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Abstract

Large Language Models (LLMs) exhibit the001
issue of paraphrase divergence. This means002
that when a question is phrased in a slightly003
different but semantically similar way, LLM004
may output a wrong response despite being005
able to answer the original question correctly.006
Previous research has regarded this issue as a007
problem of the model’s robustness to question008
paraphrase and proposed a retraining method009
to address it. However, retraining faces chal-010
lenges in meeting the computational costs and011
privacy security demands of LLMs. In this012
paper, we regard this issue as a problem of013
alignment with model preferences and pro-014
pose PEARL (Preference-drivEn pAraphRase015
Learning). This is a black-box method that016
enhances model performance by paraphrasing017
questions in expressions preferred by the model.018
We validate PEARL across six datasets span-019
ning three tasks: open-domain QA, common-020
sense reasoning, and math word problem. Ex-021
tensive experiments demonstrated not only the022
outstanding performance but also the compos-023
ability, transferability, and immense potential024
of PEARL, shedding new light on the black-025
box tuning of LLMs1.026

1 Introduction027

The era of Large Language Models (LLMs) has028

arrived. With the continuous increase in the scale029

of parameters and the ongoing development of pre-030

training methods, LLM’s overall performance is be-031

coming increasingly powerful(Kaplan et al., 2020;032

Wei et al., 2021; Bai et al., 2022). However, the033

rapid development of LLM has also brought about034

some issues. Firstly, the surge in parameter scale035

has led to a substantial increase in computational re-036

sources required for tuning them. This limitation re-037

stricts the participation of many organizations and038

individuals, which is not conducive to the healthy039

1Our models and code will be publicly accessible upon
acceptance.

development of the community. Although some re- 040

search has proposed methods to optimize the perfor- 041

mance of LLMs with lower computational require- 042

ments (Li and Liang, 2021; Liu et al., 2022; Hu 043

et al., 2021), they primarily are white-box tuning 044

methods, which necessitate access to model param- 045

eters. However, with the continuous evolution of 046

regulations such as GDPR, the security and privacy 047

concerns surrounding LLM are increasingly being 048

emphasized (Wu et al., 2023; Yidong et al., 2023). 049

As a result, some designers of LLMs are opting to 050

provide services to users through API rather than 051

exposing the complete model. This trend has made 052

it increasingly challenging to apply white-box tun- 053

ing. Therefore, black-box methods are gaining 054

attention, such as retrieving relevant examples (Ru- 055

bin et al., 2022; Ye et al., 2023; Li et al., 2023) and 056

suitable prompts (Jiang et al., 2020; Cheng et al., 057

2023) to add to LLM’s input. 058

A notable phenomenon is the issue of paraphrase 059

divergence in language models. Indeed, when a 060

question is phrased in a slightly different but se- 061

mantically similar way, the language model can 062

output a wrong response despite being able to an- 063

swer the original question correctly. Figure 1 shows 064

three such examples. This can be explained as the 065

language model does not only learn the knowledge 066

itself from the corpus during pre-training but also 067

learns the expression pattern associated with spe- 068

cific knowledge (Heinzerling and Inui, 2021). Gan 069

and Ng (2019) regard this issue as a problem of 070

the model’s robustness to question paraphrase and 071

proposed a retraining method to enhance the ro- 072

bustness of the model. However, this method is 073

white-box and requires tuning all parameters of 074

the model, making it difficult to meet the computa- 075

tional costs and privacy security demands of LLMs. 076

To address these, we regard the paraphrase 077

divergence of LLM as a problem of alignment 078

with model preferences and propose PEARL 079

(Preference-drivEn pAraphRase Learning). This 080
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Figure 1: How PEARL Generator works. When paraphrasing questions with different semantics, the PEARL
Generator adaptively selects different paraphrase types.

is a black-box method that enhances model perfor-081

mance by paraphrasing questions in expressions082

preferred by the model. Specifically, we train a083

PEARL Generator to learn the model’s preferences084

for expressions. During inference, the PEARL085

Generator generates paraphrases in alignment with086

model preference and then feeds them into the087

model. In this paper, the training of the PEARL088

Generator uses a seq2seq approach. Considering089

the aspects of the diversity of paraphrase types090

and the preservation of semantics, we propose a091

prompt-based method for the automatic construc-092

tion of final training sets. It’s worth noting that the093

parameter scale of the PEARL Generator we train094

is significantly smaller than that of our target LLM,095

and it requires only a small amount of training data.096

Fundamentally, PEARL is a process of learn-097

ing model preference for expressions and incorpo-098

rates the preference into questions to guide the099

model in producing correct answers. This par-100

allels prompt learning, where adjusting prompts101

caters to the expressions that model is accustomed102

to during pre-training (Liu et al., 2023) . How-103

ever, prompt learning involves incorporating the104

preference information into the prompts that are105

independent of the questions. It is important to note106

that prompts are typically task-specific or domain-107

specific, meaning that the preference information108

learned through prompt learning is preserved in109

a fixed format within the prompts for a particular110

task or domain. However, questions are not specific111

to any domain or task, they are constantly chang-112

ing. This necessitates dynamically incorporates the113

model’s preference information into the questions.114

The PEARL Generator can incorporate preference115

adaptively during paraphrase by learning model116

preferences for expressions under different seman-117

tics. As depicted in Figure 1, the adaptability of the118

PEARL Generator can be concretely manifested119

in its ability to apply different paraphrase types to 120

different questions. The paraphrase type represents 121

the lexical variables manipulated during paraphrase 122

generation (Wahle et al., 2023) . 123

To validate the effectiveness of our approach, we 124

conducted extensive experiments on six datasets 125

across three tasks: open-domain QA, common- 126

sense reasoning, and math word problem. The 127

experiments demonstrate that PEARL significantly 128

enhances model performance. The contributions of 129

this paper are as follows: 130

• We proposed PEARL, a method that addresses 131

the paraphrase divergence in LLMs by paraphras- 132

ing questions in alignment with model preference. 133

PEARL is a black-box method, requiring signifi- 134

cantly fewer trainable parameters than the target 135

LLM and only a small amount of training data. 136

• We propose a prompt-based method for the au- 137

tomatic construction of training sets, aiming to en- 138

hance training effectiveness by increasing diversity 139

in paraphrase types while ensuring the preservation 140

of semantics. 141

• Experiments conducted on six datasets across 142

three tasks demonstrate not only the outstanding 143

performance but also the composability, transfer- 144

ability, and immense potential of PEARL, shedding 145

new light on the black-box tuning of LLMs. 146

2 Related Work 147

Paraphrases are texts that convey identical mean- 148

ings while using different words or structures (Bha- 149

gat and Hovy, 2013; Vila et al., 2014), which is a 150

reflection of the complexity and diversity of human 151

language. Given a sentence, paraphrase genera- 152

tion aims to craft its paraphrases that are different 153

from the original sentence, while maintaining the 154

original meaning (Zhou and Bhat, 2021). Many 155

downstream tasks in natural language processing 156

leverage paraphrase generation, such as question 157

answering(Dong et al., 2017; Gan and Ng, 2019), 158

2



Figure 2: The construction process of the training set for PEARL Generator.

semantic parsing(Cao et al., 2020), dialogue sys-159

tems(Liang et al., 2022; Panda et al., 2021) and160

machine translation(Thompson and Post, 2020). In161

the era of LLMs, leveraging language models for162

end-to-end paraphrasing ensures both substantial163

accuracy and diversity while maintaining flexibility164

and ease of use (Cegin et al., 2023). Therefore, this165

approach has become a mainstream choice for para-166

phrase generation. In this paper, all paraphrases are167

generated through this end-to-end approach.168

Currently, deploying large language models as169

services has become a common practice, such as170

GPT-4 (Achiam et al., 2023), Claude 3 (Anthropic,171

2024). On one hand, fine-tuned models in specific172

domains may possess knowledge that implicates173

privacy concerns. On the other hand, we cannot174

ascertain whether the answers directly provided175

by the model adhere to legal regulations and eth-176

ical norms. Sun et al. were the first to propose177

the concept of LMaaS (Language Model as a Ser-178

vice)(Sun et al., 2022), where LLMs are provided179

to users through interfaces to accomplish various180

downstream tasks. And they advocated for optimiz-181

ing model performance through black-box meth-182

ods. The PEARL method we propose is indeed183

a black-box approach, enabling optimization of184

model performance while requiring only access to185

input-output pairs of the LLMs.186

3 Training of PEARL Generator187

We choose to directly treat preference-driven para-188

phrase generation as a seq2seq task. There-189

fore, the key to training the PEARL Genera-190

tor lies in constructing effective training sets.191

Given an initial training set Q = {q1, q2, . . . , qn}192

comprising n questions, our goal is to con-193

struct a set of paraphrased sentence pairs P =194 {
(pa1, p

c
1) ,

(
pb1, p

d
1

)
, . . . , (pxn, p

y
n)
}

, where each195

pair consists of two sentences that are synonymous196

and all paraphrases originate from questions in the 197

initial training set Q. The former pxn in the sen- 198

tence pair is the input to the PEARL Generator, 199

which represents the question that is not aligned 200

with model preference. The latter pyn in the sen- 201

tence pair is the target output of the PEARL Gener- 202

ator, representing the question aligned with model 203

preference. 204

The process of constructing paraphrased sen- 205

tence pairs can be summarized as generating para- 206

phrases for the questions in the initial training set 207

according to certain rules, and then determining the 208

preference for each question and their paraphrases 209

based on whether the target LLM can correctly 210

answer them. Many existing pre-trained or tuned 211

language models can be used as paraphrase gen- 212

erators directly given relevant prompts. However, 213

their generation tends to be limited to a few types 214

of paraphrases. For the PEARL Generator, we aim 215

to include a sufficient variety of paraphrase types in 216

its training data to increase its opportunities to pro- 217

duce effective paraphrases. Therefore, we choose 218

to include the type instruction in the prompts of the 219

paraphrase generator, as shown in Figure 2. The 220

type classification we use is detailed in Figure 3. 221

Secondly, maintaining the semantic essence of 222

the paraphrases is also crucial. If the paraphrases 223

generated by the PEARL Generator alter the fun- 224

damental meaning, the target LLM would not be 225

able to provide correct answers. But this aspect 226

cannot be solely ensured by the capabilities of the 227

paraphrase generator itself, we require the assis- 228

tance of machine evaluation metrics to help filter 229

out incorrect paraphrases. In this paper, we choose 230

BLUERT (Sellam et al., 2020) as the metric for 231

filtering. When the score between the original ques- 232

tion and its paraphrase falls below a predetermined 233

threshold θ, we filter out the paraphrased question. 234

Finally, we divide synonymous paraphrases into 235
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two sets: the preferred paraphrase set p+n and the236

non-preferred paraphrase set p−n based on feedback237

from the target LLM. Then obtain the set of para-238

phrased sentence pairs P =
⋃N

n=1 (P
+
n × P−

n ) by239

taking their Cartesian Product. Moreover, PEARL240

Generator does not need to paraphrase all questions241

since some of them may already align with the tar-242

get LLM’s preferences. Therefore, we augment243

the training set with a certain amount of identical244

sentence pairs I , allowing the PEARL Generator to245

understand that it can skip paraphrasing questions246

that are already in alignment with the model’s pref-247

erences. We control the ratio between the two types248

of sentence pairs using a parameter λ to obtain the249

final training set F = P ∪ I .250

4 Experiment251

4.1 Set Up252

4.1.1 Implementation Details253

We tune the FLAN-T5-L (770M parameters)254

(Chung et al., 2022) to train a PEARL Generator255

for each task, with details of the composition of256

the initial training set outlined in Section 4.1.2. We257

set the ratio parameter λ for data augmentation to258

0.2 and the filtering threshold θ to 0.4 in all three259

tasks. The learning rate for the training of three260

PEARL Generators is set to 1e − 4, with a batch261

size of 32 and training epochs set to 3. In this pa-262

per, the paraphrase generation model utilized in our263

training sets construction is COEDIT-XXL(Raheja264

et al., 2023), an open-source text editing system.265

We selected MPT-instruct-7B (Team et al.,266

2023a) as the primary target LLM to vali-267

date the effectiveness of PEARL. Additionally,268

we employed TinyLlama-1.3B (Zhang et al.,269

2024), RedPajama-instruct-3B (Computer, 2023),270

BLOOMz-7B (Muennighoff et al., 2023), and MPT-271

instruct-30B (Team et al., 2023b) to assess the272

transferability of the PEARL Generator across273

models of different series and parameter scales.274

To ensure the reproducibility of experiment results,275

we utilized a greedy decoding strategy with max276

new tokens set to 256 for all target LLMs.277

We utilize EM as the evaluation metric for278

question-answer tasks and accuracy for multiple-279

choice tasks. The classification of paraphrase types280

in this paper follows the scheme established by281

Wahle et al. (2023) in Figure 3.282

4.1.2 Datasets283

We conduct experiments on three tasks including284

commonsense reasoning, math word problems, and285

open-domain
QA

Commonsense
Reasoning

Math Word
Problem

Size 1618 1591 1320

Table 1: The size of the final training sets for three tasks.

open-domain QA. For commonsense reasoning, we 286

choose CommonsenseQA(CSQA)(Talmor et al., 287

2019) and SocialIQA (SiQA)(Sap et al., 2019). 288

For math word problem, we choose SVMAP(Patel 289

et al., 2021). For open-domain QA, we choose 290

WebQuestionSP (WebQSP)(Yih et al., 2016), 291

ComplexWebQuestion (CWQ)(Talmor and Berant, 292

2018) and ComplexQuestions (CompQ)(Bao et al., 293

2016). The detailed information for all these exist- 294

ing datasets can be found in Appendix A. 295

We directly use the test set of an original split 296

from each existing dataset for evaluation. For 297

datasets without openly available test sets, we em- 298

ploy the dev set for evaluation. Since we opt to 299

train a PEARL Generator for each task, the initial 300

training set for each task is sourced from the exist- 301

ing training sets of that task. We randomly select 302

part of the data from each existing training set and 303

add it to the corresponding task’s initial training 304

set. The size of the final training sets is shown in 305

Table 1. 306

4.2 Main Result 307

We show the performance comparison in six 308

datasets in Table 2 to validate the effectiveness 309

of PEARL. We selected one baseline and three 310

comparative methods. To ensure fairness in com- 311

parison, we categorize methods into white-box and 312

black-box as follows: 313

Black-Box Methods 314

Manual Prompt: We follow the official recom- 315

mended template for manual prompt construction 316

and use this method as our baseline for comparison. 317

UPRISE (Cheng et al., 2023): This is a uni- 318

versal prompt auto-retrieval method that tunes a 319

lightweight prompt retriever based on contrastive 320

learning. In this paper, we retrieve corresponding 321

prompts from the UPRISE prompt pool for each 322

question and add them to the prompt template as a 323

comparative method. 324

EPR (Rubin et al., 2022): This is an ICL(In- 325

Context Learning) method that trains a dense re- 326

triever to retrieve examples relevant to the input 327

from an example pool. In this paper, we use 328

question-answer pairs from the initial training set 329

as the example pool, retrieving corresponding ex- 330
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Method CompQ WebQSP CWQ CSQA SiQA SVAMP Avg. Gains
EM EM EM acc acc EM

White-Box Method
LORA 32.25 51.49 40.58 50.29 42.12 26.30 40.51 -

Black-Box Method
Manual Prompt 27.00 43.20 32.71 25.55 34.75 26.00 31.54 -

+PEARL 29.88 44.97 34.78 26.78 35.52 27.20 33.19 5.23%↑
UPRISE 30.13 44.66 33.84 27.76 36.54 - 34.59 -

+PEARL 31.25 45.64 35.55 30.06 39.66 - 36.43 5.32%↑
EPR 33.75 46.31 45.67 26.13 37.41 21.60 35.15 -

+PEARL 36.25 49.24 46.46 27.35 39.20 23.50 37.00 5.27%↑

Table 2: Comparative experiments on six datasets across three tasks. We separate the comparison between black-box
and white-box methods and highlight the best-performing black-box method on each dataset in bold. Due to the
absence of relevant prompts for the math word problem task in the UPRISE prompt pool, the results of this method
are missing on the SVAMP dataset.

amples from it for each question and adding them331

to the prompt template as a comparative method.332

White-Box Methods333

LORA(Hu et al., 2021): Low-Rank Adapta-334

tion is a PEFT (Parameter-Efficient Fine-Tuning)335

method. In this paper, we directly utilize the initial336

training sets of three tasks to conduct LORA Tun-337

ing on the target LLM as a comparative method.338

On one hand, we directly compare PEARL with339

the other methods. On the other hand, considering340

that PEARL is a novel method whose optimization341

aspects do not conflict with those of previous meth-342

ods, we also employ a more persuasive compara-343

tive approach which is combination. Specifically,344

we combine PEARL with black-box comparative345

methods to observe its enhancement. The detailed346

experimental settings of the comparative methods347

and prompt templates we used are provided in Ap-348

pendix B and C, respectively.349

Firstly, our method achieved an average improve-350

ment of 1.65% across the six datasets compared351

to the baseline, which provides initial validation352

of the effectiveness of our approach. Furthermore,353

when our method was combined with the two black-354

box methods, it exhibited improvements over the355

original methods on all datasets, achieving average356

enhancements of 1.84% and 1.85%, respectively.357

This not only further validates the composability358

of our method but also indicates that PEARL in-359

deed addresses an aspect overlooked by previous360

black-box methods. Moreover, it is noticeable that361

the improvement achieved by combining PEARL362

with the two comparative black-box methods is363

more significant compared to using it with only364

manual prompts. This implies that PEARL may365

exhibit a synergistic effect when combined with 366

others, potentially yielding greater than additive 367

improvements. It’s worth noting that the EPR 368

method relies on semantic relevance to retrieve 369

examples. However, the math word problem task 370

requires logical guidance and semantically simi- 371

lar questions may contain conflicting mathematical 372

logic. Therefore, EPR’s performance on SVAMP 373

is not as good as Manual Prompt. Nevertheless, 374

what’s important is that our method achieves im- 375

provement on SVAMP both when combined with 376

manual prompt and EPR. Finally, the overall per- 377

formance of the best-performing black-box method 378

which combines PEARL approaches LORA across 379

the six datasets. Moreover, their performance sur- 380

passes LORA on the CompQ, CWQ, and SVAMP 381

datasets. The analysis in Section 6 indicates that 382

PEARL still has plenty of untapped potential wait- 383

ing to be explored. 384

4.3 Analysis 385

4.3.1 What Preference do LLM have? 386

Describing what expression LLM prefers is a diffi- 387

cult question to answer clearly. LLM may exhibit 388

different preferences for various semantics. And 389

these preferences are challenging to articulate di- 390

rectly with precise terms. Hence, we opt to con- 391

cretize the model preferences based on paraphrase 392

types used in PEARL, leveraging crowdsourcing. 393

More specifically, we represent the model pref- 394

erence as the distribution of paraphrase types that 395

enable the model to correctly answer the question it 396

previously failed to answer correctly. Correspond- 397

ingly, we represent the preferences learned by the 398

PEARL Generator as the distribution of paraphrase 399
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Figure 3: Analysis of model preferences for MPT-instruct-7B. "PG" stands for PEARL Generator. The top section
of the image displays the top-level classification of paraphrase types used in our paper, while the bottom section
displays the second-level classification. The varying shades of color in different squares represent the distribution of
paraphrase types, with darker colors indicating a higher proportion of the paraphrase type in the model’s preferences.

types for all paraphrases within PEARL.400

We selected one dataset from each of the three401

tasks for the analysis of model preferences, and402

the results are depicted in Figure 3. From the403

top-level classification perspective, the paraphrase404

types corresponding to model preferences primar-405

ily concentrate within three categories: Lexicon-406

Based Changes, Morphology-Based Changes, and407

Others. From the second-level classification per-408

spective, the model’s preferences for expression409

mainly manifest in its sensitivity towards three para-410

phrase types: Change of format, Semantic-based,411

and Change of order. Among these, the model412

exhibits particularly high sensitivity to Change of413

format. Furthermore, it can be observed that the414

preferences learned by the PEARL Generator are415

generally consistent with the preferences exhibited416

by the model, although there are also inconsisten-417

cies in some types. For example, in the SVAMP418

dataset, the PEARL Generator indicates that the419

model should be sensitive to Synthetic/analytic sub-420

stitution, but in reality, the model does not exhibit421

sensitivity to this type. Conversely, in the CSQA422

dataset, the model demonstrates a stronger sensitiv-423

ity to Synthetic/analytic substitution compared to424

what the PEARL Generator has learned.425

4.3.2 Transfer of PEARL Generator426

Although the pre-training corpora of various LLMs427

differ, they contain some overlapping text. There-428

fore, we speculate that there may be some shared 429

preferences among different LLMs, enabling the 430

PEARL Generator to still function when trans- 431

ferred to other target LLMs. Hence, we attempted 432

to employ the PEARL Generator trained on MPT- 433

instruct-7B to LLMs of different series. We also 434

tried employing it on LLMs of the same series but 435

with different parameter scales. The results are 436

shown in Table 3. 437

Overall, the PEARL Generator still contributes 438

to improving the performance of the target LLM 439

after being transferred, achieving average enhance- 440

ments of 0.52%, 1.23%, 2.94%, and 0.83% on four 441

LLMs, respectively. And there is an intriguing 442

observation can be observed. When considering 443

solely the scale of model parameters, the perfor- 444

mance of the PEARL Generator tends to improve 445

as the size of the target model for transfer becomes 446

closer to that of the original model. Models with 447

similar parameter scales tend to exhibit more simi- 448

lar preferences, offering a potential explanation for 449

this phenomenon. However, we posit that differ- 450

ences in the inherent capabilities of models may 451

also contribute to this experimental observation. 452

Additionally, the transferred PEARL Genera- 453

tor resulted in performance decreases for some 454

LLMs on a few datasets. This is because the 455

PEARL Generator generated more counterproduc- 456

tive paraphrases than productive paraphrases on 457
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LLM CompQ WebQSP CWQ CSQA SiQA SVAMP Avg. Gains
EM EM EM acc acc EM

TinyLlama-1.3B 24.75 46.19 31.51 28.58 32.91 17.50 30.24 -
+PEARL GENERATOR 26.13 46.25 32.23 27.35 34.80 17.80 30.76 1.72%↑

RedPajama-instruct-3B 13.50 26.67 22.90 32.84 38.89 12.60 24.57 -
+PEARL GENERATOR 16.25 27.70 26.31 33.25 40.38 10.90 25.80 5.01%↑

BLOOMz-7B 13.88 27.88 22.93 28.17 33.57 19.10 24.26 -
+PEARL GENERATOR 16.88 32.21 26.09 31.94 35.36 20.70 27.20 12.12%↑

MPT-instruct-30B 34.25 46.49 35.61 54.63 50.51 57.30 46.47 -
+PEARL GENERATOR 36.25 47.77 37.14 53.15 51.38 58.10 47.30 1.79%↑

Table 3: The performance of the PEARL Generator trained on MPT-instruct-7B when transferred to other target
LLMs. We highlight in bold the superior performance before and after using the PEARL Generator.

CompQ WebQSP CWQ CSQA SiQA SVAMP Avg.
EM EM EM acc acc EM

PEARL 29.88 44.97 34.78 26.78 35.52 27.20 33.19
-w/o Type Instruction 28.88 44.17 34.04 24.82 34.44 28.10 32.41
-w/o Filter 27.00 41.37 30.12 24.57 34.70 25.70 30.58
-w/o Argumentation 26.50 42.04 30.72 24.90 35.21 26.40 30.96

Table 4: Ablation study on the effectiveness of our training set construction strategies across six datasets. We
highlight in bold the best-performing method on each dataset.

Gini Coefficient CompQ CSQA SVAMP
PEARL 0.8748 0.8731 0.8351
-w/o Type Instruction 0.8032 0.8286 0.7913

Table 5: Gini Coefficients of the paraphrase type distri-
butions generated by the PEARL Generator.

Proportion CompQ CSQA SVAMP
PEARL 3.75% 7.53% 7.7%
-w/o Argumentation 7.88% 12.61% 10.1%

Table 6: Proportions of the counterproductive para-
phrase generated by the PEARL Generator.

these datasets. Counterproductive paraphrase refers458

to paraphrase that leads the model to incorrectly an-459

swer questions it would have originally answered460

correctly, while productive paraphrase has the op-461

posite effect. We believe that the reason for this462

phenomenon is that the transfer causes a signifi-463

cant gap between the preferences learned by the464

PEARL Generator and the actual preferences of465

the target LLMs, which becomes more pronounced466

on certain datasets.467

4.3.3 Ablation Study468

We conducted ablation experiments on six datasets469

to validate our strategies in training set construc-470

tion. Table 4 presents the results of our ablation471

experiments, from which we can observe the fol-472

Figure 4: BLUERT scores of the paraphrases gener-
ated by the PEARL Generator relative to the original
questions.

lowing findings: 473

(a) Without paraphrase type instructions, the 474

overall performance of PEARL decreases. In Table 475

5, we present the Gini Coefficients of the para- 476

phrase type distributions generated by the PEARL 477

Generator before and after removing type instruc- 478

tions on three representative datasets from each 479

task. The Gini Coefficient is a metric used to mea- 480

sure the degree of inequality in a distribution, rang- 481

ing from 0 to 1, where values closer to 0 indicate a 482

more even distribution across categories. After in- 483

corporating type instructions, the Gini Coefficients 484

on all three datasets have decreased. This indicates 485

that the final training sets under type instruction 486
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tend to encourage the PEARL Generator to gen-487

erate more diverse paraphrase types. We believe488

this can increase the opportunities for the PEARL489

Generator to produce effective paraphrases, thereby490

enhancing the performance of the PEARL.491

(b) After removing the filter strategy, the per-492

formance of PEARL significantly decreases. In493

Figure 4, we illustrate the BLUERT scores of the494

paraphrases generated by the PEARL Generator495

relative to the original questions before and after496

removing the filter strategy on three datasets. After497

incorporating the Filter strategy, the number of out-498

liers in the scores significantly decreases and these499

outliers likely represent incorrect paraphrases. We500

believe that our filtering strategy successfully re-501

moves incorrect paraphrases from the training set,502

thereby ensuring semantic coherence before and503

after paraphrasing by the PEARL Generator.504

(c) Without the augmentation of identical sen-505

tence pairs in the training set, the performance of506

PEARL significantly decreases. From Figure 3, it507

can be seen that the paraphrase types used by the508

PEARL Generator for the three tasks all include a509

certain proportion of Non-paraphrase types. This510

indicates that the PEARL Generator has learned to511

preserve the expression for some questions. Addi-512

tionally, in Table 6, we compiled the proportions513

of counterproductive paraphrases generated by the514

PEARL Generator before and after removing data515

augmentation. It can be observed that our augmen-516

tation strategy significantly reduces the counterpro-517

ductive paraphrase. Therefore, we believe that the518

PEARL Generator learns what expressions already519

satisfy the model preferences through this strategy,520

and by not altering them, it reduces the likelihood521

of its paraphrase having a counterproductive effect.522

4.3.4 Empirical Suggestions on Paraphrase523

In the era of LLMs, some research has pro-524

vided empirical suggestions on how to prompt525

LLMs(Saravia, 2022; Nigh., 2023). Based on our526

analysis of the LLM’s preferences for expression,527

we also provide three empirical suggestions on how528

to paraphrase questions to align with model pref-529

erences. The detailed suggestions are as follows,530

with corresponding examples in Figure 5531

Emphasize the requirement for clarity. Make532

your questions as clear and specific as possible,533

even if some emphasis on restrictive requirements534

may seem unnecessary to you. For instance, in535

Example 1, it is better to specify directly what you536

want the LLM to answer, such as ’term’, rather537

Figure 5: Three examples of effective paraphrases. ’Q’
represents the original question and ’P’ represents the
paraphrased question."

than posing a broader question like “what comes 538

out as what”. In Example 2, a clearer emphasis on 539

wanting information about "accomplishments" is 540

preferred over a broad inquiry into “what did St. 541

Augustine do”. 542

Precede with essential information. Empha- 543

size significant modifying details by placing them 544

at the beginning of the sentence, including restric- 545

tive elements such as time, place, manner, reason, 546

purpose, and conditions. For example, in Exam- 547

ple 3, the explanatory clause ’Before joining the 548

Celtics’ is emphasized by being placed at the be- 549

ginning of the sentence as an adverbial phrase. 550

Pay attention to spelling. Correct and meticu- 551

lous spelling helps ensure accurate responses from 552

the LLMs. when it comes to proper nouns, titles, 553

honorifics, as well as abbreviations, and acronyms, 554

it’s important to observe capitalization. In Exam- 555

ples 2 and 3, the paraphrases demonstrate the cor- 556

rect spelling of both personal names and the team 557

name, as opposed to the original questions. 558

5 Conclusion 559

In this paper, we regard the paraphrase divergence 560

of LLM as a problem of alignment with model pref- 561

erence. We propose PEARL, a black-box method 562

that enhances model performance by paraphrasing 563

questions in expressions preferred by the model. 564

Extensive experiments on six datasets across three 565

tasks validate the effectiveness, composability, and 566

transferability of PEARL. Furthermore, our analy- 567

sis experiments concretize LLM’s preferences for 568

expression by analyzing paraphrase types and un- 569

covering significant untapped potential in PEARL. 570
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Figure 6: Potential Accuracy of the PEARL Generator compared to ChatGPT-3.5-turbo as the number of paraphrase
ranges from 1 to 5.

6 Limitations571

We believe that the limiting factors of the PEARL,572

or rather, where its potential lies, can mainly be573

attributed to two aspects: One is the PEARL Gen-574

erator’s ability to learn preferences, including how575

many preferences it can learn and whether the576

learned preferences are accurate. Another aspect577

is the PEARL Generator’s paraphrase capability578

itself, including the diversity of paraphrase man-579

ner, the fluency and naturalness of sentences after580

paraphrase, semantic coherence before and after581

paraphrase, and several other factors. Although582

we have enhanced the paraphrase capability of the583

PEARL Generator to some extent through certain584

strategies in training set construction, we believe585

that there is still considerable optimization poten-586

tial.587

To explore the potential of PEARL, we have de-588

vised two strategies to simulate the alleviation of589

these two limitations. For the first aspect, we intro-590

duce the concept of "Potential Accuracy". Specifi-591

cally, we perturb the paraphrase generation of the592

PEARL Generator by adding some prompts before593

its input, aiming to produce different paraphrases.594

The specific prompts used can be found in Ap-595

pendix D. If among these paraphrases there exists596

one that allows the model to answer correctly, we597

consider this paraphrase effective and calculate the598

accuracy based on it, referred to as potential ac-599

curacy. For the second aspect, we opt to replace 600

the PEARL Generator with a more powerful para- 601

phrase generation model. 602

Figure 6 illustrates the results. For the PEARL 603

Generator, when the number of paraphrases is equal 604

to one, its potential accuracy significantly exceeds 605

its accuracy by a noticeable margin. Moreover, as 606

the number of paraphrases increases, its potential 607

accuracy continues to improve. We believe that 608

this indicates there is significant potential to be 609

explored in both the PEARL Generator’s ability 610

to learn preferences and its paraphrase capability. 611

As for how to fully exploit this potential, we will 612

continue to investigate in our future work. 613
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A Datasets Details895

Open-Domain QA:896

WebQuestionSP (WebQSP)(Yih et al., 2016)897

consists of 4737 examples containing NL ques-898

tions and answers with semantic parses. Originally899

it was split into 3,298 questions as a train set and900

1,639 questions as a test set.901

ComplexWebQuestion (CWQ)(Talmor and Be-902

rant, 2018) is a dataset for answering complex ques-903

tions, which is constructed by programmatically904

Hyper-parameters
rank 64

lora_alpha 128
lora dropoute 0.05

Target modules Wqkv
Training epoch 3

Table 7: Hyper-parameters.

generating more complex formal queries from We- 905

bQuestionsSP, then generating pseudo-NL ques- 906

tions for crowd workers to improve into NL ques- 907

tions. It was split into 2848/250/1639 examples for 908

training, validation, and testing. 909

ComplexQuestions (CompQ)(Bao et al., 2016) 910

contains 2,100 complex questions and was col- 911

lected by mining a Bing search query log for ques- 912

tions with multi-constraint. The dataset was split 913

into 1,300 training and 800 testing questions. 914

Commonsense Reasoning: 915

CommonsenseQA(CSQA)(Talmor et al., 2019) 916

is a multiple-choice question-answering dataset 917

that requires different types of commonsense 918

knowledge to predict the correct answers. Each op- 919

tion includes one correct answer and four distractor 920

answers. It was officially split into 9741/1221/1140 921

examples for training, validation, and testing. 922

SocialQA (SiQA)(Sap et al., 2019) is a question- 923

answering benchmark for testing social common- 924

sense intelligence, which focuses on reasoning 925

about people’s actions and their social implica- 926

tions. Each option includes one correct answer 927

and two distractor answers. It was split into 928

33410/1954/2059 examples for training, validation, 929

and testing. 930

Math Word Problem: 931

SVMAP(Patel et al., 2021) is a challenge set for 932

elementary-level Math Word Problems (MWP). An 933

MWP consists of a short Natural Language narra- 934

tive that describes a state of the world and poses 935

a question about some unknown quantities. We 936

follow Patel et al. (2021) to use the Combination 937

of full MAWPS(Koncel-Kedziorski et al., 2016) 938

and ASDiv-A(Miao et al., 2020) which has 3591 939

examples as the train set. 940

B Set Up for Comparative Experiment 941

LORA: 942

We utilized the official repository 2 of MPT for 943

2https://github.com/mosaicml/llm-foundry/
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Figure 7: Prompts for MPT-instruct-7B.

Figure 8: Prompts for PEARL Generator.

LORA Tuning, employing training data consistent944

with the initial training set used for training the945

PEARL Generator. For specific parameter settings,946

please refer to Table 7.947

UPRISE:948

We employed the officially trained retriever and949

pre-constructed prompt pool. For the task settings950

in open-domain question answering and common-951

sense reasoning, as well as the parameter settings952

in retrieval, we adhered to the default settings pro-953

vided in the official code repository3.954

3https://github.com/microsoft/LMOps/tree/main/

EPR: 955

We opted to train an example retriever for each 956

task, using training data consistent with the ini- 957

tial training set employed for training the PEARL 958

Generator. All parameter settings for training and 959

retrieval were adhered to the default settings pro- 960

vided in the official code repository4. 961

C Prompt of LLM 962

We followed the official instruction prompt tem- 963

plates to set up prompts for MPT-instruct-7B. The 964

specific prompts used for different comparison ex- 965

periments across various tasks can be found in Fig- 966

ures 7. 967

D Prompt of PEARL Generator 968

In Section 4.3.4, when generating paraphrases with 969

the PEARL Generator, we perturb it by adding 970

some prompts to the input. For specific prompts, 971

please refer to Figure 8. 972

uprise
4https://github.com/ohadrubin/epr
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