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Abstract

When there exists uncertainty, AI machines are
designed to make decisions so as to reach the
best expected outcomes. Expectations are based
on true facts about the objective environment the
machines interact with, and those facts can be en-
coded into AI models in the form of true objective
probability functions. Accordingly, AI models
involve probabilistic machine learning in which
the probabilities should be objectively interpreted.
We prove under some basic assumptions when ma-
chines can learn the true objective probabilities,
if any, and when machines cannot learn them.

1. Introduction
In the standard AI model under uncertainty, how to mea-
sure the degree of uncertainty matters. This paper is about
treating such measures in the form of probabilities. In par-
ticular, we focus on the true objective probabilities, if any.
There are various probabilistic contexts in which the true
objective probabilities matter. For example, causal relations
of physical events are widely regarded as objective features
of the world. Therefore, when causal relations are to be
understood in terms of probabilities mainly due to various
regularity issues, a probabilistic causal model should in-
clude an objective probability function that measures the
true objective values about our world.

This paper addresses the question of whether machines can
learn the true objective probabilities from the data to per-
form such probabilistic reasoning. Under some basic as-
sumptions, we prove that machines can learn the true objec-
tive probabilities if and only if the probabilities are directly
observable by them. Roughly speaking, a true probability is
directly observable by a machine when it can calculate the
probability by the empirical frequency of a true population
given to it.
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The outline of the proof is as follows. After defining some
main concepts, we identify the necessary condition for any
machine to learn the true objective probabilities. From this
necessary condition, we derive the theorem that learning
implies the true guarantee of well-calibration. Roughly
speaking, “truly guaranteed well-calibration” means the
following: when a machine collects data according to its
subjective forecast along a stochastic path in which the asso-
ciated events occur, the empirical frequency of the collected
data matches the very probabilistic forecast of the machine
with the true probability P - one. Now that the machine
forecasts must indeed be true when the machine learns the
true probabilities, this calibration property can then be un-
derstood as a calibration version of the strong law of large
numbers without the independence assumption.

Note that there exist connections here among machine fore-
casting, well-calibration, and machine learning. While prov-
ing our thesis, therefore, we establish connections between
the true guarantee of well-calibration and various settings of
the real forecasting games between Nature and a machine.
In this game, what Nature forecasts are the true objective
probabilities, while what the machine forecasts are its own
subjective probabilities. The machine loses when Nature
deviates from the probabilistic forecasts of the machine.
Bridged by the property of truly guaranteed well-calibration,
we then prove whether the machine learns the true probabil-
ities or not under various settings of forecasting games.

With this proof, we provide the fundamental scope and limit
of learning the true probabilities by AI machines. One im-
portant implication is that machines can relax the indepen-
dent assumption among data to learn the true probabilities
but cannot relax the assumption of identical distribution
such as stationarity or ergodicity along a stochastic path
where any associated events occur. Another implication is
to show that the problem of computability is directly con-
nected to the problem of complexity in the case of learning
the true probabilities.

2. Notations and Definitions
In this section, we define some main concepts including
“machine learning” and “true objective probability”. Adopt-
ing terminologies from (Nilsson, 2011) and (Boolos et al.,
2002), let us first define a machine as an artifact or device
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that can effectively calculate or compute any target function
if there exist definite and explicit instructions to do so in
principle. Since we focus on probability functions in this
paper, we particularly mean by “an effectively calculating
or computing device” a machine that can in principle assign
a probability measure (a value of a probability function) to
each state (an argument of the probability function) in a
given domain, an event space of a sigma-field.

Definition 2.1. A function is effectively calculable or com-
putable when there are definite and explicit instructions,
following which its functional value can be calculated in
principle for any given argument. (Boolos et al. (2002))

Two things merit to be taken into account with Definition 2.1.
First, this notion of effective calculation or computation is
an ideal one with no practical limits on time, expense, etc.,
necessary to calculate. Therefore, a proof of the limitation
on effective calculation or computation of any function will
imply a fundamental limit on computability that cannot be
overcome by any practical machine. Second, as (Kozen,
1997) points out, this notion is an informal one, something
that is supposed to be captured in common by all formalisms
such as computation by Turing machines, by the λ -calculus
and by the µ -recursive method, etc. Accordingly, once we
adopt this notion of effective calculation or computation to
define “learning”, we can be flexible about which formal-
ism would be encoded as instructions to complete a given
learning task.

Now, whatever such formalism is, machines can learn only if
there exist some instructions followed by them to complete
their tasks. So we can prove that it is impossible for ma-
chines to learn any target function under certain conditions
in the following way: we first suppose that there exist some
successful instructions to be encoded into machine program-
ming to learn any given function under the conditions. We
then show that this supposition leads to a conclusion that is
impossible to satisfy. We thereby conclude that there cannot
exist such instructions for the given function, and accord-
ingly that machines cannot learn it. This is a simple but
clear way of proving the impossibility of learning without
being committed to any complex procedure of constructing
any formalism such as a Turing machine or λ-calculus, etc.

Definition 2.2. A machine learns when it succeeds in ef-
fectively calculating or computing a target function, if any,
after processing possibly infinite amounts of data.

The phenomenon of learning must be at least computational
in its essence when acquired by a machine. We thus adopt
the notion of computation to define what learning is in Def-
inition 2.2. Inspired by the ideas of (Turing, 1936) and
(Church, 1936), we require that a machine be able to ef-
fectively calculate or compute a target function when the
machine can learn the function.

In addition, we add the notion of success to Definition 2.2,
which aims to capture the role of “learning” as an epistemic
notion, not just a computational one. The epistemic notion
of machine learning requires two important components: if a
machine learns, then (i) it must be self-assured to be correct
most of the time, and (ii) it must be indeed correct most of
the time with true probability P−one.

Learning is the phenomenon of knowledge acquisition.
Once something is learned, knowledge about it is acquired.
Now, knowledge must be a true representation, and it must
be so not just by luck. We thus require that (i) what is
effectively calculated or computed by a machine be true
and further that it be true most of the time whenever the
machine repeats the calculations. In addition, if the machine
admits errors too many times, say infinitely often, it cannot
be said to learn. We thus require also that (ii) the machine
be self-assured that what it calculates is correct most of the
time. In sum, we provide the following Success Criterion:

(1) If a machine achieves computational success by learning,
what it acquires in the end must be true to our world most
of the time with true probability P− one, which must be
assured to the machine itself.

If what the machine computes turns out to be wrong or it
admits errors repeatedly too often except for some finite few
cases, then its computation cannot be considered successful.
Later, we prove that the Success Criterion (1) is sufficient
for learning in case of computing the true probability. We
also clarify what we mean by “most of the time.”

Definition 2.3. A true probability is what collectively con-
stitutes a probability space, a triple (Ω,F , p) of random
variables St’s in a true stochastic process p according to
which Nature generates a sequence of actual data st’s and
each of these data is realized as such with the very true
probability P .

Consider an enumerable set Ωt of ωi’s called states at
time t with t ∈ N. For example, Ωt may be the set
{ωs, ωc, ωr} where ωs denotes the state of sunny day, ωc

the state of cloudy day and ωr the state of rainy day at
date t. Also, consider the set Ω that consists of all the
infinite sequences with a representative sequence ω =
(S−1

0 (s0), S
−1
1 (s1), S

−1
2 (s2), . . .). Here, St(ωi) is a ran-

dom variable which has some numerical value st ∈ ℜ ac-
cording as which ωi’s are realized at time t in our world.
Now, St comes before St+1 in time, and thus the sequence
of St’s represents a discrete-time stochastic process. Then
Nature generates the actual data set {s0, s1, s2, . . .} with
true probability P ’s. So the probability function P , if any,
becomes true to our world when it corresponds to what-
ever amounts to the rules according to which the actual data
are realized in our world. Broadly speaking, this is in line
with the correspondence theory of truth similarly in (Tarski,
1944).
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Remark 2.4. More detailed discussions on Definition 2.3,
including examples, are provided in Appendix D.

Now that we have defined learning and true probability, let
us discuss under what conditions machines can or cannot
learn the true probabilities. Before we move on, however,
let us briefly mention how we can provide formal conditions
for learning even though Definition 2.2 contains informal
notions.

Recall from the second comment on Definition 2.1 that the
general notion of computation has not been mathematically
defined. This is why the Church-Turing thesis remains as a
thesis, not as a theorem, given that it uses the general notion
of computation. But the computability of any target function
in each specific case can be formally specified by giving
some definite and explicit instructions to derive the target
function in each case, say by a Turing machine. Likewise,
our general notion of machine learning cannot be mathe-
matically defined because Definition 2.2 uses the general
notion of computation and the informal notion of success.
But this does not prevent us from analyzing mathematically
the notion of machine learning on the true probabilities by
proving what the necessary and sufficient conditions are to
learn them, by giving some definite and explicit instructions
to statistically derive true probability function by a machine
while satisfying the Success Criterion (1).

3. Kinds of Probabilities and Learning
3.1. Subjective vs. Objective Probabilities

Broadly speaking, probabilities can be divided into two
kinds, subjective and objective ones. Subjective probability,
say Π(At+1|ßt), depends on each person’s belief and thus
possibly varies from person to person, while objective one,
say P (At+1|ßt), does not.

The standard theory of subjective probability was first devel-
oped by Ramsey and then further by De Finetti and Savage.
Subjective probability is designed to represent a degree of
belief possessed by a subject, say some person or, if pos-
sible, a machine. Hence subjective probability represents
whatever is in any one’s mind upon anything as long as
his/her belief system is coherent, and so can be assigned
even to what is merely imagined. For example, while ar-
guing for cogito, ergo sum, (Descartes, 2008) imagined an
evil spirit that has devoted all its efforts to deceiving him.
Descartes can assign some value of subjective probability
to his imagination on the evil spirit in accordance with how
likely it is to him that the imagination can be realized in this
world, as long as Descartes’ belief system remains coherent.

In contrast, objective probability, if any, is what must be
determined by objective features of our world that do not
vary from person to person. The best way to understand

the objective probability is to consider examples. Follow-
ing (Maher, 2010), for example, suppose that a coin has
the same face on both sides, that is, two-headed or two-
tailed. When this coin is tossed infinitely often, its relative
frequency surely converges to 1 or 0. Hence the limiting
relative frequency here is either 1 or 0, depending on how
our world turns out to be, which is an objective matter, and
not on whatever we believe.

It should be noted that subjective and objective probabil-
ities are conceptually bifurcated in two important ways.
First, recall that subjective probability represents an aspect
of someone’s subjective belief, while objective probability
does not. Hence the subjective probability of Descartes’ de-
mon is positive as long as it is believed at any degree that it
could exist in our world. However, this does not necessarily
imply that the true objective probability of Descartes’ de-
mon is positive, for it might be the case that such a demon is
possible only in one’s imagination but impossible in our real
world. We will return to this potential bifurcation between
subjective and objective probability in Section 4.1.

Second, there exists an asymmetric relation between sub-
jective and objective probability: although the subjective
probability of Descartes’ demon does not necessarily bind
its objective probability, the converse holds. (e.g. (Lewis,
1980)) That is, once it is proven/assumed by any agent that
the true objective probability of Descartes’ demon is, say
zero, then its subjective probability of the same agent is
bound to this proven/assumed result on the objective proba-
bility and thus must be zero as well. From this asymmetric
relationship, we derive Lemma 4.23 in Section 4.2.
Remark 3.1. More detailed discussions on various kinds of
probabilities are provided in Appendix D.

3.2. What is Implied by Learning the True Objective
Probabilities?

As we pointed out in Section 2, learning is the phenomenon
of knowledge acquisition, and knowledge must be at least a
true representation. In the case of human beings, the require-
ment of true representation is expressed as the requirement
that (propositional) knowledge should be at least a true be-
lief (e.g. (Hintikka, 1962), (Moore, 1985)). What then is
the counterpart of such a requirement for machines?

In general, if a machine achieves computational success by
learning, what the machine represents by learning must be
at least true as long as its computations are indeed success-
ful. Then we denote the true representation of the machine
about what is learned by the “true belief” of the machine, a
legitimate analogue to the true belief of human beings. It is
a belief analogue, for we haven’t yet shown that machines
have minds or that they have the same kinds of mental rep-
resentations as human beings. It is nevertheless a legitimate
belief analogue, for the computational models of machine
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intelligence are based on understanding human intelligence.
(e.g. (Pearl, 2018), (Russell, 1998), (Valiant, 1984; 2008))

That said, let us discuss the relation between belief and
learning on the machine side: the knowledge acquired by
machine learning must be at least a true belief. In (Hintikka,
1962), the knowledge of a person i refers to the knowledge
of that person i on any proposition A. Likewise, machine’s
learning of the true objective probability P here refers to
the knowledge acquired by any machine on the probabilistic
propositionAp. If a machine learns the true probability as α,
then the probabilistic propositionAp amounts to that the true
objective probability P, if any, is what the very machine
calculates as α. Here, we convert the non-propositional
learning into propositional learning.

Now, just as a person i’s knowledge on proposition A must
satisfy the necessary condition that the person i’s belief inA
is true, machine learning of the true probability P must also
satisfy the condition that the belief in Ap of the machine is
true. Note here that such a belief in Ap is true when what
has been calculated by the machine is indeed equal to the
true probability P . Now, this calculated probability function
by a machine is nothing more than the subjective probability
of the machine. Therefore, the necessary condition for
machine learning of true probability P requires a machine
to hold a true belief whose truth condition is satisfied when
its subjective probability is, in fact, in congruence with the
true objective probability P . In short, if a machine learns the
true objective probability P , then the subjective probability
Π of the machine is actually equal to the true probability P .
Remark 3.2. There has been a large literature in logic and
economics whose discussion implies when a machine holds
a true belief in the probabilistic proposition Ap. We provide
some literature in Appendix B.

Therefore, we obtain the following condition:

The Necessary Condition for any Machine to Learn the
True Probability

(2) If a machine learns the true objective probability
P (At+1|ßt), then Π(At+1|ßt) = P (At+1|ßt)

where Π(At+1|ßt) denotes the subjective probability of
the machine at time t.

We assume, without loss of generality, that the event At+1

is an elementary event, for simplicity. So the event At+1 is
a singleton, i.e. {ωt+1}.

Two things should be noted from (2): first, learn-
ing/knowledge is not necessarily equivalent to obtaining
true fact that Π(At+1|ßt) = P (At+1|ßt), for the converse
of condition (2) does not necessarily hold. Second, if a
machine is wrong in calculating the true probability at time
t so that Π(At+1|ßt) ̸= P (At+1|ßt), then by modus tollens
we can derive from (2) that the machine does not learn it at

that time. However, this does not preclude the machine from
learning it at any other time. Then what can be said about
learnability in general? According to the Success Criterion
(1), a machine cannot learn any target function if it is wrong
most of the time, except for a few finite cases out of infinite
opportunities to learn. But can a machine be said to learn if
it is correct infinitely often but also wrong as that often? We
give a negative answer to this question by proving theorems
in Section 4.2.

4. Can Machines Learn the True Probabilities?
4.1. Learning the True Probabilities and Calibration

Let us start with a simple example in which a machine is try-
ing to learn the true probability that it will rain tomorrow. A
forecasting system is said to be well-calibrated if it assigns
probability, say 30%, to rainy events in a test set whose long-
term proportion that actually rains is 30%. According to
(Dawid, 1982), a forecasting machine is self-assured that its
fairly arbitrary test set of forecasts is well-calibrated. This
is Theorem 4.1. In addition, we prove in Theorem 4.6 that if
the machine learns the true probability, then this machine’s
forecasting is truly guaranteed to be well-calibrated.

Now, let us assume that a machine has its own (not neces-
sarily true in our context) probability distribution Π defined

over ß∞ =
∞∨
t=0

ßt, where ßt is denoted by the totality of the

true facts up to day t. The probability forecasts Π(At+1|ßt)
it makes on day t are for events At+1’s in ßt+1 and are ßt-
measurable. For each day t we have an arbitrary associated
event At ∈ ßt, say the event of raining on day t. We denote
the indicator of At+1 by Yt+1 = 1{At+1}, and introduce
Ŷt+1 = Π(At+1|ßt), the probabilistic forecast of machines
on day t+1. In addition, we introduce the new indicator
variables ξ1, ξ2, . . . , at choice to denote the inclusion of any
particular day t in the test set where ξt = 1 if the day t is
included in the test set and ξt = 0 otherwise. Now, if we
set the selection criterion to include any day into the test
set as the assessed probability α on day t, then we have the
following theorem.
Theorem 4.1. Suppose that ξt is ßt−1 measurable. Then,
Π (pk → α) = 1 when k → ∞,

where k: the number of days in the test set

pk = (
k∑

t=1
ξt)

−1 · (
k∑

t=1
ξt · 1{At+1})

ξt :=

{
1 Ŷt+1 = Π(At+1|ßt) = α

0 Ŷt+1 = Π(At+1|ßt) ̸= α

Here, let us use the terms as follows: machine forecasts are
self-assured to be well-calibrated when Π (pk → α) = 1,
while those are truly guaranteed to be so when P (pk →
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α) = 1. It should be noted then that even if the forecasting
machine is self-assured to be well-calibrated, this does not
necessarily imply that its forecasts are truly guaranteed to
be well-calibrated. Recall from Section 3.1 that there is
a conceptual bifurcation between subjective and objective
probability.

Now, suppose that a machine tries to learn the true probabil-
ity of a particular event At+1. If this machine indeed learns
the true probability of the event as α, then the machine
should learn the true probability of the same events repeat-
edly as αmost of the time. Hence the machine can construct
a test set of those associated events At+1’s whose sequen-
tially learned probabilities are α. Then we can show further
from Theorem 4.1 that the test set will be well-calibrated
with true probability P - one. This is Theorem 4.6. In short,
here “learning as α” itself serves as what (Dawid, 1982)
calls a selection criterion.

However, note that if the size of ßt continues to grow as t
goes to infinity, then ßt’s might be different for each t. Then
P (At+1|ßt) might not stay the same as α even for the same
events At+1’s across infinitely many t’s. Now, in order for
the learned probability α to work as a selection criterion, it
should be that P (At+1|ßt) stays the same as α at least for
infinitely many t’s even though ßt may vary as time passes.
Therefore, we prove Lemma 4.5 from the following three
assumptions. The justifications for the three assumptions
are provided in Appendix C.
Assumption 4.2. ßt’s in P (At+1|ßt) are the set of all the
true facts up to time t.
Assumption 4.3. No further knowledge requirement is im-
posed on condition ßt.
Assumption 4.4. Once a probability of an event type E is
established, its associated event tokens Etk ’s occur at some
infinite subsequence of time tk’ s, so that P (Etk) does not
vanish to zero as tk → ∞.

It should be noted from Assumption 4.2 and Assumption 4.3
that if ßt is the set of known facts, the information on the
associated events Et’s in ßt’s may not be independent of
one another over time. Once Et has been known in the past
at some time t0, the same events Et’s are more likely to
be known afterwards. Repeatedly accumulated knowledge
of the same events reinforces the probability that the very
event will be known again in the future. However, this is not
necessarily the case with the set of true facts. It will be clear
in Lemma 4.5 why this independence condition matters.
Lemma 4.5. For any α ∈ ℜ[0, 1], let Et denote the event
token at time t ∈ N whose event type E almost surely
determines the true probability of an event type A as α.
Then, if for some subsequence tk’s, Etk ’s are independent
across tk’s and P (Etk) ̸= 0 for any tk, then P (Et i.o) = 1.

Now that Lemma 4.5 has been established, P (At+1|ßt) is

truly guaranteed to stay as α infinitely often, and thus the
machine has infinite opportunities to learn P (At+1|ßt) as
α.

Theorem 4.6. Let us consider any arbitrary α ∈ ℜ[0, 1]. If
a machine learns the true objective probability P (At+1|ßt)
as α, then P ( pk → α ) = 1.

It should be noted that the notion of learning in Theorem 4.6
is flexible enough to allow for some finitely few poten-
tial errors, so that there can exist some t∗ < ∞ such that
P (At+1|ßt) ̸= α ∀t < t∗ while processing the data to learn.
Remark 4.7. More detailed discussions on Theorem 4.6 are
provided in Appendix D.

4.2. Can Machines Learn the True Probabilities?

Theorem 4.8. It is impossible to obtain a joint distribution
for an infinite sequence of events that could have the well-
calibration property with subjective probability 1.

The basic idea in the proof of Theorem 4.8 starts with con-
structing a counterexample in which the true probability
function P is deviated infinitely often from the subjec-
tive probability function Π in such a way that the well-
calibration property does not hold any more.

Counterexample 1 Following (Oakes, 1985), let P be
such as P (At|ßt−1) = f(Π(At|ßt−1)), with the func-
tion f([0, 1]) → [0, 1] being defined by f(x) = x + 1

2
(0 ≤ x ≤ 1

2 ), f(x) = 1 − x ( 12 < x ≤ 1) for any event
At. Then, under P with P (YIk = 1) = f(α) where Ŷt =
α for a subsequence {t : t = I1, I2, . . .} and YIk ’s form a
Bernoulli sequence, the well-calibration property does not
hold.

Due to this counterexample from (Oakes, 1985), the ma-
chine forecaster cannot exclude the possibility that its test
set may be mis-calibrated, and thus the machine cannot hold
its subjective probability Π- one of being well-calibrated.
Furthermore, if this artificially-imagined possibility of mis-
calibration is a real possibility, then it is derived that no test
set large enough can be guaranteed to be well-calibrated
with the true probability P - one. Later in this section, we
prove that if such an imagined possibility is a real one, then
machines cannot learn. Meanwhile, we also prove mathe-
matically how the (Oakes, 1985) Counterexample paralyzes
Dawid’s Theorem 4.1, which amounts to the proof of Theo-
rem 4.8.
Remark 4.9. More detailed discussion on the Counterexam-
ple 1 is provided in Appendix D.

Lemma 4.10. Suppose that a machine constructs a test set
by the assessed probability α. Then E |p∞− α| = 0 if and
only if P (pk → α) = 1 where the expectation is taken with
respect to the true probability P . Here, p∞ = lim

k→∞
pk.
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Lemma 4.11. Let us fix α ∈ ℜ[0, 1]. Now, suppose
that p∞ exists. Then, E [p∞ − α] = 0 if and only if

E[ lim
k→∞

1
k

k−1∑
j=0

P (Atj+1|ßtj ) − α] = 0. In addition, E

|p∞ − α| ≥ E | lim
k→∞

1
k

k−1∑
j=0

P (Atj+1|ßtj
)− α|.

Remark 4.12. By Lemma 4.10 and Lemma 4.11, we es-
tablish a connection between the true guarantee of well-
calibration and the real forecasting game between a ma-
chine and Nature. More discussions on such connection by
Lemma 4.10 and Lemma 4.11 are provided in Appendix D.

Definition 4.13. Nature is perverse when, for any fixed
machine forecast α, P (At+1|ßt) ̸= α at least for infinitely
many t’s along the stochastic path of the test set.

By “at least i.o” in Definition 4.13, we mean that Nature
deviates from α either (i) infinitely often or (ii) all but
finitely often along the stochastic path of the test set. Thus,
we clearly distinguish (i) from (ii). From now on, we mean
by “infinitely often” that nature not only deviates infinitely
often, but also does not deviate infinitely often. On the other
hand, by “all but finitely often” we mean as usual. Then, if
the true probability of Nature’s perversity is zero, then we
denote it by P (P (At+1|ßt) ̸= α at least i.o. along the path
of the test set) = 0, which amounts to P (P (At+1|ßt) ̸=
α at most for t < ∞ along the path of the test set) =
1. Furthermore, if there is no confusion, we will simplify
Nature’s perversity by “P (At+1|ßt) ̸= α at least i.o.” while
omitting “along the path of the test set.”

Now, according to the Success Criterion (1), a machine fails
to learn the true probability in case (ii), because the machine
makes wrong forecasts along the path except for some finite
few out of infinite opportunities to learn. However, it seems
unclear whether the machine can learn or not in case (i).
On the one hand, the machine seems not to be able to learn
because it makes too many errors, say infinitely many er-
rors. On the other hand, it seems that the machine should be
able to learn because it makes astronomically many correct
forecasts, say infinitely often. Therefore, while adopting
this definition, we clearly prove by Theorem 4.20 and Corol-
lary 4.30 that a machine cannot learn the true probability
even when it is correct infinitely often, if it is wrong that
often.

Observation Provided that the machine forecast
Π(At+1|ßt) is fixed as some value α ∈ ℜ[0, 1], P ( ∆t

) becomes the true second-order probability on the true
first-order probability of such event At+1, that is, P ( ∆t )
= P ( P (At+1|ßt) = α ) where ∆t denotes the event that
the machine makes a correct forecast at t.

It should be noted here that the computable numbers by a
machine are countably many (e.g. (Turing, 1936)). Thus,
the true second-order probability P here is a probability

mass function on countable space and therefore satisfies the
Kolmogorov axioms, although α may potentially be any
real number in ℜ[0, 1].
Remark 4.14. More detailed discussions on the connection
between true second-order probability and the forecasting
game are provided in Appendix D.

Lemma 4.15. Let us consider the forecasting game between
Nature and a machine. Also, let us further suppose that the
structure of this game at any given time t, i.e. whether
it is simultaneous or not, is certain to Nature. Now, by
Assumption 4.2 and Assumption 4.3, let us suppose that ßt

consists of the true facts, not necessarily knowledge. Then
there exists a true second-order probability P such that 0 <
P (P (At+1|ßt) = α) < 1 if and only if the real forecasting
game is a simultaneous-move game at time t. In particular,
P (P (At+1|ßt) = α) = 0 if and only if the machine moves
first and then Nature moves later after observing what move
the machine takes in the forecasting game at time t.

There are various theories of learning in games. (e.g. (Nisan
et al., 2007)) Therefore, what matters is what is aimed to
learn through games and who are competing with each other
in the games. In the standard model, a machine aims to
learn what the optimal actions are to produce the minimized
expected (total) loss or payoff, which is determined in a
given environment, say financial market. In this case, a
machine usually competes with other machines in the game.
For example, in some online learning, a machine aims to
learn a sequence of estimates which return the sub-linear
regret, given that the loss functions are convex. It gets a
possibly different amount of payoff/loss at each round of
games along the stochastic path where the given sequence
of games are played.

In our forecasting games, on the other hand, a machine
aims to learn the true objective probability, if any, through
games, and so the machine is competing with Nature in the
game. Also, whoever wins a game, the winner/loser will
get uniform payoff at every round along the path, for what
counts is how many times the machine loses/wins along the
path, not how much payoff it gets at each round along the
path once it loses/wins.

Theorem 4.16. In the forecasting game between a machine
and Nature, the machine does not necessarily learn that it
wins at each round of game even though it indeed wins.

Thus, winning strategy is not equivalent to learning strat-
egy. Now, in case when a machine does not learn that it
wins/loses a game even though it indeed does so, it does not
matter what it gets as payoff when it wins/loses because it
cannot learn how much it gets at each round. What matters,
on the contrary, is how many times it wins along the path,
and this is why our game setting in Lemma 4.15 adopts a
uniform payoff at each round.
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Theorem 4.17. Let us consider any arbitrary α ∈ ℜ[0, 1]
for any machine forecast. If P (pk → α) = 1, then the true
probability that Nature is perverse is zero with any of these
forecasts α. (Case 3)

(Case 1) Let us suppose that P (At+1|ßt) ̸= α at most
finitely often along the stochastic path where the associated
eventAt+1’s occur. Then P (pk → α) = 1 where pk denotes
the limiting relative frequency along the path.

(Case 2) Let us suppose that P (P (At+1|ßt) ̸= α just as
in (Oakes, 1985)) ̸= 0. Then, P (pk → α) ̸= 1 where pk
denotes the limiting relative frequency along the stochastic
path of the test set.

(Case 3) Let us suppose that P (P (At+1|ßt) ̸= α at least
i.o. along the test set) ̸= 0. Then P (pk → α) ̸= 1 where pk
denotes the limiting relative frequency along the path of the
test set.

Regarding Theorem 4.17, it is worth noting the following
three things: (i) (Case 1) is equivalent to the strong law of
large numbers under a weaker assumption than i.i.d.: if the
true probability P (At+1|ßt) exists and P (At+1|ßt) is iden-
tically distributed as α all but finitely often along the path,
then the limiting relative frequency converges to the same
P (At+1|ßt) as α with true probability P - one. (ii) (Case
2) shows that if (Oakes, 1985) holds with Π−subjective
probability > 0, then (Dawid, 1982) does not hold, which
amounts to the proof of Theorem 4.8. (iii) (Case 3) shows,
combined with Theorem 4.6, that if P (P (At+1|ßt) ̸= α at
most f.o. along the test set) ̸= 1, then a machine cannot
learn the true probability P (At+1|ßt) as α. Thus, the third
result (iii) has the following important implication for time-
series analysis: a machine cannot relax the assumption that
the true probability P (At+1|ßt) is identically distributed
along the stochastic path, if the machine aims to learn the
true probability P (At+1|ßt). To learn, the machine needs
some identical distributional assumptions such as stationar-
ity or ergodicity.
Definition 4.18. Suppose that, with true probability P > 0,
Nature is perverse with some forecast α∗. Then, Nature
is uniformly perverse, when for any forecast α ∈ ℜ[0, 1],
there exists no α ̸= α∗ such that P ( P (At+1|ßt) ̸= α at
least i.o.) = 0 for any event At+1.

In other words, when Nature deviates from forecasters for
any event At+1, she does not discriminate against some
forecasters in favor of the others whose forecasts α Nature
decides to conform to all but finitely often for sure.
Theorem 4.19. Suppose that, for any α, there exists a true
second-order probability P such that P (P (At+1|ßt) =
α ) < 1 at least for infinitely many t’s. Then, Nature is
uniformly perverse.
Theorem 4.20. Suppose that, for any α, there exists a
true second-order probability P such that P (P (At+1|ßt) =

α ) < 1 at least for infinitely many t’s. The machine cannot
then learn the true objective probability P (At+1|ßt) as α.

Now, let us discuss what it means in Theorem 4.20 by
the condition that the true second-order probability is
strictly less than 1. Note from Lemma 4.15 that P
(P (At+1|ßt) = α) = 1 if and only if Nature moves first and
then the machine moves later after observing what move Na-
ture takes in the forecasting game at time t. Thus, it is clear
from the condition of Theorem 4.20 why and when the ma-
chine fails to learn the true probability if Nature is uniformly
perverse: when the machine cannot move later after observ-
ing the true move of Nature infinitely often, there always
exists a real possibility that the machine may not be able to
match Nature’s move that often. Hence the machine can-
not be truly guaranteed to be well-calibrated, which again
implies the impossibility of machine learning. Since the
machine cannot observe the true move of Nature in those
forecasting games, the true probability is unobservable by
the machine.

So far we have shown that it is of real possibility that Na-
ture is perverse, and thus that no machines can learn the
true objective probability. Now someone might argue that
its proof holds only under the condition that Nature is uni-
formly perverse. Nature may not be uniformly perverse,
however, but only selectively perverse, so that, for some
forecast α0, Nature may decide to be benevolent enough to
conform to that α0. Then it may be the case that the true
probability of Nature being perverse is zero for this α0, and
accordingly that machines may be given an opportunity to
learn the true objective probability for that α0.

Note, however, that it is entirely Nature’s decision when
she will be benevolent to a machine and when she will not.
Therefore, it is still a random event to the machine whether
Nature is perverse or not. If so, we will show further that,
even if the true probability of Nature’s being perverse is
zero with some α0, a machine still cannot learn the true
probability if it cannot learn which forecast is the right α0

for any event At+1.
Definition 4.21. A machine tolerates error at t while pur-
suing its goal of learning the true probability P (At+1|ßt),
when Π(At+1|ßt) = α but Π({P (At+1|ßt) ̸= α}) > 0 for
some α ∈ ℜ[0, 1].
Remark 4.22. In relation to Lemma 4.23, more detailed
interpretation on Definition 4.21 is provided in Appendix D.
Lemma 4.23. Suppose that a machine aims to learn the
true probability P (At+1|ßt) and thus performs an effective
calculation to return its result of Π(At+1|ßt) as 0 for the
true probability P (At+1|ßt). Then, Π(At+1|ßt) = 0 if and
only if Π({P (At+1|ßt) = 0}) = 1, for all but finitely many
t’s.
Remark 4.24. In relation to (Savage, 1972), more discus-
sions on Lemma 4.23 are provided in Appendix D.
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Definition 4.25. Nature is selectively perverse, when ∃
α and α0 ̸= α such that P (P (At+1|ßt) ̸= α0 at least
i.o.) = 0 , while P (P (At+1|ßt) ̸= α at least i.o.) > 0 for
any other α ̸= α0.

Now, let us define Nature’s decision to be selectively per-
verse at t to show by Lemma 4.28 that once Nature decides
so at t, our real world remains as such.

Definition 4.26. Nature decides to be selectively perverse
at t, when there exist forecasts α and α0 ̸= α such that
P (Aα0(t + 1)|ßt) = 0, while P (Aα ̸=α0(t + 1)|ßt) ̸= 0
where Aα(t+ 1) denotes the event that, from t+ 1 onward,
Nature is perverse with the associated events At’s whose
assessed forecasts are α.

Definition 4.27. Suppose that Nature is selectively perverse
so that she freely decides at any time whether to be perverse
at any rate or not. Then, ts < ∞ denotes a stopping time
if ts is the last time that Nature changes her mind into
non-perversity so that, for any α0 with which Nature is not
perverse with true probability P -one, P (Aα0

(t+1)|ßt) = 0,
∀t > ts.

Note that ts is ßt-measurable, because ßt includes all the
true facts up to t and so whatever Nature decides at t, say
the event {P (Aα0

(t+1)|ßt) = 0} belongs to the set of true
facts, ßt.

Lemma 4.28. Nature is selectively perverse if and only if
there exists a stopping time ts for every forecast α0 with
which Nature is not perverse with true probability P -one
so that P (Aα0

(t + 1)|ßt) = 0 ∀t > ts, while there is no
stopping time ts for any other α ̸= α0.

Lemma 4.29. Let us suppose that Nature is selectively
perverse and that a machine learns which forecast is the
right forecast α0 for any associated At’s with which Nature
is not perverse with true probability P - one. The machine
is then self-assured that the stopping time ts arrives for that
α0.

Corollary 4.30. Suppose that Nature is selectively perverse
so that, with true probability P -one, she is not perverse with
some machine forecasts α0. Furthermore, suppose that the
machine is not self-assured that the stopping time ts arrives
for each of those α0’s. The machine cannot then learn the
true objective probability P (At+1|ßt) as α.

Note that along the stochastic path considered in Corol-
lary 4.30, P (P (At+1|ßt) ̸= α0 at least i.o.) = 0 ∀t > ts.
Now, for this α0,

(3) lim sup
t→∞

P (P (At+1|ßt) ̸= α0) ≤ P (P (At+1|ßt) ̸=

α0 at least i.o) = 0

Therefore, without loss of generality, letting t∗ ≥ ts with
t∗ <∞,

(4) P (P (At+1|ßt) = α0) = 1, ∀t > t∗ ≥ ts with
t∗ <∞.

Now, (4) means by Lemma 4.15 that the true probability is
observable at any time t > t∗ along this path. Then why is
the machine still unable to learn the true probability, even
though the machine can move after observing what move
Nature takes at the forecasting games all along that path
after t∗? According to Corollary 4.30, this is because the
machine cannot be self-assured whether the true probability
will remain observable at any time after t∗+1 onward, even
if the machine observes Nature’s true move at time t∗+1.
Let us show this by the following Lemma 4.31.

Lemma 4.31. Suppose that a machine is not self-assured of
the stopping time ts for α0. The machine cannot then be self-
assured whether the true probability will remain observable
at any time after t∗+1 onward, even if the machine observes
Nature’s true move at time t∗+1.

From Theorem 4.20 and Corollary 4.30, we conclude that
the impossibility of learning is derived under the assumption
either that Nature is uniformly perverse or that Nature is
selectively perverse but a machine is not self-assured of
whether the stopping time arrives or not. What would then
happen in the case where Nature is selectively perverse and
a machine is self-assured of the stopping time ts when the
ts indeed exists? We show in the following that a machine
can learn the true probability in this case, and further that
this is the only case in which a machine can learn it.

Theorem 4.32. Suppose that a machine learns the true
probability P (At+1|ßt) as α. The machine is then self-
assured that the stopping time ts arrives for α, while the
machine is not self-assured that the stopping time ts arrives
for α where such ts does not exist.

Let us now define when the true probability is directly ob-
servable based on the notion of population. The concept
of population in Definition 4.34 is mainly indebted to (von
Mises, 1957; 1967). Since the true probability is defined as
the empirical distribution of this population available to a
machine, the probability is said to be directly observable by
the machine.

Definition 4.33. Let us consider a set S that consists of the
sequence of events At+1’s, {At+1}k−1

t=0 with k potentially
infinite. Then, the set S is defined to be a population with
k number of elements, when this set S is assumed to have
a certain attribute of interest, and so an indicator variable
1{At+1} is assigned to each event At+1 where 1{At+1} has a
value 1 or 0 depending on whether the event At+1 satisfies
such an attribute or not, once the set S is collected. Then,
the empirical distribution of the population S with respect

to the given attribute is defined to be 1
k

k−1∑
t=0

1{At+1}.

Definition 4.34. A machine directly observes P (At+1|ßt)
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from the population S at t∗ if the following two conditions
are satisfied: (i) a population S is in principle available
to the machine. (ii) The machine calculates the empirical
distribution of the population with respect to the given at-
tribute, which is the true probability distribution of the event
At+1.

Now, in case where the sequence {At+1}k−1
t=0 is a time-

series, Definition 4.34 means that Π(At∗+1|ßt∗) =

1
k

k−1∑
t=0

1{At+1} = P (At∗+1|ßt∗) with k = t∗. Thus, when

t∗ goes to infinity, the directly observable true probability
becomes the limiting relative frequency, the representative
objective true probability.

Theorem 4.35. Suppose that a machine is self-assured of
the stopping time ts when there exists ts, but that the ma-
chine is not self-assured of the stopping time ts when no ts
exists. The machine then directly observes the true proba-
bility P (At+1|ßt) as α0.

Theorem 4.36. A machine directly observes the true proba-
bility P (At+1|ßt) as α if and only if the machine learns the
true probability P (At+1|ßt) as α.

Two things should be noted from Theorem 4.36. First, when-
ever the true probability is not directly observable, a ma-
chine cannot learn the true probability. Now recall from Def-
inition 2.1 that the machine is an ideal one with no practical
limits on computational resources such as time or storage
spaces. Therefore, this implies that no real machines, hin-
dered by many practical limits in our world, can overcome
this impossibility of learning either, whenever the true prob-
ability is not directly observable. Second, Theorem 4.36
also says that the true probability is directly observable by
a machine whenever it can learn the true probability. Once
a machine learns the true probability and so it is success-
fully computable, then the next question is how complex
it is to compute. Now that the true probability is directly
observable, this makes it easier to deal with the complexity
problem. (e.g. Sorting algorithm) Thus, Theorem 4.36 di-
rectly connects the problem of computational solvability to
the problem of complexity.

Now, let us finish this section by adding one more claim that
the Success Criterion (1) to compute the true probability is
sufficient for learning it.

Corollary 4.37. If a machine calculates the true probability
P (At+1|ßt) correctly most of the time with the true proba-
bility P− one, which is self-assured to the machine, then
the machine can learn the true probability.

5. Conclusion
We have discussed so far when machines can learn the true
probabilities and when they cannot. In summary:

• ∃ α∗ such that P ( Nature is perverse with α∗ ) > 0 by
Theorem 4.19.

Now that Nature is perverse at least with one forecast α∗,

• (i) Nature is uniformly perverse: machines cannot
learn by Theorem 4.20.

• (ii) Nature is selectively perverse: ∃ ts for each α0

such that P ( Nature is perverse with α0 ) = 0 by
Lemma 4.28.

Then under (ii),

• (ii-1) Machines are not self-assured of the ts: machines
cannot learn by Corollary 4.30.

• (ii-2) Machines are self-assured of the ts:

Then under (ii-2),

• (ii-2-1) ts actually does not arrive: machines cannot
learn by Theorem 4.32.

• (ii-2-2) ts indeed arrives: machines can learn and this
is the only case in which machines can learn by Theo-
rem 4.35 and Theorem 4.36.

Before we close this section, let us add a few remarks. First,
we emphasize that in this paper we have focused on the
notion of “machine learning” that is not just a technical
terminology, understood as an identification of a target func-
tion, but also an epistemic one, a counterpart to “human
learning.” We focus on this epistemic notion of machine
learning because we particularly mean by “machines” those
artifacts that perform human-level intelligent behaviors.

Second, note that we do not need to specify how machines
learn the true objective probabilities to prove the impossi-
bility of machine learning on the true probabilities. Instead,
we only need the necessary condition for any machine to
learn the true objective probabilities if it learns them in any
way. Thanks to this flexibility about how to learn, we come
to have a powerful and robust result: no matter what kind
of learning method a machine uses, it cannot learn the true
objective probabilities that are not directly observable.

Lastly, let us emphasize again that our learning machine is
an ideal device with no practical limits on time and storage
space, etc. Therefore, the scope and limit of machine learn-
ing on true probabilities discussed in this paper are more
fundamental than practical ones.
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A. Proofs for Lemmas, Theorems and Corollaries

Proof of Theorem 4.1 A proof of Theorem 4.1 is suggested in (Dawid, 1982). A simpler one is as follows: Let Xt =

(
t∑

j=1

ξj)
−1 · ξt(Yt − Ŷt). Since (

t∑
j=1

ξj)
−1, ξt and Ŷt are ßt−1-measurable, it follows that E(Xt|ßt−1) = 0 where E is

taken with respect to Π(·|ßt−1) and so that
k∑

t=1
Xt is a martingale adapted to ßk−1. Also, E((

k∑
t=1

Xt)
2) =

k∑
t=1

E(X2
t ) ≤

λ ·E{
k∑

t=1
((

t∑
j=1

ξj)
−1 · ξi)2} ≤ λπ2

6 , because Yt is an indicator variable and so var(Yt|ßt−1) is uniformly bounded above by

some λ such that 0 ≤ λ < ∞. Then, by the martingale convergence theorem,
k∑

t=1
Xt converges with Π−probability one,

which implies from Kronecker’s lemma that, with Π−probability one, pk − α = (
k∑

t=1
ξt)

−1 ·
k∑

t=1
ξt(Yt − Ŷt) → 0 where

Ŷt = α ∀t. Q.E.D.

Proof of Lemma 4.5 Let At be an event token at time t and P (A|E) = α be the true probability of event type A conditional
on event type E whose event tokens are denoted by At and Et, respectively. Then, by the definition of E with respect to
A, P (At+1|Et ∈ ßt) = α with true probability P− one. Now, once P (At+1|Et ∈ ßt) is learned as such at some t0, then
Et0 must have happened at that time and so P (Et0) ̸= 0. Also, by Assumption 4.4, consider a subsequence of Etk ’s where
P (Etk) ̸= 0 for any tk > t0. Then, for this subsequence, P (Et0&Etk) ̸= 0 for any tk > t0, because Etk ’s are independent
of one another.

Here, Etk ’s are independent for the following reason: recall that by definition, P (Atk+1|Etk ∈ ßtk) = α with true
probability P− one. Then, note that ßtk includes the fact that P (Atk−i+1|Etk−i

∈ ßt−i) = α for some i ≥ 1. Now, without
loss of generality, let i = 1. Thus, we obtain

(1) P ( P (Atk+1| {P (Atk−1+1|Etk−1
) = α} ∈ ßtk) = α) = 1

Now that Etk and Etk−1
are all included in ßtk by (1), to show that Etk ’s are independent, we need to prove that

(2) P ( {P (Atk+1|ßtk) = α} | {P (Atk−1+1|ßtk−1
) = α}) = P ( {P (Atk+1|ßtk) = α})

But (2) is satisfied because P ( {P (Atk+1|ßtk) = α}) = 1 = P ( {P (Atk−1+1|ßtk−1
) = α}).

Now that P (Et0&Etk) ̸= 0, for any tk > t0 in this subsequence, we can always find some small enough ϵ > 0 such that
P (Etk) > ϵ. Therefore, the probability of the element in this subsequence does not vanish to zero, which implies that

lim
s→∞

P (Et0&Ets) ̸= 0. Since lim
s→∞

P (Et0&Ets) ̸= 0,
∞∑
s=1

P (Et0&Ets) = ∞. Then, by the second Borel-Cantelli lemma,

P (Et0&Ets i.o.) = 1 for s > 0, which means P (Et0 ∈ ßt0 & Etk ∈ ßtk i.o.) = 1 for tk > t0, the desired result. Q.E.D.

Proof of Theorem 4.6 Suppose that, for infinitely many t’s when P (At+1|ßt) stays the same as α, machines learn this
P (At+1|ßt) as α at time t. Then, by the Success Criterion (1), Π(At+1|ßt) = α = P (At+1|ßt) at least infinitely often
out of infinite opportunities. (We prove in Corollary 4.37 what we mean exactly by “most of the time.”) Thus we
can construct a test set which consists of the subsequence of Π(Atk+1|ßtk) which is equal to P (Atk+1|ßtk) for those
infinitely many tk’s. Let ξtk+1 = 1 if and only if Π(Atk+1|ßtk) = P (Atk+1|ßtk) = α. Note that ξtk+1 is ßtk−measurable,
because machine forecasting α occurs at time tk. Then, by Theorem 4.1, with true probability P−one, pk− α =

(
k−1∑
j=0

ξtj+1)
−1 ·

k−1∑
j=0

ξtj+1(Ytj+1 − α) → 0, as k → ∞ where P is defined over ß∞ =
∞∨
k=0

ßtk and ßtk is denoted by the

totality of true facts up to day tk. Q.E.D.

Proof of Lemma 4.10 Clearly, if with P−probability one, pk → α, thenE [p∞− α] = 0 where the mathematical expectation
is taken with respect to the true probability P, but not vice versa. The reverse does not necessarily hold, because even
though P ( pk → α) < 1, E [p∞− α] = 0 when [pk −α] converges to ±β ̸= 0 with the equal probability as 1

2 (1−P ) > 0.

12
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However, with P−probability one, pk → α if and only if E |p∞− α| = 0, for the following reason: letting Λ∞ denote the
event that pk → α as k goes to infinity, E |p∞− α| = P (Λ∞)× |p∞− α|Λ+

∞
+ (1− P (Λ∞))× |p∞− α|Λ−

∞
= 0 if and

only if P (pk → α) = 1 where |p∞− α|Λ+
∞

denotes the value of |p∞− α| when Λ∞ occurs, while |p∞− α|Λ−
∞

denotes that
when Λ∞ does not occur. Here, the “if” part is clear. For the “only if” part, if P (pk → α) < 1, then (1− P (Λ∞))× |p∞−
α|Λ−

∞
> 0 while P (Λ∞)× |p∞− α|Λ+

∞
= 0, which implies that E |p∞− α| ≠ 0. Q.E.D.

Proof of Lemma 4.11 By Fatou’s lemma, E[lim inf
k→∞

1
k

k−1∑
j=0

Ytj+1|ßtj ] ≤ lim inf
k→∞

E[ 1k

k−1∑
j=0

Ytj+1|ßtj ] = lim inf
k→∞

1
k

k−1∑
j=0

P (Atj+1|ßtj ) ≤ lim sup
k→∞

1
k

k−1∑
j=0

P (Atj+1|ßtj ) ≤ E[lim sup
k→∞

1
k

k−1∑
j=0

Ytj+1|ßtj ]. Now, since p∞ exists by the assumption,

lim inf
k→∞

1
k

k−1∑
j=0

Ytj+1 = lim sup
k→∞

1
k

k−1∑
j=0

Ytj+1. Then, by squeezing theorem, lim
k→∞

1
k

k−1∑
j=0

P (Atj+1|ßtj ) also exists and thus E

[ lim
k→∞

1
k

k−1∑
j=0

Ytj+1 |ßtj ] = lim
k→∞

1
k

k−1∑
j=0

P (Atj+1|ßtj ). Now, by the law of iterated expectations, E[ lim
k→∞

1
k

k−1∑
j=0

Ytj+1]−α = E

[E [ lim
k→∞

1
k

k−1∑
j=0

Ytj+1 |ßtj ] − α] = E[ lim
k→∞

1
k

k−1∑
tj=0

P (Atj+1|ßtj ) − α]. Therefore, E [p∞ − α] = 0 if and only if

E[ lim
k→∞

1
k

k−1∑
tj=0

P (Atj+1|ßtj )−α] = 0. Also,E |p∞− α|= E | lim
k→∞

1
k

k−1∑
j=0

Ytj+1−α|= E [E [| lim
k→∞

1
k

k−1∑
j=0

Ytj+1−α| |ßtj ]].

But note that E [E [| lim
k→∞

1
k

k−1∑
j=0

Ytj+1 − α| |ßtj ]] ≥ E |E[ lim
k→∞

1
k

k−1∑
j=0

Ytj+1 − α|ßtj ]| = E | lim
k→∞

1
k

k−1∑
j=0

P (Atj+1|ßtj )− α|

by Jensen’s inequality. Therefore, E |p∞ − α| ≥ E | lim
k→∞

1
k

k−1∑
j=0

P (Atj+1|ßtj )− α|. Q.E.D.

Proof of Lemma 4.15 Consider a simple two-player game (I, Si, ui(s)) between Nature (player i) and a representative
machine (player −i) where I is the set of players {i,−i}, Si is the set of pure strategies si’s for each player i, and ui(s) is
the usual payoff function for player i. Since this is a probabilistic forecasting game, the pure strategy for each player si
can be any number in ℜ[0, 1]. But since the computable numbers by player −i are countably many, we restrict Si to be
countable. For simplicity, let ui : Si × S−i → {−1, 1}. In other words, for each profile s = (si, s−i), if player i wins, she
obtains 1, while she obtains −1 otherwise. When Nature (player i) succeeds in deviating from the machine forecast, Nature
wins. Otherwise, the machine (player −i) wins. Thus, this is a kind of matching game with countably infinite state space.

First, let us note that the structure of the forecasting game is given to Nature, because the structure itself is something
objective about the world and thus it belongs to the realm of Nature herself. In other words, it is certain to Nature whether
Nature and the machine moves simultaneously or not in the game as follows: If the machine moves when Nature herself
does not move yet, then it is certain to Nature that the machine moves first and thus that it is not a simultaneous game. If the
machine does not move yet when Nature does not move either, then it is certain to Nature that the machine does not move
first, and thus whether it is a simultaneous game or not depends on Nature herself. If Nature reveals herself to the machine
even before the machine moves so that the machine can move after observing Nature’s, it is certain to Nature that it is not a
simultaneous game. Otherwise, it is certain to Nature that it is a simultaneous game.

(i) the proof of the “only if” part: first, let us fix machine forecast Π(At+1|ßt) as α and then consider the relevant test set.
Now, suppose that the forecasting game along the stochastic path of this test set is not a simultaneous-move game at time
t. Then, either Nature or the machine moves first, and the rest moves later after observing what move the other opponent
takes. Thus, the one who can observe the opponent’s move can control their/her own forecasting to win the game, and so ∆t

occurs or does not occur at time t, which is certain to Nature because the structure of the game is given to Nature. Then,
since ßt includes ∆t or ¬∆t as part of the true facts by Assumption 4.2, P (∆t ∈ ßt) = 1 or P (¬∆t ∈ ßt) = 1. Thus, it is
either P ( P (At+1|∆t ∈ ßt) = α ) = 1 or P ( P (At+1 | ¬∆t ∈ ßt) = α ) = 0 respectively, according as Nature moves
first or the machine moves first. Therefore, the true second-order probability P is neither strictly less than 1 nor strictly
greater than 0.

(ii) the proof of the “if” part: again, let us fix the machine forecast Π(At+1|ßt) as α and then consider the relevant test set.
Now, suppose that the forecasting game is a simultaneous-move game at time t. Then, for any fixed value α ∈ ℜ[0, 1], it is
not certain to Nature herself whether Π(At+1|ßt) = α or not, because there exists no pure strategy Nash equilibrium in this
simultaneous matching game. Thus, Nature cannot certainly control P (At+1|ßt) to make it deviate from Π(At+1|ßt) and so
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we obtain

(3) P ( P (At+1 |ßt) = α ) ̸= 0.

(3) holds even though ßt of P (At+1 |ßt) in (3) includes ∆t or ¬∆t as part of the true facts by Assumption 4.2, if either of
them indeed occurs at t. In the same logic, it is not certain to Nature that the machine can control Π(At+1|ßt) to make it
coincide with P (At+1|ßt) and so we obtain

(4) P ( P (At+1 |ßt) = α ) ̸= 1.

Clearly, any mixed strategy Nash equilibrium, if any, will lead to 0 < P (P (At+1|ßt) = α ) < 1. Therefore, there exists the
true second-order probability P such that 0 < P (P (At+1|ßt) = α ) < 1.

Furthermore, if Nature moves first, then P ( P (At+1 | ßt) = α ) = 1, as we proved in (i). Therefore, if the machine does
not move first, which amounts to either Nature moves first or the machine moves simultaneously with Nature, then clearly
P ( P (At+1 | ßt) = α) ̸= 0. Q.E.D.

Proof of Theorem 4.16 Consider the necessary condition (2) that if a machine learns the true objective probability
P (At+1|ßt), then Π(At+1|ßt) = P (At+1|ßt). Since this is just a necessary but not sufficient condition, the converse of (2)
does not necessarily hold. Now, for any machine forecast α ∈ R[0, 1], suppose that P (At+1|ß t) ̸= α for infinitely many t’s
along the stochastic path where the associated At+1’s occur but that P (At+1|ß t) = α for infinitely many t∗’s. Then, by
Theorem 4.19, P (P (At+1|ßt) ̸= α i.o.) > 0 for some event At+1. Thus, by (Case 3) of Theorem 4.17 and Theorem 4.6,
the machine cannot learn the true probability P (At+1|ßt), even though Π(At+1|ßt) = α = P (At+1|ßt) at infinitely many
t∗’s. Thus, the machine does not learn that it wins even though it indeed wins at t∗’s. Clearly, the machine does not learn
whether it wins at other t’s than t∗’s when it loses. Now, since the machine does not learn whether it wins or not at each
round of game, the machine does not learn what its payoff is at each round. Furthermore, the machine is truly guaranteed to
be well-calibrated along the path of t∗’s and so this is the winning strategy in forecasting game between Nature and the
machine, but the machine still cannot learn the true probability P (At+1|ßt). Thus, in this case, winning strategy is not
equivalent to learning strategy. Q.E.D.

Proof of Theorem 4.17 First, let us recall the followings: by Nature’s perversity with true probability 0, we mean that
P ( Mt at least i.o.) = 0 for any fixed α ∈ ℜ[0, 1]. Here, Mt denotes a meta-event {P (At+1|ßt) ̸= α for any event At+1

at time t} for such a fixed forecast α. Given this, let us consider the following three cases, according as how P (At+1|ßt)
actually varies with respect to α along the path of the test set. (Case 3) amounts to Theorem 4.17.

(Case 1) Let us suppose that P (At+1|ßt) ̸= α for finitely many t’s along the stochastic path. Now, as in Theorem 4.1,

let Xt = (
t∑

j=1

ξj)
−1 · ξt(Yt − α). But, unlike in Theorem 4.1, ξj = 1 here if P (Aj+1|ßj) = α for all j along the

stochastic path, not necessarily restricted to the test set. Now, consider those finite t’s when P (At+1|ßt) ̸= α and denote
the largest t among them by tm. Then, P (At+1|ßt) − α = E[Yt|ßt−1] − α = 0, ∀t > tm along the stochastic path.

Thus, E(Xt|ßt−1) = 0 where expectation E is taken with respect to the true probability P (·|ßt−1) and so
k∑

t=tm+1

Xt is a

martingale adapted to ßk−1 at t > tm along the path. Then, by the martingale convergence theorem and Kronecker’s lemma,

(
k−1∑
j=0

ξtj+1)
−1 ·

k−1∑
j=0

ξtj+1(Ytj+1 − α) → 0 with true probability P−one.

(Case 2) Let us consider the case where with true probability P > 0, P (At+1|ßt) deviates from α in such a way as in Oakes
(1985) along the test set. Then, E |p∞− α| ̸= 0 and so the calibration property is not truly guaranteed for the following
reason: Let Λo

∞ be the event that P (At+1|ßt) deviates from α in such a way as in Oakes (1985) along the test set. Then,
since some subsequence of Yt’s along the test set forms Bernoulli whose relative frequency converges to f(α) ̸= α, pk does
not converge to α when Λo

∞ occurs. Now, let |p∞− α|+Λo
∞

be the value of |p∞− α| when Λo
∞ occurs, while |p∞− α|−Λo

∞
be

the value of |p∞− α| when Λo
∞ does not occur along the test set. Then, in the same logic as in Lemma 4.11, we obtain that
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E |p∞− α| = P (Λo
∞)× |p∞− α|+Λo

∞
+ (1− P (Λo

∞))× |p∞− α|−Λo
∞

̸= 0. Thus, P (pk → α) ̸= 1. However, the converse
does not hold, for there can be many other ways of how pk does not converge to α than in Oakes (1985). Hence it does not
follow that P (Λo

∞) > 0, even if E |p∞− α| ≠ 0.

Now, suppose that with Π−subjective probability > 0, P (At+1|ßt) behaves in such a way as in Oakes (1985). Then, again
in the same logic as in Lemma 4.11, we obtain that E |p∞− α| = Π(Λo

∞)× |p∞− α|+Λo
∞

+ (1−Π(Λo
∞))× |p∞− α|−Λo

∞
̸= 0 where expectation is now taken with respect to Π. Hence Π(pk → α) ̸= 1. Therefore, we conclude that if Oakes (1985)
holds with Π−subjective probability > 0, then Dawid (1982) does not hold, which amounts to the proof for Theorem 4.8.

(Case 3) In general, suppose that the true probability of Nature’s being perverse is not zero for any fixed forecast α on any
associated events At’s. In other words, suppose that P (Mt at least i.o. along the test set) > 0 where Mt is the meta-event
that P (At+1|ßt) ̸= α. Then, we claim that this implies that E |p∞− α| ≠ 0 where E is taken with respect to P .

First, suppose that p∞ exists. Also, suppose that α ̸= 0, because (Case 3) trivially holds if α = 0. Now let us consider
an infinite subsequence of Atk ’s, {Atkj

}∞j=0, which is conditionally identically distributed along the test set where Mt

occurs at least infinitely often. We can do this by Kolmogorov axioms 1 and 2 and Lemma 4.5 for the following reason:
note that by Kolmogorov axioms 1 and 2 there always exists one β ∈ ℜ[0, 1] such that P (A|E) = β for any type event
A and E, given that there exists probability of type event, if any. Then, for this β, P ( P (At+1|ßt) = β i.o.) = 1
according to Lemma 4.5. Thus, we found one subsequence of {Atk}∞k=0 such that it is conditionally identically distributed
as {P (Atk+1|ßtk) = β}∞k=0. Now, fix α. Also, without loss of generality, suppose that β ̸= α. Since β ̸= α is arbitrary,
from this subsequence we can consider another subsequence EA of {Atkj

}∞j=0 with the true probability P > 0 such that
EA = {P (Atkj

+1|ßtkj
) = β}∞j=0 along the stochastic path of the test set in which Mt occurs at least infinitely often.

For reductio, let us suppose that Nature deviates α by picking numbers from uncountably many values of β’s such that every
value of β is equal to P (At+1|ßt) only at most finitely many t’s along the test set with true probability P - one. In other
words,

(5) For β ∈ ℜ[0, 1] where β ̸= α, P (At+1|ßt) = β at most for finitely many t’s along the path of the test set where Mt

occurs at least infinitely often, with true probability P - one.

Note that there must be countably infinite number of different β’s in (5). Let us denote each different β at each time along
the path by βtkj

, while letting βtki
̸= βtkj

for i ̸= j without loss of generality. Now, recall that p∞ is assumed to exist along

the stochastic path of the test set. Thus, inspired by this assumption, let us further assume that lim
h→∞

1
h

h−1∑
j=0

P (Atkj
+1|ßtkj

)

exists where P (Atkj
+1|ßtkj

) = βtkj
or P (Atkj

+1|ßtkj
) = α along the path of the test set. Then, letting

ξtkj
:=

{
1 P (Atkj

+1|ßtkj
) = α

0 P (Atkj
+1|ßtkj

) = βtkj

(6) lim
h→∞

1
h

h−1∑
j=0

P (Atkj
+1|ßtkj

) = lim
h→∞

1
h

h−1∑
j=0

[ ξtkj
· P (Atkj

+1|ßtkj
) + (1− ξtkj

) · P (Atkj
+1|ßtkj

)]

= α · lim
h→∞

1
h

h−1∑
j=0

ξtkj
+ lim

h→∞
1
h

h−1∑
j=0

(1− ξtkj
) · βtkj

.

Thus,

(7) lim
h→∞

1
h

h−1∑
j=0

P (Atkj
+1|ßtkj

) = α, if and only if, lim
h→∞

1
h

h−1∑
j=0

(1− ξtkj
) · βtkj

= α · (1− lim
h→∞

1
h

h−1∑
j=0

ξtkj
).

In other words, if Nature deviates from machine forecasts by βtkj
’s so that her deviating forecasts on average satisfy (7)

under (5), then E |p∞− α| = 0 and thus the test set is truly guaranteed to be well-calibrated. But Nature then loses the
repeated forecasting games along the path in the long run. So Nature has no reason to behave in this way with the true
probability P - one. Let us then consider the following three cases:
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(Case i) P (P (At+1|ßt) = α) = 0 at least i.o.

In this case, by Lemma 4.15, Nature observes machine forecasts α in each time tkj
whenever the machine predicts

P (At+1|ßt) as α.

Now that 1 = lim sup
t→∞

P (P (At+1|ßt) ̸= α) ≤ P (P (At+1|ßt) ̸= α at least i.o.),

Nature would choose the deviating value βtkj
in such a way that she would not allow (7) to hold with true probability P -

one. Thus,

(8) P ( lim
h→∞

1
h

h−1∑
j=0

(1− ξtkj
) · βtkj

= α · (1− lim
h→∞

1
h

h−1∑
j=0

ξtkj
) ) ̸= 1.

In other words, since Nature observes machine forecast α at every time, she would deviate each forecast α at tkj
in such a

way that (8) holds in the end. Otherwise, E |p∞− α| = 0, so Nature would lose in the long run. Therefore, we conclude
due to (8) that E |p∞− α| ≠ 0 in case (i).

(Case ii) P (P (At+1|ßt) = α) = 1 at least i.o.

In this case, by Lemma 4.15, Nature moves first so the machine cannot fail to match P (At+1|ßt). But then,

1 = lim sup
t→∞

P (P (At+1|ßt) = α) ≤ P (P (At+1|ßt) = α at least i.o.) = P (P (At+1|ßt) ̸= α at most f.o.), which

contradicts (5). Therefore, we exclude case (ii) under (5).

(Case iii) 0 < P (P (At+1|ßt) = α) < 1 at least i.o.

In this case, by Lemma 4.15, Nature moves simultaneously with the machine, so Nature has no reason to pick any particular
βtkj

∈ ℜ[0, 1] at each tkj
, for there exists no pure strategy Nash equilibrium. Hence any combination of {βtkj

}∞j=0 is
equally likely. Now, without loss of generality, let us fix α and ξtkj

for each tkj
. Then we claim that

(9) P ( 1
h

h−1∑
j=0

(1− ξtkj
) · βtkj

→ cα ) < P ( 1
h

h−1∑
j=0

(1− ξtkj
) · βtkj

→ cα− ) ≤ 1

where c = 1− lim
h→∞

1
h

h−1∑
j=0

ξtkj
for some fixed c, and cα ∈ C for some fixed α, and some setC such that ∀x ∈ C, x ∈ ℜ[0, 1]

but C is countably infinite, and cα− is any real number in the set C/cα, the set C without cα.

First, recall that lim
h→∞

1
h

h−1∑
j=0

(1− ξtkj
) · βtkj

exists. Then, by definition,

∀ϵ > 0, ∃ N1 <∞ such that | 1h
h−1∑
j=0

(1− ξtkj
) · βtkj

− cα| < ϵ,∀h > N1,

∀ϵ > 0, ∃ Ni <∞ such that | 1h
h−1∑
j=0

(1− ξtkj
) · βtkj

− ciα
−| < ϵ,∀h > N2. (1 ̸= i ∈ N)

Now, letting N = max(N1, Ni), ∀ϵ > 0,

(10) P ({ω ∈ ß∞ =
∞∨
j=0

ßtkj
: | 1

h

h−1∑
j=0

[P (Atkj
+1|ßtkj

) = βtkj
] − cα | > ϵ,∀h > N}) < P (

∞⋃
i=0

{ω ∈ ß ∞ =
∞∨
j=0

ßtkj
: |

1
h

h−1∑
j=0

[P (Atkj
+1|ßtkj

) = βtkj
] − ciα

− | > ϵ,∀h > N}) ≤ 1.

Therefore, we again obtain (8) by (10). Now, we consider all possible cases under (5), all of which lead to E |p∞− α)| ≠ 0.
But this result is what we try to show in this proof anyway. Therefore, to continue to prove, let us accept that there exists
such a set EA with true probability P > 0.

Now, note that EA = {ω ∈ ß∞ =
∞∨
j=0

ßtkj
: 1{ω} = 1 when P (Atkj

+1|ßtkj
) = β ̸= α for all tkj

’s along the test
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set} ⊂ {ω ∈ ß ∞ =
∞∨
j=0

ßtkj
: 1{ω} = 1 when | lim

h→∞
1
h

h−1∑
j=0

P (Atkj
+1|ßtkj

) −α| ̸= 0 for all tkj
’s along the test set}. Then,

since P (EA) > 0, P ( | lim
h→∞

1
h

h−1∑
j=0

P (Atkj
+1|ßtkj

) −α| ≠ 0 for all tkj ’s along the test set ) > 0. Thus, since we found

one subsequence of { 1
h

h−1∑
j=0

P (Atkj
+1|ßtkj

)}∞h=1 as such along the test set with true probability P > 0 and p∞ exists,

P (| lim
k→∞

1
k

k−1∑
t=0

P (At+1|ßt) − α| ̸= 0 along the test set) > 0 for α ̸= 0. Then, by the same reasoning as in Lemma 4.10, E

| lim
k→∞

1
k

k−1∑
t=0

P (At+1|ßt) − α| ̸= 0. Now, by Lemma 4.11, we obtain that E |p∞ − α| ≥ E | lim
k→∞

1
k

k−1∑
t=0

P (At+1|ßt) − α|

̸= 0 when p∞ exists. Clearly, when p∞ does not exist, E |p∞− α| ≠ 0.

Therefore, we conclude that if P (P (At+1|ßt) ̸= α at least i.o.) > 0, then E |p∞− α| ≠ 0. Q.E.D.

Proof of Theorem 4.19 First, let us first note that with P−probability> 0, P (At+1|ßt) ̸= 1 at least infinitely often for some
event At+1. Otherwise, beyond the near future, all events At+1’s would certainly continue to occur, with P−probability
one, and thus there would be no uncertainty about any At+1’s. Now, if this is the case, then we must stop here and simply
conclude that no machine would be able to learn the true probability of any At+1, simply because there is no uncertainty for
any machine to measure by the true probability in our world. Therefore, to continue to prove our main claim, we accept that
P (P (At+1|ßt) ̸= 1 at least i.o.) > 0 for some event At+1. Now, let us consider the test set where α∗ = 1. Then, along the
stochastic path of this test set, P (P (At+1|ßt) ̸= α∗ at least i.o) > 0. Therefore, we found some α∗ for which Nature is
perverse with true probability P > 0.

Now, suppose that, for any α, P (P (At+1|ßt) = α ) < 1 at least for infinitely many t’s. In other words, P (P (At+1|ßt) ̸=
α ) > 0 at least i.o. Then, 0 < lim sup

t→∞
P (P (At+1|ßt) ̸= α) ≤ P (P (At+1|ßt) ̸= α at least i.o). Thus, by Definition 4.18,

Nature is uniformly perverse, which again means by Definition 4.13 that P ( Nature is perverse ) > 0 for any α ∈ ℜ[0, 1].
Q.E.D.

Proof of Theorem 4.20 Suppose that, for any α, P (P (At+1|ßt) = α ) < 1 at least for infinitely many t’s. Then, by
Theorem 4.17 and Theorem 4.19, E |p∞− α| ≠ 0 and so P ( pk → α) ̸= 1 for any α ∈ ℜ[0, 1] where P is the true

objective probability defined over ß∞ =
∞∨
t=0

ßt and the expectation E is taken with respect to this true probability P. Then,

by Theorem 4.6, the machine cannot learn the true objective probability P (At+1|ßt). Q.E.D.

Proof of Lemma 4.23 Suppose that the machine effectively calculates Π(At+1|ßt) as α with the goal of learning the
true value of P (At+1|ßt). Then, by the necessary condition for learning, the machine must return Π(At+1|ßt) which is
congruent to P (At+1|ßt) = α, in order to achieve this goal. Now, suppose further that the machine calculates at the same
time Π({P (At+1| ßt) ̸= α}) ̸= 0. Then the machine tolerates error by Definition 4.21.

However, by Theorem 4.6, the machine cannot tolerate errors infinitely often to achieve this goal of learning for the following
reason: for any α ∈ ℜ[0, 1], suppose that Π(At+1|ßt) = α but Π({P (At+1|ßt) ̸= α}) > 0 infinitely often. Now, since it
must be that P (At+1|ßt) = Π(At+1|ßt) = α to learn the true probability, it must also be by Theorem 4.6 that P (pk → α)
= Π (pk → α) = 1. But now, by assumption, Π({P (At+1|ßt) ̸= α}) > 0 infinitely often, which leads to that 0 < lim sup

t→∞
Π({P (At+1|ßt) ̸= α}) ≤ Π({P (At+1|ßt) ̸= α} at least i.o). But this contradicts Π (pk → α) = 1 by the same reasoning
as in the proof of (Case 3) in Theorem 4.17 while replacing P by Π and so the machine cannot learn the true probability by
Theorem 4.6. Therefore, the machine cannot tolerate errors infinitely often if the machine aims to learn the true probability.
Since α was arbitrary in ℜ[0, 1], let α = 0, the desired result. Q.E.D

Proof of Lemma 4.28 (i) Proof of “if” part: suppose that there exists a stopping time ts <∞ for some forecast α0 such that
P (Aα0(t+ 1)|ßt) = 0, ∀t > ts, while there exists no stopping time for any other α ̸= α0 so that P (Aα̸=α0(t+ 1)|ßt) > 0
at least infinitely often. Then, by the definition of Aα0

(t+ 1) and the law of iterated expectations,

(11) P (Aα0(t+ 1)) ↘ P ( lim
t→∞

Aα0(t+ 1)), because Aα0(t+ 1) ↘ lim
t→∞

Aα0(t+ 1).

Now that lim
t→∞

Aα0
(t+ 1) is the event that P (At+1|ßt) ̸= α0 at least i.o. and so that the limit exists,
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(12) 0 = lim
t→∞

P (Aα0
(t+ 1)) = P (P (At+1|ßt) ̸= α0 at least i.o.) for α0.

Also, in the same logic as for α0,

(13) 0 < lim
t→∞

P (Aα(t+ 1)) = P (P (At+1|ßt) ̸= α at least i.o.) for any α ̸= α0.

Thus, by Definition 4.25, Nature is selectively perverse.

(ii) Proof of “only if” part: suppose that Nature is selectively perverse. Then, by Definition 4.25, there must exist some α0

such that P (P (At+1|ßt) ̸= α0 at least i.o.) = 0. Now, for reductio, suppose that for any such α0 there exists no stopping
time ts so that P (Aα0

(t+ 1)|ßt) > 0 at least infinitely often. In other words, Nature keeps changing her mind infinitely
often between perversity and non-perversity or Nature keeps being perverse all the way long. Then, by law of iterated
expectation, P (Aα0(t+ 1)) > 0 at least infinitely often, which contradicts the selective perversity of Nature by the same
reasoning as in (13). Q.E.D.

Proof of Lemma 4.29 For any given α0 with which Nature is not perverse with true probability P -one, there exists
ts < ∞ for this α0 by Lemma 4.28. Now, by assumption, machines learn that P (Aα0(t + 1)|ßt) = 0 ∀t > ts. Thus,
Π(Aα0

(t+ 1)|ßt) = 0 ∀t > ts by the necessary condition for learning. Then, by Lemma 4.23 and the same reasoning as
(11) in the proof of Lemma 4.28, Π(P (Aα0

(t+ 1)|ßt) = 0,∀t > ts) = 1. Q.E.D.

Proof of Corollary 4.30 (i) Suppose that Nature is selectively perverse so that P (Aα0
(t+ 1)|ßt) = 0 ∀t > ts for some α0

by Lemma 4.28. However, since the machine is assumed not to be self-assured that the stopping time ts arrives for that α0,
the machine cannot learn that P (Aα0

(t+ 1)|ßt) = 0 ∀t > ts by Lemma 4.29.

(ii) Now, note that if the machine learns P (At+1|ßt) as α0, the machine also learns that P (P (At+1|ßt) ̸= α0 at least
i.o.) = 0 in the following way: first, by Theorem 4.6 and (Case 3) in Theorem 4.17, machine learning of the true probability
P (At+1|ßt) as α0 mathematically implies that P (P (At+1|ßt) ̸= α0 at least i.o.) = 0. Thus, once the machine learns
the true probability P (At+1|ßt) as α0, it cannot fail to effectively calculate the true probability P (Aα0(t + 1)) as 0,
following Theorem 4.6 and (Case 3) in Theorem 4.17 as instructions. Then, by Definition 2.2, the machine learns that
P (Aα0(t+1)) = 0 in particular ∀t > ts, so that P (Aα0(t+1)|ßt) = 0 ∀t > ts while following law of iterated expectation
as instruction. However, as we proved it in (i), the machine cannot learn that P (Aα0

(t+ 1)|ßt) = 0 ∀t > ts. Hence we
conclude that the machine cannot learn the true objective probability P (At+1|ßt) as α0 either. Q.E.D.

Proof of Lemma 4.31 Suppose that the machine is not self-assured of the stopping time ts for α0. Then,

(14) Π(P (Aα0(t+ 1)|ßt) = 0,∀t > ts) ̸= 1.

Now that lim
t→∞

P (Aα0
(t+ 1)) = P (P (At+1|ßt) ̸= α0 at least i.o.) for this α0,

(15) Π( P ( P (At+1|ßt) ̸= α0 at least i.o.) = 0) ̸= 1.

Then, since lim sup
t→∞

P ( P (At+1|ßt)) ̸= α0) ≤ P ( P (At+1|ßt) ̸= α0 at least i.o.) = 0,

(16) Π( P ( P (At+1|ßt) = α0) = 1 ∀t > t∗) ̸= 1, for some t∗ <∞.

Now, note that along the stochastic path considered in Corollary 4.30, P (P (At+1|ßt) ̸= α0 at least i.o.) = 0 ∀t > ts. Now,
for this α0,

(17) lim sup
t→∞

P (P (At+1|ßt) ̸= α0) ≤ P (P (At+1|ßt) ̸= α0 at least i.o) = 0

Therefore, without loss of generality, letting t∗ ≥ ts with t∗ <∞,

(18) P (P (At+1|ßt) = α0) = 1, ∀t > t∗ ≥ ts with t∗ <∞.

Then, without loss of generality, let P (P (At+1|ßt) = α0) = 1 at t∗+1 by (18). Thus, (16) and (18) lead to the desired result
by Lemma 4.15. Q.E.D

Proof of Theorem 4.32 Suppose that the machine learns the true probability. Since the machine cannot learn if Nature is
uniformly perverse, Nature must then be selectively perverse so that the stopping time ts exists by Lemma 4.28. Then, by
the (ii) part of Corollary 4.30 and Lemma 4.29, the machine is self-assured of the stopping time ts when ts exists. We now
finish the proof of Theorem 4.32 by showing that if the machine learns the true probability, the machine is not self-assured
of the stopping time ts when such ts does not exist.
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Suppose that the machine is self-assured of the stopping time ts even though such ts does not exist. The machine is then
wrong about ts, so it cannot learn the true probability along the path where P (Aα(t + 1)|ßt) > 0 at least i.o. for the
following reason: first, by Lemma 4.28, with true probability P > 0, Nature is perverse to the forecast α along the path
where there is no stopping time ts. Thus, P (P (At+1|ßt) ̸= α at least i.o.) > 0 for such forecast α. Then, by the (Case 3) of
Theorem 4.17 and then Theorem 4.6, the machine cannot learn that α. In other words, the world does not exist in the way
that Nature allows the machine to learn the true probability. Notwithstanding, the machine has a wrong belief about the
stochastic path of the true probability, and so cannot learn the true probability. Q.E.D.

Proof of Theorem 4.35 Suppose that the machine is self-assured of stopping time ts along the path where, for any given α0,
P (Aα0

(t+ 1)|ßt) = 0 ∀t > ts. Then, along this path, the machine obtains

Π(P (Aα0
(t+ 1)|ßt) = 0 ∀t > ts) = 1 and so Π(Aα0

(t+ 1)|ßt) = 0 ∀t > ts by Lemma 4.23.

Now, by the definition of Aα0(t+ 1) and Lemma 4.23 again,

Π(At+1|ßt) = α0, ∀t > t∗ > ts for some t∗ <∞

Note also that P (At+1|ßt) = α0, ∀t > t∗ > ts for some t∗ <∞ along this path.

(19) P (At+1|ßt) = α0 = Π(At+1|ßt), ∀t > t∗ with t∗ <∞.

Then, as in Theorem 4.6, we can construct a test set along the stochastic path by the assessed α0 as a selection criterion by
(19). This test set is also truly guaranteed to be well-calibrated.

Thus, from this test set along the path, the machine obtains the following by Lemma 4.10 and Lemma 4.11,

(20) P ( lim
n→∞

1
n

t∗+n∑
t=t∗

P (At+1|ß t) = α0) = 1 if and only if P ( lim
n→∞

1
n

t∗+n∑
t=t∗

1{At+1} = α0) = 1

Now, let us gather the sequence of {At+1}∞t=t∗ along the path and call this set a population. The machine then effectively
calculates the true probability P (At+1|ßt) as α0 by the empirical distribution out of this population by (20), which satisfies
(i) in Definition 4.34. Also, this effective calculation of the empirical distribution must be successful in returning the true

probability P (At+1|ßt), for 1
n

t∗+n∑
t=t∗

P (At+1|ß t) in the right-hand side of (20) is equal to P (At+1|ßt),∀n and ∀t > t∗ by

(19), which satisfies (ii) in Definition 4.34. Therefore, by Definition 4.34, the machine directly observes the true probability
P (At+1|ßt) as α0. Q.E.D

Proof of Theorem 4.36 (i) Proof of “if” part: follows directly from Theorem 4.32 and Theorem 4.35.

(ii) Proof of “only if” part: suppose that the machine directly observes the true probability P (At+1|ßt) as α from the given
population S at some time t∗. The machine then effectively calculates Π(At+1|ßt) as α at t∗, while adopting the following
as an instruction: recall that the given set S consists of the sequence of events At+1’s, {At+1}k−1

t=0 with k potentially infinite.
Since the set S is available in principle to the machine by the part (i) of Definition 4.34, there must exist some rule on
how to collect the available set of events {At+1}kt=0. Then let the machine build up the population S by collecting events
while following the rule on how-to. Now, once collected by the machine to constitute the set S, it must have been observed
whether each event has a certain attribute of interest or not, and so a value of the indicator variable 1{At+1} must have been

assigned accordingly to each event At+1 by the machine. Then, let the machine calculate Π(At+1|ßt) as α = 1
k

k−1∑
t=0

1{At+1}.

Therefore, the machine effectively calculates Π(At+1|ßt) as α.

Furthermore, note that 1
k

k−1∑
t=0

1{At+1} is defined to be P (At+1|ßt) at t∗ by the part (ii) in Definition 4.34. The machine

then cannot fail to compute P (At+1|ßt) as α from the population S. Therefore, the machine learns the true probability
P (At+1|ßt) as α by Definition 2.2. Q.E.D.

Proof of Corollary 4.37 Let us first define what we mean by “most of the time” in the success criterion (1). By Theorem 4.20
and Theorem 4.32, the machine cannot learn the true probability P (At+1|ßt) as α if P (P (At+1|ßt) ̸= α at least i.o.) > 0. In
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order to learn, then, the machine must return correct calculations except a finite number of times out of infinite opportunities
to learn, with true probability P−one. Thus, “most of the time” should be “all but finitely often out of infinite opportunities
to learn.”

Now suppose that the machine is correct most of the time with true probability P− one when the machine aims to learn
the true probability P (At+1|ßt). In other words, suppose that P (P (At+1|ßt) ̸= α at most f.o.) = 1. Then, there exists a
stopping time ts because P (P (At+1|ßt) ̸= α at least i.o.) = 0 if and only if there exists a stopping time ts for any machine
forecast α by Lemma 4.28. Furthermore, suppose that the machine is self-assured that, with true probability P−one, it
is correct most of the times. Then, again by Lemma 4.28, Π( there exists a stopping time ts) = 1. Thus, if the machine
satisfies the success criterion (1), then it satisfies the condition of Theorem 4.35. Therefore, if the machine satisfies the
success criterion (1), it can learn the true probability by Theorem 4.35 and Theorem 4.36. Q.E.D.

B. Some Literature for the Necessary Condition in Sec. 3.2
There has been a large literature in logic and economics whose discussion implies when a machine holds a true belief in the
probabilistic proposition Ap. For example, while defining the concept of rationality in the economics model, (Cogley &
Sargent, 2008; 2009), (Sandroni, 2000), (Blume & Easley, 2006; 2008) and many others stipulate that an agent is rational
when his/her partial beliefs are correct in the sense that his/her subjective probability distributions are congruent to the true
probability distribution which Nature identifies as such. In other words, this means that a machine holds such a true belief in
Ap when it is rational, which entails that its subjective probability Π is equal to the true objective probability P.

Also, in probabilistic logic, (Nilsson, 1986), (Halpern & Fagin, 1994), and many others follow the probabilistic version of
the Tarskian semantic theory of truth in the following way: a formula describing the subjective probability of an agent is
true when the agent’s probability assignment corresponds to what the sentence in fact represents. For example, in (Halpern
& Fagin, 1994), a formula like wi(φ) ≥ 2wi(ψ) is true if, according to the probability assignment of the agent i, the event
φ is at least twice as probable as ψ. Now, if we extend this idea to the true objective probability P if any, a formula such as
wi(φ) = w(φ), where wi denotes the probability operator of the agent i and w does that of Nature, is true when, according
to the assignment of the agent i’s probability, the event φ is as probable as what Nature assigns on φ as the true probability
value in our world.

It deserves to note from the economics literature when it becomes true that agent i’s partial belief on the event φ has a degree
wi(φ) which corresponds to the true objective probability w(φ). This is indeed true when the subjective probability of the
agent i, wi(φ) is in congruence with the true objective probability w(φ), which again makes the formula wi(φ) = w(φ)
true. Therefore, the condition for any agent to be rational (or rational machine in our context) in economics is equivalent to
the truth condition for the formula in probabilistic logic.

C. Justifications for the Three Assumptions
Assumption 4.2 ßt’s in P (At+1|ßt) are the set of all the true facts up to time t.

In other words, ßt is the historical path of true facts up to time t. To recognize that Assumption 4.2 is reasonable, recall
that we are handling with objective probability true to our world. Therefore, its condition must also be true in our world.
Otherwise, P (At+1|ßt) cannot represent the true probability according to which the actual data are realized in our world.
For example, if there works some special gravity force on Mars and so a fair coin lands on its edge as equally likely as on its
head or tail, then the probability of the coin landing on the head conditional on this hypothesis will be 1

3 . However, if such a
special gravity force actually does not exist on Mars, this conditional probability 1

3 cannot be true either, because its data
would not be realized according to the probability of 1

3 in our world.

Assumption 4.3 No further knowledge requirement is imposed on the condition ßt.

To recognize that Assumption 4.3 is reasonable, note the following: If ßt is the set of known facts, then P (At+1|ßt) can
vary from person to person, as the set of events known to each person may be different, depending on who possesses what
information. In order for P (At+1|ßt) to be objective, however, P (At+1|ßt) should not depend on each person. Therefore,
we require that ßt consist of true facts, not necessarily knowledge.

Assumption 4.4 Once a probability of an event type E is established, its associated event tokens Etk ’s occur at some infinite
subsequence of time tk’ s, so that P (Etk) does not vanish to zero as tk → ∞.
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Here, “event token” refers to the event that ever occurs at some specific time and place, while “event type” refers to the
abstract object with no specific space-time location. For example, cloudy weather in Denver is an abstract event type E with
no time subscript, while cloudy weather in Denver on 29 May 2024 is a particular event token Et0 . Some literature (e.g.
(Halpern, 2016)) deals mainly with probability of token events, while some literature (e.g. (Maher, 2010)) deals mainly with
probability of type events. Assumption 4.4 establishes a connection between the probabilities of these two kinds of events.

In order to recognize that Assumption 4.4 is reasonable, consider now the following example: suppose that we try to
predict the probability that some person i suffers from lung cancer caused by his/her smoking habit. As we discussed in
the Introduction, this causal probability is objective, which is relevant to our discussion. Then, as long as the probability
of the event type of having lung cancer from smoking is allowed to be considered for forecasting, we require that the true
probability of the associated event tokens for some persons i’s should not be completely zero from some time t0 < ∞
onward. In other words, although the true probability of such event tokens is allowed to be intermittently zero, the probability
of the associated event tokens should not vanish to zero as k → ∞.

It might be pointed out that a particular person, say Mary, will die some time in the future, and that it will not make sense to
consider the probability of Mary’s suffering from lung cancer after that time any more. However, unless all generations of
our human beings suddenly become extinct in the near future, we can consider the true probability of this event token at
least for some person i at each time t. Hence it would make sense to forecast the probability of such an event token in each
specific case, as t→ ∞.

D. More Detailed Remarks
Remark 2.4 Now, let F be the sigma-field generated by Ω and ωt = (S−1

0 (s0), . . . , S
−1
t (st), Ωt+1,Ωt+2, . . .) ∈ Ω denote

a partial history through date t. Then, for any probability measure pt on Ft, pt(ω
t) becomes the (marginal) probability of

the partial history, and each ωt is assumed to be Ft-measurable. Note then that pt(ωt) =
t∏

τ=1
p(ωτ |Fτ−1) for any t, and

so pt(ωt) = p(ωt|Ft−1)pt−1(ω
t−1). Furthermore, when st is only either 0 or 1, St(ωt) becomes an indicator function for

an event {ωt}. Then, provided that there indeed exists any true objective probability P , p({ωt}|Ft−1) = P ({ωt}|Ft−1)
= E(St(ωt) = 1|Ft−1) where the expectation E is taken with respect to this true probability P .

For example, let St be an i.i.d. random variable whose value is 1 if the event {ωt} occurs at t and 0 otherwise. Then,

Xn =
n∑

k=1

Sk will be the number of events that have occurred up to time n. Since St is i.i.d., p({ωt}|Ft−1) is same as

P ({ωt}) across time. Now, let lim
n→∞

Xn

n = lim
n→∞

1
n

n∑
k=1

Sk be the ratio of events that ever occur. Then, provided that this

limit indeed exists, the dominated convergence theorem and Fubini’s theorem imply that E{ lim
n→∞

1
n

n∑
k=1

Sk} = P ({ωt}).

Thus, in the i.i.d. case, we can derive that with the true probability P− one, the true objective probability of the event {ωt}
is the limiting relative frequency which is objective.

By stipulating that the true objective probability follows the rule on how Nature generates each actual data point, we
emphasize that the true probability here is something objective, not subjective, but no more or no less than that. “Nature” is
just a metaphor for describing the relationship of true probability with our objective world. Adopting the widely accepted
statistical notion of a data-generating process, we intend to use the term “Nature” to refer to whatever is supposed to govern
the underlying true objective process to generate the actual data. Given that Nature is simply a metaphor, it is important to
emphasize that, in order to prove the possibility or the impossibility of machine learning on the true objective probabilities,
we do not need to commit ourselves to whether there really exists such a thing as a true objective process: probability
might be merely something subjective which has nothing to do with “Nature.” If that is the case, then we conclude that
no machines can learn the true objective probabilities simply because there exist no such things as true probabilities for
machines to learn.

Remark 3.1 The standard theory of subjective probability was first developed by Ramsey and then further by De Finetti and
Savage. Subjective probability is designed to represent a degree of belief possessed by a subject, say some person. Here, two
words, degree and belief, deserve to be noted. First, subjective probability represents some aspects of belief. However, belief
is an inner thought that, in principle, resists a direct observation, while probability quantification requires measurability.
Note that the easiest method of measurement is by observation. Thus, in order for the degree of belief to be quantified
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as a probability measure, it works well if the unobservable is made observable. Here comes in the relationship between
unobservable belief and observable action: belief causes action. According to (Ramsey, 1931), the strength of our belief can
be judged in relation to how we should act in hypothetical situations. Given a preferential system on the lotteries of a set of
conditions, the choice action under hypothetical circumstances will reveal the degree of belief of some relevant agent. In
this vein, subjective probability represents whatever is in any one’s mind upon anything as long as his/her belief system
is coherent, and thus can be even assigned to what is merely imagined. For instance, while arguing for cogito, ergo sum,
(Descartes, 2008) imagined some evil spirit that has devoted all its efforts to deceiving him. Then, Descartes can assign
some value of subjective probability to such imagination on the evil spirit, according to how likely it is to him that such
imagination can be realized in this world, as long as Descartes’ belief system is coherent.

Second, it is assumed that the degree of belief ranges between 0 and 1. For example, your belief that there will be rain
tomorrow has a degree strictly less than 1 and thus is called a partial belief, because you have some unconfidence on future
events. In addition to this quantitative usage of the term “belief”, however, there is another categorical usage: “belief” refers
to the proposition that something is the case or that something is not the case, or none of them. For instance, your belief
in the Moorean fact that here is one hand represents either the case or not, or it is on suspension. Compared to partial
belief, this qualitative belief is called belief simpliciter. As the term “belief” has these two faces, gradational quantitative
and categorical qualitative ones, numerical degrees are assigned to partial belief, while truth values are assigned to belief
simpliciter. In this paper, we abbreviate belief simpliciter by “belief” and denote partial belief by “partial belief” as it is.

In contrast, objective probability, if any, is what must be determined by objective features of the world that do not vary from
person to person. Following (Nagel, 1939) and (Carnap, 1963), we list chance, logical probability, and relative frequency as
exhaustive examples of objective probability. The best way to clarify these concepts is to consider their examples. Following
(Maher, 2010), for example, suppose that a coin has the same face on both sides, that is, two-headed or two-tailed. Provided
further that it is completely uncertain what face value, head or tail, the coin has on both sides, the chance of getting head
when tossed is 1 or 0, while its logical probability is 1

2 . Furthermore, when the coin is tossed infinitely often, its relative
frequency surely converges to 1 or 0.

Here, the chance is either 1 or 0, depending on what our world is like, namely, whether the coin is indeed two-headed or
two-tailed. Therefore, the chance is objective in the sense that it depends on real features of the coin, not on any personal
inner thought. On the other hand, the logical probability is 1

2 , because it is logically implied from the given conditions
that the coin has the same face value on both sides, but that whether it is two-headed or two-tailed is completely uncertain.
Therefore, logical probability is also objective in the sense that it depends on the logical features of our world, not on
us. Clearly, the relative frequency is what our world turns out to be, not whatever we believe. However, no matter what
interpretation of probability is adopted among these three kinds, it is important to note that the true objective probability P
in Definition 2.3 is a mathematical object that is supposed to represent any of them as long as they satisfy the Kolmogorov
axioms.

Remark 4.7 It should be noted that Theorem 4.6 is our building block to prove when a machine cannot learn the true
probability, because p∞ in Theorem 4.6 denotes the limiting relative frequency along the test set, the representative true
objective probability. We do not consider any limiting behavior of the relative frequency outside the test set, because learning
as α per se is not possible outside the test set by the necessary condition for learning in Section 3.2. Therefore, if it is shown
to be impossible that with P−probability one, pk → α along the stochastic path of the test set collected by the assessed α,
then it is derived from Theorem 4.6 that the machine cannot learn the true probability.

Now, note that P (pk → α ) = 1 if and only if for any ϵ > 0, lim
n→∞

P ( sup
m≥n

| pm −α | < ϵ) = 1. Thus, if the machine learns,

then for all ϵ > 0 that are small enough, lim
n→∞

P (| pn − α | < ϵ, |pn+1 − α| < ϵ, . . .) = 1, which is lim
n→∞

P (pn = α,

pn+1 = α, . . .) = 1. Thus, Theorem 4.6 is not committed to what the machine engages in by the first n− 1 number of data
while “learning”. This concept of machine learning is flexible enough to allow for some finitely few potential errors where
pt ̸= α ∀t < n so that P (At+1|ßt) ̸= α ∀t < n while processing the data to learn.

Remark 4.9 Indeed, it may well be argued against the (Oakes, 1985) Counterexample that, although it could be imagined so,
Nature actually never behaves in that way. There is no reason why Nature is so perverse that she generates data in such
a deviating way. The true objective probability of Nature being perverse may be simply zero. Then, Theorem 4.1 and
Theorem 4.8 do not necessarily imply that a machine cannot learn the true probability.

Theorem 4.8 shows only to the extent that if a machine can imagine such a counterexample, and thus it sincerely believes in
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such possibility, then its subjective probability of long-run mis-calibration is not zero. But recall the Descartes’ Demon
case from Section 3.1. A simple possibility of imagination does not necessarily imply a real possibility, namely that the
true objective probability of it occurring in the actual world is not zero. Theorem 4.1 and Theorem 4.8 show only that if
a machine cannot exclude such a counterexample, it cannot be self-assured to be well-calibrated with its own subjective
probability 1. However, recall that there exists an asymmetric relation between subjective and objective probabilities:
objective probability binds subjective probability, but not necessarily vice versa. Thus, if the true probability of Nature’s
perversity is proven to be zero, the machine can exclude such a possibility, and so its subjective probability on Oakes’
counterexample will be zero as well. Then, from this it is derived neither that the machine cannot be self-assured to be
well-calibrated nor that it cannot be truly guaranteed to be so, which implies that the impossibility of machine learning does
not necessarily follow from Theorem 4.6.

Later by Theorem 4.19, we prove that such an imagined possibility of Nature’s being perverse is a real one if the true
probability is not observable. Meanwhile, we will also prove mathematically how (Oakes, 1985) Counterexample paralyzes
Dawid’s Theorem 4.1, which amounts to the proof of Theorem 4.8. Note that if the true probability indeed escapes from
the machine’s forecast just as in (Oakes, 1985), Theorem 4.1 breaks down: Theorem 4.1 critically relies on the martingale

property of
k∑

t=1
Xt given ßk−1 where Xt = (

t∑
j=1

ξj)
−1 · ξt(Yt − Ŷt), which was from E(Xk|ßk−1) = 0. This martingale

property, however, breaks down when P (At+1|ßt) = E(Yt+1|ßt) ̸= Ŷt+1 = Π(At+1|ßt) for all t. Note that (Dawid, 1982)
takes it for granted that E(Yt+1|ßt) = Π(At+1|ßt) = Ŷt+1 for all t. Therefore, if we relax this assumption, we can prove
mathematically how (Oakes, 1985) works against (Dawid, 1982), which will be shown from (Case 2) in the proof of
Theorem 4.17.

Remark 4.12 Regarding Lemma 4.10 and Lemma 4.11, it deserves to note the following two things: first, note that we do
not require any standard assumption such as the stochastic process to be i.i.d. along the historic path of the test set and so
that P (At+1|ßt) can vary along the path. Note also that unlike (Blume & Easley, 2006; 2008), etc., we do not require to
consider all the associated events At’s along the stochastic path, but that we consider only the events At’s whose assessed
probabilities are α. The set of those events At’s is called a test set, because it is collected according to the selection criterion
of being assessed constantly as α. Therefore, we do not assume any specific property of the stochastic process along the
path in the test set, such as stationarity or ergodicity. We do not assume any specific properties because we include only the
arbitrary subsequences of the stochastic process into the test set according to the subjective assessment.

Second, by Lemma 4.10 and Lemma 4.11, we obtain that if P (pk → α) = 1, then E | lim
k→∞

1
k

k−1∑
j=0

P (Atj+1|ßtj )− α| = 0

where expectation is taken with respect to the true probability P. Then, from this equation, we establish a connection
between the true guarantee of well-calibration and the real forecasting game between a machine and Nature: (i) the true
guarantee of well-calibration is connected to forecasting games between a machine and Nature, for what the machine

forecasts is α while what Nature forecasts is P (Atj+1|ßtj ) and thus whether | lim
k→∞

1
k

k−1∑
j=0

P (Atj+1|ßtj )− α| = 0 holds or

not is tied to how Nature and the machine play in the forecasting games along the stochastic path of the test set. In this
game, the machine loses at time t whenever Nature succeeds in deviating from machine forecasting at that time. There is
some literature which deals with the problem of well-calibration in various forecasting game settings. (e.g. (Foster & Vohra,
1993)) (ii) Also, note that, in the proof of Lemma 4.11, we take both the inner and outer expectations with respect to the
true probability P while applying the law of iterated expectations. Thus, it is a real game, not any arbitrarily imaginary one,

for | lim
k→∞

1
k

k−1∑
j=0

P (Atj+1|ßtj )− α| = 0 is expected to hold with respect to the true probability P , not any other subjective

probability Π.

Remark 4.14 Now, let us establish a connection between the true second-order probability and the forecasting game
between Nature and a machine. For simplicity, let us denote by ∆t the event at time t that P (At+1|ßt) = α for any machine
forecast α. In other words, ∆t denotes the event that the machine makes the correct forecast at time t, which amounts
to that the machine wins the forecasting game at that time. Note here that, strictly speaking, the event ∆t is a complex
event which consists of two events, the event of {P (At+1|ßt) = α} and the event of {Π(At+1|ßt) = α} for the same
functional value α while P (At+1|ßt) and Π(At+1|ßt) are two probability functions about the common event At+1, that is
{∆t} = {P (At+1|ßt) = α = Π(At+1|ßt)}. However, since we consider only the test set along the stochastic path, here we
take it that Π(At+1|ßt) is fixed as α along the path.
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Then, extending some notions from (Gaifman, 1986), let us derive a second-order probability, i.e. the probability of
probability, from the outcomes of the forecasting game between Nature and the machine as follows: for any event At+1,
the true second-order probability P is the probability of the meta-event that the first-order probability (either Nature’s true
forecast or the machine’s subjective forecast) of At+1 actually has a certain numerical value α ∈ ℜ[0, 1]. Thus, the true
second-order probability P denotes P ( P (At+1|ßt) = α ).

Here, it deserves to note that although we derive the notion of higher-order probabilities by extending some notions from
(Gaifman, 1986), our notion is different from his in the following way: we do not distinguish the first-order and the
second-order probabilities while using the same notation as P, although Gaifman(1986) uses P and PR operator to denote
the second-order probability and the event on the first-order probability, respectively. This is because Gaifman’s notions are
different from ours in that (1) P in Gaifman denotes the agent subjective probability, while our second-order probability P
can be a true objective one just like the first-order true probability, and that (2) his PR operator accepts a closed interval
as one of its arguments, while our domain of the second-order probability P does not contain intervals of real numbers.
Note that our domain of the second-order probability is assumed to be generated by the collection of all the singletons of
the computable real values of the first-order true probability function P , and that it is assumed to be countable. Thus, the
domain does not contain intervals of real numbers. (3) In addition, our notion of the first-order probability is not imprecise
but precise one, so it is not supposed to be what belongs to any interval or any set of probability measures.

Now, the probability space of the second-order probability is defined as (Ω,G, P ), in which Ω is the set of all the computable
functional values for any given true first-order probability function P (At+1|βt), G is a field generated by the collection of
all the singletons in Ω, and P is the second-order probability with P : G → ℜ[0, 1]. Note here that Ω is countable and that
Ω is the set of all the possible forecasts by machines on the event At+1 given βt. Now, if the domain of the second-order
probability is a sigma-field F generated by Ω, then the problem here is that the sigma-field F becomes uncountable given
that Ω is countable. So, we should consider a field G, not sigma-field F for the probability space of the second-order
probability P .

Here are some justifications for defending the use of a field G, not sigma-field F , as a domain of the second-order probability
P : we do not require the domain of the second-order probability to include all the countably infinite unions, for the number
of strategies a machine can use then becomes uncountable, which is contradictory to the fact that the set of numbers a
machine can compute is countable. In our forecasting game, any singleton in Ω can be thought of as a pure strategy by the
machine and any union of those singletons as a mixed strategy by the machine. Again, since the set of numbers a machine
can compute is countable, a machine cannot compute uncountably many mixed strategies.

Remark 4.22 Recall from the necessary condition for learning in Section 3.2 that P (At+1|ßt) = Π(At+1|ßt) = α if the
machine learns the true probability P (At+1|ßt) as α. Definition 4.21 then means that while the machine calculates the value
of Π(At+1|ßt) as α to learn the true probability P (At+1|ßt) at time t, the machine assigns its Π- probability > 0 to the
event that P (At+1|ßt) ̸= α, because the machine tolerates the error that the true value of P (At+1|ßt) may not be very α
at that time t. In Lemma 4.23, we prove that a machine cannot tolerate errors infinitely often if it aims to learn the true
probability.

Remark 4.24 For example, in (Savage, 1972), a vacuous event is null, but not every null set is necessarily vacuous. Here, an
event is null to an agent when the event is believed to be impossible to the very agent, and thus its subjective probability is
zero to the agent. On the other hand, a vacuous event has absolute impossibility whose true objective probability is zero
by the Kolmogorov axiom. Thus, the objective true probability of an absolutely impossible event here binds its subjective
probability to zero, but not necessarily vice versa.

We now extend this idea in (Savage, 1972) to all virtually impossible events. Here, note that absolute impossibility is
assigned to a vacuous event by the Kolmogorov axiom, while virtual impossibility is assigned to any event whose true
objective probability measure is zero by Nature. Thus, in Lemma 4.23, we derive that all virtually impossible events
also have a subjective probability Π− zero infinitely often whenever the agent is self-assured that such events are truly
impossible, for the subjective probability must be bound to the true objective probability P− zero, if any. Otherwise, the
machine comes to tolerate error infinitely often, which makes it impossible for the machine to achieve its goal of learning
the true probability.
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