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ABSTRACT

Traditional test-time training (TTT) methods, while addressing domain shifts, of-
ten assume a consistent class set that limits their applicability in real-world sce-
narios with infinite variety. Open-World Test-Time Training (OWTTT) addresses
the challenge of generalizing deep learning models to unknown target domain dis-
tributions, especially in the presence of strong Out-of-Distribution (OOD) data.
Existing TTT methods often struggle to maintain performance when confronted
with strong OOD data. In OWTTT, the primary focus has been on distinguishing
between strong and weak OOD data. However, during the early stages of TTT,
initial feature extraction is hampered by interference from strong OOD and cor-
ruptions, leading to reduced contrast and premature classification of certain classes
as strong OOD. To handle this problem, we introduce Open World Dynamic Con-
trastive Learning (OWDCL), an innovative approach that leverages contrastive
learning to augment positive sample pairs. This strategy not only enhances con-
trast in the early stages but also significantly enhances model robustness in later
stages. In comparison datasets, our OWDCL model achieves state-of-the-art per-
formance.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated remarkable performances across many application
scenarios with well-prepared datasets Amodei et al. (2016); He et al. (2016); Liu et al. (2021d).
These successes typically rely on the assumption of independent and identically distributed (i.i.d.)
data, meaning that training and test data are drawn from the same distribution. However, in real-
world settings, meeting this requirement is impractical Mirza et al. (2023). For instance, applying
the assumption to self-driving tasks may fail due to unpredictable elements like fog, snow, rain, rare
traffic incidents, or unusual obstacles like sandstorms and characters in strange costumes. In medical
diagnosis, the variance in equipment noise and diverse physiological characteristics of patients may
compromise the model’s efficacy.

In real-world scenarios, the i.i.d. assumption often breaks down due to variable noise from different
device sensors, as well as weather and climate conditions. This leads to a domain shift between the
training and test sets, resulting in models that perform well on training data but fail on real-world test
data Hendrycks & Dietterich (2019). Addressing this discrepancy is essential for developing robust
models that can effectively handle real-world variability. In practical scenarios, target domain data
is often unavailable until inference, necessitating immediate, reliable test data predictions without
extra interventions. This is vital in time-sensitive or resource-limited settings where rapid adapta-
tion is key. Test-time training/adaptation (TTT/TTA) tackles this by rapidly reducing domain shift
and boosting model performance, using unlabeled target domain data during inference Liu et al.
(2021c); Wang et al. (2020); Sun et al. (2020). Recent TTT advancements show promise, employing
meta-learning Bartler et al. (2022) for swift task adaptation, student-teacher frameworks Sinha et al.
(2023) for knowledge distillation under domain shift, and adversarial sample techniques Croce et al.
(2022) for enhanced robustness and adaptability.

TTT methods, which rely on unlabeled target domain data to address domain shifts during testing,
may struggle with varying levels of strong OOD data. Recent advancements in OWTTT tackle this
issue by dynamically expanding prototypes based on the feature distribution of the source domain,
thereby improving the distinction between weak and strong OOD data Li et al. (2023). However, a
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Figure 1: In an experimental setup involving 15 types of corruption within the ImageNet-C dataset
and employing the MNIST dataset as a benchmark for Strong OOD analysis, we conduct a perfor-
mance comparison between OWDCL and OWTTT.

key prerequisite for these methods is the model’s ability to initially extract features from weak OOD
data. Without this capability, weak OOD data—potentially indistinguishable from strong OOD
under significant domain shifts—may be mistakenly treated as noise, leading to its misclassification
as strong OOD during the TTT phase. In this paper, we address the challenge of initial domain shifts
during testing, where the model encounters a scarcity of positive samples, often resulting in the
misclassification of weak OOD data as strong OOD noise. Inspired by contrastive learning Chuang
et al. (2020), we propose that augmented samples should maintain the same feature distribution as
their originals. To tackle the challenges of the early TTT stage, where samples lacking contrast can
be indistinguishable from strong OOD, our approach employs simple data augmentation to generate
positive sample pairs (see in Figure 1). We incorporate the NT-XENT contrastive learning Chen
et al. (2020) loss function, utilizing these pairs to assist the model’s adaptation and prevent premature
classification of classes as strong OOD due to initial feature extraction difficulties. Subsequently,
we align these pairs with the source domain class cluster centers, enhancing the robustness of our
method and enabling basic clustering for strong OODs. We term this methodology Open World
Dynamic Contrastive Learning (OWDCL).

The contributions of this paper can summarized as follows:

• We propose a novel self-training with contrastive learning for open-world test-time training
(OWDCL). Notable, OWDCL introduces no extra network modules over the backbone
network, making it simple to implement and computationally efficient.

• Our approach is the first work to introduce contrastive learning as a method for reducing
domain shifts in open-world test-time training (OWTTT) problems.

• Extensive experiments on several open-world benchmarks, including CIFAR10/CIFAR100
and ImageNet demonstrate that OWDCL can consistently yield significant performance
improvements.

2 METHODS

2.1 PROBLEM FORMULATION

Test-time training aims to adapt the source domain pre-trained model to the target domain which
may be subject to a distribution shift from the source domain. So we define the source domain data
as Xs, and target domain data as Xt. we also define the source label as Ys = {1, 2, ...,m}, the strong
OOD label set as Ystr = {m+ 1, ...,m+ n}, and the target label as Yt = Ys ∪ Ystr. To clarify, we
define weak Out-of-Distribution (weak OOD) as those classes that align with the source domain
yet are subjected to alterations like noise or other forms of corruption. In contrast, strong Out-of-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Distribution (strong OOD) encompasses categories that are entirely new and distinct from those of
the source domain. The overall framwork of the proposed method is illustrated in Figure 2.

Before the TTT stage, We will extract the features of the source domain Xs through the pre-training
model F(·), and summarize the distribution of the source domain label features Ds = {ds1, ..., dsm}.
At the official start of the TTT stage, We augment the sample xi by data augmentation to obtain the
positive sample pair x′

i, they have the same label yi ∈ Yt. According to the threshold τ , the label
of xi is determined through Ds and the comprehensive between xi and x′

i. If it is not in Ds, it is
divided into Dstr =

{
dstrm+1, ...., d

str
m+n

}
. Since there is no label in open-world TTT, we will set a

pseudo-label ŷi ∈ Yt based on sample xi.

Figure 2: Overall framework of our model OWDCL. (1) Lps: Improve the feature extraction ability
of the model by comparing samples with enhanced samples. (2)Lcs: The classification accuracy is
optimized through the comprehensive comparison between the enhanced sample pair and the class
center of gravity.

2.2 OVERALL TEST-TIME TRAINING FRAMEWORK

In comparison with Test-Time Adaptation, Test-Time Training allows for the use of a subset of
source domain data. However, due to the requirement for low latency, it does not permit access
to the entire source domain dataset. Given this constraint and the demonstrated effectiveness of
cluster structures in domain adaptation tasks Saito et al. (2018), their application is maintained in
open-world TTT Li et al. (2023). Feature extraction from the source domain Xs will be performed
using the pre-trained model F(·). The cluster centers for each class are defined as follows:

dm =
1

M

M∑
i=1

F(xi), yi ∈ YS (1)

where M represents the number of samples for a class in the source domain.

Existing research Li et al. (2023) show excellent performance in most scenarios for open-world test-
time training. However, in certain cases, while the discrimination of strong OOD instances improves,
there is a noticeable decline in handling weak OOD instances, as illustrated in Figure 1. At the onset
of TTT, some classes are ineffectively classified, with accuracy deteriorating as TTT progresses.
This is common in TTT/TTA, where models, lacking target domain labels and facing corruption
interference, often use entropy-like methods to minimize output confusion Wang et al. (2020); Niu
et al. (2022). Ineffective initial feature extraction of specific classes leads to misclassification as
noise. This challenge is exacerbated in open-world TTT, compounded by corruption and strong
OOD disturbances, making the unsupervised process more complex.

Current research often neglects to enhance feature extraction capabilities for individual samples,
instead focusing on distinguishing between strong and weak OOD scenarios. We believe this issue
arises in the early stages of the model, where the lack of labels and class corruption hampers ef-
fective feature extraction, leading to insufficient comparisons and feedback. Inspired by contrastive
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learning He et al. (2020); Chen et al. (2020); Chen & He (2021), we utilize simple data augmentation
techniques to enhance input samples. More complex augmentations, such as adjustments to contrast
and brightness combined with corrupted data, can hinder model convergence. Therefore, for xi,
we employ flipping and a random rotation ranging from 0 to 30%, resulting in augmented data x′

i.
Regarding the data enhancement strategy, we opt for simple rather than novel or complex data aug-
mentations to facilitate comparative learning with sample pairs. Our experiments demonstrate that
several sets of basic data enhancements yield similar effects. Specifically, a combination of vertical
flipping and rotation within 0-15/45 degrees appears to be most effective. This approach is cho-
sen for its simplicity and effectiveness. It is important to note that we advise against using contrast
adjustments and adding other forms of noise for data enhancement. This is because weak OOD sam-
ples may already exhibit such corruptions, and complex augmentations could lead to convergence
difficulties during testing.

Based on the previous analysis, for the samples xi and their augmented counterparts x′
i, the model

F(·), as derived from pre-training, and its iteratively updated version during the Test-Time Training
(TTT) process, F ′(·), are believed to adhere to the following mathematical relation:

F ′(xi) = F ′(x′
i) (2)

Based on this hypothesis, we implement contrastive alignment using positive sample pairs as well
as contrastive alignment through clusters and sample pairs.

2.3 CONTRASTIVE ALIGNMENT BY POSITIVE SAMPLE PAIRS

For each sample xi and its augmented counterpart x′
i in the current batch, we extract features F ′(xi)

and F ′(x′
i) using the model F ′(·). The first step involves normalizing these features with the L2

norm, calculated as:

∥v∥2 =
√

v21 + v22 + . . .+ v2n (3)

Then he result post-normalization using the L2 norm is articulated as:

vi =
F(xi)√∑B
i=1 F ′(xi)2

,

v′i =
F(x′

i)√∑B
i=1 F ′(x′

i)
2

(4)

where B is the number of samples in the current batch.

Based on Eq. 4, we then compute the similarity among pairs of positive samples within the normal-
ized vectors as follows:

S(vi, v′j)pos = exp(

∑B
i,j=1 vi · v′j

γ1
) (5)

where γ1 represents the temperature normalization factor, which scales the outcome.

Subsequently, the similarity among pairs of negative samples is computed using a different formula,
as outlined below:

S(vi, v′j)neg = exp(
vi) · v

′T
j

γ1
),

S(v′i, vj)neg = exp(
v′i · vTj
γ1

)

(6)

In conclusion, by leveraging the identified similarities and differences in both positive and negative
sample pairs, we utilize the Normalized Temperature-Scaled Cross-Entropy Loss (NT-XENT) Chen
et al. (2020) for optimization. This loss function excels at discerning relational dynamics between
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data points in the absence of labeled data, while avoiding comparisons between identical samples.
The final loss formulation for the initial phase is expressed as:

Lps =− α1(log(
S(vi, v′j)pos∑B

k ̸=i S(v′i, vk)neg + S(vi, v′j)pos
)

+ log(
S(vi, v′j)pos∑B

k ̸=j S(v′k, vj)neg + S(vi, v′j)pos
))

(7)

where α1 is a hyper-parameter that adjusts the impact magnitude of the loss.

Optimizing the Lps loss function enables the model to defer classifying a class as strong OOD until
it has effectively extracted features from that class’s samples. This approach enhances the efficacy
of each sample within the weak OOD class, ensuring more precise and discriminative feature ex-
traction.

2.4 CONTRASTIVE ALIGNMENT BY CLUSTER AND SAMPLE PAIRS

For each sample xi, the strong OOD score is quantified based on its degree of similarity to the nearest
cluster center dk in the source domain. < ·, · > measures the cosine similarity. This quantification
is defined as follows:

osi = 1− max
dk∈Ds

⟨F ′(xi), dk⟩ (8)

Building on insights from previous research, we establish the optimal threshold as the boundary that
distinguishes between two distinct distribution patterns. This approach conceptualizes the classifi-
cation of outliers into two separate clusters, which can be defined as follows:

N+ =
∑i

1(osi > τ),

N− =
∑i

1(osi ≤ τ)
(9)

where 1(·) is the indicator function. The optimal threshold τ∗ is identified by optimizing:

min
τ

1

N+

∑
i

[osi −
1

N+

∑
j1(osj > τ)osj ]

2 +
1

N−

∑
i

[osi −
1

N−
∑
1(osj ≤ τ)osj ]

2
(10)

To ensure a stable estimation of the outlier distribution, the distribution is updated using an exponen-
tial moving average manner with a length of Na. Here, it ranges from 0 to 1, and the step size is set
to 0.01. Upon confirming the effective feature extraction of class samples, resulting in F ′(xi) and
F ′(x′

i), we obtain the feature distribution Ds of the weak OOD in the source domain, ascertained
during the pre-TTT stage. For handling weak OOD samples, we employ a strategy that integrates
the contrastive learning loss NT-XENT with negative log-likelihood loss. This approach aims to
embed the test sample xi nearer to the cluster center of its respective class while distancing it from
the cluster centers of other classes. The formulation of the negative log-likelihood loss is detailed
below:

Lwea
PC = −

∑
k∈Ys

1(ŷ = k) log
exp(<dk,F ′(xi)>

δ )∑
l exp(

<dl,F ′(xi)>
δ )

(11)

where δ is a hyper-parameter, set to 0.1 in all experiments.

To enhance the robustness of sample classification and streamline computation, the feature distri-
bution for the current batch has been quantified based on pseudo-labels ŷ = k. The corresponding
formula is articulated as follows:

dck =
1

2K

K∑
i=1

(F ′(x) + F ′(x′)) (12)
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In the current batch, there are k sample pairs in class K, and their average feature distribution is dck.
Initially, positive sample pairs are normalized employing the L2 norm. The specific formula utilized
for this normalization is detailed below:

vci =
dci√∑M
i=1(d

c
i )

2

,

vsi =
dsi√∑M
i=1(d

s
i )

2

(13)

Using normalized vectors vci and vsi , the NT-XENT loss is computed:

LNT =− α2(log(
S(vci , vsj )pos∑M

k ̸=i S(vck, vsj )neg + S(vci , vsj )pos
)

+ log(
S(vci , vsj )pos∑M

k ̸=j S(vci , vsk)neg + S(vci , vsj )pos
))

(14)

α2 adjusts the loss’s impact magnitude. The similarity computation incorporates a temperature
normalization factor γ2, pivotal in adjusting the scale of similarity measures within the model.

For categorizing samples as strong OOD, the following conditions or mathematical criteria must be
met:

ôsi = 1− max
dk∈Ds∪Dstr

⟨F ′(xi), dk⟩ (15)

When strong OOD samples fulfill a certain criterion, they are incorporated into the existing strong
OOD class. If not, a new strong OOD cluster center is established. In the real-world application
of machine learning models, the classes known and trained on in the source domain are finite and
predetermined. However, the emergence of new classes in practical scenarios is theoretically infinite.
To prevent the unbounded growth of OOD cluster centers, the distribution Dstr is managed as a
queue with a fixed capacity of Nq .The value of Nq is 100. As new OOD prototypes are introduced,
the oldest prototypes are phased out.

Concurrently, the negative log-likelihood loss for these samples is computed as follows:

Lstr
PC = −

∑
k∈Ystr

1(ŷ = k) log
exp(<dk,F ′(xi)>

δ )∑
l exp(

<dl,F ′(xi)>
δ )

(16)

Self-training (ST) is susceptible to the issue of incorrect pseudo-labels, known as confirmation bias.
This self-supervised confirmation bias can exacerbate over time, significantly impacting perfor-
mance. Particularly in the presence of strong OOD samples within the target domain, the model
may erroneously classify these as belonging to known categories, even with low confidence, thereby
intensifying the confirmation bias. To mitigate the risk of ST failure, we adopt distribution alignment
as a form of self-training regularization, drawing on insights from previous studies. This approach
aims to reduce the adverse effects of confirmation bias by ensuring that the model’s predictions are
more aligned with the actual distribution of the data.

The features in the source domain are assumed to follow a Gaussian distribution N (µs,
∑

s). In
the target domain, the feature distribution N (µt,

∑
t) is estimated using a momentum parameter β,

incorporating only test samples pruned via strong OOD criteria. To refine clustering in the target
domain, we use the Kullback-Leibler Divergence loss LKLD:

LKLD = DKL(N (µs,
∑

s)||N (µt,
∑

t)) (17)

For the sake of aesthetics, we have simplified the formula. As a result, the final loss function for the
phase of contrastive alignment by cluster centers and sample pairs can be articulated as follows:
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Lcs = LNT + Lwea
PC + Lstr

PC + LKLD

= −α2(log(
S(vci , vsj )pos∑M

k ̸=i S(vck, vsj )neg + S(vci , vsj )pos
) + log(

S(vci , vsj )pos∑M
k ̸=j S(vci , vsk)neg + S(vci , vsj )pos

))

− (
∑
k∈Ys

1(ŷ = k) log
exp(<dk,F ′(xi)>

δ )∑
l exp(

<dl,F ′(xi)>
δ )

+
∑

k∈Ystr

1(ŷ = k) log
exp(<dk,F ′(xi)>

δ )∑
l exp(

<dl,F ′(xi)>
δ )

)

+DKL(N (µs,
∑

s)||N (µt,
∑

t))
(18)

Algorithm 1: OWDCL algorithm.
Input:
1) Source domain data Xs

2) Target domain data Xt

3) Pre-trained model F(·)
1 Utilize Xs with F(·) to obtain source label features Ds = {ds1, ..., dsm} as shown in Eq. 1
2 Initialize all parameters
44 for l← 0 to L do
66 Randomly sample a batch of data x from Xt.
88 Apply data augmentation to x to obtain augmented counterparts x′.

1010 Use F(·) to extract features F(x) and F(x′).
1212 Utilize Eq. 7 to compute Lps, enhancing the performance of F(·).
1414 Calculate cosine similarity between F(x) and F(x′) for each known class dsm using Eq. 8

and clustering.
1616 Generate class predictions based on clustering results and compute

LNT ,Lwea
PC ,Lstr

PC ,LKLD.
1818 Train F(·) using the losses LNT ,Lwea

PC ,Lstr
PC ,LKLD, and Lps.

19 end
20 return F(·)

3 EXPERIMENTS

3.1 DATASETS AND EVALUATION METRIC

Several datasets are utilized to fully demonstrate the validity of our method. For the corruption
datasets, we use the following datasets, CIFAR10-C/CIFAR100-C Hendrycks & Dietterich (2019),
each containing 10000 corrupt images with 10/100 classes, and ImageNet-C Hendrycks & Dietterich
(2019), which contains 5000 corrupt images within 1000 classes. For the style transfer dataset, we
introduce the Tiny-ImageNet Le & Yang (2015) consists of 200 classes with each class contain-
ing 500 training images and 50 validation images. For other common datasets, We also introduce
MNIST LeCun et al. (1998) is a handwritten digit dataset, that contains 60,000 training images
and 10,000 testing images. SVHN Netzer et al. (2011) is a digital dataset in a real street context,
including 50,000 training images and 10,000 testing images.

To evaluate open-world test-time training, we adopt the same evaluation metric as OWTTT Li et al.
(2023). To set up a fair comparison with existing methods, we take all the classes in the TTT bench-
mark dataset as seen classes and add additional classes from additional datasets as unseen classes.
In the later experiments, we set the number of known class samples and the number of unknown
class samples to be the same. Then we follow the ”One Pass” protocol Su et al. (2022), Firstly, the
training objective cannot be changed during the source domain training procedure. Secondly, test-
ing data in the target domain is sequentially streamed and predicted. In this problem, we evaluate
whether we can judge the accuracy of the source domain class as a strong OOD. First, the accuracy
of the source domain class is recorded as AccS :

7
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Table 1: Open-world test-time training results on CIFAR10-C. All values are presented in percent-
ages (%), with the best results highlighted in bold.

Method Noise MNIST SVHN
AccS AccN AccH AccS AccN AccH AccS AccN AccH

TEST 68.59 99.97 81.36 60.48 88.81 71.96 60.94 86.44 71.48
BNIoffe & Szegedy (2015) 76.63 95.69 85.11 76.15 95.75 84.83 79.18 94.71 86.25
TTT++Liu et al. (2021c) 41.09 57.31 47.86 59.52 77.52 67.34 68.77 85.80 76.34
TENTWang et al. (2020) 32.24 33.30 32.77 55.64 68.27 61.31 66.70 82.50 73.77
SHOTLiang et al. (2020) 63.54 71.37 67.23 56.92 53.26 55.03 70.01 72.58 71.27
TTACSu et al. (2022) 64.46 77.42 70.35 77.60 84.53 80.92 77.30 81.10 79.16
OWTTTLi et al. (2023) 85.46 98.60 91.56 83.89 97.83 90.32 84.99 87.94 86.44
OWDCL(Ours) 87.16 99.99 93.08 85.59 99.14 91.82 85.35 89.74 87.49

Table 2: Open-world test time training results on CIFAR100-C. All values are presented in percent-
ages (%), with the best results highlighted in bold.

Method Noise MNIST SVHN
AccS AccN AccH AccS AccN AccH AccS AccN AccH

TEST 36.75 99.87 53.73 25.99 49.59 34.11 30.01 81.62 43.89
BNIoffe & Szegedy (2015) 50.21 98.72 66.56 36.21 84.69 50.73 45.69 90.45 60.71
TTT++Liu et al. (2021c) 23.47 70.26 35.19 28.31 86.74 42.68 37.56 90.45 53.08
TENTWang et al. (2020) 22.57 66.60 33.72 27.85 80.92 41.43 37.08 89.90 52.51
SHOTLiang et al. (2020) 51.52 98.21 67.58 35.35 81.71 49.35 45.87 89.72 60.70
TTACSu et al. (2022) 51.11 98.66 67.34 37.78 86.66 52.62 47.29 91.42 62.33
OWTTTLi et al. (2023) 56.76 97.25 71.68 40.77 82.91 54.66 54.32 81.98 65.34
OWDCL(Ours) 58.20 99.93 73.23 44.01 81.85 56.69 55.38 82.80 66.36

Table 3: Open-world test time training results on ImageNet-C. All values are presented in percent-
ages (%), with the best results highlighted in bold.

Method Noise MNIST SVHN
AccS AccN AccH AccS AccN AccH AccS AccN AccH

TEST 18.51 100.00 31.24 18.66 98.27 31.36 18.94 87.75 31.15
BNIoffe & Szegedy (2015) 36.34 99.97 53.31 30.77 74.53 43.55 33.26 84.54 47.74
TENTWang et al. (2020) 22.54 10.47 14.29 27.53 10.01 14.68 41.16 45.51 43.22
SHOTLiang et al. (2020) 46.79 100.00 63.75 27.47 55.25 36.70 34.00 75.94 46.97
TTACSu et al. (2022) 42.60 94.52 58.73 30.43 72.11 42.80 31.59 74.07 44.29
OWTTTLi et al. (2023) 41.40 100.00 58.56 38.86 93.35 54.87 38.60 98.06 55.40
OWDCL(Ours) 41.96 100.00 59.11 41.70 99.92 57.00 42.23 99.25 57.70

AccS =

∑
xi,yi∈Dt

1(yi = ŷi) · 1(yi ∈ Cs)∑
xi,yi∈Dt

1(yi ∈ Cs)
(19)

This is followed by the rejection of strong OOD, which successfully rejects the accuracy of the
strong OOD sample and is recorded as AccN :

AccN =

∑
xi,yi∈Dt

1(yi ∈ Ct \ Cs) · 1(yi ∈ Ct \ Cs)∑
xi,yi∈Dt

1(yi ∈ Ct \ Cs)
(20)

And finally, their tradeoff, set to AccH :

AccH = 2 · AccS ·AccN
AccS +AccN

(21)

where ŷi refers to the predicted label and 1(yi ∈ Cs) is true if yi is in the set Cs.

3.2 EXPERIMENTAL ANALYSIS

3.2.1 ABLATION STUDY

In our extensive ablation study conducted on the CIFAR10-C dataset, we incorporated Noise as a
representative of strong OOD scenarios, alongside 15 different types of corruption present in the
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Table 4: Model ablation experiment
PS CS AccS AccN AccH
✘ ✘ 85.46 98.60 91.56
✔ ✘ 86.54 99.99 92.78
✘ ✔ 86.89 99.99 92.93
✔ ✔ 87.16 99.99 93.08

original dataset. Due to constraints in length, we present the final averaged results; the details of
which are illustrated in Table 4. In this study, PS denotes the enhancements made in the Contrastive
Alignment by Positive Sample Pairs segment, and CS signifies the advancements in the Contrastive
Alignment by Cluster and Sample Pairs aspect. The baseline, denoted as OWTTT, does not incor-
porate any of these improvements. Our findings indicate that each improvement significantly out-
performs the baseline. This achievement is particularly notable in effectively differentiating strong
OOD while simultaneously accurately classifying weak OOD.

3.2.2 COMPARISON SETTINGS

For all competing methods that are set by default, we equip them with the same strong OOD detector
introduced in Li et al. (2023). For all models, ResNet-50 He et al. (2016) was selected as the
backbone, SGD was selected as the optimizer, and the learning rate was set to 0.01/0.001 and batch
size to 256 in CIFAR10-C/CIFAR100-C. In ImageNet-C, the learning rate is set to 0.001 and the
batch size is set to 128. The other hyperparameter Setting of the model refer to the default Settings
of the original paper. For the data enhancement of the positive sample of OWDCL(ours), we only
perform rotation in order (0-30 degrees), flipping horizontally. Because of the noise effect of domain
shift, combined with overly complex data enhancement, it will make the model difficult to fit.

For the CIFAR10-C/CIFAR100-C datasets, the hyperparameters are configured as follows: γ1 is set
to 0.8, γ2 to 0.4, α1 to 1, and α2 to 2. In the ImageNet-C dataset, both γ1 and γ2 are uniformly set
at 1. Regarding α1, initially set at 1, we reduce it to 0.1 after the 20th batch to mitigate potential
overfitting issues identified in more complex datasets, where Lps remains impactful in the initial
stages. Regarding the other parameters, their settings are consistent throughout the document and
were initially introduced at their first mention. These specific configurations draw upon established
practices from previous research Li et al. (2023).

3.2.3 COMPARATIVE EXPERIMENTS

We first evaluate open-world test-time training under noise corrupted target domain. We treat CI-
FAR10/CIFAR100 Krizhevsky et al. (2009) and ImageNet Deng et al. (2009) as the source domain
and test-time adapt to CIFAR10-C, CIFAR100-C, and ImageNet-C as the target domain respectively.

For experiments on CIFAR10/100, we introduce random noise, MNIST, SVHN, Tiny-ImageNet
with non-overlap classes, and CIFAR100 as strong OOD testing samples. Table 6 compares the
classification error of our proposed method against recent TTT methods on the CIFAR10-C dataset.
Table 7 shows the performance comparison results on the CIFAR100-C dataset. It can be seen that
for different strong OOD, our models have shown extremely excellent performance, and basically,
under each strong OOD, our accuracy has been improved by more than 2%. In the CIFAR10-C
dataset, we added Tiny-ImageNet as a strong OOD, which improved our accuracy by nearly 5% for
this complex strong OOD.

In CIFAR100-C, due to the complexity of data set categories and the interference of strong OOD,
many models have significantly improved the recognition accuracy of strong OOD (ACCN ). How-
ever, his weak OOD (ACCS) accuracy drops sharply, which is caused by stong OOD interference,
and he loses the ability to recognize the source domain classes. OWDCL not only demonstrates
significant performance improvements compared to traditional TTT models but also incorporates
contrastive learning to enhance the model’s feature extraction capabilities. This enhancement helps
to prevent the misclassification of weak OOD samples as strong OOD by improving feature extrac-
tion. Compared to OWTTT, OWDCL generally achieves an accuracy improvement of about 1-4%,
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highlighting the effectiveness of integrating contrastive learning for more robust feature discrimina-
tion and OOD handling.

For ImageNet-C, we introduce random noise, MNIST, and SVHN as strong OOD samples. Very en-
couraging results are also obtained on the large-size complicated ImageNet-C dataset, as shown in
Table 3. Our model shows a similar effect for large data sets. For random noise as strong OOD, our
method is inferior to SHOT. We believe that random noise prevents us from extracting features from
strong OOD, thus affecting the final performance. In experiments where MNIST and SVHN were
used as strong OOD samples, our OWDCL model’s classification accuracy for weak OOD (ACCS)
increased by approximately 4% compared to OWTTT, a more pronounced improvement than ob-
served with the CIFAR10-C/CIFAR100-C datasets. This suggests that the complexity of the dataset
significantly impacts the model’s feature extraction requirements, making weak OOD samples more
susceptible to being misclassified as strong OOD. Our method’s enhancements effectively address
this issue, demonstrating that the more complex the dataset, the more pronounced the benefits of our
model become.

Finally, our proposed method consistently outperforms all competing methods under most experi-
ment settings, suggesting the effectiveness of the proposed method.

Figure 3: Visual analysis experiment. Black is strong OOD, while the others are weak OOD.

3.2.4 VISUALIZED ANALYSIS

We conducted a visual analysis on the CIFAR10-C dataset, using Gaussian noise as the corruption
factor and the MNIST dataset as the benchmark for strong OOD scenarios. Three models - TEST,
OWTTT, and OWDCL - were assessed using data from their last five batches. This data underwent
dimensionality reduction via t-SNE, followed by a subsequent visualization. In these visualizations,
black indicates the strong OOD class, while ten other colors represent the ten CIFAR-10 classes, as
detailed in Figure 3. Compared to TEST, OWTTT showed improved classification accuracy but with
a significantly higher misclassification rate. OWDCL further excelled by enlarging the spatial sep-
aration between distinct classes, indicating superior performance. Notably, OWDCL demonstrated
remarkable feature extraction capabilities for unknown strong OODs during the Test-Time Training
(TTT) process, despite being initially trained on MNIST. This ability is evidenced by the emergence
of distinct class clusters, even though it does not precisely classify each of the ten MNIST classes.

4 CONCLUSION

In this paper, we introduce a novel method called Open World Dynamic Contrastive Learning
(OWDCL), which effectively addresses the limitations of traditional Test-Time Training (TTT)
methods in open-world scenarios. By creatively leveraging contrastive learning to generate positive
sample pairs, OWDCL significantly enhances initial feature extraction and reduces the misclassifi-
cation of weak OOD data as strong OOD. This methodology not only improves discriminability in
the early stages of TTT but also strengthens the overall robustness of the model against strong OOD
data. With superior performance across various datasets, OWDCL establishes a new benchmark in
the field of Open-World Test-Time Training.
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A APPENDIX

A.1 RELATED WORK

A.1.1 UNSUPERVISED DOMAIN ADAPTATION

Unsupervised domain adaptation (UDA) Ganin & Lempitsky (2015); Wang & Deng (2018); Liu
et al. (2022) aims to adapt models trained on a source domain to unlabeled target domain data. UDA
typically employs strategies like difference loss Long et al. (2015), adversarial training Ganin &
Lempitsky (2015), and self-supervised training Liu et al. (2021a) to learn invariant properties across
domains. Despite considerable progress in enhancing target domain generalizability, UDA’s reliance
on both source and target domains during adaptation is often impractical, e.g., due to data privacy
concerns. Consequently, source-free domain adaptation Xia et al. (2021); Liu et al. (2021b); Yang
et al. (2021); Kundu et al. (2020) has emerged, eliminating the need for source domain data and
relying solely on a pre-trained model and target domain data.

Table 5: Characteristics of problem settings that adapt a trained model to a potentially shifted test
domain. ‘Offline’ adaptation assumes access to the entire source or target dataset, while ‘Online’
adaptation can automatically predict a single or batch of incoming test samples.

Setting Source Target Train Loss Test Loss Offline Online Strong OOD
Fine-tuning ✘ xt, yt L(xs, ys) - ✔ ✘ ✘

Unsupervised Domain Adaptation xs, ys xt L(xs, ys) + L(xs, xt) - ✔ ✘ ✘

Universal Domain Adaptation xs, ys xt L(xs, ys) + L(xs) - ✔ ✘ ✔
Domain Generalization xs, ys ✘ L(xs, ys) - ✔ ✘ ✘

Source-free Domain Adaptation ✘ xt L(xs, xt) - ✔ ✘ ✘

Test-time training(TTT) xs, ys xt L(xs, ys) + L(xs) L(xt) ✘ ✔ ✘

Test-time adaptation(TTA) ✘ xt ✘ L(xt) ✘ ✔ ✘

Open-World Test-time training(OWTTT) xs, ys xt L(xs, ys) + L(xs) L(xt) ✘ ✔ ✔

A.1.2 TEST-TIME TRAINING

In scenarios requiring adaptation to arbitrary unknown target domains with low inference latency and
without source domain data access, Test-Time Training/Adaptation (TTT/TTA) Liu et al. (2021c);
Wang et al. (2020); Sun et al. (2020) has emerged as a new paradigm. TTT/TTA can be achieved
not only by adjusting model weights to align features with the source domain distribution Liu et al.
(2021c); Su et al. (2022) but also through self-training that reinforces model predictions on unla-
beled data Wang et al. (2020); Chen et al. (2022); Niu et al. (2022). However, TTT/TTA, limited
by the absence of target domain labels, often relies on summarizing the target domain’s feature dis-
tribution to approximate and align with the correct source domain distribution, enhancing model
performance. This approach, while reducing uncertainty, is prone to errors, especially under strong
OOD interference in open-world scenarios Li et al. (2023).

A.1.3 OPEN-SET DOMAIN ADAPTATION

To address open-world scenarios, Open-Set Domain Adaptation (OSDA) has been proposed
Panareda Busto & Gall (2017). Existing OSDA methods include strategies like transforming logits
of unknown class samples into a recognizable constant Saito et al. (2018), and defining and maxi-
mizing the distance between open-set and closed-set Panareda Busto & Gall (2017). Additionally,
Universal Adaptation Network (UAN) approaches consider scenarios where unknown classes exist
in both source and target domains You et al. (2019). Further, in scenarios lacking access to source
domain data, Universal source-free Domain Adaptation has been explored Kundu et al. (2020).
There is very poor research on open-world test-time training (OWTTT) Li et al. (2023). There is a
lack of research to solve the problem of weak OOD accuracy due to the lack of feature extraction
ability in the initial model.

A.2 COMPARISON METHODS AND SETTINGS

Given that open-world Test-Time Training (OWTTT) is a relatively unexplored area with limited
studies, our comparison necessarily includes other Test-Time Training (TTT) models, drawing on
insights from previous research. It’s important to note that while TTT is a method optimized for
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real-time testing, it differs from test-time adaptation in that it utilizes parts of the source domain
data, such as small batch samples or source domain BN layer statistics, under real-time constraints.
This includes the feature distribution of the source domain, as seen in OWTTT and our OWDCL
model. Therefore, including traditional TTT models in our experimental comparison is justified.
Our comparison model is as follows:

TEST: Evaluating the source domain model on testing data.

BN Ioffe & Szegedy (2015): Updating batch norm statistics on the testing data for test-time adapta-
tion.

TTT++ Liu et al. (2021c): Aligns source and target domain distribution by minimizing the F-norm
between the mean covariance.

TENT Wang et al. (2020): This method fine-tunes scale and bias parameters of the batch normal-
ization layers using an entropy minimization loss during inference.

SHOT Liang et al. (2020): Implements test-time training by entropy minimization and self-training.
SHOT assumes the target domain is class balanced and introduces an entropy loss to encourage
uniform distribution of the prediction results.

TTAC Su et al. (2022): Employs distribution alignment at both global and class levels to facilitate
test-time training.

OWTTT Li et al. (2023): Which combines self-training with prototype expansion to accommodate
the strong OOD samples.

Table 6: Open-world test time training results on CIFAR10-C. All values are presented in percent-
ages (%), with the best results highlighted in bold.

Method Tiny-ImageNet CIFAR100-C
AccS AccN AccH AccS AccN AccH

TEST 57.41 79.63 66.72 52.74 74.24 61.67
BNIoffe & Szegedy (2015) 67.66 82.67 74.42 68.44 81.38 74.35
TTT++Liu et al. (2021c) 66.70 79.28 72.44 65.69 77.47 71.10
TENTWang et al. (2020) 66.54 79.32 72.37 64.80 76.40 70.12
SHOTLiang et al. (2020) 67.78 82.25 74.32 67.73 72.87 70.21
TTACSu et al. (2022) 71.64 77.14 74.29 71.94 75.44 73.65
OWTTTLi et al. (2023) 71.77 84.71 77.70 74.08 84.64 79.01
OWDCL(Ours) 76.57 86.34 81.20 78.47 85.47 81.82

Table 7: Open-world test time training results on CIFAR100-C. All values are presented in percent-
ages (%), with the best results highlighted in bold.

Method Tiny-ImageNet CIFAR10-C
AccS AccN AccH AccS AccN AccH

TEST 25.41 70.06 37.30 25.55 73.28 37.89
BNIoffe & Szegedy (2015) 34.88 82.18 48.97 37.00 83.54 51.28
TTT++Liu et al. (2021c) 34.67 81.25 48.60 33.78 81.12 47.70
TENTWang et al. (2020) 35.51 77.34 48.60 35.20 80.26 48.94
SHOTLiang et al. (2020) 35.72 81.11 49.59 38.00 82.13 51.96
TTACSu et al. (2022) 32.04 80.46 45.83 38.83 83.68 53.05
OWTTTLi et al. (2023) 38.90 81.92 52.75 38.97 83.20 53.08
OWDCL(Ours) 40.91 81.53 54.48 41.46 83.73 55.46

A.3 FURTHER PERFORMANCE ANALYSIS

A.3.1 LOSS CONVERGENCE AND ACCURACY ANALYSIS

In our experiments on the CIFAR10-C dataset, we use Noise as the Strong OOD corruption and
record the loss convergence and ACCH accuracy trends for each batch, As shown in Figure 4, we
present the model’s performance under four randomly selected Weak OOD corruption types. The
results highlight the model’s capacity to adapt and converge under various corruption scenarios,
demonstrating its robustness in handling OOD samples and its accuracy on the most challenging
corrupted data.
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Figure 4: Open-world Test Time Training on CIFAR10-C: Loss Convergence and Accuracy ACCH

under Noise (Strong OOD)
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Figure 5: Parameter Robustness Analysis.

A.3.2 PARAMETER ROBUSTNESS ANALYSIS

In the context of parameter settings for the experiment, our approach OWDCL, being an extension
of OWTTT, refers to the parameter configuration of OWTTT, adhering to a consistent parameter
setup throughout the paper. Owing to the numerous secondary parameters involved in our method,
the specific design values were mentioned in their initial introduction, and a unified approach was
adopted for all experiments. In the parameter robustness analysis, we scrutinized the primary pa-
rameters α1 and α2 to evaluate their robustness. The experiments were conducted under the Noise
condition in the CIFAR10-C dataset, as depicted in Figure 5. From the illustration, it is evident that
the model’s accuracy maintains commendable performance within a certain range, thus affirming
the robustness of our two parameters over a defined interval.
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