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Abstract

We prove that using global observables to train the matrix prod-
uct state ansatz results in the vanishing of all partial derivatives,
also known as barren plateaus, while using local observables
avoids this. This ansatz is widely used in quantum machine
learning for learning weakly entangled state approximations.
Additionally, we empirically demonstrate that in many cases,
the objective function is an inner product of almost sparse
operators, highlighting the potential for classically simulating
such a learning problem with few quantum resources. All our
results are experimentally validated across various scenarios.

Introduction
Quantum computing has made major strides in the past few
years in terms of qubit capacity (Chow, Dial, and Gambetta
2021; Gambetta 2022) and error correction (da Silva et al.
2024), prompting significant efforts in demonstrating con-
crete advantages over classical computers. Although this
has been achieved in some cases (Arute et al. 2019; Zhong
et al. 2020; Madsen et al. 2022), superiority in solving practi-
cally useful problems remains to be seen. With the emer-
gence of Noisy Intermediate Scale Quantum (NISQ) de-
vices (Preskill 2018), recent focus has shifted to quantum
optimization algorithms, especially Variational Quantum Al-
gorithms (VQAs) (Cerezo et al. 2021a). In VQAs, we use
quantum computers to estimate objective functions involv-
ing quantum states and parameterized quantum circuits (also
called ansatzes) and update the parameters of these functions
classically. Popular examples include variational quantum
eigensolver (Peruzzo et al. 2014), quantum support vector
machines (Havlíček et al. 2019), quantum approximate opti-
mization algorithm (Farhi, Goldstone, and Gutmann 2014),
etc.

An important example that features extensively in quan-
tum information is learning cost-effective approximations
of quantum states (Cerezo et al. 2021b; Matos, Johri, and
Papić 2021; Gard et al. 2020). These techniques can be used
to learn ansatzes that can approximately prepare states us-
ing fewer gates than initially required. Among the many
choices of ansatzes used, interest has surged in the Matrix
Product State (MPS) ansatz (cf. Figure 1 (a)) (Rudolph et al.
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2022; Ran 2020; Ben-Dov et al. 2022; Lin et al. 2021; Rieser,
Köster, and Raulf 2023). The MPS ansatz leverages the MPS
data structure, which stores quantum states with space com-
plexity that scales polynomially with the bond dimensions
(parameters that measure entanglement in linear qubit arrays).
Consequently, the MPS ansatz is particularly effective for
learning weakly entangled approximations, potentially re-
sulting in fewer gate counts and simpler gate connectivity
requirements compared to other approaches.

Learning state approximations variationally can be per-
formed using either global or local observables (Cerezo
et al. 2021b). Experimental results in (Ben-Dov et al. 2022)
showed that using the MPS ansatz along with global observ-
ables for state approximations can result in barren plateaus,
where all partial derivatives become exponentially small in
the number of qubits. This makes estimating these derivatives
using quantum devices require exponentially many execu-
tions. Moreover, the parameter updates also become exponen-
tially small. In contrast, it was empirically shown that using
local observables can help mitigate this issue.

Theoretically proving this phenomenon is a challenging
task. Although this has been achieved for similar problems
such as optimization over the Hardware Efficient Ansatz
(HEA) (Cerezo et al. 2021b) (cf. Figure 1 (b)) and tensor
network-based optimization in quantum information (Liu
et al. 2022), these results cannot be used to explain expo-
nentially vanishing objective functions and gradients for the
MPS ansatz.

This work provides rigorous trainability proofs for the
MPS ansatz. We prove that under uniformly random initializa-
tion of the circuit parameters, when using global observables,
the variance of the objective function decreases exponentially
while the usage of local observables ensures that the same
variance is lower bounded by a quantity whose dependence
on the number of qubits is linear and scales exponentially
only in the width of the subcircuit involved. We also relate
this with the variance of the partial derivatives and show that
similar results hold for them as well.

Trainability is closely interrelated with classical simulabil-
ity. In (Cerezo et al. 2024), it was conjectured, with evidence,
that provably avoiding barren plateaus in this manner could
imply classical simulability with few quantum resources.
That is, for all provably trainable VQA objective functions,
one can simulate the whole optimization classically using
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the outputs of a few quantum measurements implemented
beforehand on the input state. By proving the trainability of
the MPS ansatz and local observable combination, our work
prepares the groundwork for studying its classical simulabil-
ity.

On this side, we demonstrate that these trainable VQA ob-
jective functions exhibit effective subspaces. These subspaces
are loosely defined as the subspaces where the observables,
when conjugated with the ansatzes, tend to be mostly concen-
trated, for almost all input parameters (Cerezo et al. 2024).
If the objective function exhibits this property, then most
function evaluations, which are nothing but inner products
of the state with these conjugated observables (cf. Eq (2)),
could potentially be classically estimated using the input
state’s coefficients in this subspace estimated beforehand us-
ing a quantum device. We first characterize the property of
exhibiting effective subspaces by introducing an efficiently
estimable norm for observables, the C-K norm, which we
use to experimentally show that the MPS ansatz and local
observable combination exhibits an effective subspace within
the Pauli basis.

Our main contributions can be summarized as follows:
1. For the problem of learning weakly entangled state ap-

proximations variationally, we rigorously prove that the
usage of global observables will induce barren plateaus,
while the usage of local observables will avoid them.

2. We empirically show that the MPS ansatz, when used in
combination with local observables, exhibits an effective
subspace within the Pauli basis, which is conjectured to
be a consequence of avoiding cost concentration and a
sufficient condition for the ansatz to be classically simu-
lable using few quantum resources as per (Cerezo et al.
2024).

Finally, we experimentally validate our results across vari-
ous scenarios, including the impact of observable choices
on MPS ansatz optimization and the detection of effective
subspaces in MPS ansatz as well as other ansatzes such as
HEA, and Quantum Convolutional Neural Network (QCNN)
(cf. Figure 1 (c)).

Related Works
The impact of the locality of the observables on trainability
was first observed in (Cerezo et al. 2021b), wherein the usage
of global (local) observables were shown to induce (avoid)
barren plateaus. But, the results of this work only hold for
HEAs, and not for the MPS ansatz. Also, our inductive proof
technique, which requires integration of only one subcircuit
to start the induction, is very different from the techniques
used in (Cerezo et al. 2021b), where the proof requires more
complicated integrations over many subcircuits.

In (Liu et al. 2022; Garcia et al. 2023; Barthel and Miao
2024), the theoretical study of barren plateaus in tensor-
network-based machine learning with MPS inputs reveals
that using global observables in the objective function intro-
duces barren plateaus, whereas local observables avoid them.
However, as mentioned in (Liu et al. 2022), their model and
assumptions differ from a variational circuit model. They
model the input using the unitary decomposition of MPS,

where each component tensor is reshaped into a 2D × 2D
unitary matrix, with D as the bond dimension. The random-
ness is modeled by assuming these unitaries form unitary
2-designs (Dankert et al. 2009), which are ensembles of uni-
taries such that integrating quadratic polynomials over them
is equivalent to integrating the same over the Haar measure.
In contrast, we assume that the subcircuits are sampled from
unitary 2-designs, which is more natural for circuit-based
problems as a circuit depth polynomial in the width of the
subcircuits suffices for them to behave like a unitary 2-design
under uniformly random parameter initialization (Harrow
and Low 2009).

In (Ben-Dov et al. 2022), it was experimentally observed
that while using the MPS ansatz, the usage of global observ-
ables leads to exponentially decreasing gradient magnitudes,
whereas local observables avoid this issue. In our work, we
study this phenomenon theoretically as well as similar trends
in cost concentration. The existence of exponentially decreas-
ing partial derivatives in MPS ansatz-based VQAs is proved
using ZX-calculus in (Zhao and Gao 2021). However, the
method can only be used to prove this for individual exam-
ples of the MPS ansatz, with pre-defined structures for the
subcircuits. In contrast, our proofs consider the most gener-
alized form of the ansatz, with the only assumption being
that the subcircuits form unitary 2 designs. Also in (Zhao
and Gao 2021), there are no discussions regarding the impact
that observables and subcircuit widths can have on trainabil-
ity, which we theoretically demonstrate in the case of cost
concentration as well as barren plateaus.

Background
We denote column vectors as |ψ⟩ (’ket’ notation) and their
conjugate transposes as ⟨ψ| (’bra’ notation). The vector
|i⟩ ∈ Cd represents the ith computational basis vector.
We also define |0⟩ := |0⟩⊗n, where n is the number of
qubits involved. We define 1t to be the identity matrix act-
ing on C2t , with 1 := 11, and for any A ∈ C2×2, we
define A(n)

t := 1n−t ⊗ A ⊗ 1t−1. For a set of matrices
{A(1), . . . , A(p)}, we define

∏p
i=1A

(i) := A(1) . . . A(p).
For any complex matrix A =

∑
ij Aij |i⟩ ⟨j|, ∥A∥1 :=∑

ij |Aij | and ∥A∥tr := tr(
√
A†A). Any matrix A ∈ C2t×2t

such that A = A(1) ⊗ · · · ⊗ A(t) for some A(1), . . . , A(n) ∈
C2×2 is called a product matrix.

Quantum Computing
A (pure) quantum state is a (rank one) positive semidefinite
operator σ ∈ Cd×d, such that tr(σ) = 1. In quantum comput-
ing, a qubit is the quantum counterpart of a classical bit. An
n-qubit system’s state can be represented by a quantum state
in C2n×2n .

A quantum gate operating on n qubits is represented by a
unitary operator U ∈ C2n×2n , which transforms the state of
an n-qubit system from σ to σU := UσU †. In particular, the
one-qubit Pauli gates are defined as

X :=

[
0 1
1 0

]
, Y :=

[
0 −i
i 0

]
, Z :=

[
1 0
0 −1

]
. (1)
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We define Pn as the set of all n-fold tensor products of the
elements in {1, X, Y, Z}.

A quantum circuit is defined as a composition of multiple
quantum gates. The width of a quantum circuit is defined
as the number of qubits on which it is defined. A Hermitian

(a) (b) (c) (d)

Figure 1: (a) Example of an MPS ansatz with n = 5 and
t = 3. The numbers on the end of each qubit wire are the
indices of the qubits. (b) HEA, where each connected pair
of boxes are 2-qubit subcircuits. (c) QCNN ansatz (d) The
2-qubit subcircuit used in our simulations within HEA and
QCNN, where each box is an arbitrary single qubit gate

operator, also known as an observable, can be used to define
a measurement and an expectation value. A measurement of
a system in a state σ, using an observable W with eigende-
composition W =

∑
i ωi |wi⟩ ⟨wi| results in an outcome ωi

with probability ⟨wi|σ |wi⟩. Thus, the expected value of the
measurement outcome is tr(Wσ).

We define Dn,Un and Hn as the set of all n-qubit pure
states, gates, and observables. If a matrix A acting on an
n-qubit system acts as 1n−k on n − k qubits, then we call
the matrix a k-local matrix. For any two pure n-qubit states
σ and ρ, the quantum fidelity, defined as F (ρ, σ) := tr(ρσ),
serves as a measure of similarity between the states with a
fidelity of 1 indicating that σ = ρ.

Variational Quantum Algorithms
Many optimization problems in quantum information can
be formulated as the optimization of outputs from param-
eterized quantum circuits, also called ansatzes, denoted as
C(θ) ∈ Un, where θ is a vector of parameters. Typically,
these problems involve optimizing (over θ) the function de-
fined as

fσ,W,C(θ) = tr
(
WC(θ)σC(θ)†

)
= tr

(
WσC(θ)

)
, (2)

where σ is the input quantum state, σC(θ) is C(θ)σC(θ)†

by our notation, and W is an output observable. One can
estimate this function for any input θ by sample means es-
timation of the expected value of measuring the state σC(θ)

using W . With this capability, all partial derivatives can also
be estimated using standard methods such as finite differ-
encing or quantum-specific ones such as the parameter shift
rule (Mitarai et al. 2018). The θ search space has O(poly(n))
dimensions. Hence, θ can be updated towards the optimum
classically. Throughout this work, we omit the subscript C
and use the notation fσ,W since the choice of ansatz C is
usually implicitly understood from the context.

MPS Ansatz
The MPS ansatz is given in Figure 1 (a). It is built using t
cascading layers of smaller parameterized subcircuits Ui(θi)
for i = 1, . . . , t, each with width k. Mathematically, the
ansatz is defined as

C
(n)
t (θ) =

t∏
p=1

1⊗n−k−p+1 ⊗ Up(θp)⊗ 1⊗p−1, (3)

where t ≤ n − k + 1, θ = θ1 ⊕ · · · ⊕ θt with θp =
[θp1, θp2, . . . , θpm] and Up(θp) =

∏m
q=1 e

−iθpqHpq are k-
qubit parameterized subcircuits, with Hpq ∈ Hk.

This ansatz has a close relationship with the MPS data
structure, which can store quantum states with space com-
plexity that is positively correlated with the entanglement
between neighboring qubits measured using their bond di-
mensions (Cirac et al. 2021). From (Cramer et al. 2010), we
can see that every state that can be represented efficiently as
an MPS with bond dimensions at most 2k−1 can be imple-
mented using this ansatz (assuming that Up can implement
any k-qubit unitary). This is what led many works to use
the MPS ansatz to solve state approximation problems varia-
tionally (Lin et al. 2021; Rudolph et al. 2022; Ben-Dov et al.
2022; Ran 2020; Rieser, Köster, and Raulf 2023).

Throughout this work, we set T = n−k+1, and our focus
is on C(n)

T . Also, in appropriate contexts, we denote C(n)
T as

CT , as the dependency on n is implied by the system’s size.

State Approximation Using MPS Ansatz
The problem that we consider here is as follows: given many
copies of an n-qubit pure state σ (or stronger access to a
circuit that can prepare σ), output the parameters of an MPS
ansatz such that we can approximately prepare σ using these
parameters. We present two different approaches to solve this
problem, differing only in their measurement strategies.

In the first method, the idea is to maximize the fi-
delity between |0⟩ ⟨0|CT (θ)† and σ, over θ. That is, find
argmaxθ fσ,|0⟩⟨0|(θ). This fidelity can be estimated by ap-
plying CT (θ) on σ, measuring all qubits simultaneously us-
ing the observable Z, and estimating the probability of all
measurements resulting in +1. So the observable whose ex-
pectation features within the objective function is the global
observable |0⟩ ⟨0|.

Alternatively, in the second method, we employ the ex-
pectation of O := 1/n

∑n
i=1 |0⟩ ⟨0|i, which is a sum of

1-local observables. The intuition here is that if θ∗ maxi-
mizes fσ,|0⟩⟨0|, then σCT (θ∗) = |0⟩ ⟨0| and hence fσ,O also
attains its maximum on θ∗. Moreover, for any θ, within
fσ,O(θ) = 1/n

∑n
i=1 fσ,|0⟩⟨0|i(θ), the ith summand can be

estimated by measuring the ith qubit of σCT (θ) using Z and
estimating the probability that it yields +1.

Trainability
In this section, we present our theoretical results regarding
cost concentration and barren plateaus of state approximation
carried out using global and local observables.

15500



Cost Concentration
We start with a formal definition of cost concentration.

Definition 1. Let σ ∈ Dn, W ∈ Hn, and θ be distributed
over a compact parameter space. For any ansatz C, fσ,W
exhibits cost concentration if

Varθ (fσ,W (θ)) ∈ O
(

1

bn

)
(4)

for some b > 1.

From the above definition, we can see that for any VQA
objective function that exhibits cost concentration, the output
would be exponentially concentrated around Eθ (fσ,W (θ)).
Thus, if there exists a space V such that ∀ θ ∈ V, fσ,W (θ) ≥
Eθ (fσ,W (θ)) + Ω(1), then, V must have O(1/bn) measure.
Further, cost concentration ensures that the landscape of
fσ,W (θ) is extremely flat for almost all θ. Thus gradient
variations are too small to distinguish from zero using at
most O(poly(n)) samples ensuring there is no strong gradi-
ent to follow to reach V. Therefore, to estimate these outputs
with meaningful precision, one would require an exponen-
tially large number of samples, or equivalently, copies of
σ.

Now, we present our theoretical results regarding cost
concentration in learning MPS approximations variation-
ally using CT . Many trainability results in the literature as-
sume one of two assumptions on the input state (Cerezo
et al. 2024); either they are “close" to product states (Pesah
et al. 2021; Cerezo et al. 2021b) or they are sparse (Mon-
broussou et al. 2023; Larocca et al. 2022; Cherrat et al.
2023). Our results also make such assumptions and hence
use h1(σ) := minV1,...,Vn∈U2 ∥σV1⊗···⊗Vn∥21 and h2(σ) =
minρ1,...,ρn∈D1 ∥ρ1 ⊗ · · · ⊗ ρn − σ∥tr, to quantify sparsity
and proximity to product states respectively.

We start by proving that using global observables for state
approximation can give rise to an objective function that
exhibits cost concentration.

Theorem 1. Let σ ∈ Dn and C(n)
T be an MPS ansatz where

each parameterized subcircuit Ui forms a unitary 2-design.
Then, we have

Varθ
(
fσ,|0⟩⟨0|(θ)

)
≤ h1(σ)

4n−k−1
. (5)

Hence, for states with h1(σ) ∈ O(4n/p) with p > 1, we
see that the upper bound will decrease exponentially.

In contrast, the next theorem shows that the alternative
method leveraging local observables provably avoids cost
concentration.

Theorem 2. Let σ ∈ Dn, O := 1/n
∑n

i=1 |0⟩ ⟨0|i, and C(n)
T

be an MPS ansatz, where each parameterized subcircuit Ui

forms a unitary 2-design. Then, we have

Varθ (fσ,O(θ)) ≥
1

n(22k+1 + 4)
− h2(σ)

2n
. (6)

We note that for any product state σ, h2(σ) = 0. More
generally, when h2(σ) ≪ 1/(22k + 2), the lower bound
scales linearly in n and exponentially only in k.

The core idea behind both proofs is to integrate each Ut

starting from UT using standard Haar random integration
methods. Typically, this would yield a linear combination
of multiple terms, each being an expectation of MPS ansatz
circuit outputs with the same observables but defined over
n−T+t−1 qubit systems and different input states that were
dependent on the previous state. Thus, naively integrating
each Ut one at a time requires integrating a number of terms
exponential in T . However, we demonstrate that for the MPS
ansatz and the state classes in Theorems 1 and 2, integrating
any Ut results in a linear combination of such terms that are
independent of the previous state, with such state dependency
only in the coefficients. This allows us to compute all T
integrations using products of T matrices, whose dimension
is the number of terms in the linear combination, which in
our case, is 2.

Our experimental results discussed later in this work used
input states with h1 and h2 not necessarily small, suggesting
this or similar bounds for a wider variety of states may hold.

Some works in the literature that use the MPS ansatz con-
sider efficient MPS descriptions of states as input, rather
than actual quantum states. In such cases, the entire VQA
optimization can be efficiently implemented on classical com-
puters using tensor network simulation (Jozsa 2006). Within
such methods, the objective function is evaluated exactly, not
estimated, so cost concentration is not an issue. However,
as we will see in the next section, cost concentration also
leads to barren plateaus, which can cause parameter updates
to be exponentially small, thus hindering even fully classical
optimization protocols.

From Cost Concentration to Barren Plateaus
In this section, we discuss the relationship of Theorems 1
and 2 to barren plateaus. First, we formally define barren
plateaus, as per (Arrasmith et al. 2022).

Definition 2. Let σ ∈ Dn and let W ∈ Hn. For any ansatz

C(θ) =
t∏

p=1
Up(θp), where Up(θp) =

m∏
q=1

e−iθpqHpq , θp =

[θp1 . . . θpm], Hpq ∈ Hn and θ = θ1 ⊕ · · ·⊕θt, and for any
p, q, define

U (L,q)
p (θp) =

q−1∏
j=1

e−iθpjHpj , (7)

U (R,q)
p (θp) =

m∏
j=q+1

e−iθpjHpj . (8)

Then, fσ,W exhibits a barren plateau if ∀ p, q satisfying 1 ≤
p ≤ t, 1 ≤ q ≤ m, we have

Varθ
(
∂θpqfσ,W (θ)

)
∈ O

(
1

bn

)
, (9)

for some constant b > 1, where ∂θpqfσ,W (θ) is it’s partial
derivative with respect to θpq and U1, . . . Up−1, Up+1, . . . Ut,
along with one of U (L,q)

p or U (R,q)
p are distributed according

to the Haar measure and θpq is distributed uniformly.
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Just as cost concentration makes the outputs of most
inputs exponentially concentrated, barren plateaus cause
most partial derivatives to be exponentially small, since
Eθ

(
∂θpq tr(WσC(θ))

)
= 0 ∀ p, q (Cerezo et al. 2021b). This

means that estimating these derivatives will require exponen-
tial resources, and in most cases, the parameter updates that
gradient-based classical optimizers make will be exponen-
tially small.

Next, we will use Theorem 1 to demonstrate that employ-
ing the MPS ansatz for learning state approximations leads
to barren plateaus when global observables are used.

Corollary 1. Let σ ∈ Dn and C(n)
T be an MPS ansatz. Then,

fσ,|0⟩⟨0| exhibitis barren plateaus if h1(σ) ∈ O(4n/p).

Similarly, we extend Theorem 2 to demonstrate that us-
ing the MPS ansatz with local observables prevents barren
plateaus.

Corollary 2. Let σ ∈ Dn, C(n)
T be an MPS ansatz, and

O := 1/n
n∑

i=1

|0⟩ ⟨0|i. Then, fσ,O does not exhibit barren

plateaus if h2(σ) ≪ 1/(22k + 2).

Towards Classical Simulation Through
Effective Subspaces

In this section, we discuss the possibility of designing an effi-
cient classical algorithm capable of simulating state approxi-
mation VQAs involving MPS ansatzes and local observables,
using very few copies of the input quantum state.

The idea builds on the conjecture from (Cerezo et al. 2024)
which says that any objective function avoiding cost con-
centration exhibits effective subspaces, a property useful for
designing classical simulation algorithms with minimal quan-
tum resources. Our simulations demonstrate that objective
functions involving MPS ansatz and local observables, which
we previously proved to avoid cost concentration, indeed
exhibit effective subspaces within the Pauli basis, further
supporting this conjecture.

Note that in this work, we do not present an explicit algo-
rithm for the aforementioned classical simulation, but rather
present evidence that such a protocol could exist. First, we
introduce effective subspaces as outlined in (Cerezo et al.
2024).

Effective Subspace
Let C(θ) be an n-qubit ansatz and let W ∈ Hn, σ ∈ Dn.
Effective subspaces are loosely defined as follows:

Definition 3. (Cerezo et al. 2024) For any orthonormal basis
K = {K1,K2, . . .K4n} of C2n×2n , and for any θ, define a
distribution Pθ,W,K over K as

Pθ,W,K(Kj) =
fKj ,W (θ)2

∥W∥22
. (10)

An ansatz and observable combination exhibits an effective
subspace if there exists a basis K such that for almost all θ,
Pθ,W,K(Kj) is large only for Kj in a subset Ks ⊂ K, that is
independent of θ and has |Ks| ∈ O(poly(n)).

Note that the elements of K are not restricted to quantum
states. Also, in appropriate contexts, we denote Pθ,W,K(Kj)
as Pθ,W (Kj) as the dependency on K is implicitly under-
stood from the context.

In (Cerezo et al. 2024), it is conjectured, with evidence,
that all ansatz-observable combinations that have been shown
to provably avoid barren plateaus exhibit an effective sub-
space, at least for some subset of input states. Popular ex-
amples involving shallow (O(log n)-depth) ansatzes include
HEA-local observable and the QCNN-local observable com-
binations. In both these cases, the basis K can be Pn. The
presence of effective subspaces means that if we estimate
tr(Kσ) ∀K ∈ Ks as a preprocessing step, and if we can clas-
sically compute tr(EWC(θ)†) ∀K ∈ Ks and ∀ θ efficiently,
then in many cases, fσ,W (θ) can be classically estimated
with good precision, because

fσ,W (θ) = tr
(
WσC(θ)

)
= tr

(
WC(θ)†σ

)
=

∑
K∈K

tr
(
KWC(θ)†

)
tr(Kσ),

and if most tr
(
KWC(θ)†

)
is large only for those K ∈ Ks,

then

fσ,W (θ) ≈
∑

K∈Ks

tr
(
KWC(θ)†

)
tr(Kσ). (11)

This is the underlying principle behind designing classical
simulations using effective subspaces.

When it comes to the classical simulation of fσ,O,CT
(θ) =

1/n
∑

i fσ,|0⟩⟨0|i,CT
(θ), it is sufficient to be able to classi-

cally estimate each fσ,|0⟩⟨0|i(θ) efficiently. From Figure 1
(a), it is easy to see that for any product state σ, among
these n terms, the hardest to estimate are fσ,|0⟩⟨0|i(θ) for
i ∈ {n − k + 1, . . . , n}, because for all other i, at least
one subcircuit within CT (θ) will be canceled leaving an
expression of the same form on fewer qubits. When q sub-
circuits are canceled, at least 4n−q(4q − 1) outcomes of
Pθ,|0⟩⟨0|i,Pn

will be zero for any θ, making the distribution
very concentrated. Also, for any i, j ∈ {n− k + 1, . . . , n},
Eθ(fσ,|0⟩⟨0|i(θ)) = Eθ(fσ,|0⟩⟨0|j (θ)) (proved in the Ap-
pendix). Therefore, we focus on fσ,|0⟩⟨0|n(θ) and aim to
show that the CT -|0⟩ ⟨0|n combination also exhibits an effec-
tive subspace with K = Pn.

C-K Norm
Now, we introduce a norm that can be used to measure how
concentrated the distributions Pθ,W would be, for typical
values of θ. Given any discrete distribution (probability vec-
tor) P , ∥P∥2 can be used to measure how concentrated the
distribution is. A higher ∥P∥2 indicates that the distribution
is concentrated among a few outcomes with high probability.
Hence, we can use the 2-norm of the distributions Pθ,W to
assess how concentrated these distributions are. So, we define
the K-norm (in Hn) as this 2-norm, that is

∥W∥K :=
1

∥W∥2

[∑
K∈K

tr(KW )
4

]1/4

(12)
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Figure 2: Simulation results of state approximation, C-K norms and second moments.

Note that for any θ, ∥WC(θ)†∥K is simply the 2-norm of
the distribution Pθ,W . We first prove the following result

regarding the cost of computing
∥∥∥WC(θ)†

∥∥∥
K

for any θ.

Theorem 3. For any n-qubit quantum circuit V , where the
qubits are arranged in a line, let RV = maxiRV,i, where
RV,i is the number of 2-qubit gates being applied on any
qubits j, k such that j ≤ i ≤ k. Then, for any product
observable W , ∥WV †∥K can be classically evaluated with
cost O

(
2RV

)
.

Although the MPS ansatz is defined using k-qubit parame-
terized gates, Theorem 3 concerns only 2-qubit gates because,
in practice, we always decompose each k-qubit unitary into
smaller 2-qubit parameterized gates. As an example, in all
our simulations, all k-qubit unitaries are HEAs (cf. Figure 1
(b)).

From Figure 1 (a), we can see that RV is independent of
n. Typically, it scales as O(poly(k)) meaning that the cost of
evaluating

∥∥∥WCT (θ)†

∥∥∥
K

will be O
(
2poly(k)

)
.

Now, as mentioned earlier, we would like to analyze∥∥∥|0⟩ ⟨0|nCT (θ)†

∥∥∥
K

for typical values of θ. Hence, we intro-
duce the C-K norm in the following theorem.
Theorem 4. For any parameterized circuit C, and an or-
thonormal basis K of C2n×2n , define

∥W∥C,K :=

∫
θ

∥∥∥WC(θ)†

∥∥∥
K

dθ, (13)

for any W ∈ Hn. Then, ∥ · ∥C,K is a norm on Hn.

This norm can be numerically estimated by sampling var-
ious parameter vectors θ and taking the average of their
∥WC(θ)†∥K. Intuitively, if ∥W∥C,K remains constant or re-
duces only polynomially with respect to n, then we can ex-
pect the C-W combination to exhibit an effect subspace

since the distribution Pθ,W is defined over 4n outcomes.
Conversely, if ∥W∥C,K reduces exponentially with respect to
n, then the C-W combination need not exhibit one.

We first numerically test this hypothesis on some instances
where the presence and absence of effective subspaces are
known. To do this, we choose two ansatzes; shallow HEA and
QCNN, in combination with local and global observables.

It is known that effective subspaces exist when both these
ansatzes are used in combination with local observables. The
results (presented in Figure 2) strongly support the hypothesis
and hence we carry out the same experiments for CT . We
discuss these simulation results in detail in the following
section.

Finally, the effective subspace for CT -|0⟩ ⟨0|n can be
roughly identified by considering the cancellation of subcir-
cuits. Typically, the probability PCT ,|0⟩⟨0|n,Pn

(Pj) increases
when more subcircuits are canceled within its expression, as
this forces some qubits to have no circuits being acted on
them and hence contribute the maximum that any qubit can
to the expectation. This is also true for shallow HEA and
QCNN ansatzes when used with local observables, where
higher probabilities are associated with 1-local Paulis, regard-
less of the position of its non-local component. For Paulis
with a higher locality, one can always find an upper bound on
the total number of non-canceled subcircuits that is indepen-
dent of n and dependent only on the locality. However, for
the CT -|0⟩ ⟨0|n combination, the position of the non-local
part of the Pauli is crucial. The closer it is to the last qubit,
the more subcircuits are canceled, resulting in higher proba-
bilities. Similarly, if the non-local component is on the first
qubit, unlike the other ansatzes, even a 1-local observable
can have no subcircuits getting canceled in the expression
of the probability. Thus, the concentration of probabilities
should be towards Paulis where non-local components occur
near the last qubit. This hypothesis is also validated using
experiments discussed in the next section.
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Figure 3: Boxplots of distributions Pθ,|0⟩⟨0|16,P16
in (a) and

(b), and distributions Pθ,|0⟩⟨0|,P16
in (c) and (d), with subcir-

cuit widths k = 2, 4.

Simulation Results
In this section, we discuss and present the numerical sim-
ulations that we have conducted as part of this work. The
main aims of the simulations are threefold: visualize the im-
pact of Theorems 1 and 2 using learning curves, argue that
similar results could also hold for most states not necessar-
ily satisfying the criteria mentioned in these theorems and
demonstrate the presence (absence) of effective subspaces
when MPS ansatzes are used with local (global) observables.
The structure of all two-qubit subcircuits used in Figure 2 is
given in Figure 1 (d).

We start with the learning curves presented in Figures 2
(a) and (e). Here, we have carried out state approximation
using the MPS ansatz with subcircuit width 2, and target state
|0⟩ ⟨0|. The optimization algorithm used here is SPSA (Spall
1992), where the converging sequences are aj = cj = 0.4
and all parameters are initialized uniformly from [0, π/2].
The x-axis and y-axis represent the iteration number and
corresponding infidelity, defined as 1 − F , respectively. In
(a), we have plotted results for n = 20, 28, with k = 2. We
can see global observables hindering the optimization. In
(e), we plot the results of similar experiments carried out for
n = 12 and local observables, but with k = 2, 3 and 4. The
subcircuits are HEA with depth k. From this, we can see that
increasing k negatively impacts the optimization.

Now, we move on to Figure 2 (b). Here, the x and y axes
represent the number of qubits and the estimated second
moments of the objective functions fσ,|0⟩⟨0|(θ) and fσ,O(θ)
averaged over 5 input states randomly generated using HEA
ansatz of depth ⌊log n⌋, with the single qubit gates being
Haar random. The subcircuit used here is HEA with width
and depth ⌊log n⌋. We can see global observables inducing
cost concentration, and local observables avoiding it, even
though the input states do not necessarily satisfy the condi-
tions required as per Theorems 1 and 2.

Next, we move on to Figures 2 (c,d,f,g,h). The idea here
is to show that the C-K norm can be used to detect the pres-
ence of effective subspace. From (Cerezo et al. 2024), we

know that shallow HEA and QCNN ansatzes exhibit effective
subspaces when used in combination with local observables.
This can be seen from the plots (c), (d), (g), and (h). In (c)
and (d), we have plotted the estimated second moments of
the objective functions fσ,Z⊗n(θ) and fσ,Zn

(θ), averaged
over 5 states generated in the same manner as in the previ-
ous experiment, for the shallow HEA and QCNN ansatzes
respectively. In (g) and (h), we have plotted estimated C-Pn

norms of these combinations. From these four plots, we can
see that the C-Pn norms are behaving as we expected. So,
in Figure 2 (f), we plot the CT -Pn norms, with subcircuits
having the same structure as in (b). The observable is chosen
to be |0⟩ ⟨0|n since as mentioned earlier when it comes to
classical simulation, it suffices to estimate the CT -Pn norms
of |0⟩ ⟨0|n. We can see that when we use local observables,
we get exponentially high CT -Pn norms, thus suggesting the
presence of effective subspaces.

As noted at the end of Section C-K Norm, this effective
subspace is the one that is spanned by Paulis whose non-
identity components are near the last qubit. This is experi-
mentally verified using 16-qubit simulations whose results
are shown in Figure 3. In (a) and (b) we plot a portion of the
distribution Pθ,|0⟩⟨0|16,P16

with subcircuits being HEA built
using 2 qubit Haar random gates, with depths and widths of
k = 2, 4. Although there are 416 possible outcomes, we fo-
cus on 16, specifically the 1-local Paulis {Zi | i = 1, . . . , n},
shown on the x-axis. In these figures, boxplots of probabil-
ities Pθ,|0⟩⟨0|16(Zi), computed across 10 different θ values
are plotted. We can see that as the Z component in the observ-
ables on the x-axis is closer to the last qubit, the probability
is exponentially higher. In (d) and (e), similar experiments
are carried out for the distribution Pθ,|0⟩⟨0|,P16

, but we notice
no such concentration of probabilities, indicating the absence
of effective subspaces.

Conclusion and Future Direction
In this work, we have introduced new results regarding train-
ability and classical simulability of learning MPS approx-
imations of quantum states variationally. We have proven
that the usage of global observables forces the variance of
the objective function and all its partial derivatives to be ex-
ponentially small in the number of qubits, while the usage
of local observables avoids this. Moreover, we have demon-
strated that using this ansatz with local observables reveals
effective subspaces within the Pauli basis, paving the way for
a potential classical simulation of the MPS ansatz.

For future directions, we aim to generalize and enhance
our results by theoretically proving similar trainability re-
sults when multiple layers of CT are used, extending the
current proofs to all quantum states, and theoretically analyz-
ing the effective subspaces. Additionally, we plan to develop
an efficient classical simulation with rigorous performance
guarantees.
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