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Abstract: Estimating visual-tactile models of deformable objects is challeng-
ing because vision suffers from occlusion, while touch data is sparse and noisy.
We propose a novel data-efficient method for dense heterogeneous model esti-
mation by leveraging experience from diverse training objects. The method is
based on Bayesian Meta-Learning (BML), which can mitigate overfitting high-
capacity visual-tactile models by meta-learning an informed prior and naturally
achieves few-shot online estimation via posterior estimation. However, BML re-
quires a shared parametric model across tasks but visual-tactile models for diverse
objects have different parameter spaces. To address this issue, we introduce Struc-
tured Bayesian Meta-Learning (SBML) that incorporates heterogeneous physics
models, enabling learning from training objects with varying appearances and ge-
ometries. SBML performs zero-shot vision-only prediction of deformable model
parameters and few-shot adaptation after a handful of touches. Experiments show
that in two classes of heterogeneous objects, namely plants and shoes, SBML out-
performs existing approaches in force and torque prediction accuracy in zero- and
few-shot settings. Website: https://shaoxiongyao.github.io/SBML

Keywords: Multimodal perception, tactile sensing, few-shot learning

1 Introduction
Fusing tactile information with vision is necessary for many manipulation tasks, including recon-
structing occluded objects [1], reaching in clutter [2], and assistive dressing [3]. A robot is expected
to quickly acquire a visual-tactile model for efficient manipulation. Visual-tactile models of de-
formable objects such as finite-element models can make accurate predictions when an object’s
material parameters are properly identified [4, 5, 6]. However, this estimation problem is challeng-
ing and usually requires a lot of data. Vision data has significant occlusions, leading to ambiguity
in the inference of physical response. Tactile data is noisy and relatively sparse across an object.
These characteristics make the identification problems computationally expensive, susceptible to
local minima, and ill-posed unless strong assumptions (e.g. homogeneity) are made [7].
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Figure 1: Our SBML approach enables few-shot learning of a novel plant’s force response using
experience interacting with other plants. Left: touched region (top) and tactile feedback (second
row, norm of joint torques over time). Right: compare SBML against a stiffness estimator using
naı̈ve uniform Gaussian prior with the same touches. SBML prior already predicts stiffer trunks and
branches compared to leaves and its predictions improve as it touches the plant (right 4 columns).
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We present a few-shot learning method to estimate dense, heterogeneous visual-tactile models us-
ing vision data and a small number of touches. Our approach is based on Bayesian meta-learning
(BML) [8, 9], which first learns a prior distribution over models, estimated offline from the experi-
ence of related objects, and then adapts the model online via posterior inference. BML is appealing
because it can regularize high-capacity (overparameterized) models, which can help estimate het-
erogeneous visual-tactile models in the face of data sparsity. BML also learns informed priors that
improve few-shot accuracy compared to naı̈ve regularization methods. However, applying standard
BML requires a unified model parameterization and cannot leverage the underlying physics of differ-
ent deformable objects. Visual-tactile models for different objects usually have different numbers of
state variables and material parameters. For example, the mesh of a large object has more elements
than a small object and therefore more parameters.

To enable the application of BML to our setting, we introduce the novel Structured Bayesian Meta-
Learning (SBML) approach as illustrated in Fig. 2. Each object generates a structure of variable
dimension and we learn a unified probabilistic model that predicts material parameters for each el-
ement in the structure. The meta-prior is factorized so that it is learned as a parametric function
shared across objects, even when the object is segmented into different numbers of parts. We show
that SBML can be trained on diverse object sets with to enable rapid and accurate few-shot estima-
tion on novel heterogeneous objects. In summary, this paper makes the following contributions:

• We propose the SBML framework that enables meta-learning on diverse tasks with different
numbers of model parameters.

• We show that SBML enables few-shot learning of dense heterogeneous tactile models on real
touch data using vision priors and spatial correlation priors.

• We evaluate the proposed approach on real-world plants and shoes datasets. SBML outperforms
an unstructured state-of-the-art meta-learning approach and the vanilla VSF (Fig. 1).

2 Related Works

Visual-tactile model estimation Fusing visual and tactile information can improve the reliability
of robot manipulation [3, 10, 11], but unifying these modalities is challenging due to visual occlu-
sion and tactile sparsity. The parameters of analytical simulations, such as spring-mass and finite
element models [5, 12, 6], can be fit to observational data, but these estimation problems are com-
putationally challenging and susceptible to local minima. Learning-based methods have also been
applied, but typically assume homogeneity of the object [13, 14, 15] or restricted contact regions
during tool usage [16, 17]. These assumptions reduce the representation power (i.e., capacity) of the
visual-tactile models. More recently very high-capacity learning-based models (e.g. transformers)
have been used to learn latent visual-tactile representation [18, 19], but these models are very data-
hungry and are limited to simulation-only or simulation-based pretraining. Our work enables the use
of high-capacity heterogeneous visual-tactile models from real-world data by learning an informed
prior over model parameters, leading to data-efficient model estimation. We learn prior conditioned
on visual information, which has been shown informative in predicting an object’s material proper-
ties [20, 21, 22] for fabric [23, 24, 25] and rigid surfaces [26, 27, 28]. Our approach goes beyond
current methods by predicting heterogeneous material and updating estimation online.

Meta-learning and Bayesian Meta-learning The goal of meta-learning is to simultaneously learn
a model that matches a given dataset and a process to adapt the model quickly to novel datasets [29].
Meta-learning has enabled data-efficient robot learning in locomotion [30], manipulation [31, 32]
and underactuated control [33, 34]. Past methods often use gradient descent [35, 36] or a learned
adaptation module for online update [37, 38, 39]. Bayesian meta-learning uses hierarchical Bayes
to create a unified learning objective for all tasks, enabling optimization with a single optimizer and
can quantify uncertainty systematically [40, 8, 41, 42, 43]. Whereas existing Bayesian meta-learning
methods assume a shared parametric function across all the tasks, our proposed Structured Bayesian
Meta-Learning leverages task-specific structures to allow meta-learning over diverse tasks, such as
our visual-tactile modeling setting. Meta-learning on graph-structured neural networks [44, 45] is
related to our approach but only addresses node classification problems.
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Figure 2: An overview of the structured Bayesian meta-learning method. For each task, a structure
generation module uses perception data to create a set of structural assumptions mapping from a
common meta-parameter space to visual-tactile models of different objects. Online, maximum a-
posteriori estimation is performed to infer material properties over the novel task’s structure.

3 Method

A visual-tactile model of a deformable object captures how the robot’s visual-tactile observations
change during an interaction. At time step t, the robot executes action at (e.g., joint position com-
mands) and receives tactile and visual observations zt (e.g. force/torque readings and RGBD im-
ages). In our formulation, we consider visual-tactile models that map a sequence of action at to a
sequence of observations zt and we denote input-output pair x = (a1, . . . , aT ) and y = (z1, . . . , zT )
as a touch. Visual-tactile model estimation aims to identify this mapping and our SBML approach
enables data-efficient estimation with few touches. In this section, we will first present background
on BML, our extension to SBML, our instantiation of the framework for visual-tactile modeling,
and strategies for making offline and online learning more efficient and accurate.

3.1 Structured Bayesian meta-learning

Standard meta-learning considers a meta-training dataset D = {Dα |α = 1, . . . , L} where α de-
notes a task and Dα = {(xα,i, yα,i) | i = 1, . . . , Nα} is a task-specific dataset. Each output y
follows a distribution P (y|x, α) conditioned on both input x and task α, and each yα,i is condition-
ally independent given xα,i and α. The goal of meta-learning is to predict P (y|x, α∗) for a novel
task α∗ given data from a support set D∗ = {(x∗,i, y∗,i) | i = 1, . . . , N∗}, particularly from the
zero-shot (N∗ = 0) to the few-shot (small N∗) cases. Note that α∗ is unknown and we need to infer
it from the support set D∗.

In Bayesian meta-learning the task-conditioned output distribution is approximated as P (y|x, α) ≈
f(y;x, θ), where θ ∈ RM are the model parameters corresponding to the task. A prior P (θ) is
learned offline for online estimation of the model posterior P (θ|D∗) from the support set. BML con-
siders model parameters of different tasks statistically independent conditioned on meta-parameters
ψ, i.e. θ ∼ P (θ|ψ). Note that f(·; ·, θ) must be a sufficiently rich class of functions so that every
task maps to a corresponding θ, and P (θ|ψ) should capture the meta-training data without over-
fitting. More precisely, offline learning can be formulated as a maximum likelihood estimation of
meta-parameters ψ over the meta-training dataset D [8].

ψ̂ = argmax
ψ

L∏
α=1

∫
θα

P (Dα|θα)P (θα|ψ)dθα. (1)

Here the data likelihood is evaluated as P (Dα|θα) =
∏Nα

i=1 f(yα,i;xα,i, θα). In the online phase,
we find the maximum a posteriori (MAP) estimate of model parameters θ̂∗ using the Bayes rule:
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θ̂∗ = argmax
θ∗

P (D∗|θ∗)P (θ∗|ψ) (2)

and then the online prediction is given by P (y|x,D∗) ≈ f(y;x, θ̂∗).

In the visual-tactile model estimation setting, the standard assumption in BML regarding fixed-
dimensional inputs x, outputs y, and model parameters θ does not hold. Different touches have
different sequence lengths Tα,i and diverse objects have varying dimensional model parameters
θα ∈ RMα . In particular, we represent a heterogeneous deformable object as a computational mesh
with various particles and elements, leading to varying numbers of material parameters to estimate.

Our proposed Structured Bayesian Meta-Learning (SBML) framework addresses this problem using
task-specific Bayesian network structures mapping a fixed-dimensional meta-parameter to a prior
that supports diverse tasks. The structures for each task α are generated by a structure genera-
tion module outside the learning pipeline as in Fig. 2. We use Sα to denote the task-dependent
structure. Conditioned on Sα, the probability distributions in Eq. (1) and (2) are factorized into
parametric functions of ψ shared across tasks. We consider two types of structures specifically
relevant to visual-tactile models. First, a hidden Markov structure can handle the dynamics and
variation in sequence length Tα,i governing the dimensionality of xα,i = (a1α,i, . . . , a

Tα,i

α,i ) and

yα,i = (z1α,i, . . . , z
Tα,i

α,i ). In this model, the object state st has a Markovian transition model defined
by a dynamics model Dyn and the observations zt depend on the current state st via an observation
model P (zt|st, θα,Sα). The data likelihood f(yα,i;xα,i, θα,Sα) is therefore factorized as follows:

f(yα,i;xα,i, θα,Sα) =
Tα,i∏
t=1

P (ztα,i|stα,i, θα,Sα), where stα,i = Dyn(st−1
α,i , a

t
α,i; θα,Sα). (3)

Here Sα provides the initial state s0α,i. For simplicity, we consider a dynamic model Dyn that is
deterministic given material parameters θα. From this formulation we can replace f in Eq. (1) and
(2) with its structured counterpart.

Second, SBML addresses the structure-dependent set of model parameters θα and the prior in Eq. (1)
and (2) changes from P (θα|ψ) to P (θα|ψ,Sα). We formulate a decoupled latent variable structure
that maps a set of latent parameters ϕα to a task-dependent prior over model parameters θα, via a
linear map θα = Bαϕα for simplicity. The structure Sα defines a set of features vα informative to
ϕα, which are visual features vα,j mapped to each element j for a visual-tactile model. The latent
parameters ϕα has a factorized distribution conditioned on vα, i.e. ϕα|vα ∼

∏|ϕα|
k=1 P (ϕα,k|vα,k, ψ).

Ultimately, SBML learns parametric functions P (ϕα,k|vα,k, ψ) = g(ϕα,k; vα,k, ψ) shared between
tasks, e.g. a neural network that outputs a probability density. The latent structure depends on the
instantiation of this framework, and our implementation is described below.

3.2 Visual-tactile model estimation via SBML

In a visual-tactile model, we consider structure Sα that captures an object’s geometry in a computa-
tional mesh Mα, with initial state s0α, its appearance in visual features vα and material correlation in
composition structure Cα as in Fig. 3. We will define the visual-tactile simulation model and material
parameters θα to evaluate data likelihood in Eq. (3). The material parameter prior maps the univer-
sal latent parameters prior g(ϕα,k; vα,k, ψ) to P (θα|ψ,Sα) in a manner that defines a relationship
between material parameters and appearance, and correlations between elements.

Object representation and simulation model. We consider particle-based visual-tactile models
that discretize the object α into nα particles. The state of the object is the positions of the particles
st ∈ R3nα = (pt1, ..., p

t
nα

), where ptk ∈ R3 is particle k’s position at time step t. The interaction be-
tween particles is defined by a computational mesh Mα containing mα elements, and each element
specifies a subset of particles with mutual interactions. The jth element, j = 1, . . . ,mα, has a fixed
d-dimensional material parameter θα,j ∈ Rd that enables us to simulate particle interactions and
observations. The dynamics model Dyn updates the particle deformation st using interactions in
each element as in Fig. 3. The visual-tactile model parameters of the object are the tuple of material
parameters of each element θα = (θα,1, ..., θα,mα

).
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Figure 3: Overview of structures in visual-tactile model estimation. Left: construct the structure
Sα for an object; Middle: map meta-parameters ψ to material parameters θα with homogeneous +
heterogeneous composition structure; Right: temporal structure in visual-tactile simulation.
Visual features and composition structure. We use visual features and composition structures
to define the map from latent parameters prior to primary material prior. This allows our model
to capture the relationship between appearance and material, and the correlation between material
parameters.

First, vα defines visual features mapped to each element in Mα, where element j has feature vα,j .
Choosing expressive visual features will make the prior more informative to predict material param-
eters, we use dense features from pre-trained vision models DINOv2 [46] by default.

Second, the material composition structure Cα lets us accommodate correlation assumptions. The
composition structure assumes the object is composed of components with similar materials, e.g.
branches on a tree share similar high stiffness compared to soft leaf regions. We define a set of com-
ponents and each component has material parameters ϕ mapped to a subset of elements c ⊂ Mα.
Here component material parameters ϕ are the decoupled latent variables. We consider three types
of components denoted by component type b ∈ {HE,HO, SEG}, where HEterogeneous compo-
nent has a single element, HOmogeneous component has all elements, and SEGmented component
has a cluster of elements. Also, the visual features for a single component aggregate the visual
features vα,j of all elements j ∈ c and we use the average feature 1

|c|
∑
j∈c vα,j for simplicity.

Formally, Cα = {(cα,k, bα,k, ϕα,k, vα,k)}k=1,...,|Cα| defines a set of components by their elements,
types, component material parameters, and visual features. Then, the material parameters are the su-
perposition of components θα,j =

∑|Cα|
k=1 I[j ∈ cα,k]ϕα,k and we define θα = Bαϕα, where Bα is a

(0, 1) matrix of size Mα× |Cα| and ϕα ≡ (ϕα,1, . . . , ϕα,|Cα|) stacks all component material param-
eters. Our prior expresses the knowledge that components of the same type share the same material
parameters distribution conditioned on the visual feature, P (ϕα,k|vα,k, ψ) = gbα,k

(ϕα,k; vα,k, ψ).
We provide different types of components with independent priors and with an independent subset
of meta-parameters: gbα,k

(ϕα,k; vα,k, ψ) ≡ gbα,k
(ϕα,k; vα,k, ψbα,k

). The material parameters prior
can be evaluated by marginalizing over component material parameters ϕα,

P (θα|ψ,Sα) =
∫
ϕα

I[θα = Bαϕα]

|Cα|∏
k=1

gbα,k
(ϕα,k; vα,k, ψ)dϕα. (4)

Overall, Eqs. (3) and (4) enable SBML to define a universal meta-learning problem over ψ and
task-dependent posterior estimation over θα regardless of the tasks’ structure.

3.3 Efficient implementation with Gaussian likelihoods

To achieve efficient implementation, we instantiate the SBML framework on the Volumetric Stiff-
ness Field(VSF) [47] visual-tactile model. VSF is a dense particle-based representation with inde-
pendent Hookean springs and can flexibly represent heterogeneous material.

• In Eq. (3), the dynamics model Dyn is a particle-based deformation simulator the same as [47]
and the observation model P (zt|st, θα,Sα) is approximated as a Linear-Gaussian function. Lin-
earity is from the Hookean springs in VSF and the additivity of forces/torques over springs. The
Gaussian assumption models the tactile sensor noise as a normal distribution and is a reasonable
approximation for the sensors we evaluated.
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Training objects Validation objects Testing objects

Figure 4: Left: Objects in the shoes (top) and plants (bottom) datasets. The scales of the shoes and
plants are different; Right: Physical experiment setup collecting shoes dataset with Punyo tactile
sensor and Kinova Gen3 arm.

• The prior P (θα|ψ,Sα) defines a Gaussian distribution over the material parameter θα. In par-
ticular, gbα,k

is a neural network that outputs the mean and variance of ϕα,k. The integration in
Eq. (4) has a closed-form solution with a Gaussian integrand.

We evaluate likelihood in Eq. (1) using PyTorch [48] and optimize meta-parameters ψ via gradient
descent. The online parameter estimation in Eq. (2) is a quadratic program (QP) with nonnegativity
constraints on the spring stiffnesses. Further details are provided in Appendix A.

4 Experiments and Results
We acquire two benchmark datasets using the experimental platform in Fig. 4: 1) Plants dataset has
12 artificial plants each touched 50-70 times and 7-d joint torque from the Kinova arm; 2) Shoes
dataset has 23 shoes each touched 20-30 times and pressure data from a Punyo tactile sensor [49].
We use joint torques because the robot arm contacts the plants along its entire arm, while contact
with shoes is localized to the end-effector. We show that SBML enables data-efficient visual-tactile
model estimation by comparing SBML’s zero- and few-shot predictions with baselines on real-world
datasets. We also evaluate the effects of different meta-training datasets and material composition
structures on SBML performance. Further experiments on the choice of visual features, prior capac-
ity, and dataset size are presented in Appendix C.

4.1 SBML implementation on VSF model
Structure generation module The structure generation module samples VSF particles from the
object’s surface and interior using ray casting. Visual features vα are generated by DINOv2 [46]
and projected in 3D space. Our standard setting assumes a heterogeneous material composition Cα.
Other material composition structures are tested in Sec. 4.5.
Meta-prior The meta-prior for heterogeneous components uses a multi-layer perceptron (MLP)
that outputs the mean and standard deviation of a Gaussian distribution. The meta-priors for the
segment and homogeneous components in Sec. 4.5 use a linear mean model with learnable variance,
chosen due to the small number of segments and tasks in the meta-training dataset.
Observation models The observation zt is joint torques τ t ∈ R7 in plants and pressure difference
from no contact δt ∈ R in shoes. Note the observation models are linear-Gaussian in the spring
stiffness. Joint torques are the summation of Jacobian transpose times contact forces. For the Punyo
sensor, we use a simplified 1-D observation model that sums the force magnitude of each point.

4.2 Baseline methods
Non-structured meta-learning We compare a standard meta-learning method that directly maps
robot action to tactile observation using no object-specific structure. The model is instantiated as
MLP and uses DINOv2 classification token [46] to encode visual information. The model is meta-
trained and adapted using iMAML [36], where the inner loop adaptation uses gradient descent.
Structured model with naı̈ve prior We compare to the “vanilla” VSF model with a naı̈ve Gaus-
sian prior. Vision is not used, and the naı̈ve prior assigns the same mean and variance to all particles.
The mean and variance are estimated from estimated VSF stiffness in the meta-training dataset.
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Figure 5: Learned zero-shot priors vs estimated VSF from
all touches (w/o prior). Points never touched in the dataset
are shown in gray. Stiffness color map is in the log scale.

We visualize the zero-shot stiffness pre-
diction of SBML for test objects in
Fig. 5 organized in three rows: the top
row shows the object, the middle row
shows the SBML prior mean and the
bottom row shows the estimated stiff-
ness using vanilla VSF (average prior)
given all touches in the dataset. We
observe that the zero-shot stiffness es-
timates are qualitatively quite close to
the all-touch estimates, with stiffer es-
timates at the branches and trunk of
plants and the toes of shoes. Note
that VSF all-shot is an estimation with
all available support data and we can-
not get the precise material parameters.
The uncertainty of SBML prior is visu-
alized in Fig. 10.
4.4 Breadth of meta-training set

Test object Narrow Broad Mismatched
Hetero.

Hetero.
+ Seg.

Hetero.
+ Homoge.

0-
sh

ot
1-

sh
ot

5-
sh

ot

Figure 6: Effects of the meta-training dataset on k-shot predic-
tions. The first column shows the touched region in blue and the
untouched region in green. Same colormap to Fig. 5. Black lines
in (Hetero.+Seg. column, 0-shot row) show segment boundaries.
See Sec. 4.5 for details.

Next, we show the SBML k-
shot predictions and evaluate
how the breadth of the meta-
training set affects results. We
expect the best performance
when the meta-training set dis-
tribution is narrow and con-
tains the test object within its
support. The broad datasets
contain all training objects as
shown in Fig. 4. The plants
narrow meta-training dataset
contains different views of the
same plant and the test set
contains touches on the novel
view. For the shoes dataset,
we create narrow datasets by
selecting shoes of similar ma-
terials, specifically choosing
two boots, two nylon running
shoes, and two sneakers for
each test object.

Fig. 6 shows the qualitative re-
sults for the boot test object, where SBML is trained with narrow, broad, and mismatched meta-
training sets. The k-shot row indicates the posterior estimate after observing a support set of k
touching sequences from the test object’s dataset. In the second row of Fig. 6, all priors estimate
the front of the toe to be stiff, but only the narrow prior includes a stiff tongue. The broad prior has
a moderately low stiffness and the mismatched prior estimates a very low stiffness due to the large
domain gap. As expected, each model adapts to the observed data, but the narrowly trained model
tends to shift less.

We show quantitative results on the test objects in Tab. 1 and Tab. 2. The prediction accuracy is
evaluated on a query set disjoint from the support set. We also report the standard deviation of
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Table 1: Joint torque prediction error (Nm) ±
std over query set on Plant benchmark.

iMAML
(broad dataset)

Gaussian prior
(average)

SBML prior
(narrow dataset)

SBML prior
(broad dataset)

0-shot 3.86 ± 0.84 5.23 ± 0.00 2.82 ± 0.04 2.80 ± 0.05
1-shot 4.99 ± 2.04 5.04 ± 0.04 2.78 ± 0.03 2.76 ± 0.05
5-shot 4.63 ± 1.26 4.42 ± 0.07 2.71 ± 0.05 2.67 ± 0.05
10-shot 4.51 ± 1.03 3.88 ± 0.09 2.66 ± 0.03 2.61 ± 0.04

VSF all-shot 2.57

Table 2: Tactile prediction error (hPa) ± std over
query set on Shoe benchmark.

iMAML
(broad dataset)

Gaussian prior
(average)

SBML prior
(narrow dataset)

SBML prior
(broad dataset)

0-shot 9.95 ± 6.71 8.27 ± 0.00 5.66 ± 0.23 7.43 ± 0.25
1-shot 6.30 ± 1.00 7.46 ± 0.13 5.48 ± 0.19 6.77 ± 0.26
5-shot 6.21 ± 0.96 5.54 ± 0.21 4.91 ± 0.12 5.05 ± 0.20
10-shot 6.15 ± 0.91 4.62 ± 0.08 4.54 ± 0.07 4.18 ± 0.04

VSF all-shot 4.10

prediction error over 10 random seeds. The Gaussian prior has zero standard deviation for 0-shot
since its initial mean prediction is deterministic. The last row shows the VSF prediction error using
all support set touches covering the entire object.

SBML not only demonstrates lower zero-shot prediction errors in the first row of Tab. 1 and Tab. 2,
underscoring the value of incorporating visual information but also quickly improves with additional
support data, achieving near-all-shot accuracy by 10 shots. SBML’s absolute improvement is smaller
due to an almost optimal zero-shot error in Tab. 1. In contrast, iMAML exhibits worse zero-shot
performance and noisy adaptation. Using object-specific structures, the Gaussian prior improves the
estimation consistently but has worse few-shot accuracy due to naive uniform mean. Comparing
meta-training datasets, we observe that SBML performs best when the training and testing distribu-
tions closely align. While the performance gap across meta-training distributions is minor on plants,
it becomes significantly larger on shoes, likely due to the greater variation in shoes’ appearance and
material. Shoes are made of brown leather in boots, gray nylon in sneakers, and various colored
plastics in slippers, while plants typically have brown branches and green leaves, as shown in Fig. 4.
To evaluate the capacity of our method, we trained a unified prior using data from both plant and
shoe datasets. The results in Appendix C.3 demonstrate that our method has sufficient capacity to
learn a prior shared between the plant and shoe categories.

4.5 Effects of material composition structure Hetero. Hetero.
+ Seg.

Hetero.
+ Homoge.

0-shot 9.76 ± 0.75 9.23 ± 0.86 9.13 ± 0.77
1-shot 8.58 ± 0.68 7.57 ± 0.57 8.10 ± 1.38
5-shot 5.82 ± 0.31 5.00 ± 0.26 5.32 ± 0.17
10-shot 4.73 ± 0.10 4.36 ± 0.07 4.49 ± 0.07

VSF all-shot 4.10

Table 3: SBML’s predictions with
different compositions on shoes
mismatched dataset.

Finally, we evaluate the effects of changing the material com-
position structure and we tested heterogeneous, heterogeneous
+ segment, and heterogeneous + homogeneous. Qualitative
results are shown in the right three columns of Fig. 6. We
can see that the stiffness across a segment changes together for
heterogeneous + segment, and the stiffness of the entire object
changes for heterogeneous + homogeneous. We also found the
composition structure speeds up model adaptation quantitatively in Tab. 3. When the test object is
out of meta-training distribution, the learned stiffness prior will predict inaccurate stiffness values,
and the shared components will help learn across regions of coherent material. We test these com-
position structures on narrow and broad datasets, but the improvement is marginal.

5 Conclusion and Limitations
We present a novel structured Bayesian meta-learning (SBML) approach to address the few-shot
learning of visual-tactile models. Our innovations allow the method to transfer offline knowledge
from objects of different sizes and shapes to improve prediction accuracy on novel objects. The
method is highly flexible and can accommodate different material compositions, feature represen-
tations, and model capacities. Applied to benchmark datasets of plants and shoes, our experiments
demonstrate that it outperforms non-informed estimators as well as non-structured meta-learning
approaches in zero- and few-shot prediction accuracy.
Limitations: The SBML framework is evaluated on the VSF model that can only predict tactile
response, and we are interested in extending it to other deformable object models such as FEM and
Graph Neural Dynamics Models that can predict visual deformation. The Gaussian prior assumes
a single mode of material parameters conditioned on visual features and cannot handle more com-
plicated multi-modal distributions. Our work has only demonstrated generalization within object
categories, but this approach has not yet enabled generalization between categories.
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Appendices
A Efficient visual-tactile model estimation

Here we provide more details on the efficient SBML implementation on VSF with Gaussian likeli-
hoods, outlined in Sec. 3.3.

Volumetric stiffness field A VSF defines a volume of independent particles that resist displace-
ments from their rest position with Hookean springs. (Note that this differs from standard spring-
mass systems where springs connect particles). The dynamics model Dyn is a geometric simulator
that simulates the particle displacements independently. This simulator detects collisions between
the robot surface and particles and simulates the stick-slip motion of particles. Despite its simplic-
ity, since the particle’s displacement is independent, this deformation model enables highly efficient
estimation by allowing parallel estimation of stiffness values.

The structure defined by a VSF consists of a computational mesh Mα with nα particles and mα =
nα springs. Each particle responds to displacement with a Hookean reactive force f ti = −Kα,i ·
(pti−p0i ), with Kα,i the stiffness of this spring. In this case, the material parameters are the stiffness
of each spring θα = (Kα,1, ...,Kα,n).

Most consequentially, the VSF implementation leads to a material-independent dynamics model
Dyn in Eq. 3:

stα,i = Dyn(st−1
α,i , a

t
α,i;Sα). (5)

where stα,i ∈ R3nα represents the particle positions and we consider particles at rest positions for
s0α,i. Material-independence is a unique characteristic of the VSF model and the material parameters
influence the data likelihood only through the observation model P (zt|st, θα,Sα).

Linear-Gaussian observation model Next, we approximate the observation likelihood as a
linear-Gaussian model, linearly dependent on the material parameters. Here the linearity is from
Hookean spring in VSF. We assume zt = W tθα + ϵtz with ϵtz ∼ N(µt,Σz) a Gaussian noise term
with known covariance. Without loss of generality, we will assume µt = 0 to simplify the subse-
quent notation. Here W t is a known observation matrix that is a nonlinear function of state st, i.e.
W t =W (st). In other words,

P (zt|st, θα,Sα) ≈ N(zt;W tθα,Σz). (6)

For the plant dataset, the linear model of joint torques observation zt = τ t can be evaluated as,

τ t =
∑
i

−J(pti, qt)⊤Kα,i·(pti−p0i )+ϵτ , W t =
[
−J⊤

1 (pt1 − p01) · · · −J⊤
nα

(ptnα
− p0nα

)
]
. (7)

Here W t has dimension 7 × nα and Jacobian matrix J(pti, q
t) = Ji is computed from forward

kinematics at robot configuration qt and ϵτ is Gaussian noise in joint torques. For the shoe dataset,
we used a simplified 1-D force model to model the pressure difference zt = δt:

δt =
∑
i

Ki · ∥pti − p0i ∥2 + ϵp, W
t =

[
∥pt1 − p01∥2 · · · ∥ptnα

− p0nα
∥2
]
. (8)

Here W t has dimension 1 × nα and ϵp is Gaussian noise in pressure difference. Now, the log-
likelihood of a sequence of observations defined in Eq. (3) has a quadratic form in θα:

− log f(yα,i;xα,i, θα) = − log

Tα,i∏
t=1

P (ztα,i|stα,i, θα) =
1

2

Tα,i∑
t=1

∥ztα,i −W t
α,iθα∥2Σ−1

z
+ const. (9)

Gaussian material parameters prior We assume the component material parameters prior
gbα,k

(ϕα,k; vα,k, ψ) defines a Gaussian distribution over ϕα,k. We use a probabilistic neural net-
work that takes the visual feature vα,k as input and outputs the mean µα,k and variance Σα,k, where
ψ are the weights in the network.

gbα,k
(ϕα,k; vα,k, ψ) = N(ϕα,k;µα,k,Σα,k). (10)
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With this definition, the mean and variance of each element’s parameter are sums of Gaussians,
which are themselves Gaussian. Let µα = (µα,1, ..., µα,|Cα|) and Σα = diag(Σα,1, ...,Σα,|Cα|), ϕα
follows a Gaussian distribution with mean µα and covariance Σα:

ϕα ∼ N(ϕα;µα,Σα). (11)

We denote linear map from ϕα to θα as θα = Bαϕα in Sec. 3.1, where Bα[j, k] = I[j ∈ cα,k].
Because θα is a linear transformation of Gaussian random variable ϕα, the material parameters prior
in Eq. (4) has a closed-form evaluation in this case [50]:

P (θα|ψ,Sα) =
∫
ϕα

I[θα = Bαϕα]

|Cα|∏
k=1

gbα,k
(ϕα,k; vα,k, ψ)dϕα

=

∫
ϕα

I[θα = Bαϕα]N(ϕα;µα,Σα)dϕα = N(θα;Bαµα, BαΣαB
⊤
α )

(12)

Offline MLE via SGD Evaluating structured Bayesian meta-learning MLE objective in Eq. (1)
requires integration over material parameters θα. From the deterministic dynamics model Dyn in
Eq. (5), we can get state trajectory (s0α,i, ..., s

Tα,i

α,i ) from action sequence. The observation matrix
can be evaluated as W t

α,i = W (stα,i) using Eq. (7) or (8). The task dataset likelihood in Eq. (1) can
be evaluated in closed-form:

P (Dα|θα) =
Nα∏
i=1

f(yα,i;xα,i, θα) =

Nα∏
i=1

Tα,i∏
t=1

N(ztα,i;W
t
α,iθα,Σz) = N(zα;Wαθα,ΣZ). (13)

Here we stack all observations in zα = (z1α,1, ..., z
Tα,Nα

α,Nα
) into a single vector and all observation

matrices Wα = (W 1
α,1, ...,W

Tα,Nα

α,Nα
) into a single matrix. The observation noise matrix ΣZ =

diag(Σz, . . . ,Σz) is block diagonal matrix with each observation noise matrix. The number of
observations

∑Nα

i=1 Tα,i is on the order of 104 for each task and (zα,Wα) can be loaded on GPU.
The log-likelihood function in Eq. (1) on the entire dataset can be evaluated as,

L∑
α=1

log

∫
θα

P (Dα|θα)P (θα|Sα, ψ)dθα

=

L∑
α=1

log

∫
θα

N(zα;Wαθα,ΣZ)N(θα;Bαµα, BαΣαB
⊤
α )dθα

(14)

Using the fact that the marginalization over a Gaussian distribution is still Gaussian, the offline MLE
problem in Eq. (1) becomes

ψ̂ = argmin
ψ

L∑
α=1

1

2
∥zα −WαBαµα∥2(WαBαΣαB⊤

αW
⊤
α +ΣZ)−1

+
1

2
log det

(
WαBαΣαB

⊤
αW

⊤
α +ΣZ

) (15)

Here we minimize the negative log-likelihood and omit constant terms. This objective function is
implemented using differentiable operations in PyTorch [48] and the optimization is executed using
stochastic gradient descent. We use the Adam [51] optimizer with learning rate 10−4 to optimize
the meta-parameters.

Online MAP as QP Because of Gaussian prior and linear-Gaussian observation model, we instan-
tiate the online MAP problem in Eq. (2) as a QP:

θ̂∗ = argmin
θ∗

∥z∗ −W∗θ∗∥2Σ−1
Z

+ ∥θ∗ −B∗µ∗∥2(B∗Σ∗B⊤
∗ )−1 , s.t. θ∗ ≥ 0 (16)

Here z∗ and W∗ are evaluated on the support set D∗. The non-negative constraint is from the non-
negative spring stiffness θα,i = Kα,i ≥ 0. Finally, the estimated material parameters θ̂∗ can be
used to predict tactile response for a novel touch. In our implementation, the quadratic program in
Eq. (16) is solved online using CVXPY [52].
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Avoiding meta-overfitting Visual-tactile datasets are relatively small, and meta-learning is prone
to meta-overfitting where the meta-parameters memorize all the training tasks, so it is important to
adopt measures to avoid overfitting. We use several strategies in our work:

• Early stopping when the validation error increases.
• Adding dropout layers in the meta-prior network.
• A good prior initialization was important to avoid over-confident priors. We initialize the meta-

prior uncertainty using the estimated stiffness standard deviation from the training dataset.

Although regularization via a meta-prior-prior has been proposed for Bayesian meta-learning [53],
we find that it is challenging to define appropriate regularization targets for the prior weights that
discourage overconfidence. Detailed training configurations are presented in the Appendix B.

B Experimental setup

B.1 Equipment and benchmark datasets

The objects are fixed to a table within the robot’s workspace and the robot touches the object multiple
times. A static RGBD camera is used to capture a view of each object before each touch. A time
series of touch data is recorded during each touch.

The Plants dataset consists of 12 artificial plants with different sizes, appearances, and materials. A
Kinect Azure is used to capture RGBD data. We collect the 7-d joint torque data from the Kinova
arm as the touch data. For each plant, we rotate the object in 4 different views (Fig. 7) and sample
50–70 touches for each view. There are a total of 3, 255 touching sequences and 807, 103 individual
touch readings.

Figure 7: Four different views of the artificial dracaena in plant dataset.

The Shoes dataset consists of 23 shoes including boots, running shoes, sneakers, and slippers. An
Intel Realsense L515 is used to capture RGB-D data. Pressure data is collected with a Punyo tactile
sensor [49]. 23 shoes have very different materials and visual appearances. We sample the touched
point uniformly at random and select the touch direction along the surface normal. We touch each
shoe 20–30 times. There are a total of 729 touching sequences and 35, 614 individual touch readings.

For each object in the dataset, we sample target points uniformly on the visible point cloud. We
visualize sampled starting points and target points in Fig. 8. We use inverse kinematics to move the
robot end-effector in a straight line from start to end.

B.2 SBML structure generation module

VSF particle set generation We first segment out the object using a rough bounding box relative
to the fixed base. We define a volumetric grid on this bounding box and do raycasting from the
camera point to sample a set of points in the occluded region. The grid cells have size ∼1cm for
artificial plants and ∼0.5cm for shoes. We visualize this procedure in Fig. 9. We downsample the
points sampled from the grid to 10, 000 ∼ 30, 000 particles depending on the size of the object.
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Figure 8: Sampled touches on an orange tree and a white sneaker. Pink balls indicate the starting
points and blue balls indicate the target points. Yellow arrows indicate the straight line from start to
end.

Figure 9: Left: VSF particle sampling for an artificial plant. The red ball indicates the camera point.
The green points are sampled VSF points. The bounding box is defined as large enough to enclose
the object. Right: Project DINOv2 features on the image plane to 3D points, colors are from the
first three dimensions in PCA of the features.

Visual features We use DINOv2 [46] to generate dense visual features vα in our experiments. We
use pre-trained weights available on their website. By default, we use the small-version model that
creates a 384-dimensional feature per 14x14 image patch. For visible points in VSF, we project their
3D coordinates to the image plane and use linear interpolation to compute the feature. For occluded
points in VSF, we use the average features of its 10-closest visible points. Therefore particle i has a
feature vα,i. Also, we normalize the visual features using statistics from the training and validation
dataset to speed up learning.

B.3 SBML meta-prior architecture

For heterogeneous components, we choose a 4-layer MLP with dimensions [384, 256, 128, 2]. The
2-D output is the Gaussian distribution’s mean and variance, and the ReLU operation in the last layer
ensures non-negative output. The meta-parameters ψHE are the weights of this neural network.

The meta-prior for segmented and homogeneous components uses a linear mean model and a learn-
able variance. The meta-parameters ψSEG or ψHO are linear weights and variance. We choose this
low-capacity model because of the small number of segments and tasks in the meta-training dataset.

16



We initialize the model uncertainty by setting an initial bias for variance output in MLP and initial
variance value in the linear model.

B.4 iMAML implementation

We use an MLP to map robot action to tactile reading in iMAML implementation. For the no-vision
version, the network input is the 7-d joint angle, and we have 6 hidden layers with dimensions
[32, 128, 64, 32, 16]. The with vision version takes an additional 384-dimensional DINOv2 classi-
fication token to distinguish different objects. The 384-dimensional features are encoded using a
[64, 7] MLP and the output is concatenated with the 7-d joint angle as 14-d network input. The
output layer is 7-d to predict joint torques for the plant dataset and 1-d to predict pressure reading
for the shoe dataset.

We used gradient descent for the inner loop iMAML adaptation. For both benchmarks, we use 2.0
for the regularization strength, 0.001 as the outer loop learning rate, and a total of 400 outer epochs.
For the conjugate algorithm, we use 100.0 for the conjugate gradient damping and perform 10 steps.
The inner loop learning rate was set 0.001 for shoe and 0.01 for plant. A total of 30 inner loop
gradient descent steps are taken for both benchmarks.

C Supplementary experiment results

C.1 Additional baseline results

We provide results with alternative baseline implementations in Tab. 4 and 5. For the non-structured
baseline learned with iMAML, we consider a no-vision baseline that does not use visual informa-
tion. We do not see a significant performance difference compared to iMAML with vision in Tab. 1
and Tab. 2. This indicates that the visual features cannot enhance the meta-learning of tactile re-
sponses without structure in such a real-world dataset. For the Gaussian prior baseline, since the
average mean tends to overestimate the stiffness, we also consider a second variant (zero mean) that
simply sets the mean to zero. This zero Gaussian prior has a better zero-shot prediction on the Plant
benchmark, but its 10-shot error is even larger than the 0-shot error of SBML prior.

Table 4: Joint torque prediction error (Nm) ±
std over query set on Plant benchmark.

iMAML no-vision
(broad dataset)

Gaussian prior
(zero)

0-shot 3.95 ± 0.85 3.55 ± 0.00
1-shot 5.71 ± 3.52 3.43 ± 0.03
5-shot 5.10 ± 2.16 3.09 ± 0.04
10-shot 4.40 ± 0.93 2.88 ± 0.03

VSF all-shot 2.57

Table 5: Tactile prediction error (hPa) ± std
over query set on Shoe benchmark.

iMAML no-vision
(broad dataset)

Gaussian prior
(zero)

0-shot 7.44 ± 1.93 9.21 ± 0.00
1-shot 7.22 ± 2.77 8.08 ± 0.14
5-shot 6.38 ± 1.23 5.65 ± 0.22
10-shot 6.22 ± 0.89 4.63 ± 0.09

VSF all-shot 4.10

C.2 Uncertainty of SBML prior

100.0 N/m

0.5 N/m

Figure 10: SBML prior standard deviation in stiffness. The color map is in the log scale.
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The SBML prior also learns the uncertainty of stiffness in VSF model. We visualize the standard
deviation of learned Gaussian prior in Fig. 10. For plants, we can see the stiff branch region is
predicted with high uncertainty, likely due to high variation in branch stiffness caused by detailed
geometric features like thickness and distance to the plant base. On the other hand, shoes’ stiffness
uncertainty is overall higher than plants’, probably caused by the more significant material variation
in the shoe dataset.

C.3 Unified prior over plants and shoes

To evaluate the capacity of our method, we test whether it can learn a unified VSF prior between
the plant and shoe categories. We learn a single prior using both plant and shoe broad datasets
with the same training configuration. We visualize the unified prior mean prediction in Fig. 12. We
qualitatively find that the unified prior in the last row has a prediction similar to the prior trained on
data from individual category datasets in the second row. Quantitative results are given in Table 6
and Table 7. Errors are comparable to the Plant-only and Shoe-only datasets, demonstrating that
SBML can learn multi-category visual-tactile models without significant change in performance.
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Figure 11: Here we compare the zero-shot prediction using a single prior learned from both plant
and shoe dataset data (last row) with zero-shot prediction using data of their specific class (second
row). Here per-class means testing on plants using prior trained on broad plant dataset and testing
on shoes using prior trained on broad shoe dataset.

Table 6: Joint torque prediction error (Nm)
± std over query set on Plant benchmark using
per-class prior or unified prior.

Plant data only
(broad dataset)

Shoe + Plant data
(broad dataset)

0-shot 2.80 ± 0.05 2.95 ± 0.07
1-shot 2.76 ± 0.05 2.92 ± 0.07
5-shot 2.67 ± 0.05 2.83 ± 0.06
10-shot 2.61 ± 0.04 2.77 ± 0.05

VSF all-shot 2.57

Table 7: Tactile prediction error (hPa) ± std
over query set on Shoe benchmark using per-
class prior or unified prior.

Shoe data only
(broad dataset)

Shoe + Plant data
(broad dataset)

0-shot 7.43 ± 0.25 7.05 ± 0.49
1-shot 6.77 ± 0.26 6.52 ± 0.41
5-shot 5.05 ± 0.20 5.06 ± 0.20
10-shot 4.18 ± 0.04 4.32 ± 0.06

VSF all-shot 4.10
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C.4 Per-point stiffness estimation

In this section, we provide a better qualitative stiffness estimation using per-point touches. Note this
estimation does not use the VSF model and is only for qualitative comparison. We setup another
robotic system using the UR5 arm’s built-in force/torque sensor to measure contact forces when the
object is touched with a conical probe. Touched points are selected by voxel-downsampling the
surface point cloud to 1 cm, and the probe is depressed normal to the surface and stopped when
a force threshold is reached. The per-point stiffness value is estimated by dividing the maximum
contact force over the displacement. For better visualization, we interpolated estimated stiffness on
a triangle mesh of the object. The learned SBML prior qualitatively matches trends in the per-point
estimation, with the toe region estimated to be more stiff than the tongue region.
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Figure 12: Comparing VSF prior with per-point stiffness estimation, with a point probe moving
normally to the object surface. An interpolated mesh is also shown. Per-point stiffness is sampled
at a different density compared to VSF, and the estimated stiffness is plotted on different scales.

C.5 Material composition experiments

The experiments of Sec. 4.5 are defined in more detail as follows. We consider three testing condi-
tions for the composition structure Cα : heterogeneous, heterogeneous + segment, and heterogeneous
+ homogeneous.

• Heterogeneous: contains mα components and each component contains one spring in VSF.
• Heterogeneous + homogeneous: contains mα + 1 components, where mα components contain

one spring with stiffness Ki,HE and the last component assigns a uniform stiffness across all the
springs KHO. Following Section III.C, the stiffness of each spring is thus Ki = KHO+Ki,HE .
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• Heterogeneous + segment: contains mα + ns components, where mα components contain one
spring and the ns components contain the springs in one segment. We use 10 segments generated
by GMM clustering on DINOv2 features.

C.6 Effects of visual features and prior structure

XYZ+RGB
MLP

DINOv2-S
Linear

DINOv2-S
MLP

DINOv2-B
MLP XYZ+RGB

MLP
DINOv2-S

Linear
DINOv2-S

MLP
DINOv2-B

MLP

0-shot 3.84 ± 0.11 4.30 ± 0.15 2.80 ± 0.05 2.75 ± 0.08
1-shot 3.77 ± 0.12 4.19 ± 0.15 2.76 ± 0.05 2.74 ± 0.09
5-shot 3.51 ± 0.04 3.81 ± 0.10 2.67 ± 0.05 2.69 ± 0.06
10-shot 3.27 ± 0.09 3.50 ± 0.11 2.61 ± 0.04 2.64 ± 0.05

VSF all-shot 2.57

Table 8: Left: Effects of the different visual features and prior structures on the meta-learning
dataset. We visualize the zero-shot prior mean of the orange tree in the test set. Right: Joint torques
prediction error (Nm) on Plants dataset, for SBML with different visual features and prior.

We evaluate how the choice of visual feature and prior architecture affect meta-learning perfor-
mance. To avoid meta-overfitting, our mitigation strategies (in Sec 3.3 the last paragraph) help,
but do not eliminate the risk. Since our dataset is relatively small, the feature relevance and prior
capacity must be chosen carefully.

We explore combinations of the following:

• Visual features: we use normalized XYZ coordinates + RGB colors as naive visual features. We
also compare DINOv2-small (DINOv2-S) which outputs a 384-dimensional feature vector and
DINOv2-base (DINOv2-B) which outputs a 768-dimensional feature.

• Prior structures: we consider using linear or MLP prior structures. The linear prior assumes
homoscedastic uncertainty independent of input.

Tab. 8 shows learned prior with different visual features and the quantitative results on the broad
plant dataset. The smaller capacity models, XYZ+RGB / MLP and DINOv2-S / linear, underfit the
data. The larger capacity models (DINOv2-S / MLP and DINOv2-B / MPL) are more expressive
and can capture meaningful patterns. We chose DINOv2-S / MLP as our default model to avoid
overfitting in smaller training datasets.

We also observe failure cases where DINOv2 features generalize poorly. One example is the slipper
class as shown in Fig. 9. Even though the learned prior seems to capture that the toe is stiffer than
the upper (i.e., the term for the part that fits over the foot), the upper’s stiffness is underestimated.
Hence, the prediction error is not significantly better than a naive Gaussian prior. We hypothesize
that the diverse stiffness distribution of slippers might cause the failure. Here, the stiffness depends
on the thickness of the upper part and other fine geometry details that are not captured in the image.

Training objects Testing object Prior mean Gaussian prior
(zero mean) SBML prior

0-shot 10.12 ± 0.00 9.30 ± 0.35
1-shot 8.96 ± 0.46 8.43 ± 0.63
5-shot 6.49 ± 0.26 6.42 ± 0.29
10-shot 5.02 ± 0.11 5.12 ± 0.15

VSF all-shot 4.55

Table 9: Slipper failure case. Left: the prior poorly generalizes from meta-training objects. Right:
SBML improves tactile prediction errors (hPa) marginally compared to using an uninformed prior.
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C.7 Effects of training dataset size

We also evaluate the SBML prior’s performance given different sizes of the training dataset. We
consider reducing the dataset size by randomly subsampling the objects or subsampling touches-per-
object. Results are shown in Tab. 10 and Tab.11. As expected, as the dataset shrinks, performance
tends to degrade and have a larger variance. We also observe that for shoes it is more important
to have more objects and fewer touches per object, where using 40% touching sequences and all
objects can achieve good performance. Because the shoes has only about 20–30 touches per object,
10% touch subsampling is extremely sparse and results are noisy. Also, it appears that subsampling
at 70% touches for shoes gives optimal performance, but the results are not statistically significant.

Table 10: SBML zero-shot joint torques prediction error (Nm) on Plants dataset with different train-
ing data.

10% seq 40% seq 70% seq 100% seq

10% obj 4.97 ± 2.17 4.24 ± 2.09 3.94 ± 1.13 3.41 ± 0.49
40% obj 4.07 ± 1.48 3.04 ± 0.19 2.85 ± 0.21 3.27 ± 0.66
70% obj 3.66 ± 1.24 3.24 ± 0.27 2.82 ± 0.17 2.83 ± 0.14
100% obj 3.18 ± 0.36 3.33 ± 0.29 2.82 ± 0.07 2.80 ± 0.05

Table 11: SBML zero-shot tactile prediction error (hPa) on Shoes dataset with different training
data.

10% seq 40% seq 70% seq 100% seq

10% obj 8.84 ± 1.88 8.49 ± 1.90 8.10 ± 0.99 8.38 ± 1.10
40% obj 9.68 ± 2.07 8.87 ± 2.26 8.82 ± 1.41 8.76 ± 0.92
70% obj 12.17 ± 2.81 9.07 ± 2.26 8.17 ± 2.42 8.44 ± 1.45
100% obj 9.70 ± 1.57 7.50 ± 0.56 7.03 ± 0.63 7.43 ± 0.26

C.8 Evaluation with different viewpoints

Finally, we evaluate whether the learned prior is robust to different viewpoints. We found that
DINOv2 visual features are robust to viewpoint variation and SBML predicts stiffness with semantic
correspondences. We rotate a shoe left and right by 45 degrees and use the SBML prior trained on
the broad shoe dataset to make predictions. As shown in Fig. 12, the learned prior predicts the
semantic sole part with a high stiffness between different viewpoints.
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Table 12: SBML prior mean prediction with different viewpoints.
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