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Abstract

Stochastic Gradient Descent (SGD) with adaptive steps is widely used to train deep
neural networks and generative models. Most theoretical results assume that it is
possible to obtain unbiased gradient estimators, which is not the case in several
recent deep learning and reinforcement learning applications that use Monte Carlo
methods. This paper provides a comprehensive non-asymptotic analysis of SGD
with biased gradients and adaptive steps for non-convex smooth functions. Our
study incorporates time-dependent bias and emphasizes the importance of control-
ling the bias of the gradient estimator. In particular, we establish that Adagrad,
RMSProp, and AMSGRAD, an exponential moving average variant of Adam, with
biased gradients, converge to critical points for smooth non-convex functions at a
rate similar to existing results in the literature for the unbiased case. Finally, we
provide experimental results using Variational Autoenconders (VAE) and appli-
cations to several learning frameworks that illustrate our convergence results and
show how the effect of bias can be reduced by appropriate hyperparameter tuning.

1 Introduction

Stochastic Gradient Descent (SGD) algorithms are standard methods to train statistical models based
on deep architectures. Consider a general optimization problem:

θ∗ ∈ argmin
θ∈Rd

V (θ) , (1)

where V is the objective function. Then, Gradient Descent methods produce a sequence of parameter
estimates as follows: θ0 ∈ Rd and for all n ∈ N,

θn+1 = θn − γn+1∇V (θn) ,

where ∇V denotes the gradient of V and for all n ≥ 1, γn > 0 is the learning rate. In many cases,
it is not possible to compute the exact gradient of the objective function, hence the introduction of
vanilla Stochastic Gradient Descent, defined for all n ∈ N by:

θn+1 = θn − γn+1∇̂V (θn) ,

where ∇̂V (θn) is an estimator of ∇V (θn). For example, in deep learning, stochasticity emerges with
the use of mini-batches. While these algorithms have been extensively studied, both theoretically
and practically, see, e.g., [10], many questions remain open. In particular, most results are based
on the case where the estimator ∇̂V is unbiased. Although this assumption is valid in the case of
vanilla SGD, it breaks down in many common applications. For example, zeroth-order methods used

∗Corresponding author: sobihan.surendran@sorbonne-universite.fr

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



to optimize black-box functions [61] in generative adversarial networks [58, 16] have access only to
noisy biased realizations of the objective functions.

Furthermore, in reinforcement learning algorithms such as Q-learning [42], policy gradient [5], and
temporal difference learning [8, 52, 18], gradient estimators are often obtained using a Markov chain
with state-dependent transition probability. These estimators are then biased [69, 23]. Other examples
of biased gradients can be found in the field of generative modeling with Markov Chain Monte
Carlo (MCMC) and Sequential Monte Carlo (SMC) [34, 13]. In particular, the Importance Weighted
Autoencoder (IWAE) proposed by [12], which is an extension of the standard Variational Autoencoder
(VAE) [48], yields biased estimators. Finally, this is also the case in Bilevel Optimization [43, 36, 41]
and Conditional Stochastic Optimization [40, 39].

Moreover, in practical applications, vanilla SGD shows difficulties in calibrating the step sequences.
Therefore, modern variants of SGD employ adaptive steps that use past stochastic gradients or
Hessians to avoid saddle points and deal with ill-conditioned problems. The idea of adaptive steps
was first proposed in the online learning literature by [4] and later adopted in stochastic optimization,
with the Adagrad algorithm of [27].

In this paper, we give non-asymptotic convergence guarantees for modern variants of SGD where both
the estimators are biased and the steps are adaptive. To our knowledge, existing results consider either
adaptive steps but unbiased estimators [27, 77, 67, 74, 19], or biased estimators with non-adaptive
steps [70, 44, 2, 22, 21].

More precisely, our contributions are summarized as follows.

• We provide convergence guarantees for the Biased Adaptive Stochastic Approximation
framework, under weak assumptions on the bias. To the best of our knowledge, these are the
first convergence results to incorporate adaptive steps in biased Stochastic Approximation.

• In particular, we establish that Adagrad, RMSProp, and AMSGRAD, an exponential moving
average variant of Adam, with a biased gradient, converge to a critical point for non-convex
smooth functions with a convergence rate of O(log n/

√
n + bn), where bn is related to

the bias at iteration n. However, we achieve an improved linear convergence rate with the
Polyak-Łojasiewicz (PL) condition.

• Finally, we show how our theoretical results apply to several applications with biased gradi-
ents. In particular, we show that our hypotheses hold for Stochastic Bilevel Optimization and
Conditional Stochastic Optimization, but also for Self-Normalized Importance Sampling
estimators or Coordinate Sampling. We also propose a first non-asymptotic bound on the
bias of IWAE, which allows us to illustrate through several experiments the effect of bias
on the convergence of the optimization, and to show how this effect can be reduced by an
appropriate choice of hyperparameters.

Organization of the paper. In Section 2, we introduce the setting of the paper and relevant related
works. In Section 3, we present the Adaptive Stochastic Approximation framework and the main
assumptions. In Section 4, we present our principal results, i.e., convergence rates for the risk when
the PL condition is assumed, and on the gradient norm without this hypothesis. We illustrate our
results in Section 5. All proofs are postponed to the appendix.

2 Setting and Related Works

Stochastic Approximation. Stochastic Approximation (SA) methods go far beyond SGD. They
consist of sequential algorithms designed to find the zeros of a function when only noisy observations
are available. Indeed, [68] introduced the Stochastic Approximation algorithm as an iterative recursive
algorithm to solve the following integration equation:

h(θ) = Eπ [Hθ(X)] =

∫
X

Hθ(x)π(x)dx = 0 , (2)

where h is the mean field function, X is a random variable taking values in a measurable space (X,X ),
and Eπ is the expectation under the distribution π. In this context, Hθ can be any arbitrary function.
If Hθ(X) is an unbiased estimator of the gradient of the objective function, then h(θ) = ∇V (θ). As
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a result, the minimization problem (1) is then equivalent to solving problem (2), and we can note that
SGD is a specific instance of SA. SA methods are then defined as follows:

θn+1 = θn − γn+1Hθn (Xn+1) ,

where the term Hθn (Xn+1) is the n-th stochastic update, also known as the drift term, and is a
potentially biased estimator of ∇V (θn). It depends on a random variable Xn+1 which takes its values
in (X,X ). In machine learning, V typically represents the theoretical risk, θ the model parameters,
and Xn+1 the data.

Adaptive Stochastic Gradient Descent. SGD can be traced back to [68], and its averaged
counterpart was proposed by [66]. The non-asymptotic analysis of SGD in both convex and strong
convex cases can be found in [59]. [32] prove the convergence of a random iterate of SGD for
nonconvex smooth functions, which was already suggested by the results of [9]. They show that SGD
with constant or decreasing stepsize γn = 1/

√
n converges to a stationary point of a non-convex

smooth function V at a rate of O(1/
√
n) where n is the number of iterations.

Most adaptive first-order methods, such as Adam [47], Adadelta [78], RMSProp [72], and NADA
[25], are based on the blueprint provided by the Adagrad family of algorithms. The first known
work on adaptive steps for non-convex stochastic optimization, in the asymptotic case, was presented
by [50]. [74] proved that Adagrad converges to a critical point for non-convex objectives at a
rate of O(log n/

√
n) when using a scalar adaptive step. In addition, [79] extended this proof to

multidimensional settings. More recently, [19] focused on the convergence rates for Adagrad and
Adam. Furthermore, several modified versions of Adam have been proposed, such as AMSGRAD
[77] and YOGI [67].

Biased Stochastic Approximation. The asymptotic results of Biased SA have been studied by [70].
The non-asymptotic analysis can be found in the reinforcement learning literature, especially in the
context of temporal difference (TD) learning, as explored by [8, 52, 18]. The case of non-convex
smooth functions has been studied by [44]. The authors establish convergence results for the mean
field function at a rate of O(log n/

√
n + b), where b corresponds to the bias and n to the number

of iterations. For strongly convex functions, the convergence of SGD with biased gradients can be
found in [2], specifically addressing the case of Martingale noise with a constant step size.

[46, 21] introduce a novel assumption, known as “Expected Smoothness”, which is the weakest
assumption compared to the existing literature on biased SGD that we extend to cover the adap-
tive case. The authors provide convergence results in the case of non-convex smooth functions.
Convergence results with assumptions on the control of bias and MSE can be found in [56, 22].
Applications of biased gradients can be found in Bilevel Optimization [43, 36, 41] and Conditional
Stochastic Optimization [40, 39]. Moreover, biased gradients are also used in various other applica-
tions [38, 54, 6, 56]. Finally, [3] studied convergence results of biased gradients with Adagrad in the
Markov chain case, focusing on the norm of the gradient of the Moreau envelope while assuming the
boundedness of the objective function.

Our analysis provides non-asymptotic results in a more general setting, for a wide variety of objective
functions and adaptive algorithms and treating both the Martingale and Markov chain cases.

3 Adaptive Stochastic Approximation

3.1 Framework

Consider the optimization problem (1) where the objective function V is assumed to be differentiable.
In this paper, we focus on the following SA algorithm with adaptive steps: θ0 ∈ Rd and for all n ∈ N,

θn+1 = θn − γn+1AnHθn (Xn+1) , (3)

where γn+1 > 0 and An is a sequence of symmetric and positive definite matrices. In a context of
biased gradient estimates, choosing

An =

[
δId +

( 1

n+ 1

n∑
k=0

Hθk(Xk+1)Hθk(Xk+1)
⊤
)]−1/2

can be assimilated to the full Adagrad algorithm [27]. However, computing the square root of the
inverse becomes expensive in high dimensions, so in practice, Adagrad is often used with diagonal
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matrices. This approach has been shown to be particularly effective in sparse optimization settings.
Denoting by Diag(A) the matrix formed with the diagonal terms of A and setting all other terms to 0,
Adagrad with diagonal matrices is defined in our context as:

An =
[
δId + Diag

(
H̄n(X1:n+1, θ0:n)

)]−1/2

, (4)

where

H̄n(X1:n+1, θ0:n) =
1

n+ 1

n∑
k=0

Hθk(Xk+1)Hθk(Xk+1)
⊤.

In RMSProp [72], H̄n(X1:n+1, θ0:n) in (4) is an exponential moving average of the past squared
gradients, defined by:

H̄n(X1:n+1, θ0:n) = (1− ρ)

n∑
k=0

ρn−kHθk(Xk+1)Hθk(Xk+1)
⊤,

where ρ is the moving average parameter. Furthermore, when An is a recursive estimate of the inverse
Hessian, it corresponds to the Stochastic Newton algorithm [11].

3.2 Assumptions

Consider the following assumptions.

H1 There exists a constant µ > 0 such that for all θ ∈ Rd,

2µ
(
V (θ)− V (θ∗)

)
≤ ∥∇V (θ)∥2 .

H1 corresponds to the Polyak-Łojasiewicz condition, which is weaker than strong convexity and
remains satisfied even when the function is non-convex. It ensures uniqueness of the minimizer θ∗.
The PL condition has been extensively studied theoretically [45] and has been verified empirically in
many applications, such as over-parameterized deep networks [26] and Linear Quadratic Regulator
models [29].

H2 The objective function V is L-smooth. For all (θ, θ′) ∈ Rd × Rd,

∥∇V (θ)−∇V (θ′)∥ ≤ L ∥θ − θ′∥ .

This assumption is crucial to obtain our convergence rate and is very common see, e.g., [59, 10].
Under this assumption, for all (θ, θ′) ∈ Rd × Rd,

V (θ) ≤ V (θ′) + ⟨∇V (θ′) , θ − θ′⟩+ L

2
∥θ − θ′∥2 . (5)

H3 (i) Biased Gradients: There exist two non-increasing positive sequences (λn)n≥1 and
(rn)n≥1 such that for all n ∈ N,

E
[
⟨∇V (θn) , AnHθn (Xn+1)⟩

]
≥ λn+1

(
E
[
∥∇V (θn)∥2

]
− rn+1

)
.

(ii) Expected Smoothness: there exists a non-increasing non-negative sequence (σ2
n)n≥1,

and positive constants σ̃1, σ̃2 such that for all n ∈ N,

E
[
∥Hθn(Xn+1)∥2

]
≤ σ2

n + σ̃1E
[
∥∇V (θn)∥2

]
+ σ̃2E

[
V (θn)− V (θ∗)

]
.

In this assumption, rn+1 represents an additive bias term, generally of the order of the square of
the bias, and λn+1 may depend on the minimum eigenvalue of An. In [21, Theorem 2], it has been
demonstrated that this assumption is weaker than the alternatives used in the literature on biased
SGD. We have extended these assumptions to the adaptive case. It is important to note that the first
point of H3 depends on the application (objective function V ) and on the adaptive algorithm (matrix
An) that we want to use. The purpose of this assumption is to provide a more general framework
that covers all possible applications and adaptive algorithms. In the biased SGD setting, if the bias
term ∥E[Hθn(Xn+1) | Fn]−∇V (θn)∥ is bounded by b̃n+1, we can easily verify the first point of
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H3 by considering λn+1 = 1/2 and rn+1 = b̃2n+1. We show in Section 4.3 that this assumption
is also verified in algorithms such as Adagrad and RMSProp. The second point of H3 is a weaker
assumption compared to bounding the variance of the noise term. Applications where we can verify
these assumptions are discussed in Appendix D.

We finally consider an additional assumption on An. Let ∥A∥ be the spectral norm of a matrix A.

H4 There exists (βn)n≥1 such that for all n ∈ N, ∥An∥ := λmax(An) ≤ βn+1 .

In our setting, since An is assumed to be a symmetric matrix, the spectral norm is equal to the largest
eigenvalue. H4 plays a crucial role, as the estimates may diverge when this assumption is not satisfied.
Given a sequence (βn)n≥1, one way to ensure that H4 is satisfied is to replace the random matrices
An with

Ãn =
min{∥An∥, βn+1}

∥An∥
An . (6)

It is then clear that ∥Ãn∥ ≤ βn+1. Furthermore, in most cases, especially for Adagrad, RMSProp and
Stochastic Newton, control of λmax (An) in H4 is satisfied. For example, in Adagrad and RMSProp,
in (4), we have λmax (An) ≤ δ−1/2.

4 Convergence Results

4.1 Convergence under the PL condition

In this section, we study the convergence rate of SGD with biased gradients and adaptive steps under
the PL condition. We give below a simplified version of the bound we obtain on the risk and refer to
Theorem A.2 in the appendix for a formal statement with explicit constants.
Theorem 4.1. Assume that H1 - H4 hold. Let θn ∈ Rd be the n-th iterate of the recursion (3)
and γn = Cγn

−γ , βn = Cβn
β , λn = Cλn

−λ with Cγ > 0, Cβ > 0, and Cλ > 0. Assume that
γ, β, λ ≥ 0 and γ + λ < 1. Then,

E [V (θn)− V (θ∗)]= O
(
n−γ+2β+λ + rn

)
. (7)

The rate obtained is classical and shows the tradeoff between a term coming from the adaptive steps
(with a dependence on γ, β, λ) and a term rn which depends on the control of the bias. To minimize
the right hand-side of (7), we would like to have β = λ = 0. For example, it is verified in the case of
Adagrad and RMSProp if the gradients are bounded, as will be discussed later.

We stress that Theorem 4.1 applies to any adaptive algorithm of the form (3), with the only assumption
being H4. Without any information on these eigenvalues, the choice that βn ∝ nβ and λn ∝ n−λ

allows us to remain very general, which can even be seen as a worst-case scenario. Finally, note that
non-adaptive SGD is a particular case of Theorem 4.1. Thus, our theorem gives new results also in
the non-adaptive case with generic step sizes and biased gradients with decreasing bias.

4.2 Convergence without the PL condition

In the non-convex smooth case, theoretical results are generally based on a randomized version of SA,
as described in [60, 32, 44]. Instead of considering the final parameter θn, we introduce a random
variable R, which takes its values in {1, . . . , n}, and the quantity of interest becomes θR. Note that
this procedure is a technical tool, in practical applications we use classical SA. The following theorem
provides a bound in expectation on the gradient of the objective function V , which is the best we can
have given that no assumption is made about the existence of a global minimum of V .
Theorem 4.2. Assume that H2 - H4 hold. Assume also that for all k ∈ N, we have γk+1 ≤
λk+1/(σ̃1Lβ

2
k+1). For any n ≥ 1, let R ∈ {0, . . . , n} be a discrete random variable such that:

P(R = k) :=
wk+1γk+1λk+1∑n
j=0 wj+1γj+1λj+1

,

where wk+1 =
∏k+1

j=1 (1 + σ̃2δj)
−1 with δj = Lγ2

j β
2
j /2. Then,

E
[
∥∇V (θR)∥2

]
≤ 2

V ∗ + α1,n + α2,n∑n
j=0 wj+1γj+1λj+1

,

5



where

α1,n =

n∑
k=0

wk+1γk+1λk+1rk+1 , α2,n =

n∑
k=0

wk+1δk+1σ
2
k, and V ∗ = E[V (θ0)− V (θ∗)] .

If σ̃2 = 0, Theorem 4.2 recovers the asymptotic convergence rate obtained by [44] with respect to the
hyperparameters γ, β, and λ, and to the bias. We can observe that if γ ≤ λ+ 2β, the condition on
(γk)k≥1 can be met simply by tuning Cγ . In particular, if An = Id, the requirement on the step sizes
can be expressed as γk+1 ≤ 1/(σ̃1L).

We give below the convergence rates obtained from Theorem 4.2 under the same assumptions on γn,
βn, and λn as in Theorem 4.1.
Corollary 4.3. Assume that H2-H4 hold. Let γn = Cγn

−γ , βn = Cβn
β , λn = Cλn

−λ with
Cγ > 0, Cβ > 0, and Cλ > 0. Assume that γ, β, λ ≥ 0 and γ + λ < 1. Then, if σ̃2 = 0, we have:

E
[
∥∇V (θR)∥2

]
=


O
(
n−γ+λ+2β + bn

)
if γ − β < 1/2 ,

O
(
nγ+λ−1 + bn

)
if γ − β > 1/2 ,

O
(
nγ+λ−1log n+ bn

)
if γ − β = 1/2 ,

where the bias term bn can be constant or decreasing. In the latter case, writing rn = Crn
−r, we

have:

bn =


O (n−r) if r + λ+ γ < 1 ,

O
(
nγ+λ−1

)
if r + λ+ γ > 1 ,

O
(
nγ+λ−1 log n

)
if r + λ+ γ = 1 .

In practice, the value of r is known in advance while the other parameters can be tuned to achieve
the optimal rate of convergence. In any scenario, we can never achieve a bound of O(1/

√
n+ bn),

and the best rate we can reach is O(log n/
√
n+ bn) when γ = 1/2, β = 0, and λ = 0. In this case,

all eigenvalues of An must be bounded from both below and above. Note that we could also have
obtained such a rate by taking λn = n−1/2 and βn = n−1/2 while keeping γn constant. However, the
assumption that βn = n−1/2 is too strong (fast decay of the eigenvalues of An), hence our choice of
βn = Cβn

β . Finally, for a decreasing bias, if r ≥ 1/2, the bias term contributes to the convergence
rate of the algorithm. Otherwise, the other term is the leading term of the upper bound. In both cases,
the best achievable bound is O(log n/

√
n) if r ≥ 1/2.

Bounded Gradient Case. Now, we analyze the convergence of Randomized Adaptive Stochastic
Approximation when the stochastic updates are bounded, as given by the following assumption.

H5 There exists M ≥ 0 such that for all n ∈ N, ∥Hθn (Xn+1) ∥ ≤ M .

Boundedness of the stochastic gradient of the objective function is a classical assumption in adaptive
stochastic optimization [67, 74, 19, 73].
Corollary 4.4. Assume that H2-H5 hold. Let γn = Cγn

−γ , βn = Cβn
β , λn = Cλn

−λ with
Cγ > 0, Cβ > 0, and Cλ > 0. Assume that γ, β, λ ≥ 0 and γ + λ < 1. For any n ≥ 1, let
R ∈ {0, . . . , n} be a uniformly distributed random variable. Then,

E
[
∥∇V (θR)∥2

]
≤

V ∗ + α′
1,n + LM2α′

2,n/2√
n

,

where α′
1,n =

∑n
k=0 γk+1λk+1rk+1, α′

2,n =
∑n

k=0 γ
2
k+1β

2
k+1, and V ∗ = E[V (θ0)− V (θ∗)].

Importantly, in Corollary 4.4, there are no assumptions on the step sizes, and we obtain a better bound
than in Theorem 4.2.

4.3 Application to Adagrad and RMSProp

We give a convergence analysis of Adagrad and RMSProp with a biased gradient estimator. First,
note that, under H5, for all eigenvalues λ of An, the adaptive matrix in Adagrad or RMSProp, it holds
that (M2 + δ)−1/2 ≤ λ ≤ δ−1/2, i.e., H4 is satisfied with λ = 0 and β = 0.
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Corollary 4.5. Assume that H2 and H5 hold. Let γn = cγn
−1/2 and An denote the adaptive matrix

in Adagrad or RMSProp. For any n ≥ 1, let R ∈ {0, . . . , n} be a uniformly distributed random
variable. Suppose that for any n ≥ 1, there exist positive constants α and Cα such that:

∥E [Hθn (Xn+1) |Fn]−∇V (θn)∥ ≤ Cαn
−α . (8)

Then,

E
[
∥∇V (θR)∥2

]
= O

(
log n√

n
+ bn

)
,

where the bias bn is explicitly given in Appendix A.5.

In the case of an unbiased gradient, we obtain the same bound of O(log n/
√
n) as in [74, 79, 19]

under the same assumptions. If the bias is of the order O(n−1/4), the algorithm achieves the same
convergence rate as in the case of an unbiased gradient.

4.4 AMSGRAD with Biased Gradients

Algorithm 1 AMSGRAD with Biased Gradients
Input: Initial point θ0, maximum number of itera-
tions n, step sizes {γk}k≥1, momentum parameters
ρ1, ρ2 ∈ [0, 1) and regularization parameter δ ≥ 0.
Set m0 = 0, V0 = 0 and V̂0 = 0
for k = 0 to n− 1 do

Compute the stochastic update Hθk (Xk+1)
mk = ρ1mk−1 + (1− ρ1)Hθk(Xk+1)
Vk = ρ2Vk−1+(1−ρ2)Hθk(Xk+1)Hθk(Xk+1)

⊤

V̂k = max
(
V̂k−1,Diag(Vk)

)
Ak =

[
δId + V̂k

]−1/2

θk+1 = θk − γk+1Akmk

end for
Output: (θk)0≤k≤n

Finally, we show the convergence of AMS-
GRAD [67] with a biased gradient esti-
mator. At each iteration, AMSGRAD
uses an exponential moving average of
past gradients instead of the current gradi-
ent as in Equation (3), which is detailed
in Algorithm 1. The key difference be-
tween Adam and AMSGRAD lies in their
handling of the second moment estimate.
Specifically, AMSGRAD uses the updated
term V̂k = max(V̂k−1,Diag(Vk)) instead
of directly using Vk, with the maximum
taken coordinate-wise. This approach is
crucial, as it ensures that the eigenvalues
of An decrease at each iteration. The fol-
lowing theorem provides a bound in ex-
pectation on the gradient of the objective
function V using randomized iterations with AMSGRAD.

Theorem 4.6. Assume that H2, H3 (i), and H5 hold. Let γn = cγn
−1/2, An denote the adaptive

matrix of AMSGRAD in Algorithm 1, and ρ1, ρ2 ∈ [0, 1). For any n ≥ 1, let R ∈ {0, . . . , n} be a
uniformly distributed random variable. Then,

E
[
∥∇V (θR)∥2

]
= O

(
log n√

n
+ bn

)
,

where bn corresponds to the bias which comes from rn in H3(i). Choosing rn = Crn
−r, we get:

bn =


O (n−r) if r < 1/2 ,

O
(
n−1/2

)
if r > 1/2 ,

O
(
n−1/2 log n

)
if r = 1/2 .

If the bias is of the order O(n−1/4), we achieve a convergence rate of O(log n/
√
n), which is the

same as that of an unbiased gradient [19] and similar to that of Adagrad and RMSProp. It is worth
noting that our results are also applicable to SGD momentum by taking An = Id in Algorithm 1.

4.5 Convergence Results in i.i.d. and Markov Chain cases

For illustrative purposes, in this subsection we give the form of the bias of the gradient estimator,
denoted by b̃n, in two simple scenarios, i.e., when {Xn, n ∈ N} is either an i.i.d. sequence or a
Markov chain. For Adagrad, RMSProp, and AMSGRAD, bounding the bias of the gradient estimator
is a sufficient condition for verifying H3(i), which in turn enables us to derive convergence results in
each scenario.
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I.i.d. case. Assume that {Xn, n ∈ N} are i.i.d. random variables. If the mean field function
h (θn) = E [Hθn (Xn+1) | Fn] aligns with the true gradient, then the estimator is unbiased. Other-
wise, the bias of the gradient estimator is

b̃n+1 = ∥h(θn)−∇V (θn)∥ .

Markov Chain case. Assume now that {Xn, n ∈ N} is a Markov Chain. The bias consists of two
parts: the difference between the mean field function and the true gradient, and a term due to the
Markov chain dynamics. For all T ≥ 0, we define the stochastic update as follows:

Hθk (Xk+1) =
1

T

T∑
i=1

Hθk

(
X

(i)
k+1

)
,

where X
(i)
k+1 represents the i-th sample generated at iteration k + 1. This multi-sample estimator

is commonly used in applications such as Reinforcement Learning, Markov Chain Monte Carlo,
and Sequential Monte Carlo methods, effectively reducing the variance of the gradient estimator.
The mixing time τmix of a Markov chain with stationary distribution π and transition kernel P is
characterized as:

τmix := inf

{
t ; sup

x
DTV(P

t(x, ·), π) ≤ 1

4

}
,

where DTV denotes the total variation distance. For an ergodic Markov chain with stationary
distribution π, the bias of this gradient estimator when using T samples per step is

b̃n+1 = ∥h(θn)−∇V (θn)∥+M
√
τmix/T ,

where h(θ) =
∫
Hθ(x)π(dx). If the general optimization problem reduces to the following stochastic

optimization problem with Markov noise, as considered in most of the literature [28, 24, 7]:

min
θ∈Rd

V (θ) := Ex∼π[f(θ;x)],

where θ 7→ f(θ;x) is a loss function, and π is some stationary data distribution of the Markov Chain
and Hθk(X

(i)
k+1) = ∇f(θk;X

(i)
k+1), then b̃n+1 = M

√
τmix/T , similar to SGD with Markov Noise

[24].

5 Applications and Experiments

5.1 Bilevel and Conditional Stochastic Optimization

We can now apply our theoretical results in various settings where biased gradients are involved. In
particular, they apply to the fields of Stochastic Bilevel Optimization and Conditional Stochastic
Optimization. Stochastic Bilevel Optimization consists of minimizing an objective function V
with respect to θ, where V is itself a function of ϕ∗(θ) and ϕ∗(θ) is obtained by solving another
minimization problem. Conditional Stochastic Optimization focuses on optimizing the expected
value of a function that contains a nested conditional expectation on a random variable η. We provide
in Table 1 a summary of the assumptions satisfied in these settings, which allow to apply the results
of Section 4 and to obtain a O(log n/

√
n+ bn) convergence rate in both cases, and explicit forms

for bn. To our knowledge, these are the first convergence rates obtained in these settings.

We refer to Appendix D for other examples in which the bias of the estimator can be controlled, in
particular Self-Normalized Importance Sampling (Appendix D.1), Sequential Monte Carlo Methods
(Appendix D.2), Policy Gradient (Appendix D.3), Zeroth-Order Gradient (Appendix D.4), and
Coordinate Sampling (Appendix D.5).

5.2 Experiments with IWAE and BR-IWAE

In this section, we illustrate our theoretical results in the context of deep VAE. The experiments
were conducted using PyTorch [65], and the source code can be found here2. In generative models,

2https://github.com/SobihanSurendran/Adaptive-SA
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Table 1: Bilevel and Conditional Stochastic Optimization with our Biased Adaptive SA framework.
Applications Stochastic Bilevel Optimization Conditional Stochastic Optimization

Problem min
θ∈Rd

Eξ [f(θ, ϕ
∗(θ); ξ)] min

θ∈Rd
Eξ

[
fξ
(
Eη|ξ [gη(θ, ξ)]

)]
s.t. ϕ∗(θ) ∈ argmin

ϕ∈Rq

Eζ [g(θ, ϕ; ζ)]

Lipchitz Constant H2 Lemma C.2 Lemma C.6
Bias Control H3 Lemma C.3 Lemma C.5

Gradient Bound H5 Lemma C.3 Lemma C.6
Convergence Theorem C.4 Theorem C.7

the objective is to maximize the marginal likelihood log pθ(x), which is the marginalization of
(x, z) 7→ pθ(x, z), where x represents the observations and z is the latent variable. Under some
simple technical assumptions, by Fisher’s identity, we have:

∇θ log pθ(x) =

∫
∇θ log pθ(x, z)pθ(z | x)dz . (9)

However, in most cases, the conditional density z 7→ pθ(z | x) is intractable and can only be sampled.
Variational Autoencoders introduce an additional parameter ϕ and a family of variational distributions
z 7→ qϕ(z | x) to approximate the true posterior distribution. Parameters are estimated by maximizing
the Evidence Lower Bound (ELBO):

log pθ(x) ≥ Eqϕ(·|x)

[
log

pθ(x, Z)

qϕ(Z | x)

]
=: LELBO(θ, ϕ;x) .

The Importance Weighted Autoencoder (IWAE) [12] is a variant of the VAE that incorporates
importance weighting to obtain a tighter ELBO. The IWAE objective can be written as follows:

LIWAE
k (θ, ϕ;x) = Eq⊗k

ϕ (·|x)

[
log

1

k

k∑
ℓ=1

pθ(x, Z
(ℓ))

qϕ(Z(ℓ) | x)

]
,

where k corresponds to the number of samples drawn from the variational posterior distribution. The
estimator of the gradient of ELBO in IWAE is a biased estimator of ∇θ log pθ(x). In Theorem B.1,
we establish that the bias of this estimator is of order O(1/k), thereby allowing us to derive a
convergence rate for IWAE. Since bias has an impact on convergence rates, we propose to use one of
the bias reduction techniques, the Biased Reduced Importance Weighted Autoencoder (BR-IWAE)
[14], which is detailed in Appendix B.

Dataset and Model. We conduct our experiments on the CIFAR-10 dataset [51] and use a
Convolutional Neural Network (CNN) architecture with the Rectified Linear Unit (ReLU) activation
function for both the encoder and the decoder. The latent space dimension is set to 100. We estimate
the log-likelihood using VAE, IWAE, and BR-IWAE models, all of which are trained for 100 epochs.
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Figure 1: Negative Log-Likelihood on the test set for
Different Generative Models with Adagrad, RMSProp,
and Adam on CIFAR-10. Bold lines represent the mean
over 5 independent runs.

Training is conducted using Adagrad, RM-
SProp, and Adam with a decaying learning
rate. Although AMSGRAD is analyzed in
our theoretical results, we use Adam for
the experiments due to its widespread use
in practice. Additional details are provided
in Appendix E.

First, we set k = 5 samples in both IWAE
and BR-IWAE. The test losses are pre-
sented in Figure 1. We show the negative
log-likelihood on the test dataset for VAE,
IWAE, and BR-IWAE with Adagrad, RM-
SProp, and Adam. As expected, we ob-
serve that IWAE outperforms VAE, while
BR-IWAE outperforms IWAE by reducing
bias in all cases.
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Then, we illustrate empirically the convergence rates obtained in Corollary 4.5 and Theorem 4.6 for
IWAE. Since the bias of the estimator of the gradient in IWAE is of the order O(1/k), choosing a
bias of order O(n−α) is equivalent to using nα samples at iteration n to estimate the gradient. We
plot in Figure 2 the gradient squared norm ∥∇V (θn)∥2 and the Negative Log-Likelihood is given in
Appendix E.2. Note that all figures are with respect to epochs, whereas here, n represents the number
of updates of the gradient. The dashed curves correspond to the expected convergence rate O(n−1/4)
for α = 1/8 and O(log n/

√
n) for α = 1/4 and α = 1/2.

0 20 40 60 80 100
Epochs

10
1

10
2

V(
n)

2

n 1/4

log(n)/ n

1/ n

= 1/8
= 1/4
= 1/2

0 20 40 60 80 100
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100
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102
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n)

2

= 1/8 (RMSProp)
= 1/4 (RMSProp)
= 1/2 (RMSProp)
= 1/8 (Adam)
= 1/4 (Adam)
= 1/2 (Adam)

Figure 2: Value of ∥∇V (θn)∥2 in IWAE with Adagrad (on the left), RMSProp, and Adam (on the
right). Bold lines represent the mean over 5 independent runs. Figures are plotted on a logarithmic
scale for better visualization. Both figures have the same scale, so we have not shown the dashed
theoretical curves on the right for better clarity.

We observe that the algorithms converge at the expected theoretical rates, and even faster. In Appendix
E.2, we have included an additional experiment on the FashionMNIST dataset [76], which shows
similar behavior, but the convergence is closer to the expected rates, suggesting that our upper bounds
may be tight. We see similar convergence rates for Adagrad, RMSProp, and Adam, although, as
expected, Adam performs slightly better. Moreover, it is clear that convergence is faster with a larger
α but beyond a certain threshold for α the rate of convergence does not change significantly. Since
choosing a larger α induces an additional computational cost, it is crucial to choose an appropriate
value that achieves fast convergence without being too computationally expensive. Choosing an
optimal number of samples at each iteration remains an open problem depending on the chosen
generative model.

6 Discussion

This paper provides a non-asymptotic analysis of Biased Adaptive Stochastic Approximation with
and without the PL condition in the non-convex smooth setting. We derive a convergence rate of
O(log n/

√
n+ bn) for non-convex smooth functions, where bn corresponds to the time-dependent

decreasing bias, and an improved linear convergence rate with the Polyak-Łojasiewicz (PL) condition.
We also establish that Adagrad, RMSProp, and AMSGRAD with biased gradients converge to critical
points for non-convex smooth functions. Our results provide insights on hyper-parameters tuning
to achieve fast convergence and reduce computational time. A natural extension of this work is the
analysis of the assumptions, the bias and convergence rates for specific deep learning architectures.
A theoretical analysis of the Monte Carlo effort required at each iteration to obtain an optimal
convergence rate is another interesting perspective.

Acknowledgements

The Ph.D. of Sobihan Surendran was funded by the Paris Region PhD Fellowship Program of
Région Ile-de-France. We would like to thank SCAI (Sorbonne Center for Artificial Intelligence) for
providing the computing clusters. We also express our gratitude to the reviewers for their insightful
comments and suggestions, which have helped improve this paper.

10



References
[1] Sergios Agapiou, Omiros Papaspiliopoulos, Daniel Sanz-Alonso, and Andrew M Stuart. Impor-

tance sampling: Intrinsic dimension and computational cost. Statistical Science, pages 405–431,
2017.

[2] Ahmad Ajalloeian and Sebastian U Stich. On the Convergence of SGD with Biased Gradients.
arXiv preprint arXiv:2008.00051, 2020.

[3] Ahmet Alacaoglu and Hanbaek Lyu. Convergence of first-order methods for constrained
nonconvex optimization with dependent data. In International Conference on Machine Learning,
pages 458–489. PMLR, 2023.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Claudio Gentile. Adaptive and self-confident on-line
learning algorithms. Journal of Computer and System Sciences, 64(1):48–75, 2002.

[5] Jonathan Baxter and Peter L Bartlett. Infinite-horizon policy-gradient estimation. Journal of
Artificial Intelligence Research, 15:319–350, 2001.

[6] Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased
compression for distributed learning. Journal of Machine Learning Research, 24(276):1–50,
2023.

[7] Aleksandr Beznosikov, Sergey Samsonov, Marina Sheshukova, Alexander Gasnikov, Alexey
Naumov, and Eric Moulines. First order methods with markovian noise: from acceleration to
variational inequalities. In Advances in Neural Information Processing Systems, volume 36,
2024.

[8] Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. In Conference On Learning Theory, pages 1691–
1692. PMLR, 2018.

[9] Léon Bottou. Une approche théorique de l’apprentissage connexioniste; applications à la
reconnaissance de la parole. PhD thesis, Paris 11, 1991.

[10] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

[11] Claire Boyer and Antoine Godichon-Baggioni. On the asymptotic rate of convergence of
stochastic newton algorithms and their weighted averaged versions. Computational Optimization
and Applications, 84(3):921–972, 2023.

[12] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In
International Conference on Learning Representations, 2016.

[13] Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, Eric Moulines, and Jimmy Olsson.
State and parameter learning with PaRIS particle Gibbs. In International Conference on Machine
Learning, pages 3625–3675. PMLR, 2023.

[14] Gabriel Cardoso, Sergey Samsonov, Achille Thin, Eric Moulines, and Jimmy Olsson. BR-
SNIS: bias reduced self-normalized importance sampling. In Advances in Neural Information
Processing Systems, volume 35, pages 716–729, 2022.

[15] Congliang Chen, Li Shen, Fangyu Zou, and Wei Liu. Towards practical adam: Non-convexity,
convergence theory, and mini-batch acceleration. Journal of Machine Learning Research,
23(229):1–47, 2022.

[16] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pages 15–26,
2017.

[17] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating
stochastic gradient methods for bilevel problems. In Advances in Neural Information Processing
Systems, volume 34, pages 25294–25307, 2021.

11



[18] Gal Dalal, Balázs Szörényi, Gugan Thoppe, and Shie Mannor. Finite sample analyses for td (0)
with function approximation. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 6144–6160, 2018.

[19] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence
proof of Adam and Adagrad. arXiv preprint arXiv:2003.02395, 2020.

[20] Pierre Del Moral, Arnaud Doucet, and Sumeetpal S Singh. A backward particle interpretation of
Feynman-Kac formulae. ESAIM: Mathematical Modelling and Numerical Analysis, 44(5):947–
975, 2010.

[21] Yury Demidovich, Grigory Malinovsky, Igor Sokolov, and Peter Richtárik. A guide through the
zoo of biased sgd. In Advances in Neural Information Processing Systems, volume 36, 2024.

[22] Aymeric Dieuleveut, Gersende Fort, Eric Moulines, and Hoi-To Wai. Stochastic approximation
beyond gradient for signal processing and machine learning. IEEE Transactions on Signal
Processing, 2023.

[23] Thinh T Doan, Lam M Nguyen, Nhan H Pham, and Justin Romberg. Finite-time analysis of
stochastic gradient descent under markov randomness. arXiv preprint arXiv:2003.10973, 2020.

[24] Ron Dorfman and Kfir Yehuda Levy. Adapting to mixing time in stochastic optimization with
markovian data. In International Conference on Machine Learning, pages 5429–5446. PMLR,
2022.

[25] Timothy Dozat. Incorporating Nesterov momentum into Adam. In ICLR Workshop track, 2016.

[26] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pages
1675–1685. PMLR, 2019.

[27] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

[28] John C Duchi, Alekh Agarwal, Mikael Johansson, and Michael I Jordan. Ergodic mirror descent.
SIAM Journal on Optimization, 22(4):1549–1578, 2012.

[29] Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of policy
gradient methods for the linear quadratic regulator. In International Conference on Machine
Learning, pages 1467–1476. PMLR, 2018.

[30] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126–1135.
PMLR, 2017.

[31] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning, pages 1568–1577. PMLR, 2018.

[32] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[33] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

[34] Pierre Gloaguen, Sylvain Le Corff, and Jimmy Olsson. A pseudo-marginal sequential Monte
Carlo online smoothing algorithm. Bernoulli, 28(4):2606–2633, 2022.

[35] Antoine Godichon-Baggioni and Pierre Tarrago. Non asymptotic analysis of adaptive stochastic
gradient algorithms and applications. arXiv preprint arXiv:2303.01370, 2023.

[36] Riccardo Grazzi, Massimiliano Pontil, and Saverio Salzo. Bilevel optimization with a lower-
level contraction: Optimal sample complexity without warm-start. Journal of Machine Learning
Research, 24(167):1–37, 2023.

12



[37] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic
algorithm framework for bilevel optimization: Complexity analysis and application to actor-
critic. SIAM Journal on Optimization, 33(1):147–180, 2023.

[38] Bin Hu, Peter Seiler, and Laurent Lessard. Analysis of biased stochastic gradient descent using
sequential semidefinite programs. Mathematical programming, 187:383–408, 2021.

[39] Yifan Hu, Xin Chen, and Niao He. On the bias-variance-cost tradeoff of stochastic optimization.
In Advances in Neural Information Processing Systems, volume 34, pages 22119–22131, 2021.

[40] Yifan Hu, Siqi Zhang, Xin Chen, and Niao He. Biased stochastic first-order methods for
conditional stochastic optimization and applications in meta learning. In Advances in Neural
Information Processing Systems, volume 33, pages 2759–2770, 2020.

[41] Feihu Huang, Junyi Li, and Shangqian Gao. Biadam: Fast adaptive bilevel optimization methods.
arXiv preprint arXiv:2106.11396, 2021.

[42] Tommi Jaakkola, Michael Jordan, and Satinder Singh. Convergence of stochastic iterative
dynamic programming algorithms. In Advances in Neural Information Processing Systems,
volume 6, 1993.

[43] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design. In International Conference on Machine Learning, pages 4882–4892. PMLR,
2021.

[44] Belhal Karimi, Blazej Miasojedow, Eric Moulines, and Hoi-To Wai. Non-asymptotic analysis of
biased stochastic approximation scheme. In Conference on Learning Theory, pages 1944–1974.
PMLR, 2019.

[45] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pages 795–811. Springer, 2016.

[46] Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. arXiv
preprint arXiv:2002.03329, 2020.

[47] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[48] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations, 2014.

[49] Vijaymohan R Konda and Vivek S Borkar. Actor-critic–type learning algorithms for markov
decision processes. SIAM Journal on control and Optimization, 38(1):94–123, 1999.

[50] Milena Kresoja, Zorana Lužanin, and Irena Stojkovska. Adaptive stochastic approximation
algorithm. Numerical Algorithms, 76(4):917–937, 2017.

[51] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report, 2009.

[52] Chandrashekar Lakshminarayanan and Csaba Szepesvari. Linear stochastic approximation:
How far does constant step-size and iterate averaging go? In International Conference on
Artificial Intelligence and Statistics, pages 1347–1355. PMLR, 2018.

[53] Rémi Leluc and François Portier. Sgd with coordinate sampling: Theory and practice. The
Journal of Machine Learning Research, 23(1):15470–15516, 2022.

[54] Qiang Li and Hoi-To Wai. State dependent performative prediction with stochastic approxima-
tion. In International Conference on Artificial Intelligence and Statistics, pages 3164–3186.
PMLR, 2022.

[55] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search.
In International Conference on Learning Representations, 2019.

13



[56] Yin Liu and Sam Davanloo Tajbakhsh. Adaptive stochastic optimization algorithms for problems
with biased oracles. arXiv preprint arXiv:2306.07810, 2023.

[57] Don McLeish. A general method for debiasing a Monte Carlo estimator. Monte Carlo methods
and applications, 17(4):301–315, 2011.

[58] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Univer-
sal adversarial perturbations. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1765–1773, 2017.

[59] Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation algo-
rithms for machine learning. In Advances in Neural Information Processing Systems, volume 24,
2011.

[60] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–
1609, 2009.

[61] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17:527–566, 2017.

[62] Sebastian Nowozin. Debiasing evidence approximations: On importance-weighted autoencoders
and jackknife variational inference. In International Conference on Learning Representations,
2018.

[63] Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, and Hoyt Koepke. Coordinate
descent converges faster with the gauss-southwell rule than random selection. In International
Conference on Machine Learning, pages 1632–1641. PMLR, 2015.

[64] Jimmy Olsson and Johan Westerborn. Efficient particle-based online smoothing in general
hidden Markov models: the PaRIS algorithm. Bernoulli, 23(3):1951–1996, 2017.

[65] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

[66] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[67] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

[68] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

[69] Tao Sun, Yuejiao Sun, and Wotao Yin. On Markov chain gradient descent. In Advances in
Neural Information Processing Systems, volume 31, 2018.
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A Convergence Proofs

A.1 Proof of Theorem 4.1

We first establish a technical lemma which is essential for the proof.
Lemma A.1. Let (δn)n≥0 , (γn)n≥1 , (ηn)n≥1, and (vn)n≥1 be some positive sequences satisfying
the following assumptions.

• The sequence δn follows the recursive relation:

δn ≤ (1− 2ωγn + ηnγn) δn−1 + vnγn ,

with δ0 ≥ 0 and ω > 0.

• Let n0 = inf {n ≥ 1 : ηn ≤ ω}, then for all n ≥ n0 + 1, we assume that ωγn ≤ 1.

Then, for all n ∈ N,

δn ≤ exp

(
− ω

n∑
k=n/2

γk

)
exp

(
2

n∑
k=1

ηkγk

)(
δ0 + 2 max

1≤k≤n

vk
ηk

)
+

1

ω
max

n/2≤k≤n
vk.

The proof is given in [35, Proposition 6.1]
Theorem A.2. Assume that H1 - H4 hold. Let θn ∈ Rd be the n-th iterate of the recursion (3). Then,

E [V (θn)− V (θ∗)] ≤
(
E [V (θ0)− V (θ∗)] +

2

σ̃
max

1≤k≤n

λk+1vk
β2
k+1γk+1

)
exp

(
− µ

2

n∑
k=n/2

λk+1γk+1

)

× exp

(
2

n∑
k=1

Ckβ
2
k+1γ

2
k+1

)
+

2

µ
max

n/2≤k≤n
vk ,

where

σ̃ =
σ̃2L

2
+ σ̃1L

2, Ck = max

{
σ̃,

µ2λ2
k+1

4β2
k+1

}
and vk = rk+1 +

Lσ2
k

2

β2
k+1

λk+1
γk+1 .

with the convention Ck = 1 if σ̃1 = σ̃2 = 0.

Proof. Since V is L-smooth (Assumption H2) and using the recursion (3) of Adaptive SA, we obtain:

V (θn+1) ≤ V (θn) + ⟨∇V (θn) , θn+1 − θn⟩+
L

2
∥θn+1 − θn∥2

≤ V (θn)− γn+1 ⟨∇V (θn) , AnHθn (Xn+1)⟩+
Lγ2

n+1

2
∥An∥2 ∥Hθn (Xn+1)∥2 .

Writing Vn = V (θn)− V (θ∗), we get

Vn+1 ≤ Vn − γn+1 ⟨∇V (θn) , AnHθn (Xn+1)⟩+
L

2
γ2
n+1β

2
n+1 ∥Hθn (Xn+1)∥2 .

Then, using H3,

E [Vn+1] ≤ E [Vn]− γn+1E
[
⟨∇V (θn) , AnHθn (Xn+1)⟩

]
+

L

2
γ2
n+1β

2
n+1σ

2
n

+
L

2
γ2
n+1β

2
n+1

(
σ̃1E[∥∇V (θn)∥2] + σ̃2E[Vn]

)
≤
(
1 +

σ̃2L

2
β2
n+1γ

2
n+1

)
E[Vn]− γn+1

(
λn+1 −

σ̃1L

2
γn+1β

2
n+1

)
E[∥∇V (θn)∥2]

+ γn+1λn+1rn+1 +
Lσ2

n

2
γ2
n+1β

2
n+1 .
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Given the smoothness condition (5), with θ′ = θn and θ = θn − 1
L∇V (θn), we derive:

V (θ∗) ≤ V (θn)−
1

L
∥∇V (θn)∥2 +

1

2L
∥∇V (θn)∥2 ,

∥∇V (θn)∥2 ≤ 2LVn .

Using the above inequality and the Polyak-Łojasiewicz condition (H1), we obtain:

E [Vn+1] ≤
(
1− µλn+1γn+1 +

( σ̃2L

2
+ σ̃1L

2
)
β2
n+1γ

2
n+1

)
E [Vn]

+ γn+1λn+1rn+1 +
Lσ2

n

2
γ2
n+1β

2
n+1 .

By choosing γ̄n+1 = λn+1γn+1, we get:

E [Vn+1] ≤
(
1− µγ̄n+1 +

( σ̃2L

2
+ σ̃1L

2
)β2

n+1

λ2
n+1

γ̄2
n+1

)
E [Vn]

+ γ̄n+1rn+1 +
Lσ2

n

2

β2
n+1

λn+1
γ̄n+1γn+1 .

In order to satisfy the assumptions of Lemma A.1, consider

Cn = max

{
σ̃,

µ2λ2
n+1

4β2
n+1

}
with σ̃ =

σ̃2L

2
+ σ̃1L

2 .

Then, since Cn ≥ σ̃, we have:

E [Vn+1] ≤
(
1− µγ̄n+1 +

Cnβ
2
n+1

λ2
n+1

γ̄2
n+1

)
E [Vn] + γ̄n+1rn+1 +

Lσ2
n

2

β2
n+1

λn+1
γ̄n+1γn+1 .

Now, using lemma A.1 by choosing:

δn = E [Vn] , ηn =
Cnβ

2
n+1

λ2
n+1

γ̄n+1 , ω =
µ

2
, vn = rn+1 +

Lσ2
n

2

β2
n+1

λn+1
γn+1 ,

we have:

E [V (θn)− V (θ∗)] ≤
(
E [V (θ0)− V (θ∗)] +

2

σ̃
max

1≤k≤n

vkλ
2
k+1

β2
k+1γ̄k+1

)
exp

(
− µ

2

n∑
k=n/2

γ̄k+1

)

× exp
(
2

n∑
k=1

Ckβ
2
k+1γ̄

2
k+1/λ

2
k+1

)
+

2

µ
max

n/2≤k≤n
{vk} ,

which concludes the proof by taking γ̄n+1 = λn+1γn+1.

A.2 Proof of Theorem 4.2

By H2, using (5), we obtain:

V (θk+1) ≤V (θk) + ⟨∇V (θk) , θk+1 − θk⟩+
L

2
∥θk+1 − θk∥2 ,

which, using the recursion (3) of Adaptive SA and H4, yields:

V (θk+1) ≤ V (θk)− γk+1 ⟨∇V (θk) , AkHθk (Xk+1)⟩+ δk+1 ∥Hθk (Xk+1)∥2 ,

with δk+1 = Lγ2
k+1β

2
k+1/2. Using Assumption H3, we have:

E[V (θk+1)] ≤ E[V (θk)]− γk+1λk+1E
[
∥∇V (θk)∥2

]
+ γk+1λk+1rk+1 + δk+1σ

2
k

+ δk+1

(
σ̃1E[∥∇V (θk)∥2] + σ̃2E [V (θk)− V (θ∗)]

)
.
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Therefore,

γk+1

(
λk+1 −

Lσ̃1

2
γk+1β

2
k+1

)
E
[
∥∇V (θk)∥2

]
≤ (1 + σ̃2δk+1)

(
E [V (θk)]− V (θ∗)

)
−
(
E [V (θk+1)]− V (θ∗)

)
+ γk+1λk+1rk+1 + δk+1σ

2
k .

Let us now consider the sequence of weights wk defined by w0 = 1 and wk =
∏k

j=1 (1 + σ̃2δj)
−1.

Then,

wk+1γk+1

(
λk+1 −

Lσ̃1

2
γk+1β

2
k+1

)
E
[
∥∇V (θk)∥2

]
≤ wk

(
E[V (θk)]− V (θ∗)

)
− wk+1

(
E [V (θk+1)]− V (θ∗)

)
+ wk+1γk+1λk+1rk+1 + wk+1δk+1σ

2
k.

In the sequel, let us denote Vn = V (θn)− V (θ∗), so that
n∑

k=0

wk+1γk+1λk+1

(
1− Lσ̃1

2λk+1
γk+1β

2
k+1

)
E
[
∥∇V (θk)∥2

]
≤ w0E [V0]− wn+1E [Vn+1] +

1

2

n∑
k=0

wk+1γk+1λk+1rk+1 +

n∑
k=0

wk+1δk+1σ
2
k.

Then, given that γk+1 ≤ λk+1/(Lσ̃1β
2
k+1), we have

1

2
E

[
n∑

k=0

wk+1γk+1λk+1 ∥∇V (θk)∥2
]
≤ w0E [V0]− wn+1E [Vn+1]

+
1

2

n∑
k=0

wk+1γk+1λk+1rk+1 +

n∑
k=0

wk+1δk+1σ
2
k .

Consequently, by definition of the discrete random variable R,

E
[
∥∇V (θR)∥2

]
=

n∑
k=0

wk+1γk+1λk+1∑n
j=0 wj+1γj+1λj+1

E
[
∥∇V (θk)∥2

]
≤ 2

E [V0]− wn+1E [Vn+1] +
∑n

k=0 wk+1γk+1rk+1 +
∑n

k=0 wk+1δk+1σ
2
k∑n

j=0 wj+1γj+1λj+1
,

which concludes the proof by noting that V (θn+1) ≥ V (θ∗).

A.3 Proof of Corollary 4.3

The proof is a direct consequence of the fact that for a sufficiently large n:

n∑
k=1

1

ks
=


O
(
n−s+1

)
if 0 ≤ s < 1 ,

O (1) if s > 1 ,

O (log n) if s = 1 .

A.4 Proof of Corollary 4.4

By H2, using (5), we obtain:

V (θk+1) ≤ V (θk) + ⟨∇V (θk) , θk+1 − θk⟩+
L

2
∥θk+1 − θk∥2

≤ V (θk)− γk+1 ⟨∇V (θk) , AkHθk (Xk+1)⟩+
Lγ2

k+1

2
∥Ak∥2 ∥Hθk (Xk+1)∥2 ,
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which, using H4 and H5 yields:

V (θk+1) ≤ V (θk)− γk+1 ⟨∇V (θk) , AkHθk (Xk+1)⟩+
L

2
γ2
k+1β

2
k+1M

2.

Using H3,

E[V (θk+1)|Fk] ≤ V (θk)− γk+1λn+1∥∇V (θk)∥2 + γk+1λk+1rk+1 +
LM2

2
γ2
k+1β

2
k+1 .

Therefore,

γk+1λk+1 ∥∇V (θk)∥2 ≤ V (θk)− E [V (θk+1) |Fk] + γk+1λk+1rk+1 +
LM2

2
γ2
k+1β

2
k+1 ,

and
n∑

k=0

γk+1λk+1E
[
∥∇V (θk)∥2

]
≤ E [V (θ0)− V (θn+1)] +

n∑
k=0

γk+1λk+1rk+1

+
LM2

2

n∑
k=0

γ2
k+1β

2
k+1 .

Consequently, by definition of the discrete random variable R,

E
[
∥∇V (θR)∥2

]
=

1

n

n∑
k=0

E
[
∥∇V (θk)∥2

]
≤

n∑
k=0

γk+1λk+1√
n

E
[
∥∇V (θk)∥2

]
≤

V0,n +
∑n

k=0 γk+1λk+1rk+1 + LM2
∑n

k=0 γ
2
k+1β

2
k+1/2√

n
,

where V0,n = E[V (θ0)− V (θn+1)], which conclude the proof by noting that V (θn+1) ≥ V (θ∗).

A.5 Proof of Corollary 4.5

Here, we consider the case where the regularization is non-increasing, i.e., where δ = β−2
n+1. The

constant case is strictly analogous. To verify H4, we demonstrate that the control of the maximum
and minimum eigenvalues is satisfied for Adagrad and RMSProp.

Adagrad

• Lower bound for the smallest eigenvalue of An. By assumption H5, we have:∥∥∥∥∥ 1

n+ 1

n∑
k=0

Hθk(Xk+1)Hθk(Xk+1)
⊤

∥∥∥∥∥ ≤ M2 .

This implies that:

λmin(An) = λmax

(
β−2
n+1Id + Diag

(
1

n+ 1

n∑
k=0

Hθk(Xk+1)Hθk(Xk+1)
⊤

))−1/2

≥ (β−2
1 +M2)−1/2.

• Upper bound for the largest eigenvalue of An.

λmax(An) = λmin

(
β−2
n+1Id + Diag

(
1

n+ 1

n∑
k=0

Hθk(Xk+1)Hθk(Xk+1)
⊤

))−1/2

≤ βn+1 .
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Therefore, by setting λn+1 = (β−2
1 + M2)−1/2 and βn = Cβn

β , we have λ = 0 and one can
arbitrarily choose β (one can take β = 0 for the constant regularization case).

RMSProp

• Lower bound for the smallest eigenvalue of An. By assumption H5, we have:

∥Vn∥ ≤ (1− ρ)

n∑
k=1

ρn−k ∥Hθk(Xk+1)∥2 ≤ M2(1− ρ)

n∑
k=1

ρn−k ≤ M2 ,

where we used the fact that
∑n

k=1 ρ
n−k ≤ (1− ρ)−1. This implies that:

λmin(An) = λmax
(
β−2
n+1Id + Diag (Vn)

)−1/2 ≥ (β−2
1 +M2)−1/2 .

• Upper bound for the largest eigenvalue of An. Note that

λmax(An) = λmin
(
β−2
n+1Id + Diag (Vn)

)−1/2 ≤ βn+1 .

Therefore, under H2, H3(i), and H5, we can conclude that

E
[
∥∇V (θR)∥2

]
= O

(
log n√

n
+ bn

)
,

where bn corresponds to the bias which comes from rn in H3(i). Choosing rn = Crn
−r, we get:

bn =


O (n−r) if r < 1/2 ,

O
(
n−1/2

)
if r > 1/2 ,

O
(
n−1/2 log n

)
if r = 1/2 .

Now, we show that under the control of bias, i.e.,

∥E [Hθn (Xn+1) |Fn]−∇V (θn)∥ ≤ Cαn
−α ,

we can verify H3(i) with a similar bound on the bias, where r = 2α. This yields the bias term bn as
follows:

bn =


O
(
n−2α

)
if α < 1/4 ,

O
(
n−1/2

)
if α > 1/4 ,

O
(
n−1/2 log n

)
if α = 1/4 .

Verifying Assumption H3 (i) for Adagrad. Using the tower property, we have:

E [⟨∇V (θn) , AnHθn (Xn+1)⟩] = E [E [⟨∇V (θn) , AnHθn (Xn+1)⟩ |Fn]] ,

where (Fn)n≥0 represents the filtration generated by the random variables (θ0, {Xk}k≤n). Let Ãn

be an adaptive Fn-measurable matrix. Then,

E [⟨∇V (θn) , AnHθn (Xn+1)⟩ |Fn] =
〈
∇V (θn) , ÃnE [Hθn (Xn+1) |Fn]

〉
︸ ︷︷ ︸

Treated as in SGD but with λmin(Ãn)

+ E
[〈

∇V (θn) , (An − Ãn)Hθn (Xn+1)
〉
|Fn

]
︸ ︷︷ ︸

Control error between An and Ãn

.

We only verify Assumption H3(i) for Adagrad algorithm since it is analogous to RMSProp. Consider
An given by:

An =

(
diag

(
β−2
n+1Id +

1

n+ 1

n∑
k=0

Hθk (Xk+1)Hθk (Xk+1)
⊤

))−1/2

.

First, writing

Ãn =

(
diag

(
β−2
n+1Id +

1

n+ 1

n−1∑
k=0

Hθk (Xk+1)Hθk (Xk+1)
⊤

))−1/2
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and denoting by A[i] the i-th element of the diagonal of a matrix A, we have

An[i]− Ãn[i] = u−1/2
n

(
v1/2n − u1/2

n

)
v−1/2
n ≤ 0 ,

where

un = β−2
n+1 +

1

n+ 1

n∑
k=0

(Hθk (Xk+1) [i])
2 and vn = β−2

n+1 +
1

n+ 1

n−1∑
k=0

(Hθk (Xk+1) [i])
2
.

Then, since un ≥ vn,

An[i]− Ãn[i] =
vn − un√

unvn
(√

un +
√
vn
) ≥ − 1

n+ 1
(Hθn (Xn+1) [i])

2 1

2vn3/2

≥ −
β3
n+1

n+ 1
(Hθn (Xn+1) [i])

2
.

Since the bias of Hθn (Xn+1) is bounded by b̃n := Cαn
−α,

E [⟨∇V (θn) , AnHθn (Xn+1)⟩ |Fn]

=
〈
∇V (θn) , ÃnE [Hθn (Xn+1) |Fn]

〉
+ E

[〈
∇V (θn) , (An − Ãn)Hθn (Xn+1)

〉
|Fn

]
≥ λmin

(
Ãn

)
∥∇V (θn)∥2 − λmax

(
Ãn

)
∥∇V (θn)∥ b̃n

− ∥∇V (θn)∥
β3
n+1

n+ 1
E
[
∥Hθn (Xn+1)∥3 |Fn

]
.

As Hθn (Xn+1) and the gradient of V are uniformly bounded by M , λmin(Ãn) ≥ (β−2
1 +M2)−1/2,

so that

E [⟨∇V (θn) , AnHθn (Xn+1)⟩ |Fn] ≥
1√

β−2
1 +M2

∥∇V (θn)∥2 − βn+1Mb̃n −M4 β
3
n+1

n+ 1
,

and Assumption H3(i) is satisfied with λn+1 = (β−2
1 +M2)−1/2 and rn+1 = Mβ2

n+1b̃
2
n/λn+1 +

M4β3
n+1/(n+ 1).

A.6 Proof of Theorem 4.6

The proof of this theorem is inspired by [67] and [73], considering biased gradient estimators and
decreasing step sizes. We define the operation max(D1, D2) for diagonal matrices D1 and D2 as the
matrix formed by taking the maximum between the diagonal elements of D1 and D2. We say that the
sequence (An)n≥1 of diagonal matrices is decreasing if all diagonal terms are decreasing, in other
words, if all eigenvalues are decreasing.

Let θ̃k+1 = θk+1 + κ (θk+1 − θk), for k ≥ 1, κ ∈ [0, 1) and mk = ρ1mk−1 + (1 − ρ1)gk with
gk = Hθk(Xk+1). Using the recursion of AMSGRAD, we have:

θ̃k+1 − θ̃k = (1 + κ)θk+1 − (1 + 2κ)θk + κθk−1 = (1 + κ) (θk+1 − θk)− κ (θk − θk−1)

= −(1 + κ)γk+1Akmk + κγkAk−1mk−1 .

Choosing κ = ρ1/(1− ρ1), we can rewrite it as:

θ̃k+1 − θ̃k = κ (γkAk−1 − γk+1Ak)mk−1 − γk+1Akgk .

By Assumption H2, V is L-smooth, using the recursion of AMSGRAD together with a Taylor
expansion with θ̃k, we obtain:

V (θ̃k+1) ≤ V
(
θ̃k

)
+
〈
∇V

(
θ̃k

)
, θ̃k+1 − θ̃k

〉
+

L

2

∥∥∥θ̃k+1 − θ̃k

∥∥∥2
≤ V

(
θ̃k

)
− γk+1

〈
∇V

(
θ̃k

)
, Akgk

〉
+ κ

〈
∇V

(
θ̃k

)
, (γkAk−1 − γk+1Ak)mk−1

〉
+ Lγ2

k+1 ∥Akgk∥2 + Lκ2 ∥(γkAk−1 − γk+1Ak)mk−1∥2

≤ V
(
θ̃k

)
+ T1,k + T2,k + T3,k + T4,k ,
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where
T1,k = −γk+1 ⟨∇V (θk) , Akgk⟩+ Lγ2

k+1 ∥Akgk∥2 ,

T2,k = −γk+1

〈
∇V

(
θ̃k

)
−∇V (θk) , Akgk

〉
,

T3,k = κ
〈
∇V

(
θ̃k

)
, (γkAk−1 − γk+1Ak)mk−1

〉
,

T4,k = Lκ2 ∥(γkAk−1 − γk+1Ak)mk−1∥2 .
Note first that

n∑
k=1

E [T1,k] = −
n∑

k=1

γk+1E [⟨∇V (θk) , Akgk⟩] + L

n∑
k=1

γ2
k+1E

[
∥Akgk∥2

]
≤ −Cλ

n∑
k=1

γk+1E
[
∥∇V (θk)∥2

]
+ Cλ

n∑
k=1

γk+1rk+1 + L

n∑
k=1

γ2
k+1E

[
∥Akgk∥2

]
,

where Cλ = (δ +M2)−1/2.

For the second term, using the inequality xy ≤ x2/2 + y2/2 for all x, y, and the smoothness of V ,
we get:

n∑
k=1

E [T2,k] = −
n∑

k=1

E
[〈

∇V
(
θ̃k

)
−∇V (θk) , γk+1Akgk

〉]
≤ 1

2

n∑
k=1

E
[∥∥∥∇V

(
θ̃k

)
−∇V (θk)

∥∥∥2]+ 1

2

n∑
k=1

E
[
∥γk+1Akgk∥2

]
≤ L2

2

n∑
k=1

E
[∥∥∥θ̃k − θk

∥∥∥2]+ n∑
k=1

γ2
k+1

2
E
[
∥Akgk∥2

]
≤ κ2L2

2

n∑
k=1

E
[
∥θk − θk−1∥2

]
+

n∑
k=1

γ2
k+1

2
E
[
∥Akgk∥2

]
≤ κ2L2

2

n∑
k=1

γ2
kE
[
∥Ak−1mk−1∥2

]
+

n∑
k=1

γ2
k+1

2
E
[
∥Akgk∥2

]
.

For the third term, using the boundedness of the gradient of V and the fact that ∥mk∥ ≤ M by
Lemma A.3, we have:

n∑
k=1

E [T3,k] = κ

n∑
k=1

E
[〈

∇V
(
θ̃k

)
, (γkAk−1 − γk+1Ak)mk−1

〉]
≤ κM2

d∑
i=1

n∑
k=1

E [γkAk−1[i]− γk+1Ak[i]]

≤ κM2
d∑

i=1

E [γ1A0[i]− γn+1An[i]] ≤ κM2dCγ ,

where in the second inequality, we used the fact that γk and Ak are decreasing since we use
V̂k = max(V̂k−1, Vk). For the last term, using the boundedness of the gradient of V yields:

n∑
k=1

E [T4,k] = Lκ2
n∑

k=1

E
[
∥(γkAk−1 − γk+1Ak)mk−1∥2

]
≤ Lκ2M2

d∑
i=1

n∑
k=1

E
[
(γkAk−1[i]− γk+1Ak[i])

2
]

≤ Lκ2M2
d∑

i=1

n∑
k=1

E
[
(γkAk−1[i])

2 − (γk+1Ak[i])
2
]

≤ Lκ2M2dC2
γ ,
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where we used the inequality (x− y)2 ≤ x2 − y2 when x ≥ y in the second last inequality.

Combining all these terms, we finally obtain:

Cλ

n∑
k=1

γk+1E
[
∥∇V (θk)∥2

]
≤ V ∗ + Cλ

n∑
k=1

γk+1rk+1 + L

n∑
k=1

γ2
k+1E

[
∥Akgk∥2

]
+

n∑
k=1

γ2
k+1

2
E
[
∥Akgk∥2

]
+

κ2L2

2

n∑
k=1

γ2
kE
[
∥Ak−1mk−1∥2

]
+ κM2dCγ + Lκ2M2dC2

γ ,

where V ∗ = E[V (θ0)− V (θ∗)] ≥ E[V (θ0)− V (θ̃n+1)]. Choosing γn = n−1/2 and using Lemma
A.3 and [15, Lemma 24] yields

n∑
k=1

γ2
k+1E

[
∥Akmk∥2

]
≤ (1− ρ1)

n∑
k=1

γ2
k+1E

[
∥Akgk∥2

]
≤ (1− ρ1)dC

2
γ log

(
1 +

nM2

δ

)
= O (d log n) .

Therefore, by dividing both sides by Cλn
−1/2, we obtain

1

n

n∑
k=1

E
[
∥∇V (θk)∥2

]
= O

(
1√
n
+

d log n√
n

+
d√
n
+ bn

)
,

which concludes the proof.

Lemma A.3. Let γk+1 ≤ γk for all k ∈ N, and let Ak be the adaptive matrix defined in Algorithm 1.
Assume that ρ1 ∈ [0, 1). Then, for all k ∈ N:

∥mk∥ ≤ M and

n∑
k=1

γ2
k+1E

[
∥Akmk∥2

]
≤ (1− ρ1)

n∑
k=1

γ2
k+1 ∥Akgk∥2 .

Proof. For the first inequality, we have:

∥mk∥ =

∥∥∥∥∥(1− ρ1)

k∑
ℓ=1

ρk−ℓ
1 gℓ

∥∥∥∥∥ ≤ (1− ρ1)

k∑
ℓ=1

ρk−ℓ
1 ∥gℓ∥ ≤ M(1− ρ1)

∑
ℓ≥0

ρℓ1 ≤ M ,

where we used the fact that
∑

ℓ≥0 ρ
ℓ
1 = 1/(1 − ρ1). For the second inequality, using the fact that

γk and Ak are decreasing (in the sense that all eigenvalues of Ak are decreasing), since we use
V̂k = max(V̂k−1, Vk), we can write:

n∑
k=1

γ2
k+1 ∥Akmk∥2 =

n∑
k=1

γ2
k+1

∥∥∥∥∥Ak(1− ρ1)

k∑
ℓ=1

ρk−ℓ
1 gℓ

∥∥∥∥∥
2

≤ (1− ρ1)
2

n∑
k=1

γ2
k+1

k∑
ℓ=1

ρk−ℓ
1 ∥Aℓgℓ∥2

≤ (1− ρ1)
2

n∑
k=1

k∑
ℓ=1

ρk−ℓ
1 γ2

ℓ+1 ∥Aℓgℓ∥2

≤ (1− ρ1)
2

n∑
ℓ=1

n∑
k=ℓ

ρk−ℓ
1 γ2

ℓ+1 ∥Aℓgℓ∥2 ,

which concludes the proof.
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A.7 The Impact of regularization parameter δ in Adam

In our case, we have a dependence on δ in the logarithm, which is common for adaptive algorithms.
The regularization parameter δ, originally introduced to avoid the zero denominator issue when Vk

approaches 0, is often overlooked. However, it has been empirically observed that the performance of
adaptive methods can be sensitive to the choice of this parameter, especially when a very small δ is
used, which has resulted in performance issues in some applications.

In practice, δ is typically chosen as 10−8. In our convergence rate analysis, even though the logarithm
of δ−1 is small, it still impacts the convergence rate. A larger δ will lead to a better convergence rate,
while a smaller δ will preserve stronger adaptivity. We need to find a better compromise between
the convergence rate and the adaptivity to choose δ. In [77, 67, 73], it was shown that by choosing δ
between 10−3 and 10−1, better results were obtained in some applications of deep learning.

Furthermore, several modified versions of Adam have been proposed, such as AMSGRAD [77] and
YOGI [67] with the discussion of the regularization parameter δ. The authors of [73] proposed a
new modified version of Adam called SADAM to represent the calibrated ADAM using the softplus
function. In this algorithm, they define V̂k = softplus

(√
Vk

)
while other terms remain unchanged.

Since we have:

V̂k = softplus
(√

Vk

)
=

1

b
log
(
1 + eb

√
Vk

)
≈ 1

b
log
(
eb

√
Vk

)
=
√

Vk ,

where b is the parameter to control for achieving a better convergence rate. In this case, we have
λmax(Ak) ≤ b/ log 2, which is similar to δ−1/2 in Adagrad and Adam. Additionally, they demonstrate
that b ≈ 50 appears to be a good choice based on the empirical observations.
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B IWAE / BR-IWAE

B.1 Importance Weighted Autoencoder (IWAE)

In this section, we elaborate on the IWAE procedure within our framework to illustrate its convergence
rate. The IWAE objective function is defined as:

LIWAE
k (θ, ϕ;x) = Eq⊗k

ϕ (·|x)

[
log

1

k

k∑
ℓ=1

pθ(x, Z
(ℓ))

qϕ(Z(ℓ) | x)

]
,

where k corresponds to the number of samples drawn from the encoder’s approximate posterior
distribution. Denoting V as the objective function, i.e., V (θ) = log pθ(x), the gradient of V and the
estimator of the gradient of the ELBO of the IWAE objective are given by:

∇θV (θ) = ∇θ log pθ(x) = Epθ(·|x) [∇θ log pθ(x, z)] ,

∇̂θLIWAE
k (θ, ϕ;x) =

k∑
ℓ=1

w(ℓ)∑k
ℓ=1 w

(ℓ)
∇θ log pθ(x, z

(ℓ)) ,
(10)

where w(ℓ) = pθ(x, z
(ℓ))/qϕ(z

(ℓ)|x) the unnormalized importance weights. Theorem B.1 provides
an upper bound for the bias of this estimator.
Theorem B.1. Let X ⊆ Rdx and Z ⊆ Rdz denote the data space and the latent space, respectively.
Assume that there exists M such that for all θ ∈ Θ ⊂ Rd, x ∈ X and z ∈ Z, ∥∇θ log pθ(x, z)∥ ≤
M(x). Then, there exists a constant C > 0 such that for all θ ∈ Θ, ϕ ∈ Φ and x ∈ X,∥∥∥Eq⊗k

ϕ (·|x)

[
∇̂θLIWAE

k (θ, ϕ;x)−∇θV (θ)
]∥∥∥ ≤ C

k
,

where ∇θV (θ) and ∇̂θLIWAE
k (θ, ϕ;x) are defined in (10).

Proof. The proof is adapted from [1, Theorem 2.1]. By definition,

∇̂θLIWAE
k (θ, ϕ;x)−∇θV (θ) =

∑k
ℓ=1 w

(ℓ)
(
∇θ log pθ(x, z

(ℓ))− Epθ(·|x) [∇θ log pθ(x, z)]
)∑k

ℓ=1 w
(ℓ)

.

Writing H̃(x, z(ℓ)) = ∇θ log pθ(x, z
(ℓ))− Epθ(·|x) [∇θ log pθ(x, z)], yields

∇̂θLIWAE
k (θ, ϕ;x)−∇θV (θ) =

∑k
ℓ=1 w

(ℓ)H̃(x, z(ℓ))∑k
ℓ=1 w

(ℓ)
.

Since Eqϕ [wH̃(x, z)] = 0, we have:

∇̂θLIWAE
k (θ, ϕ;x)−∇θV (θ) =

1
k

∑k
ℓ=1 w

(ℓ)H̃(x, z(ℓ))− Eqϕ

[
wH̃(x, z)

]
1
k

∑k
ℓ=1 w

(ℓ)
.

As
∑k

ℓ=1 w
(ℓ)H̃(x, z(ℓ))/k is an unbiased estimator of Eqϕ

[
wH̃(x, z)

]
,

Eqϕ

[
∇̂θLIWAE

k (θ, ϕ;x)−∇θV (θ)
]

= Eqϕ

[(
1

1
k

∑k
ℓ=1 w

(ℓ)
− 1

Eqϕ [w]

)(
1

k

k∑
ℓ=1

w(ℓ)H̃(x, z(ℓ))− Eqϕ

[
wH̃(x, z)

])]
,

so that

Eqϕ

[
∇̂θLIWAE

k (θ, ϕ;x)−∇θV (θ)
]

= Eqϕ


(

1
k

∑k
ℓ=1 w

(ℓ)H̃(x, z(ℓ))− Eqϕ

[
wH̃(x, z)

])(
Eqϕ [w]− 1

k

∑k
ℓ=1 w

(ℓ)
)

Eqϕ [w]
1
k

∑k
ℓ=1 w

(ℓ)

 .
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Therefore, ∥∥∥Eqϕ

[
∇̂θLIWAE

k (θ, ϕ;x)−∇θV (θ)
]∥∥∥ ≤ A1 +A2,

where

A1 =
∥∥∥Eqϕ

[(
∇̂θLIWAE

k (θ, ϕ;x)−∇θV (θ)
)
1{ 2

k

∑k
ℓ=1 w(ℓ)>Eqϕ

[w]}
]∥∥∥ ,

A2 =
∥∥∥Eqϕ

[(
∇̂θLIWAE

k (θ, ϕ;x)−∇θV (θ)
)
1{ 2

k

∑k
ℓ=1 w(ℓ)≤Eqϕ

[w]}
]∥∥∥ .

Note that

A1 ≤

∥∥∥∥∥Eqϕ

[
2

Eqϕ [w]
2

(
1

k

k∑
ℓ=1

w(ℓ)H̃(x, z(ℓ))− Eqϕ

[
wH̃(x, z)

])(
Eqϕ [w]−

1

k

k∑
ℓ=1

w(ℓ)

)]∥∥∥∥∥
≤ 2

Eqϕ [w]
2Eqϕ

[∥∥∥∥∥1k
k∑

ℓ=1

w(ℓ)H̃(x, z(ℓ))− Eqϕ

[
wH̃(x, z)

]∥∥∥∥∥
∥∥∥∥∥1k

k∑
ℓ=1

w(ℓ) − Eqϕ [w]

∥∥∥∥∥
]

≤ 2

Eqϕ [w]
2Eqϕ

∥∥∥∥∥1k
k∑

ℓ=1

w(ℓ)H̃(x, z(ℓ))− Eqϕ

[
wH̃(x, z)

]∥∥∥∥∥
2
1/2

× Eqϕ

(1

k

k∑
ℓ=1

w(ℓ) − Eqϕ [w]

)2
1/2

,

where we used Cauchy-Schwarz inequality in the last inequality. On the other hand,

Eqϕ

(1

k

k∑
ℓ=1

w(ℓ) − Eqϕ [w]

)2
 = V

(
1

k

k∑
ℓ=1

w(ℓ)

)
≤

Eqϕ

[
w2
]

k
,

and

Eqϕ

∥∥∥∥∥1k
k∑

ℓ=1

w(ℓ)H̃(x, z(ℓ))− Eqϕ

[
wH̃(x, z)

]∥∥∥∥∥
2


= Tr

(
V

(
1

k

k∑
ℓ=1

w(ℓ)H̃(x, z(ℓ))

))
≤ 4dM2Eqϕ

[
w2
]

k
.

Finally, we deduce that

A1 ≤ 2

Eqϕ [w]
2

1√
k
Eqϕ

[
w2
]1/2 2

√
dM√
k

Eqϕ

[
w2
]1/2

=
Eqϕ

[
w2
]

Eqϕ [w]
2

4
√
dM

k
.

Using the assumption on the boundedness of ∥∇θ log pθ(x, z)∥ and the Markov inequality, we obtain:

A2 ≤ 2MP

(
2
1

k

k∑
ℓ=1

w(ℓ) ≤ Eqϕ [w]

)

≤ 2MP

(
2

(
1

k

k∑
ℓ=1

w(ℓ) − Eqϕ [w]

)
≤ −Eqϕ [w]

)

≤ 2MP

(∣∣∣∣∣1k
k∑

ℓ=1

w(ℓ) − Eqϕ [w]

∣∣∣∣∣ ≥ Eqϕ [w]

2

)
≤

Eqϕ

[
w2
]

Eqϕ [w]
2

8M

k
,

which concludes the proof.
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Algorithm 2 Adaptive Stochastic Approximation for IWAE
Input: Initial point θ0, maximum number of iterations n, step sizes {γk}k≥1 and a hyperparameter
α ≥ 0 to control the bias and MSE.
for k = 0 to n− 1 do

Compute the stochastic update ∇θ,ϕLIWAE
kα (θk, ϕk;Xk+1) using kα samples from the varia-

tional posterior distribution and adaptive steps Ak.
Set θk+1 = θk − γk+1Ak∇θLIWAE

kα (θk, ϕk;Xk+1).
Set ϕk+1 = ϕk − γk+1Ak∇ϕLIWAE

kα (θk, ϕk;Xk+1).
end for
Output: (θk)0≤k≤n

B.2 BR-IWAE

In this section, we provide additional details on the Biased Reduced Importance Weighted Autoen-
coder (BR-IWAE). In IWAE, instead of estimating the gradient of the ELBO with respect to θ via the
Monte Carlo method, we estimate the gradient of the true objective function Epθ(·|x) [∇θ log pθ(x, z)]
using the BR-SNIS estimator [14]. This estimator aims to reduce the bias of self-normalized impor-
tance sampling estimators without increasing the variance.

Algorithm 3 BR-IWAE Gradient Estimator
Input: Maximum number of iterations tmax for MCMC and number of samples k from the
variational distribution qϕ(· | x).
Initialization: Draw z̃0 from the variational distribution qϕ(· | x).
for t = 0 to tmax − 1 do

Draw It+1 ∈ {1, . . . , k} uniformly at random and set zIt+1

t+1 = z̃t.
Draw z

1:k\{It+1}
t+1 independently from the variational distribution qϕ(· | x).

Compute the unnormalized importance weights:

w
(ℓ)
t+1 =

pθ(x, z
(ℓ)
t+1)

qϕ(z
(ℓ)
t+1 | x)

∀ℓ ∈ {1, . . . , k}.

Normalize importance weights:

ω
(ℓ)
t+1 =

w
(ℓ)
t+1∑N

ℓ=1 w
(ℓ)
t+1

∀ℓ ∈ {1, . . . , k}.

Select z̃t+1 from the set z1:kt+1 by choosing zℓt+1 with probability ω
(ℓ)
t+1.

end for
Output:

(
z1:kt

)
1≤t≤tmax

and
(
ω1:k
t

)
1≤t≤tmax

.

The BR-SNIS estimator of Epθ(·|x) [∇θ log pθ(x, z)] is given by:

∇̂θ log pθ(x, z
1:k
t0:tmax

) =
1

tmax − t0

tmax∑
t=t0+1

k∑
ℓ=1

ω
(ℓ)
t ∇θ log pθ(x, z

ℓ
t ) ,

where t0 corresponds to a burn-in period. By [14, Theorem 4] the bias of this estimator decreases
exponentially with t0. The BR-IWAE algorithm proceeds in two steps, which are repeated during
optimization:

• Update the parameter ϕ as in the IWAE algorithm, that is, for all n ≥ 1:

ϕn+1 = ϕn − γn+1An∇ϕLIWAE
k (θn, ϕn;Xn+1) .

• Update the parameter θ by estimating (9) using BR-SNIS as detailed in Algorithm 3:

ϕn+1 = ϕn − γn+1An∇̂θ log pθ(Xn+1, z
1:k
t0:tmax

) .
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B.3 Some Other Techniques for Reducing Bias

In the previous section, we discussed one technique for reducing bias, BR-IWAE. Here, we provide
an overview of some other bias reduction techniques within our context. First, the jackknife bias-
corrected estimator [62] is defined as:

LJackknife(θ, ϕ;x) = kLIWAE
k (θ, ϕ;x)− (k − 1)LIWAE

k−1 (θ, ϕ;x) ,

which achieves a reduced bias of O(k−2). This can also be generalized to have a bias of order
O(k−m) for some m ≥ 1 by considering:

LJackknife
k,m =

m∑
j=0

c(k,m, j)LIWAE
k−j ,

where the coefficients c(k,m, j) are given as

c(k,m, j) = (−1)j
(k − j)m

(m− j)!j!
.

The Delta method Variational Inference (DVI) [71] is defined by:

LDV I
k = Eq⊗k

ϕ (·|x)

[
log

1

k

k∑
ℓ=1

w(ℓ) +
s̄2k

2kw̄k

]
,

where

w(ℓ) =
pθ(x, z

(ℓ))

qϕ(z(ℓ) | x)
, w̄k =

1

k

k∑
ℓ=1

w(ℓ) and s̄2k =
1

k − 1

k∑
ℓ=1

(w(ℓ) − w̄k)
2 .

The Monte Carlo estimator of the Delta method Variational Inference objective achieves a reduced
bias of O(k−2). Some other techniques for reducing bias include the iterated bootstrap for bias
correction, the debiasing lemma [57], and Multi-Level Monte Carlo and its variants [39].
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C Application of Our Theorem to Bilevel and Conditional Stochastic
Optimization

C.1 Stochastic Bilevel Optimization

We consider the Stochastic Bilevel Optimization problem given by:
min
θ∈Rd

V (θ) = Eξ [f(θ, ϕ
∗(θ); ξ)] (upper-level) (11)

subject to
ϕ∗(θ) ∈ argmin

ϕ∈Rq

Eζ [g(θ, ϕ; ζ)] (lower-level)

where the upper and inner level functions f and g are both jointly continuously differentiable and ξ
and ζ are random variables. The goal of equation (11) is to minimize the objective function V with
respect to θ, where ϕ∗(θ) is obtained by solving the lower-level minimization problem. This bilevel
problem involves many machine learning problems with a hierarchical structure, which include
hyper-parameter optimization [31], metalearning [30], policy optimization [37] and neural network
architecture search [55]. The gradient of the objective function V is given by:

∇V (θ) = ∇θf(θ, ϕ
∗(θ))−∇θϕg(θ, ϕ

∗(θ))v∗,

where v∗ is the solution of the following linear system:
∇2

ϕg(θ, ϕ
∗(θ))v = ∇ϕf(θ, ϕ

∗(θ)) .

Instead of computing v∗, the solution of the linear system above, [43, 17] proposes a method to
estimate v∗. This estimation introduces bias in the gradient of the objective function.

Consider the following assumptions.

H6 For all θ ∈ Rd, g(θ, ϕ) is strongly convex with respect to ϕ with parameter µg > 0.

H7 (Regularity Lipschitz condition) Assume that f , ∇f , ∇g, ∇2g are respectively Lipschitz
continuous with Lipschitz constants ℓf,0, ℓf,1, ℓg,1 and ℓg,2.

Assumptions H6 and H7 are the same assumptions used in [17] to obtain the convergence results with
SGD. Furthermore, these two assumptions ensure that the first- and second-order derivatives of f and
g, as well as the solution mapping ϕ∗(θ), are well-behaved.
Proposition C.1. ([17, Lemma 2.2]) Under Assumption 6, we have:

∇V (θ) = ∇θf (θ, ϕ∗(θ))−∇2
θϕg (θ, ϕ

∗(θ))
[
∇2

ϕg (θ, ϕ
∗(θ))

]−1 ∇ϕf (θ, ϕ∗(θ)) . (12)

Due to the dependence of the minimizer of the lower-level problem ϕ∗(θ), obtaining an unbiased
estimate of ∇V (θ) is challenging. To address this, we replace ϕ∗(θ) in the gradient with ϕ and define

∇̄θf(θ, ϕ) := ∇θf(θ, ϕ)−∇2
θϕg(θ, ϕ)

[
∇2

ϕg(θ, ϕ)
]−1 ∇ϕf(θ, ϕ) .

Furthermore, by estimating
[
∇2

ϕg(θ, ϕ)
]−1

, we define the stochastic update Hk [17] as follows:

Hk = ∇θf (θk, ϕk+1; ξk)−∇2
θϕg

(
θk, ϕ; ζ

(0)
k

)
Ĝ∇ϕf (θk, ϕk+1; ξk) , (13)

where Ĝ = N
ℓg,1

∏N ′

i=1

(
I − 1

ℓg,1
∇2

ϕg
(
θk, ϕk+1; ζ

(i)
k

))
with N ′ is drawn from {1, . . . , N} uni-

formly at random and
{
ζ(1), . . . , ζ(N

′)
}

are i.i.d. samples.

In Algorithm 4, we perform T steps of SGD on the lower-level variable ϕk before updating the
upper-level variable θk using adaptive methods such as Adagrad, RMSProp, or AMSGRAD.
Lemma C.2. ([33, Lemma 2.2]) Under Assumptions H6 and H7, for all (θ, θ′) ∈ Rd × Rd,

∥∇V (θ)−∇V (θ′)∥ ≤ LV ∥θ − θ′∥ ,
with the constant LV is given by

LV = ℓf,1 +
ℓg,1 (ℓf,1 + Lf )

µg
+

ℓf,0
µg

(
ℓg,2 +

ℓg,1ℓg,2
µg

)
,

and Lf is defined as Lf = ℓf,1 +
ℓg,1ℓf,1

µg
+

ℓf,0
µg

(
ℓg,2 +

ℓg,1ℓg,2
µg

)
.
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Algorithm 4 Stochastic Bilevel Optimization
Input: Initial points θ0, ϕ0, maximum number of iterations for the upper-level n and for the
lower-level T , step sizes {γk, γ̃k}k≥1, momentum parameters ρ1, ρ2 ∈ [0, 1) and regularization
parameter δ ≥ 0.
Set m0 = 0, V0 = 0 and V̂0 = 0
for k = 0 to n− 1 do

Set ϕk,0 = ϕk.
for t = 0 to T − 1 do

ϕk,t+1 = ϕk,t − γ̃k+1∇ϕg (θk, ϕk,t; ζk,t)
end for
Set ϕk+1 = ϕk,T .
Compute the stochastic update Hk using ϕk+1.
mk = ρ1mk−1 + (1− ρ1)Hk

Vk = ρ2Vk−1 + (1− ρ2)HkH
⊤
k

V̂k = max
(
V̂k−1,Diag(Vk)

)
Ak =

[
δId + V̂k

]−1/2

θk+1 = θk − γk+1Akmk

end for
Output: (θk, ϕk)0≤k≤n

Lemma C.3. Under Assumptions H6 and H7, the following inequalities hold:

∥∇V (θk)− E [Hk | Fk]∥2 ≤ 2L2
f ∥ϕk+1 − ϕ∗ (θk)∥2 + 2b̃2k ,

∥∥∇̄θf(θ, ϕ)
∥∥ ≤ ℓf,0 +

ℓg,1ℓf,0
µg

,

where Lf = ℓf,1 +
ℓg,1ℓf,1

µg
+

ℓf,0
µg

(
ℓg,2 +

ℓg,1ℓg,2
µg

)
and b̃k = ℓg,1ℓf,1

1
µg

(
1− µg

ℓg,1

)N
.

Proof. For the bias term, since ∇V (θk) = ∇̄f (θk, ϕ
∗ (θk)), we have:

∥∇V (θk)− E [Hk | Fk]∥2

=
∥∥∇̄f (θk, ϕ

∗ (θk))− ∇̄f (θk, ϕk+1) + ∇̄f (θk, ϕk+1)− E [Hk | Fk]
∥∥2

≤ 2
∥∥∇̄f (θk, ϕ

∗ (θk))− ∇̄f (θk, ϕk+1)
∥∥2 + 2

∥∥∇̄f (θk, ϕk+1)− E [Hk | Fk]
∥∥2

≤ 2L2
f ∥ϕk+1 − ϕ∗ (θk)∥2 + 2b̃2k ,

where we used [33, Lemma 2.2] for the first term and [37, Lemma 11] for the second term.

For the second inequality, we have:∥∥∇̄θf(θ, ϕ)
∥∥ =

∥∥∥∇θf(θ, ϕ)−∇2
θϕg(θ, ϕ)

[
∇2

ϕg(θ, ϕ)
]−1 ∇ϕf(θ, ϕ)

∥∥∥
≤ ∥∇θf(θ, ϕ)∥+

∥∥∇2
θϕg(θ, ϕ)

∥∥∥∥∥[∇2
ϕg(θ, ϕ)

]−1
∥∥∥ ∥∇ϕf(θ, ϕ)∥

≤ ℓf,0 +
ℓg,1ℓf,0
µg

.

Theorem C.4. Assume that H6 and H7 hold. Let θn ∈ Rd be the n-th iterate of Algorithm 4,
γn = cγn

−1/2 and γ̃n = cγ̃n
−1/2/T . For any n ≥ 1, let R ∈ {0, . . . , n} be a uniformly distributed

random variable. Assume the boundedness of the variance of the estimators of ∇f , ∇g, and ∇2g.
Then,

E
[
∥∇V (θR)∥2

]
= O

(
log n√

n
+ bn

)
.
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Proof. By using Lemma C.3, V is smooth and Lemma C.3, the bias and the gradient of V are
bounded. Using our Corollary 4.5, we obtain:

E
[
∥∇V (θR)∥2

]
= O

(
log n√

n
+ bn

)
,

where

bn = O

(∑n
k=0 γk+1b̃

2
k +

∑n
k=0 γk+1 ∥ϕk+1 − ϕ∗ (θk)∥2√

n

)
.

Then, with [33, Lemma 2.3] and [17, Lemma 3], we derive:

bn = O

(∑n
k=0 γk+1b̃

2
k√

n
+

1√
n

)
.

We achieve a classical convergence rate of O(log n/
√
n) for Stochastic Bilevel Optimization prob-

lems. Two types of bias emerge in this context: firstly, the challenge of directly computing ϕ∗(θ),
and secondly, the necessity of estimating [∇2

ϕg(θ, ϕ)]
−1.

Our results extend those of [17] to the adaptive case, particularly Adagrad, RMSProp, and AMS-
GRAD. This provides convergence guarantees for the Alternating Stochastic Gradient Descent
(ALSET) method. We can apply our convergence analysis to Stochastic Min-Max and Compositional
Problems, as well as to the Actor-Critic method with linear value function approximation [49], which
can be viewed as a special case of the Stochastic Bilevel algorithm.

C.2 Conditional Stochastic Optimization

We now consider a class of Conditional Stochastic Optimization:

min
θ∈Rd

V (θ) := Eξ

[
fξ
(
Eη|ξ [gη(θ, ξ)]

)]
, (14)

where fξ(·) : Rq → R depends on the random vector ξ and gη(·, ξ) : Rd → Rq is a vector-valued
function dependent on both random vectors ξ and η. The inner expectation is taken with respect to
the conditional distribution of η given ξ. Given certain conditions on the regularity of these functions,
the gradient of V as defined in (14) can be expressed as:

∇V (θ) = Eξ

[(
Eη|ξ [∇gη(θ, ξ)]

)⊤ ∇fξ
(
Eη|ξ [gη(θ, ξ)]

)]
. (15)

Constructing an unbiased stochastic estimator of this gradient can be both costly and, in some cases,
impractical. Instead, we opt for a biased estimator of ∇V (θ), using just one sample ξ and m i.i.d.
samples {ηj}mj=1 from the conditional distribution of η given ξ:

∇̂V (θ; ξ, {ηj}mj=1) :=

 1

m

m∑
j=1

∇gηj
(θ, ξ)

⊤

∇fξ

 1

m

m∑
j=1

gηj
(θ, ξ)

 . (16)

H8 For all ξ and η, assume that fξ(·), ∇fξ(·), gη(·, ξ), and ∇gη(·, ξ) are respectively Lipschitz
continuous with Lipschitz constants ℓf,0, ℓf,1, ℓg,0 and ℓg,1.

H9 For all θ and ξ, we assume that Eη|ξ

[∥∥gη(θ, ξ)− Eη|ξ [gη(θ, ξ)]
∥∥2] ≤ σ2

g .

Lemma C.5. ([40, Lemma 2.2]) Under Assumptions H8 and H9, the following holds:∥∥∥E [∇̂V (θ; ξ, {ηj}mj=1)
]
−∇V (θ)

∥∥∥2 ≤
ℓ2g,0ℓ

2
f,1σ

2
g

m
.

Lemma C.6. Under Assumption H8, we have:

∥∇V (θ)−∇V (θ′)∥ ≤
(
ℓg,1ℓf,0 + ℓ2g,0ℓf,1

)
∥θ − θ′∥ ,

∥∇V (θ)∥ ≤ ℓg,0ℓf,0 .
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Proof. Denoting Gθ = Eη|ξ [gη(θ, ξ)] and ∇Gθ = Eη|ξ [∇gη(θ, ξ)], we establish the smoothness of
V and Boundness of ∇V .

Smoothness of V :

∥∇V (θ)−∇V (θ′)∥ =
∥∥Eξ

[
∇GT

θ ∇fξ (Gθ)
]
− Eξ

[
∇GT

θ′∇fξ (Gθ′)
]∥∥

≤
∥∥Eξ

[
∇GT

θ ∇fξ (Gθ)
]
− Eξ

[
∇GT

θ′∇fξ (Gθ)
]∥∥

+
∥∥Eξ

[
∇GT

θ′∇fξ (Gθ)
]
− Eξ [∇Gθ′∇fξ (Gθ′)]

∥∥
≤
∥∥∥Eξ

[
(∇Gθ −∇Gθ′)

T ∇fξ (Gθ)
]∥∥∥

+
∥∥Eξ

[
∇GT

θ′ (∇fξ (Gθ)−∇fξ (Gθ′))
]∥∥

≤ Eξ [∥∇Gθ −∇Gθ′∥ ∥∇fξ (Gθ)∥]
+ Eξ [∥∇Gθ′∥ ∥∇fξ (Gθ)−∇fξ (Gθ′)∥]

≤ ℓg,1ℓf,0 ∥θ − θ′∥+ ℓg,0ℓf,1Eξ [∥Gθ −Gθ′∥]
≤ ℓg,1ℓf,0 ∥θ − θ′∥+ ℓ2g,0ℓf,1 ∥θ − θ′∥ .

Boundness of ∇V :

∥∇V (θ)∥ =
∥∥Eξ

[
∇GT

θ ∇fξ (Gθ)
]∥∥

≤ Eξ [∥∇Gθ∥ ∥∇fξ (Gθ)∥] ≤ ℓg,0ℓf,0 .

Theorem C.7. Assume that H8 and H9 hold. Let γn = cγn
−1/2, An denote the adaptive matrix

in AMSGRAD and ρ1, ρ2 ∈ [0, 1). For any n ≥ 1, let R ∈ {0, . . . , n} be a uniformly distributed
random variable. Then,

E
[
∥∇V (θR)∥2

]
= O

(
log n√

n
+ bn

)
,

where bn is defined by writing mk as the number of conditional samples at iteration k:

bn = O

(∑n
k=0

mk√
k√

n

)
.

Proof. This is an immediate implication of Theorem 4.6 using Lemmas C.5 and C.6.

These results can also be extended to the Federated Conditional Stochastic Optimization problem
[75], which is defined by:

min
θ∈Rd

V (θ) =
1

L

L∑
ℓ=1

Eξℓ

[
f ℓ
ξℓ

(
Eηl|ξℓ

[
gℓηℓ

(θ, ξℓ)
])]

,

where Eξℓf
ℓ
ξℓ
(·) : Rq → R is the outer-layer function on the ℓ-th device with the randomness ξℓ,

and Eηℓ|ξℓg
ℓ
ηℓ
(·, ξℓ) : Rd → Rq is the inner-layer function on the ℓ-th device with respect to the

conditional distribution of ηℓ given ξℓ. If the functions f ℓ
ξℓ
(·) and gℓηℓ

(·, ξℓ) for all L devices verify
Assumptions H8 and H9, we obtain the same convergence rate.

The following Table 2 provides a comprehensive summary of the key points, including the verification
of our assumptions and the convergence results obtained in both Stochastic Bilevel Optimization and
Conditional Stochastic Optimization.
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Table 2: Bilevel and Conditional Stochastic Optimization with our biased adaptive SA framework.
Applications Stochastic Bilevel Optimization Conditional Stochastic Optimization

Problem min
θ∈Rd

Eξ
[
f(θ, ϕ∗(θ); ξ)

]
min
θ∈Rd

Eξ

[
fξ

(
Eη|ξ

[
gη(θ, ξ)

])]
s.t. ϕ∗(θ) ∈ argmin

ϕ∈Rq
Eζ [g(θ, ϕ; ζ)]

Gradient ∇θf(θ, ϕ
∗(θ)) − ∇θϕg(θ, ϕ∗(θ))v∗ Eξ

[(
Eη|ξ

[
∇gη(θ, ξ)

])T
∇fξ

(
Eη|ξ

[
gη(θ, ξ)

])]
Lipchitz Constant H2 ℓf,1 +

ℓg,1

(
ℓf,1+Lf

)
µg

+
ℓf,0
µg

(
ℓg,2 +

ℓg,1ℓg,2
µg

)
ℓg,1ℓf,0 + ℓ2g,0ℓf,1

Bias Control H3 ℓg,1ℓf,1
1

µg

(
1 − µg

ℓg,1

)N ℓ2g,0ℓ2f,1σ2
g

m

Gradient Bound H5 ℓf,0 +
ℓg,1ℓf,0

µg
ℓg,0ℓf,0

Convergence O
(

log n√
n

+ bn

)
O

(
log n√

n
+ bn

)

D Some Other Examples of Biased Gradients with Control on Bias

In this section, we explore examples of applications using biased gradient estimators while having
control over the bias.

D.1 Self-Normalized Importance Sampling

Let π be a probability measure on a measurable space (X,X ). The objective is to estimate π(f) =
Eπ[f(X)] for a measurable function f : X → Rd such that π(|f |) < ∞. Assume that π(dx) ∝
w(x)λ(dx), where w is a positive weight function and λ is a proposal probability distribution, and
that λ(w) =

∫
w(x)λ(dx) < ∞. For a function f : X → Rd such that π(|f |) < ∞, the identity

π(f) =
λ(ωf)

λ(ω)
, (17)

leads to the Self-Normalized Importance Sampling (SNIS) estimator:

ΠNf
(
X1:N

)
=

N∑
i=1

ωi
Nf
(
Xi
)
, ωi

N =
w
(
Xi
)∑N

ℓ=1 w (Xℓ)
,

where X1:N =
(
X1, . . . , XN

)
are independent draws from λ and the ωi

N are called the normalized
weights. [1] shows that the bias of the SNIS estimator can be expressed as:∥∥E [ΠNf

(
X1:N

)
− π(f)

]∥∥ ≤ 12

N

λ
(
ω2
)

λ(ω)2
.

This particular type of estimator can be found in the domain of Monte Carlo methods, particularly in
the context of Bayesian inference and Sequential Monte Carlo methods.

D.2 Sequential Monte Carlo Methods

We focus here in the task of estimating the parameters, denoted as θ, in Hidden Markov Models. In
this context, the hidden Markov chain is denoted by (Xt)t≥0. The distribution of X0 has density χ
with respect to the Lebesgue measure µ and for all t ≥ 0, the conditional distribution of Xt+1 given
X0:t has density mθ(Xt, ·). It is assumed that this state is partially observed through an observation
process (Yt)0≤t≤T . The observations Y0:t are assumed to be independent conditionally on X0:t and,
for all 0 ≤ t ≤ T , the distribution of Yt given X0:t depends on Xt only and has density gθ(Xt, ·)
with respect to the Lebesgue measure. The joint distribution of hidden states and observations is
given by

pθ(x0:T , y0:T ) = χ(x0)gθ(x0, y0)

T−1∏
t=0

mθ(xt, xt+1)gθ(xt+1, yt+1) .

Our objective is to maximize the likelihood of the model:

pθ(y0:T ) =

∫
pθ(x0:T , y0:T ) dx0:T .
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To use a gradient-based method for this maximization problem, we need to compute the gradient of
the objective function. Under simple technical assumptions, by Fisher’s identity,

∇θ log pθ(y0:T ) =

∫
∇θ log pθ(x0:T , y0:T )pθ(x0:T |y0:T )dx0:T

= Ex0:T∼pθ(.|y0:T ) [∇θ log pθ(x0:T , y0:T )]

= Ex0:T∼pθ(.|y0:T )

[
T−1∑
t=0

st,θ (xt, xt+1)

]
,

where st,θ (x, x
′) = ∇θ log{mθ (x, x

′) gθ (x, yt+1)} for t > 0 and by convention s0,θ (x, x
′) =

∇θ log gθ (x, y0). Given that the gradient of the log-likelihood represents the smoothed expectation
of an additive functional, one may opt for Online Smoothing algorithms to mitigate computational
costs. The estimation of the gradient ∇θ log pθ(y0:T ) is given by:

Hθ (y0:T ) =

N∑
i=1

ωi
T

ΩT
τ iT,θ ,

where {τ iT,θ}Ni=1 are particle approximations obtained using particles {
(
ξiT , ω

i
T

)
}Ni=1 targeting the

filtering distribution ϕT , i.e. the conditional distribution of xT given y0:T . In the Forward-only
implementation of FFBSm [20], the particle approximations {τ iT,θ}Ni=1 are computed using the
following formula, with an initialization of τ i0 = 0 for all i ∈ J1, NK:

τ it+1,θ =

N∑
j=1

ωj
tmθ(ξ

j
t , ξ

i
t+1)∑

ℓ=1 ω
ℓ
tmθ(ξℓt , ξ

i
t+1)

{
τ jt,θ + st,θ(ξ

j
t , ξ

i
t+1)

}
, t ∈ N .

The estimator of the gradient Hθ (y0:T ) computed by the Forward-only implementation of FFBSm is
biased. The bias and MSE of this estimator are of order O (1/N) [20], where N corresponds to the
number of particles used to estimate it. Using alternative recursion methods to compute {τ iT,θ}Ni=1

results in different algorithms, such as the particle-based rapid incremental smoother (PARIS) [64]
and its pseudo-marginal extension [34] and Parisian particle Gibbs (PPG) [13]. In such cases, one
can also control the bias and MSE of the estimator.

D.3 Policy Gradient for Average Reward over Infinite Horizon

Consider a finite Markov Decision Process (MDP) denoted as (S,A, R, P ), where S represents the
state space, A denotes the action space, R : S × A → [0, Rmax] is a reward function, and P is the
transition model. The agent’s decision-making process is characterized by a parametric family of
policies {πθ}θ∈Rd , employing the soft-max parameterization. The reward function is given by:

V (θ) := E(S,A)∼vθ
[R(S,A)] =

∑
(s,a)∈S×A

vθ(s, a)R(s, a) ,

where vθ represents the unique stationary distribution of the state-action Markov Chain sequence
{(St, At)}t≥1 generated by the policy πθ. Let λ ∈ (0, 1) be a discount factor and T be sufficiently
large, the estimator of the gradient of the objective function V is given by:

Hθ (S1:T , A1:T ) = R (ST , AT )

T−1∑
i=0

λi∇ log πθ (AT−i;ST−i) ,

where (S1:T , A1:T ) := (S1, A1, . . . , ST , AT ) is a realization of state-action sequence generated by
the policy πθ. It’s important to note that this gradient estimator is biased, and the bias is of order
O(1− λ) [44].

D.4 Zeroth-Order Gradient

Consider the problem of minimizing the objective function V . The zeroth-order gradient method
is particularly valuable in scenarios where direct access to the gradient of the objective function is
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challenging or computationally expensive. The zeroth-order gradient oracle obtained by Gaussian
smoothing [61] is given by:

Hθ (X) =
V (θ + τX)− V (θ)

τ
X , (18)

where τ > 0 is a smoothing parameter and X ∼ N (0, Id) a random Gaussian vector. [61, Lemma 3]
provide the bias of this estimator:

∥E [Hθ (X)]−∇V (θ) ∥ ≤ τ

2
L(d+ 3)3/2 . (19)

The application of these zeroth-order gradient methods can be found in generative adversarial
networks [58, 16].

D.5 Compressed Stochastic Approximation: Coordinate Sampling

The coordinate descent method is based on the iteration:

θn+1 = θn − γn+1Hθn (Xn+1)jn ejn ,

where {e1, . . . , ed} is the canonical basis of Rd and Hθn (Xn+1)j is the j-th coordinate of the
gradient. The randomized coordinate selection rule chooses jn uniformly from the set {1, 2, . . . , d}.
Alternatively, the Gauss-Southwell selection rule [63] uses:

jn+1 := argmax
j∈{1,...,d}

|Hθn (Xn+1)j | .

This corresponds to a greedy selection procedure since at each iteration we choose the coordinate
with the largest directional derivative. Another approach to choosing jn is Coordinate Sampling [53],
a variant of the stochastic gradient descent algorithm that incorporates a selection step by sampling
to perform random coordinate descent. The distribution of ζn+1, which selects the coordinate, is
characterized by the probability weights vector (w(1)

n , . . . , w
(d)
n ) defined as:

w(j)
n = P(ζn+1 = j|Fn), j ∈ {1, . . . , d} .

This distribution of ζn+1 is referred to as the coordinate sampling policy. The Stochastic Coordinate
Gradient Descent algorithm is defined by:

θn+1 = θn − γn+1D(ζn+1)Hθn (Xn+1) ,

where D(k) = eke
⊤
k ∈ Rd×d has its entries equal to 0 except for the (k, k) entry, which is 1.

Observe that the distribution of the random matrix D(ζn+1) is fully characterized by the matrix
Dn = E[D(ζn+1)|Fn] = Diag(w(1)

n , . . . , w
(d)
n ). In this context, An represents a diagonal matrix Dn

where the diagonal terms characterize the probability weights for sampling each coordinate. These
weights typically depend on preceding iterations and even on current gradients. In this case, we
always have βn+1 ≤ 1 and to control the minimum eigenvalue, we only require a lower bound on the
probability weights. This method can be easily extended to incorporate biased gradients and adaptive
steps by introducing Ān = DnAn, where An represents the adaptive matrix as before, and Dn is the
matrix of probability weights.
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E Experiment details and supplementary results

E.1 Experiment with a Synthetic Time-Dependent Bias

To illustrate Theorem 4.1 and the impact of bias, we consider in Figure 3 a simple least squares
objective function V (θ) = ∥Aθ∥2/2 in dimension d = 10. We artificially add to every gradient a
zero-mean Gaussian noise with variance σ2 = 0.01 and a bias term rn = Crn

−r at each iteration n.
We use Adagrad with a learning rate γ = 1/2, β = 0 and λ = 0. Then, the bound of Theorem 4.1 is
of the form O(n−1/2 + n−r).
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Figure 3: Value of V (θn) − V (θ∗) (on the left) and ∥∇V (θn)∥2 (on the right) with Adagrad for
different values of rn = n−r and a learning rate γn = n−1/2. The dashed curve corresponds to the
expected convergence rate O(n−1/4) for r = 1/4 and O(n−1/2) for r ≥ 1/2.

We explore different values of rn ∈ {1, n−1/4, n−1/2, n−1, n−2, 0}, where rn = 1 corresponds to
constant bias, rn = 0 for an unbiased gradient, and the others exhibit decreasing bias. First, note
that the impact of a constant bias term (rn = 1) on the risk and the norm of gradients never vanishes.
From rn = 1 to rn = n−1/2, the effect of the bias decreases until a threshold is reached where there
is no significant improvement. The convergence rate in the case rn = n−1/2 is then the same as
in the case without bias, illustrating the fact that in this case the dominating term comes from the
learning rate.

E.2 Additional Experiments of IWAE

In this section, we provide detailed information about the experiments on CIFAR-10. We also
conduct additional experiments on the FashionMNIST dataset. For all experiments, we use Adagrad,
RMSProp, and Adam with a learning rate decay given by γn = Cγ/

√
n, where Cγ = 0.01 for

Adagrad and Cγ = 0.001 for RMSProp and Adam. The momentum parameters are set to ρ1 = 0.9
and ρ2 = 0.999, and the regularization parameter δ is fixed at 5 × 10−2. The impact of this
regularization parameter will be illustrated later.

Datasets. We conduct our experiments on two datasets: FashionMNIST [76] and CIFAR-10. The
FashionMNIST dataset is a variant of MNIST and consists of 28x28 pixel images of various fashion
items, with 60,000 images in the training set and 10,000 images in the test set. CIFAR-10 consists of
32x32 pixel images categorized into 10 different classes. The dataset is divided into 60,000 images in
the training set and 10,000 images in the test set.

Models. For FashionMNIST, we use a fully connected neural network with a single hidden layer
consisting of 400 hidden units and ReLU activation functions for both the encoder and the decoder.
The latent space dimension is set to 20. We use 256 images per iteration (235 iterations per epoch).
For CIFAR-10 and CIFAR-100, we use a Convolutional Neural Network (CNN) architecture with 3
Convolutional layers and 2 fully connected layers with ReLU activation functions. The latent space
dimension is set to 100. For both datasets, we use 256 images per iteration (196 iterations per epoch).

We estimate the log-likelihood using the VAE, IWAE, and BR-IWAE models, all of which are trained
for 100 epochs. Training is conducted using the SGD, SGD with momentum, Adagrad, RMSProp,
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and Adam algorithms with a decaying learning rate, as mentioned before. For SGD, we employ the
clipping method to clip the gradients to prevent excessively large steps.

For this experiment, we set k = 5 samples in both IWAE and BR-IWAE, while restricting the
maximum iteration of the MCMC algorithm to 5 and the burn-in period to 2 for BR-IWAE. For
comparison, we estimate the Negative Log-Likelihood using these three models with SGD, SGD with
momentum, Adagrad, RMSProp, and Adam, and the results are presented in Table 3. Similar to the
case of CIFAR-10, we observe that IWAE outperforms VAE, while BR-IWAE outperforms IWAE
by reducing bias in all cases. The adaptive methods surpass SGD, and momentum further improves
their performances. Consequently, Adam excels among all algorithms due to its adaptive steps and
momentum.

Table 3: Comparison of Negative Log-Likelihood on the FashionMNIST Test Set (Lower is Better).

Algorithm VAE IWAE BR-IWAE

SGD 247.2 244.9 244.0
SGD with momentum 244.6 240.2 238.4

Adagrad 245.8 241.4 240.5
RMSProp 242.6 239.3 237.8

Adam 240.3 237.8 236.1

Similarly, as we did in the case of CIFAR-10, we incorporate a time-dependent bias that decreases by
choosing a bias of order O(n−α) at iteration n. We vary the value of α for both FashionMNIST and
CIFAR-100.
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Figure 4: IWAE on the FashionMNIST Dataset with Adagrad for different values of α. Bold lines
represent the mean over 5 independent runs.
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Figure 5: IWAE on the FashionMNIST Dataset with RMSProp for different values of α. Bold lines
represent the mean over 5 independent runs.
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Figure 6: IWAE on the FashionMNIST Dataset with Adam for different values of α. Bold lines
represent the mean over 5 independent runs.

All figures are plotted on a logarithmic scale for better visualization and with respect to the number
of epochs. The dashed curve corresponds to the expected convergence rate O(n−1/4) for α = 1/8,
and O(log n/

√
n) for α = 1/4, as well as for α = 1/2, just as in the case of CIFAR-10. We can

clearly observe that for all cases, convergence is achieved when n is sufficiently large. In the case of
the FashionMNIST dataset, the bound seems tight, and the convergence rate of O(n−1/2) does not
seem to be possible to reach, in contrast to the case of CIFAR-10 where the curves corresponding to
α = 1/4 and α = 1/2 approach the O(n−1/2) convergence rate. For all figures, with a larger α, the
convergence in both the squared gradient norm and negative log-likelihood occurs more rapidly.

Additional Experiments on CIFAR-10 Dataset.
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Figure 7: Negative Log-Likelihood on the test set on the CIFAR-10 Dataset for IWAE with Adagrad,
RMSProp, and Adam. Bold lines represent the mean over 5 independent runs.

The effect of Cγ .

Figure 8 illustrates the convergence in both the squared gradient norm and the negative log-likelihood
for Cγ = 0.001 and Cγ = 0.01 in Adagrad. In the case of the squared gradient norm, we have
only plotted the results for Cγ = 0.001 for better visualization, and the plot for Cγ = 0.01 was
already presented in Figure 2. It is clear that when Cγ is set to 0.001, the convergence of the negative
log-likelihood is slower. Similarly, the convergence in the squared gradient norm for Cγ = 0.001
achieves convergence, but it is slower compared to the case of Cγ = 0.01.
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Figure 8: IWAE on the CIFAR-10 Dataset with Adagrad for different values of α and Cγ . Bold lines
represent the mean over 5 independent runs.

The Impact of regularization parameter δ.

In Section A.7, we discussed the impact of the regularization parameter δ in Adam. It has been
empirically observed that the performance of adaptive methods can be sensitive to the choice of this
parameter. Here, we illustrate the impact of this regularization parameter in IWAE. To achieve this,
we plot the test loss for different sets of values for δ ∈ {10−8, 10−5, 10−3, 10−2, 5× 10−2, 10−1}
in Figure 9.
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Figure 9: IWAE on the CIFAR-10 Dataset with Adam for different values of δ. Lines represent the
mean over 5 independent runs.

Our experimental results align with prior work [77, 67, 73], affirming the consistent impact of δ.
Notably, we find that employing δ = 5× 10−2 yields improved performance in IWAE.

The Impact of Bias over Time.

Our experiments illustrate the negative log-likelihood with respect to epochs, and we observed that
a higher value of α leads to faster convergence. The key point to consider when tuning α is that
while convergence may be faster in terms of iterations, it may lead to higher computational costs. To
illustrate this, we set a fixed time limit of 1000 seconds and tested different values of α, plotting the
test loss as a function of time in Figure 10. It is clear that with α = 1/8, the convergence is always
slower, whereas choosing α = 1/4 achieves faster convergence than α = 1/2. While the difference
may seem small here, with more complex models, the disparity becomes significant. Therefore, it is
essential to tune the value of α to attain fast convergence and reduce computational time.

In this paper, all simulations were conducted using the Nvidia Tesla T4 GPU. The total computing
hours required for the results presented in this paper are estimated to be around 100 to 200 hours of
GPU usage.
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Figure 10: Negative Log-Likelihood on the test set of the CIFAR-10 Dataset for IWAE with Adagrad
(on the left) RMSProp (on the right) for Different Values of α over time (in seconds). Bold lines
represent the mean over 5 independent runs.
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