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Abstract

In this work, we establish risk bounds for the Empirical Risk Minimization (ERM)
with both dependent and heavy-tailed data-generating processes. We do so by
extending the seminal works [Men15, Men18] on the analysis of ERM with heavy-
tailed but independent and identically distributed observations, to the strictly sta-
tionary exponentially β-mixing case. Our analysis is based on explicitly controlling
the multiplier process arising from the interaction between the noise and the func-
tion evaluations on inputs. It allows for the interaction to be even polynomially
heavy-tailed, which covers a significantly large class of heavy-tailed models be-
yond what is analyzed in the learning theory literature. We illustrate our results by
deriving rates of convergence for the high-dimensional linear regression problem
with dependent and heavy-tailed data.

1 Introduction

Given a random vector (X,Y ) ∈ Rd × R, with joint distribution (X,Y ) ∼ π, and a class of closed,
convex set of functions F ⊂ L2(π), the objective in statistical learning theory is to find the best
function in the set F that maps the input X to the target Y . The quality of this mapping is measured
by a user-defined loss function ℓ : R → R+ ∪ {0}. The most well-studied approach for the above
task is that of risk minimization, where the best function is defined as the one that minimizes the
expected loss over the set F :

f∗ = argmin
f∈F

Pℓf := argmin
f∈F

Eπ [ℓ (f(X)− Y )] .

The above problem requires the knowledge of the distribution π which is typically unknown in
practice. However, we are usually given observations Zi = (Xi, Yi) for i = 1, . . . , N , from the
distribution π which leads to the Empirical Risk Minimization (ERM) procedure defined as

f̂ = argmin
f∈F

PN ℓf := argmin
f∈F

1

N

N∑
i=1

ℓ (f(Xi)− Yi) .

The convergence of the empirical risk minimizer f̂ to the true risk minimizer f∗ is typically analyzed
by considering the underlying empirical process, a topic which dates back to the seminal work
of [VC71]; see also [VDVW96, vdG00, BBM05, Kol06, Kol11]. In a representative analysis in this
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setting, a majority of the works assume the observations Zi are generated independent and identically
distributed (iid) from π, and the analysis is based on uniform concentration. However, there are
important limitations associated with this approach, particularly due to the (Talagrand’s) contraction
principle which naturally requires a Lipschitz loss function (see, for example, [LT13, Corollary 3.17]
or [Kol11, Theorem 2.3]). As a result, in order to work with standard (unbounded) loss functions
such as squared-error loss or Huber loss, it is generally assumed that the range of f ∈ F is uniformly
bounded and/or the noise ξ := Y − f(X) is also uniformly bounded π-almost surely.

Several attempts have been made in the literature to overcome the limitations of the standard ERM
analysis. A significant progress was made by Mendelson [Men15, Men18], who proposed the so-
called learning without concentration framework for analyzing ERM procedures with unbounded
noise or loss functions. The approach is based on a combination of small-ball type assumption
on the input samples Xi, along with developing multiplier empirical process inequalities under
weaker moment assumptions. We refer the interested reader, for example, to [Men17b, Men17a,
LM18, LRS15, GM20] for details. The aforementioned works, while relaxing the prior analysis of
ERM to handle heavy-tailed data-generating process (DGP), still require the more stringent iid
assumption for their analysis. This restricts the practical applicability of the developed theoretical
results significantly. Indeed, heavy-tailed and dependent data appear naturally in various practical
learning scenarios [BF89, JM01, DKBR07]; however, theoretical guarantees are still missing.

Our Contributions: Aiming to fill the above gap, we analyze ERM with convex loss functions (that
are locally strongly-convex around the origin) when the DGP is both heavy-tailed and non-iid. We
do so by extending the small-ball technique of [Men15, Men18] to the strictly stationary exponentially
β-mixing data. In the iid case, the interaction between the noise and the inputs is handled by an
analysis based on multiplier empirical process. However, developing similar techniques in the non-
iid case is fundamentally restrictive due to the limitations of the analysis based on empirical process.
We side-step this issue for the non-iid case by directly making assumptions on the interaction,
which allows for it to be either exponentially or polynomially heavy-tailed. For the exponentially
heavy-tailed interactions, we leverage the concentration inequalities developed by [MPR11]. For
the polynomially heavy-tailed case, we develop new concentration inequalities extending the recent
work [BMdlP20] to β-mixing random variables. We illustrate our results in the context of ERM with
sparse linear function class and stationary β-mixing DGP under both squared and Huber loss.

Motivation: A natural question arises in this context: Why study ERM with convex loss functions
when the DGP is heavy-tailed? Firstly, convex loss functions cover a large class of robust loss function
that are tailored to deal with the heavy-tailed behavior present in the noise and/or input data. Some
examples include the Huber loss [Hub92], conditional value-at-risk [RU02, RS06, MGW20, SY20]
and the so-called spectral risk measures [Ace02, HH21]. While there exist studies for nonconvex loss
functions suited for heavy-tailed input data (for example, [Loh17]), such analyses are mostly in a
model-based setting and focus on estimation error. Secondly, while alternatives to ERM have also
been proposed and analyzed in the literature for the iid case (with the most prominent one being the
median-of-means framework and its variants [MM19, LM19, LL20, BM21]), it is not immediately
clear how to extend such methods to the dependent DGP that we consider in this paper. We view our
work as taking the first step in developing risk bounds for statistical learning when the DGP is both
heavy-tailed and dependent.

Related Works: The seminal work [Yu94] extended the analysis based on empirical process to the
stationary mixing process using a blocking technique. [Irl97] and [BR97] studied consistency of
non-parametric regression methods under mixing and exchangeability conditions on the DGP, respec-
tively. [Nob99] established lower bounds to achieving consistency when learning from dependent
data. [SHS09] studied consistency of ERM with Zi being an α-mixing (not necessarily stationary)
process, when F is a reproducing kernel Hilbert space. More recently, [Han21] and [DT20] studied
learnability under a general stochastic process setup. The works [AV90, BL97, Pes10, Gam03] extend
Valiant’s Probably Approximately Correct (PAC) learning model to Markovian and related drifting
DGP, assuming bounded loss function and/or noise to obtain rates of convergence. Furthermore,
[ZCY12] and [HS14] analyzed ERM for least-squares regression (with bounded noise) with clipped
loss functions and an α-mixing DGP. Rademacher complexity results for predominantly stationary
dependent processes were developed by [MS11] and [MR08]. [RSS10] and [ALW13] developed PAC-
Bayes bounds in the non-iid setting. [RST15, RS14] developed notions of sequential Rademacher
complexity to characterize the complexity in online nonparametric learning in the worst-case. More
recently [DDDJ19, KDD+21] considered learning under weakly-dependent data for specific models.
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However, such works mainly rely on bounded loss functions in their analysis. Furthermore, [Mei00]
and [AW12] studied model selection for time series forecasting in a possibly unbounded setup but do
not consider conditional prediction and is limited to light-tailed cases.

Apart from the aforementioned works, the recent works [KM17, HW19, WLT20] are closely related
to our setup as they consider rates of convergence of ERM under heavy-tailed and dependent DGP.
In [KM17, Section 8], generalization bounds are developed when Zi is an asymptotically stationary
β-mixing sequence. However, their conditions on the function class F are rather opaque and it is not
clear if their method actually handles the heavy-tailed DGP that we focus on. [HW19] considered a
setup based on a statistical model: for i = 1, . . . , N , Yi = f∗(Xi)+ϵi, with the following conditions:
(i) ϵi being independent of Xi, (ii) Xi is iid, and (iii) ϵi is iid. For this setting, they assumed that
the noise has a bounded p-th moment (with p ≥ 2) and F satisfies the standard entropy condition (see,
for example [Kol06, Example 4]) with exponent α ∈ (0, 2) and obtained convergence rates of the
order O(N− 1

2+α +N− 1
2+

1
2p ). Finally, [WLT20] provides an analysis of L1-regularized ERM with

quadratic loss and linear function class where the heavy-tailed behavior is induced by a sub-Weibull
assumption, and data dependency is characterized by a stationary β-mixing condition. However, their
analysis specializes to sparse linear function classes and their focus is on parameter estimation error
and in-sample prediction accuracy.

2 Assumptions and Preliminaries

We assume that there exists a function f∗ ∈ F that minimizes the population risk E[ℓ(f(X)− Y )].
In what follows, we provide the conditions that we require on the DGP, specifically, the exponentially
β-mixing condition, for characterizing the dependency among data points.

Definition 1 ([Yu94]). Suppose that {Zi}∞i=−∞ is a strictly stationary sequence of random variables.
For any i, j ∈ Z ∪ {−∞,∞}, let σj

i denote the σ-algebra generated by {Zb}jb=i. Then for any
positive integer b, the β-mixing coefficient of the stochastic process {Zi}∞i=−∞ is defined as

β(b) = sup
n

E
B∈σn

−∞

[
sup

A∈σ∞
n+b

|P(A |B)− P(A)|
]
.

The sequence {Zi}∞i=−∞ is said to be β-mixing if β(b) → 0 as b→ ∞. Furthermore, it is said to be
exponentially β-mixing if there exist β0, β1, r > 0 such that β(b) ≤ β0exp(−β1br) for all b.

The β-mixing condition is frequently used when studying non-iid DGP, and imposes a dependence
structure between data samples that weakens over time. The coefficient β(b) is a measure of the
dependence between events that occur within b units in time. Indeed, β-mixing is often used in the
analysis of non-iid data in statistics and machine learning, [Vid13]. Before stating our assumptions
formally, we present the following decomposition of empirical risk for a convex loss using Taylor’s
expansion:

PNℓf ≥ 1

16N

N∑
i=1

ℓ′′(ξ̃i)(f − f∗)2(Xi) +
1

N

N∑
i=1

ℓ′(ξi)(f − f∗)(Xi), (1)

where ξ̃i is a suitably chosen midpoint between f(Xi)− Yi and f∗(Xi)− Yi := ξi. For quadratic
loss functions ℓ(t) = t2, ℓ′(ξi) = 2ξi and ℓ′′(ξ̃i) = 2, ∀i. At a high level, establishing risk bounds
boils down to proving a positive lower bound on the second term on the Right Hand Side (RHS) of
(1), and a concentration result for the first term on the RHS with high probability. We now introduce
the precise assumptions we make on the DGP and the function class to formalize the above strategy.
For the sake of clearer exposition, we first introduce our assumptions in the context of quadratic loss
and then indicate the changes required to handle more general locally strongly-convex loss functions.

Assumption 2.1 (Squared loss). The DGP {Zi}∞i=−∞ and the function class F satisfy the following:

(a) β-mixing data. The process {Zi}∞i=−∞ is a strictly stationary exponentially β-mixing sequence,
i.e., β(k) ≤ exp(−ckη1), for some c, η1 > 0, with strict stationary distribution π.

(b) Small ball condition. Let F ⊂ L2(π) be closed, convex class of functions and define F − F :=
{f − h : f, h ∈ F}. Then, the function class F is such that there is a τ > 0 for which
QF−F (2τ) > 0, where QH(u) = infh∈H P (|h| ≥ u∥h∥L2

) .
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(c) Deviations of interaction. The stationary noise ξ1 and the error (f − f∗)(X1) satisfy either:

(i) For all f ∈ F , and Z1 ∼ π, for some η2 > 0 we have

P (|ξ1(f − f∗)(X1)− E [ξ1(f − f∗)(X1)] | ≥ t) ≤ exp(1− tη2). (2)

or,
(ii) For all f ∈ F , and Z1 ∼ π, for some η2 > 2, and c > 0 we have

P (|ξ1(f − f∗)(X1)− E [ξ1(f − f∗)(X1)] | ≥ t) ≤ ct−η2 . (3)

(d) Heavy-tail/data-mixing trade-off. Under condition (c)-(i), 1/η := 1/η1 + 1/η2 > 1.

Condition (a) above, exponentially β-mixing data, has been assumed in various works, see for exam-
ple [Vid13, WLT20, KM17], to obtain rates of convergence for ERM procedures in general. Indeed,
(exponential) mixing assumption holds in several time-series applications. For example, [Mok88]
showed that certain ARMA processes can be modeled as an exponentially β-mixing stochastic
process. Furthermore [VK06] showed that globally exponentially stable unforced dynamical systems
subjected to finite-variance continuous density input noise give rise to exponentially mixing stochastic
process; see also [FS12]. Condition (b), referred to as the well-known small-ball condition, has been
previously employed in the iid case [Men15]. Intuitively, it models heavy-tailedness by restricting
the mass allowed near any small neighborhoods of zero; thus, forcing the tails to be necessarily heavy.
To our knowledge, the small-ball condition has not been used under dependent DGP assumptions.
Condition (c) is proposed in this work as a way to model the interaction between the stationary noise
ξ1 and the stationary error (f − f∗)(X1). For the iid setting, [Men15] modeled the interaction
between ξ1 and (f − f∗)(X1) uniformly over the class of F via the multiplier empirical process and
captured the complexity through a parameter αN (see (108) for the definition). This requires using
symmetrization argument in the proof which is not applicable in the non-iid setting that we consider
in this work. In addition, how different tail conditions on the data and noise affect the high-probability
statement on the learning rate is not apparent from the parameter αN . We revisit the relationship
between our condition (in the context of iid observations) and the multiplier empirical process
approach used in [Men15] in Section F. Finally, condition (d) models the relationship between the
allowed degree of dependency and the allowed degree of interaction between ξ1 and (f − f∗)(X1).

Next, we modify condition (c) in Assumption 2.1 for the case of general locally strongly-convex loss
functions because now the interaction part involves ℓ′(ξ) instead of ξ (recall the decomposition (1)).

Assumption 2.2 (Convex loss). When the loss function is locally strongly-convex around the origin
and globally convex, condition (c) in Assumption 2.1 is modified as:

(c) Deviations of interaction. The stationary noise ξ1 and the error (f − f∗)(X1) satisfy either,

(i) For all f ∈ F , and Z1 ∼ π, for some η2 > 0 we have

P (|ℓ′(ξ1)(f − f∗)(X1)− E [ℓ′(ξ1)(f − f∗)(X1)] | ≥ t) ≤ exp(1− tη2). (4)

or,
(ii) For all f ∈ F , and Z1 ∼ π, for some η2 > 2, and c > 0 we have

P (|ℓ′(ξ1)(f − f∗)(X1)− E [ℓ′(ξ1)(f − f∗)(X1)] | ≥ t) ≤ ct−η2 . (5)

Complexity Measures: We now introduce the complexity measures that play a crucial role in
characterizing the rates of convergence. The use of β-mixing assumption enables us to define
complexity measures based on the blocking technique proposed by [Yu94], also utilized by the works
of [MR08, KM17, WLT20]. We partition the training sample of size N , S := {Zi}Ni=1, into two
sequences of blocks Sa and Sb. Each block in Sa, and Sb is of length a, and b respectively. Sa and
Sb, both are of length µ, i.e., µ(a+ b) = N . Formally, Sa and Sb are given by

Sa =
(
Z

(a)
1 , Z

(a)
2 , · · · , Z(a)

µ

)
with Z(a)

i = {z(i−1)(a+b)+1, · · · , z(i−1)(a+b)+a},

Sb =
(
Z

(b)
1 , Z

(b)
2 , · · · , Z(b)

µ

)
with Z(b)

i = {z(i−1)(a+b)+a+1, · · · , z(i−1)(a+b)+a+b}. (6)

Based on this blocking technique, we require the following definition of Rademacher complexity.
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Definition 2. Let {X̃i}µi=1 be an iid sample from the strict stationary distribution π. Let D be the
unit-L2(π) ball centered at f∗. For every γ > 0, define

ωµ(F − F , γ) := inf

{
r > 0 : E

[
sup

h∈(F−F) ∩ rD

∣∣∣∣∣ 1µ
µ∑

i=1

ϵih(X̃i)

∣∣∣∣∣
]
≤ γr

}
, (7)

where {ϵi}µi=1 are iid Rademacher variables taking values ±1 with probability 1/2.

The quantity ωµ(H, γ) provides a localized complexity measure for the function class F , and serves
as a generalization of the standard Rademacher complexity in the non-iid setting. For the case of
locally strongly-convex losses, we need the following related measures of complexity.
Definition 3. For a function class H⊂L2(π), a sample of size N from a strictly stationary β-mixing
sequence with stationary distribution π satisfying Assumption 2.1-(a), and ζ1, ζ2 > 0, we define:

ω1(H, N, ζ1) = inf
{
r > 0 : E [∥G∥H∩rD] ≤ ζ1rN

η1
2(1+η1)

}
and ω2(H, µ, ζ2) = ωµ(H, ζ2),

where µ = N
η1

(1+η1) , ∥G∥H = suph∈HGh, and {Gh : h ∈ H} is the canonical Gaussian process
indexed by H with a covariance induced by L2(π). Moreover, we let

ωQ(F − F , N, ζ1, ζ2) := max(ω1(H, N, ζ1), ω2(H, µ, ζ2)).

Note that in Definitions 2 and 3, the scaling is in terms of number of blocks µ instead of N . The
number of blocks µ can be thought of as the effective sample size under dependency, and as η1 → ∞,
one has µ→ N . The term E [∥G∥H∩rD] appearing in Definition 3 is termed as the localized Gaussian
width and is also a widely used complexity measure in the literature. Note that while in the case
of quadratic loss function, the bound is in terms of local Rademacher-based complexity measure,
whereas in the convex case, we require both Gaussian and Rademacher-based complexity measures
to establish the bound, mostly due to technical reasons in the proof. An intuitive explanation for this
has eluded us thus far; see also [Men18, Lemma 4.2].

Concentration Inequalities for Heavy-tails: We now restate [MPR11, Theorem 1], in a form
adapted to our setting below. This result is required to handle interactions of noise and input
that satisfy condition (c)-(i) of Assumption 2.1. It is straightforward to check that the conditions
required by [MPR11] are immediately satisfied under our Assumption 2.1. Indeed, while the results
in [MPR11] are stated for τ -mixing sequences, condition (a) in Assumption 2.1 implies that the
process {Zi}∞i=−∞ is exponentially τ -mixing [CG14], i.e., for a constant c′ > 0, τ(k) ≤ e−c′kη1 .
Lemma 2.1 ([MPR11]). Let {Wj}j≥1 be a sequence of zero-mean real-valued random variables
satisfying conditions (a), (c)-(i), and (d) of Assumption 2.1. Define κM (x) = (x ∧M) ∨ (−M), for
some M , where (x ∧ y) = min(x, y), and (x ∨ y) = max(x, y), and set,

V := sup
M≥1

sup
i>0

(
VAR(κM (Wi)) + 2

∑
j>i

|COV (κM (Wi),κM (Wj))|
)
. (8)

Note that V is finite. Then, for any N ≥ 4, there exist positive constants C1, C2, C3, and C4

depending only on c, η1, η2 such that, for any t > 0, we have

P

(
sup
j≤N

∣∣∣∣∣
j∑

i=1

Wi

∣∣∣∣∣ ≥ t

)
≤ Ne−

tη

C1 + e−
t2

C2NV + e
− t2

C3N exp
(

tη(1−η)

C4(log t)η

)
. (9)

To deal with polynomially tailed interactions, i.e., under condition (c)-(ii) of Assumption 2.1, we
prove a concentration inequality for the sum of exponentially β-mixing random variables with
polynomially heavy-tails, which may be of independent interest.
Lemma 2.2 (Concentration for heavy-tailed β-mixing sum). Let {Wj}j≥1 be a sequence of zero-
mean real valued random variables satisfying conditions (a) and (c)-(ii) of Assumption 2.1, for some
η2 > 2. Then for any positive integer N , 0 ≤ d1 ≤ 1, and d2 ≥ 0, and for any t > 1, we have,

P

(
sup
j≤N

∣∣∣∣∣
j∑

i=1

Wi

∣∣∣∣∣ ≥ t

)
≤ 2η2+3

(d2 log t)
1−η2
η1

N

t(1+d1(η2−1))
+ 8

N

t(1+c′d2)
+ 2e−

t2−2d1 (d2 log t)1/η1

9N ,

(10)

where c′ > 0 is a constant.
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Note that we do not need condition (d) of Assumption 2.1 for Lemma 2.2. Since the tail probabilities
decay polynomially and the mixing coefficients decay exponentially fast, the effect of heavy-tail
dominates and hence, there is no trade-off between η1 and η2. Lemma 2.2 extends the results
of [BMdlP20] (on iid heavy-tailed random variables) to the exponentially β-mixing setting. The
results of [BMdlP20] show that even for the iid case, the tail probability of the sum decays polyno-
mially with t. We show that similar polynomial tail bounds can be obtained (up to log factors) even
in the dependent setting. Furthermore, when β(k) = 0, k > 0, the sequence is iid, in which case
we recover the result of [BMdlP20]. We also remark that the above two results are crucial to derive
our convergence rates for ERM. As a preview, when the DGP has only (2 + δ)-moments, δ > 0,
Lemma 2.2 leads to risk bounds that hold with polynomial probability, whereas for sub-Weibull DGP
(see Definition 4), Lemma 2.1 would lead to risk bounds that hold with exponential probability.

3 Main Results

In this section, we state our main results on the rates of convergence of ERM for both squared and
convex loss functions. First, we consider the squared loss.
Theorem 3.1 (Rates of ERM with squared loss). Consider the ERM procedure with the squared
error loss. For τ0 < τ2QH(2τ)/8, setting µ = NrQH(2τ)c

1
η1 /4, for some constants c, c′ > 0, and

0 < r < 1, we have, for sufficiently large N , and some positive constants C̃1, C̃2, the following:

1. Under conditions (a), (b), (c)-(i), and (d) of Assumption 2.1, for 0 < ι < 1/4,

∥f̂ − f∗∥L2
:=

(∫
(f̂ − f∗)2dπ

) 1
2

≤ max

{
N− 1

4+ι, ωµ

(
F − F , τQF−F (2τ)

16

)}
, (11)

with probability at least (for V as defined in (8))

1− C̃1N
rQH(2τ)c

1
η1 exp(−N (1−r)η1)− C̃2Nexp

(
−(N

1
2+2ιτ0)

η
)
. (12)

2. Under conditions (a), (b), and (c)-(ii) of Assumption 2.1, for 0 < ι < (1− 1/η2)/4,

∥f̂ − f∗∥L2
≤ max

{
N

− 1
4

(
1− 1

η2

)
+ι
, ωµ

(
F − F , τQF−F (2τ)

16

)}
. (13)

with probability at least

1− C̃1N
rQH(2τ)c

1
η1 exp(−N (1−r)η1)− C̃2τ

− 2η2
1+η2

0 N− 4ιη2
1+η2 . (14)

The detailed expression of the probabilities are provided in the Appendix (Theorem B.1).
Remark 1. To the best of our knowledge, the above result is the first result on understanding rates of
convergence of ERM with squared error loss functions with unbounded noise (as well as the loss) for
heavy-tailed dependent data. For a wide range of function classes F used in practice (see Section 4),
the dominant term in the rate of convergence is N− 1

4+ι, for 0 < ι < 1/4. Furthermore, under
the stronger condition (c)-(i) of Assumption 2.1, the risk bound holds with exponential probability,
whereas under the weaker condition (c)-(ii), it holds only with polynomial probability.

We now show that when the small-ball condition in Assumption 2.1 is replaced with the stronger norm-
equivalence assumption, also considered in [MZ20], one could obtain improved rates. Examples of
random vectors that satisfy the norm-equivalence conditions include multivariate student t-distribution
and sub-exponential random variables. We refer to Section 4 for illustrative examples.
Assumption 3.1 (Lp − L2 norm-equivalence). Let F ⊂ Lq(π) be a class of functions for some
q ≥ 3. The function class F −F = {f − h : f, h ∈ F} is Lp −L2 norm-equivalent for some p > 2,
if there exists an M1 > 0 such that, ∥h∥Lp

:= (
∫
|h|p dπ)1/p ≤M1∥h∥L2 , ∀h ∈ F − F .

Corollary 3.1. For the ERM procedure with squared error loss, under Assumptions 2.1, with
condition (b) replaced by Assumption 3.1 with p = 8, for some 0 < ι < 1

2 and r, µ and τ0 same as in
Theorem 3.1, for sufficiently large N , we have

∥f̂ − f∗∥L2
≤ max

{
N− 1

2+ι, ωµ(F − F , τQF−F (2τ)/16)
}
, (15)

with probability at least (for some constants C̃1 and C̃2)

1− C̃1N
rQH(2τ)c

1
η1 exp(−N (1−r)η1)− C̃2Nexp

(
−(N2ιτ0)

η/M1

)
.
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Remark 2. In the model-based nonparametric regression setting (as discussed in Related Works)
with Xi allowed to be dependent on ξi for all i = 1, . . . , n, but (Xi, ξi) being iid, in [HW19,
Proposition 3] authors show a lower bound of N− 1

2+ϵ for some ϵ > 0, for sufficiently heavy-tailed
input Xi. The above result provides an upper bound of similar order, for a more general setting
in comparison to [HW19]. We also remark that for Corollary 3.1, in the model-based setting, if
we assume that ξi is independent of Xi, we have the same conclusion with just p = 4 instead of
p = 8. Furthermore, note that in part 2 of Theorem 3.1, L8 norm does not exist for η2 ≤ 8. We have
elaborated more on how this result compares Theorem 3.1 in [Men15] later in Section F.

We now present our results for the class of convex loss functions that are locally strongly-convex.
Assumption 3.2 (Convex loss). The loss function ℓ : R → R+∪{0} is a convex loss function which is
strongly convex in the neighborhood of 0, i.e., there exists a t2 > 0 such that for any x, y ∈ [−t2, t2],
ℓ(y) ≥ ℓ(x) + ℓ(x)′(y − x) + µc(y − x)2/2 for some constant µc > 0.
Theorem 3.2 (Rates of ERM with convex loss). Consider ERM with loss functions that satisfy
Assumption 3.2. For τ0 < c2QF−F (2τ)ρ(0, t2)τ

2, t2 = O((κ0 + 1/
√
QH(2τ))∥ξ∥L2

), setting
µ = Nη1/(1+η1), for some constants c, c′ > 0, we have, for any N ≥ 4, the following:

1. Under conditions (a), (b), (c)-(i), and (d) of Assumption 2.1, for 0 < ι < 1
4 ,

∥f̂ − f∗∥L2
≤ max

{
N− 1

4+ι, 2ωQ(F − F , N, ζ1, ζ2)
}
, (16)

with probability at least (for V is defined in (8) and some positive c9, c10, C̃3)

1− c9QH(2τ)1−
1
η1Nη1/(1+η1)e−c10QH(2τ)

1+ 1
η1 N

η1
1+η1 − C̃3Nexp

(
−(N

1
2+2ιτ0)

η/C1

)
.

2. Under conditions (a), (b), and (c)-(ii) of Assumption 2.1, for 0 < ι < (1− 1/η2)/4,

∥f̂ − f∗∥L2 ≤ max
{
N− (1−1/η2)

4 +ι, 2ωQ(F − F , N, ζ1, ζ2)
}
, (17)

with probability at least (for constants c9, c10, C̃4 > 0)

1− c9QH(2τ)1−
1
η1Nη1/(1+η1)e−c10QH(2τ)

1+ 1
η1 Nη1/(1+η1)

− C̃4τ
− 2η2

1+η2
0 N− 4ιη2

1+η2 . (18)

To the best of our knowledge, the above result is the first result on understanding rates of convergence
of ERM with convex loss functions with unbounded noise (as well as the loss) for heavy-tailed
dependent data. The above result highlights the advantage of using a robust loss function, e.g. Huber
loss, over a quadratic loss function. For example, if (f − f∗)(X) has a sub-Weibull tail and the
noise ξ has polynomial tail, one can still obtain risk bounds with exponential probability. This is
because in this case ℓ′(ξ)(f − f∗)(X) can still be sub-Weibull for a suitable chosen ℓ′(ξ). Such a
situation arises, for example, when there are outliers even if the data is light-tailed. With a squared
error loss, one won’t be able to obtain a risk bound with exponential probability in this scenario.
We will illustrate this in Section 4.3 through Huber loss, a popular choice of robust loss function in
robust statistics. Similar to the quadratic case, we also have an improved result when the small-ball
condition is replaced with the norm-equivalence condition. Due to space constraints, we state and
prove it in the Appendix B.2.

4 Illustrative Examples
We illustrate the results of Section 3 with three examples, based on sub-Weibull random variables
and Pareto random variables, that are canonical models of heavy-tailed data in the literature.

4.1 Example 1:β-mixing Sub-Weibull DGP with Squared Error Loss

Here, we consider sub-Weibull random variables to model the heavy-tailed behavior in the DGP.
Definition 4 (Sub-Weibull random vectors). A real-valued random variable X is said to be sub-
Weibull with parameter η > 0, if there are constants K1,K2 > 0, such that we have P (|X| > t) ≤
2exp (−(t/K1)

η) , or equivalently ∥X∥p = E [|X|p]1/p ≤ K2p
1
η . Based on this, a random vector

X ∈ Rd is said to be marginally sub-Weibull with parameter η > 0 if each coordinate of X is
sub-Weibull with η. We use X ∼ SW(η) to represent this fact.
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The above family of distributions define a rich class of random variables, allowing for heavier tails
than sub-Gaussian tails (η = 2) or sub-exponential tails (η = 1). Let {δi}i∈Z+ be an iid sequence
of d-dimensional random vectors with independent coordinates with δi ∼ SW(ηδ). Assume that the
dependent input vectors are generated according to the model

Xi = AXi−1 + δi, (19)

where A ∈ Rd×d with spectral radius less than 1. For simplicity, let A = σ2
0Id where σ2

0 < 1, and
{Yi}i∈Z+ be a univariate response sequence given by Yi = θ∗⊤Xi + ξi, where θ∗ ∈ Bd

1 (R) belongs
to the ℓ1-norm ball in Rd with the radius R, and {ξi}ni=1 is an i.i.d sequence independent of Xi ∀i,
and ξi ∼ SW(ηξ) for 0 < ηξ < 1 has independent coordinates. To proceed with learning framework,
we consider ERM with squared loss and the function class F := FR =

{
⟨θ, ·⟩ : θ ∈ Bd

1 (R)
}

. We
denote the difference function class FR −FR by HR. We verify conditions (a), (b), (c), and (d) of
Assumption 2.1, and Assumption 3.1, provide the rate of ERM in this setting, and compare our result
to that of [WLT20] in a similar setting in Appendix C.

4.2 Example 2: β-mixing Pareto DGP with Squared Error Loss

Let X̃t,i denote the i-th coordinate of the vector X̃t ∈ Rd. We consider the process given in [Pil91]:
For i = 1, 2, · · · , d, η3 > 2 + 2ι, where ι > 0 is a small number, and t = 0, 1, · · · , define

X̃t,i =

{
2

1
η3 X̃t−1,i with probability 1/2

min
(
2

1
η3 X̃t−1,i, δt,i

)
with probability 1/2

(20)

where {δt,i}i=1,2,··· ,d,t=1,2,··· is a sequence of iid Pareto random variables with the distribution
L+(δ; η3, di) = η3(diδ)

η3−1/ (1 + (diδ)
η3)

2 for δ > 0, η3 > 2 + 2ι, and we write X ∼ L+(η, σ)
to denote that X is a Pareto random variable with parameters η and σ. The survival function of
δ ∼ L+(η3, d) is given by, P(δ > t) = (1 + (dt)η3)−1, for t > 0. Let X̃1,t and X̃2,t be two
independent trails of the process in (20). Let {Ut}t=0,1,··· be a sequence of iid U [0, 1] random
variables. Now consider the process Xt,i = X̃1,t,i1(Ut ≤ 1/2)− X̃2,t,i1(Ut > 1/2). The marginal
distribution of Xt,i is given by symmetric Pareto distribution, i.e.,

L(x; η3, di) =
η3(di|δ|)η3−1

2 (1 + (di|δ|)η3)
2 −∞ < δ <∞, η3 > 2 + 2ι. (21)

Now, let {Yi}i∈Z+ is given by Yi = θ∗⊤Xi + υi, where θ∗ ∈ Bd
1 (R), as before. Let {υi}ni=1 be an

iid sequence of 0 mean random variables independent of Xi for all i, with heavy tails such that for
all t > 0, P (|υi| ≥ t) ≤ 1/(1 + tη4), η4 > 2 + 2ι. Like in Example 4.1, we consider ERM with
squared loss and the function class F := FR =

{
⟨θ, ·⟩ : θ ∈ Bd

1 (R)
}

, where Bd
1 (R) denotes the

d-dimensional ℓ1-ball with radius R. We denote the difference function class FR −FR by HR. We
show that conditions (a), (b), and (3)-(ii) of Assumption 2.1 hold here in the following section.

4.2.1 Verification of Assumption 2.1 for Example 4.2

[Pil91] shows that the AR(1) process given by (20) is strictly stationary if X̃0,i ∼ L+(η3, di), and
X̃0,i are independent of each other for i = 1, 2, · · · , d. The stationary distribution is given by
L+(η3, di). Let π(Xt1 , Xt2 , · · · , Xtn) be the joint distribution of Xt1 , Xt2 , · · · , Xtn for a set of
time points t1, t2, · · · , tn. Now for any positive integer k,

π({Xti+k}ni=1) = π({X̃1,ti+k1(Uti+k ≤ 1/2)− X̃2,ti+k1(Uti+k > 1/2)}ni=1)

=π({X̃1,ti1(Uti ≤ 1/2)− X̃2,ti1(Uti > 1/2)}ni=1) = π({Xti}ni=1). (22)

The second equality above follows from the fact X̃1,t and X̃2,t are strictly stationary process and {Ut}
is iid. So Xt is a strictly stationary process with marginal distribution of Xt,i given by symmetric
Pareto distribution

L(x; η3, di) =
η3(di|δ|)η3−1

2 (1 + (di|δ|)η3)
2 −∞ < δ <∞, η3 > 2 + 2ι. (23)

8



Without loss of generality we will assume that d1 ≤ d2 ≤ · · · ≤ dd,
∑d

i=1 1/di = K0, and d1 ≥ C ′
6

for some constants K0, C
′
6 > 0. It is shown in Lemma 1 of [Ris08], that the AR(1) process in (20)

is ϕ-mixing with ϕ(k) = k log 2/(2k − 1), k = 1, 2, · · · . where ϕ-mixing coefficients are defined
as in [Bra05]. We also have β(k) ≤ ϕ(k) ≤ e−k/3. Since Xt depends only on X1,t, X2,t, and Ut,
X1,t, and X2,t are independent and exponentially β-mixing, and Ut is iid, Xt is also exponentially
β-mixing.

• Since Yi depends only on Xi, and υi are iid, {(Xi, Yi)} is a strictly stationary β-mixing
sequence with β(k) ≤ e−k/3. So condition (a) of Assumption 2.1 is true here.

• Now we will verify condition (b) of Assumption 2.1. Let σX,p denote ∥X∥p for p > 0.
Then

E
[(
θ⊤X

)2]
=

d∑
i=1

θ2i σ
2
Xi,2

d2i
≥ σ2

0

d∑
i=1

θ2i
d2i
, (24)

where σ0 = mini σXi,2, i = 1, 2, · · · , d. Since Xi ∼ L(η3), for any θi ∈ R we have
∥θiXi∥η3−0.5ι ≤ K1|θi|σX,η3−0.5ι/di. So,

∥θ⊤X∥η3−0.5ι ≤ K1σX,η3−0.5ι

d∑
i=1

|θi|
di

≤
K1σX,η3−0.5ι

∑d
i=1

|θi|
di

σ0

√∑d
i=1

θ2
i

d2
i

∥θ⊤X∥2 (25)

≤K1σX,η3−0.5ι

√
d

σ0
∥θ⊤X∥2. (26)

Then from Lemma 4.1 of [Men15] we have that the condition (b) of Assumption 2.1 is true
here.

• Since υi and Xi are independent, and E [υi] = 0, we have E
[
υit

⊤Xi

]
= 0. Let η2 =

min(η3, η4). Then using Markov’s inequality, for any t ∈ HR and ∀i, we have,

P
(∣∣υit⊤Xi − E

[
υit

⊤Xi

]∣∣ ≥ τ
)
≤

∥υi∥η2
η2

(∑d
j=1 ∥tjXi,j∥η2

)η2

τη2
≤ (RσυσX,η2

dH)
η2

τη2
,

where dH =
∑d

i=1 d
−1
j , and for all i, j, ∥υi∥η2 = συ, and ∥Xi,j∥η2 = σX,η2/dj . This

implies that condition (c)-(ii) of Assumption 2.1 is true in this setting.
Proposition 4.1. Consider the learning problem described in Section 4.2. Then with probability at
least (14), we have,

∥f̂ − f∗∥L2
≤ max

{
N

− 1
4

(
1− 1

η2

)
+ι
,

C9R

τQHR
(2τ)3/2

d1/(η2−0.5ι)+ι/8N−1/2+ι

}
. (27)

The proof of Proposition 4.1 could be found in the Appendix D.
Remark 3. Note that the heaviness of the tail dominates the exponential β-mixing rate η1 in
determining the rates of convergence. Observe that as η2 → ∞ all the moments exist, and
N−(1−1/η2)/4+ι → N−1/4+ι. This rate is the same as the one that we obtain under condition
(c)-(i), although with weaker polynomial probability. Furthermore, the dimension dependency is
polynomial here. On a related note, [ZZ18] analyzes ℓ1-regression with a truncated loss in the iid
setting with the assumption η2 > 2 and gets

√
d/N rate with exponential probability. We point

out that in the iid setting Medians-of-mean method achieves the optimal rate with exponential
probability under the stronger assumption that log d moments exist [LM19].

4.3 Example 3: β-mixing sub-Gaussian data and Pareto noise with Huber Loss

In this example, we consider Huber loss which satisfies Assumption 3.2:

ℓTh
(t) =

{
t2/2 if |t| ≤ Th
Th |t| − T 2

h/2 if |t| ≥ Th .

We now formally establish the benefits of using Huber loss when the noise ξ has a polynomial tail
but (f − f∗)(X) has a sub-Weibull tail. Let {δi}i∈Z+ be an iid sequence of d-dimensional standard
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Gaussian random vectors δi ∼ N(0, Id). To compare the performance of ERM under Huber loss
to that of squared loss, for simplicity, we allow X to be Gaussian; but a similar result will hold for
sub-Weibull δi. Assume that the input vectors are generated according to (19) where A is a d× d
matrix with spectral radius less than 1. For simplicity, let A = σ2

0Id where σ2
0 < 1. [WZLL20]

showed that this time series is stable, strict sense stationary, with Xi ∼ N(0, 1/(1 − σ4
0)Id). Let

{Yi}i∈Z+ , be the response sequence given by Yi = θ∗⊤Xi + ξi, where θ∗ ∈ Bd
1 (R), ℓ1-norm ball in

Rd. Let {ξi}ni=1 be independent of Xi for all i, and be an iid sequence of 0 mean random variables
with heavy tails such that for all t > 0, P (|ξi| ≥ t) ≤ 1/(1 + tη4), η4 > 2 + 2ι and VAR(ξ) ≤ σξ.
Set Th = 3σξ. We verify the required assumptions for this example in the following section.

4.3.1 Verification of Assumptions for Example 4.3

Condition (a) of Assumption 2.1 and condition (b) of Assumption 2.2 are true here by the same
argument as in Example 4.1. This also implies that Assumption 3.1 is true in this case for p = 8.
Since we consider Huber loss, a lipschitz continuous loss, we have l′(ξ) ≤ min(|ξ/2|, Th). Set
Th = c11(κ0 + 1/

√
ϵ)(σξ + 2R). As an immediate consequence of [VGNA20, Proposition 2.3], we

have that condition (c)-(i) in Assumption 2.2 is valid here with η2 = 2. Note that if a sequence is
exponentially β-mixing, i.e., satisfies condition (a) of Assumption 2.1 with coefficient η1 > 0, then
the same condition is true for all η < η1. So choosing η′1 < η2/(η2 − 1) we get Condition (d) of
Assumption 2.1 is true.
Proposition 4.2. Consider the learning problem described in Section 4.3. Then, for some constant
c12 > 0, with probability at least

1− c9ϵ
1− 1

η1Nη1/(1+η1)e−c10ϵ
1+ 1

η1 Nη1/(1+η1)

− C̃2Nexp
(
−(N2ιτ0)

η/M1

)
,

we have
∥f̂ − f∗∥L2

≤ max
{
N− 1

2+ι, c12R
√
log(ed/N)N− 1

2

}
.

The proof of Proposition 4.2 could be found in the Appendix E.
Remark 4. In this setting, using squared loss would mean that condition (c)-(ii) of Assumption 2.1
is true. So, by part 2 of Theorem 3.1, the obtained rate would be of order N−1/8 with polynomial
probability given by (14), which is significantly worse than that of Proposition 4.2 with Huber loss.

5 Proof Sketch of Theorem 3.1 and 3.2
Recall the decomposition (1). The first and the last terms in the RHS of (1) are handled respectively
by condition (b) and (c) of Assumption 2.1. The idea is to show that if for some f ∈ F , ∥f − f∗∥L2

is large, then with high probability T1 := N−1
∑N

i=1(f − f∗)2(Xi) ≥ B (Lemma B.1) and
T2 := 2N−1

∑N
i=1 ξi(f − f∗)(Xi) ≥ B̄ (see (67)) where B + B̄ > 0. But since f̂ minimizes

PNLf and f∗ ∈ F , PNLf ≤ 0. So with high probability ∥f̂ − f∗∥L2
is small. In contrast

to [Men15], we face two major challenges: 1- For the lower bound on T1, the symmetrization
argument used in the iid case (e.g. [Men15, Men18]) is not applicable under our dependency
structure. 2- For the term T2, [Men15, Men18] use the complexity measure α∗

N (γ, δ) (see (108)) in
the iid case to control the noise-input interactions, which is not possible to do in our setting; our
analysis to control T2 is different, through which we can show how different tail conditions on the
data and noise affect the high-probability statements on the learning rate. The proof of Theorem 3.2
for the locally strongly-convex loss functions, follows a similar strategy although the technical details
are more involved.

6 Conclusion
In this work, we analyzed the performance of ERM with squared and convex loss functions, when
the DGP is both dependent (specifically, exponentially β-mixing) and heavy-tailed. We derived
explicit rates using a combination of small-ball method and concentration inequalities. We demon-
strated the applicability of our results on a high-dimensional linear regression problem, and showed
that our assumptions are easily verified for a certain classes of sub-Weibull and Pareto DGP.
Our results clearly show the benefits of using Huber loss over the squared error loss for ERM
with heavy-tailed data in our setting. For future work, we plan to study median-of-means based
techniques and examine establishing similar rates of convergence for dependent heavy-tailed data.
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[Ris08] Miroslav M Ristić, A generalized semi-pareto minification process, Statistical Papers 49
(2008), no. 2, 343–351. (Cited on page 9.)
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