation, we transform σ with the soft-plus function.

We consider two options to initialize µ and σ: Laplace’s approximation and standard Normal. To pick from the two options,
we evaluate ELBO using 1000 samples and chose the option with higher ELBO value. For Laplace’s approximation, we use
JAX’s BFGS optimizer (Bradbury et al., 2018) (for each model, BFGS took less than 50 estimations of log p(z,D)).
To learn the variational parameters, we optimize standard ELBO using ADAM (Kingma & Ba, 2015) with a learning rate of
0.001 for 10, 000 iterations. For each iteration, we use a batch of 16 samples for estimating the DReG gradient (Tucker
et al., 2019).

We learn a parameterized Gaussian proposal distribution for each of the three models from Tables 1 and 2. For the models
with constrained latent variables (Exponential and Binomial), we transform z to an unconstrained space and then adjust the
logarithm of the determinant of the Jacobian for correct density estimation (please, see (Kucukelbir et al., 2017, Section 2.3)
for more details on such transformations). Our parameterized proposal distribution has two unconstrained parameters: µ and
σ. To ensure positivity of standard deviation, we transform σ with the soft-plus function.

We consider two options to initialize µ and σ: Laplace’s approximation and standard Normal. To pick from the two
options, we evaluate IW-ELBOM using 1000 samples and chose the option with higher IW-ELBOM value. For Laplace’s
approximation, we use JAX’s BFGS optimizer (Bradbury et al., 2018) (for each model, BFGS took less than 50 estimations
of log p(D∗|z)p(z|D) or p(D∗|z)qD(z)).
To learn the proposal parameters, we optimize IW-ELBOM using ADAM (Kingma & Ba, 2015) with a learning rate of
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0.001 for 1000 iterations. For each iteration, we use a single sample of the DReG estimator. Note, a single sample of DReG
estimator for IW-ELBOM uses M samples. We set M = 16 for all our experiments. Note, even after counting the Laplace’s
approximation estimations, we use less than 20, 000 estimations of log p(D∗|z)p(z|D) for learning the proposal.
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Figure 13: Fatter right tail of qD for
Binomial model.

Fatter tails. For the Binomial model, we observe that the estimates for PPDq are
higher than the estimates for PPDq . This can be explained from two observations.
First, the approximate posterior has fatter right tails than the true posterior, and
second, the test data mean lies to the right of the training data mean (see table 5).
This means that the approximate posterior places more mass in the region of test
data and the PPDq will be higher than PPDq. In fig. 13, we plot the densities
for the exact posterior and the learned approximation qD. We also plot an inset-
zoomed-in version to highlight the fatter right tail of the approximate posterior.
Remember, the variational approximation in the constrained space is obtained after
transforming the unconstrained Gaussian variational approximation.

J.1. Empirical Validation for eq. (5)
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Figure 14: δ from approximation in
eq. (5) (blue dotted line) is accurate when
compared to δ from exact expression in
eq. (3) (red solid lines). Also, δ scales
linearly with d (eq. (5)).

We consider a model similar to the Normal model where likelihood p(y|z) is
given by a multivariate normalN (y|z,Σ) with unknown mean z ∈ Rd and known
variance Σ = Id. A multivariate Normal prior N (z|0, Id) gives a conjugate
model as in section 2. For this model, we vary the number of latent dimensions
d ∈ {1, 10, 100, 10000, 10000}. For each d, we create a training data set D with
1000 data points, and set test data D∗ to D, that is, the mean statistics for training
and test data sets match exactly. In fig. 14, we plot the δ from the approximation
in eq. (5) (shown in blue dotted lines with crosses), and compare it against the
δ from exact calculations in eq. (3) (shown in red solid lines with dots). The
approximation is accurate for all d, and δ scales linearly as predicted. This means
for higher dimensional latent spaces, we can have extremely low SNR (R1) even
if test data statistics match exactly to the training data statistics.

J.2. Effect of increasing the number of training data points

In fig. 12, we consider the effect of increasing the number of training data points
from |D| = 100 (fig. 11), to |D| = 1000 while holding the mean training statistics,
T (D) = 10, the same. As the number of training data points increases, δ gets smaller for any given test setting. To
understand why, note δ as in eq. (3) involves two KL divergences: one between posteriors p(z|D+D∗) and p(z|D), and the
other between posteriors p(z|D +D∗) and p(z|D + 2D∗). Intuitively, as the number of training data points increases, we
either require more test data or bigger mismatch between test data and training data for the two KL divergences to be large.
Thus, for any given test data setting, we expect δ to be smaller as the number of training data points increases.
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K. Linear Regression: Additional Details
K.1. Experimental Details

We consider the exact inference settings and start with a baseline scenario where none of the three factors influencing SNR
are too high. Thereafter, we independently increase the three factors: mismatch, the dimensionality of the latent space, and
the size of the test data to create three additional scenarios. We use the standard normal prior and likelihood with σ2 = 1.

Baseline. We set the number of training data points to 1000, the dimensionality of latent space d = 10, and the number of
mismatched copies m = 1. We then forward sample a training data set D and then generate the mismatched data D∆ by
adding a mismatch vector ∆ = 2 to the response vector yD.

More mismatch. We keep the training data same as in the baseline scenario and increase the mismatch vector to ∆ = 10.

More test data. We keep the training data same as in the baseline scenario and increase the number of mismatched copies
to m = 10.

More dimensions. We keep the number of training data points, the number of mismatched copies, and the mismatch vector
same as in the baseline scenario and increase the dimensionality of the latent space to d = 100. We forward sample the
training data set D and then generate the mismatched data D∆ by adding a mismatch vector ∆ = 2 to the response vector
yD.

Figure 8 reports the results from estimating PPDq using simple MC estimator RK from eq. (2) for K = 100, 101, . . . , 106.
The error bands are the five and ninety-five percentile intervals based on 1000 independent estimations.

For LIS, we learn a full-rank Gaussian proposal distribution by optimizing the IW-ELBO from eq. (18) with M = 16
using the DReG estimator and ADAM optimizer with a learning rate of 0.001 for 1000 iterations. We consider different
initialization techniques for the variational parameters: Laplace’s approximation and standard Normal, and pick the one that
provides higher initial ELBO. For each optimization step, we use 8 copies to average the IW-ELBO gradient. For LIS, we
learn the proposal once, and do 1, 000 independent estimations to estimate the error bands.
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L. Logistic Regression: Additional Details
Baseline. We set the number of training data points to 1000, the dimensionality of latent space d = 10, and the number of
mismatched copies m = 1. We forward sample a training data set D and then generate the mismatched data D∆ by flipping
the first ∆ = 0.1 fraction of the response vector yD.

More mismatch. We keep the training data same as in the baseline scenario and increase the mismatch fraction to ∆ = 1.0.

More test data. We keep the training data same as in the baseline scenario and increase the number of mismatched copies
to m = 10.

More dimensions. We keep the number of training data points, the number of mismatched copies, and the mismatch fraction
same as in the baseline scenario and increase the dimensionality of the latent space to d = 100. We forward sample the
training data set D and then generate the mismatched data D∆ by flipping the first ∆ = 0.1 fraction of the response vector
yD.

We learn a full-rank Gaussian variational approximation by optimizing the standard ELBO objective using the ADAM
optimizer with a learning rate of 0.001 for 1000 iterations. We consider different initialization techniques for the variational
parameters: Laplace’s approximation and standard Normal, and pick the one that provides higher initial ELBO. For each
optimization step, we use 16 independent copies to average the ELBO gradient.

For LIS, we learn a full-rank Gaussian proposal distribution by optimizing the IW-ELBO from eq. (18) with M = 16 using
the ADAM optimizer with a learning rate of 0.001 for 1000 iterations. We consider different initialization techniques for the
variational parameters: Laplace’s approximation and standard Normal, and pick the one that provides higher initial ELBO.
We use eight independent copies to average the gradient of IW-ELBO.

40



Understanding the difficulties of posterior predictive estimation

M. Hierarchical Model: Additional Details
We use MovieLens25M (Harper & Konstan, 2015), a dataset of 25 million ratings for over 60,000 movies, rated by more
than 160,000 users, and use movie features made of tag relevance scores collected by Vig et al. (2012)).

Movielens25M originally uses a 5 point ratings system. To get binary ratings, we map ratings greater than 3 points to 1 and
less than and equal to 3 to 0. We pre-process the data to drop users with more than 1,000 ratings—leaving around 20M
ratings. Also, we PCA the movie features to reduce their dimensionality to 10. We used a train-test split such that, for each
user, one-tenth of the ratings are in the test set. This gives us ≈ 18M ratings for training (and ≈ 2M ratings for testing). Our
of these we randomly select 100 users for experiments.

For Gaussian VI, we use a full-rank Gaussian. We optimize standard ELBO using ADAM for 1000 iterations with step-size
of 0.001. For each optimization step, we use 16 copies to average the gradient.

For flow VI, we use a real-NVP flow with 10 coupling layers for all our experiments. We define each coupling layer to
be comprised of two transitions, where a single transition corresponds to affine transformation of one part of the latent
variables. For example, if the input variable for the kth layer is z(k), then first transition is defined as

z1:d = z
(k)
1:d

zd+1:D = z
(k)
d+1:D ⊙ exp

(
sak(z

(k)
1:d )
)
+ tak(z

(k)
1:d )). (215)

where, for the function s and t, super-script a denotes first transition and sub-script k denotes the kth layer. For the next
transition, the zd+1:D part is kept unchanged and z1:d is affine transformed similarly to obtain the layer output z(k+1) (this
time using sbk(z

(k)
d+1:D) and tbk(z

(k)
d+1:D)). This is also referred to as the alternating first half binary mask. Both, scale(s) and

translation(t) functions of single transition are parameterized by the same fully connected neural network(FNN). More
specifically, for first transition in above example, a single FNN takes z(k)1:d as input and outputs both sak(z

(k)
1:d ) and tak(z

(k)
1:d ).

Thus, the skeleton of the FNN, in terms of the size of the layers, is as [d,H,H, 2(D − d)] where, H denotes the size of the
two hidden layers (H=32 for all our experiments).

The hidden layers of FNN use a leaky rectified linear unit with slope = 0.01, while the output layer uses a hyperbolic tangent
for s and remains linear for t. We initialize the parameters of the neural networks from normal distribution N (0, 0.0012).
This choice approximates standard normal initialization. We optimize standard ELBO with sticking the landing (STL)
(Roeder et al., 2017) gradient using ADAM for 1000 iterations with step-size of 0.001. For each optimization step, we use
16 copies to average the gradient.

To learn the proposal distribution for the learned IS estimator, we use a real-NVP flow with architecture described above. We
initialize it with parameters from the variational distribution. For the Gaussian VI, we fix the base distribution for the flow to
the variational distribution. For flow VI, we use the same architecture for the proposal distribution and simply initialize
using the parameters of the variational distribution. We optimize IW-ELBO with DReG estimator using ADAM for 100
iterations with step-size of 0.001. For each optimization step, we use 8 copies to average the gradient.

Table 10: Wall-clock times for one trial of the MovieLens experiments (times were stable across trials with minor variations).

Method No. of samples (K) Time for Simple MC (s) Time for IS (s) Time for learning the proposal (s)

Flow VI K = 103 8.82 17.11 33.76
K = 106 4487.01 6781.45 28.06

Gaussian VI K = 103 7.15 20.13 34.29
K = 106 4094.95 6611.28 33.98

Running time. Our method has some overhead to optimize the IW-ELBO (independent of the number of samples K) and
some overhead to perform importance weighting on each sample. When the SNR is low, naive Monte Carlo sampling might
be faster. However, when a large number of samples is needed, the overhead to optimize the IW-ELBO can be negligible, and
the per-sample overhead is small compared to the benefits. For instance, table 10 plots the time for MovieLens experiments.
If you look at Table 4, switching from naive Monte Carlo from 103 to 106 samples (with 1, 000× the computational cost)
improves SNR less than switching to importance sampling with 103 samples (with around 1.5× the cost).
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