
Neural Cover Selection for Image Steganography

Karl Chahine & Hyeji Kim
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, TX 78712

{karlchahine, hyeji.kim}@utexas.edu

Abstract

In steganography, selecting an optimal cover image—referred to as cover selec-
tion—is pivotal for effective message concealment. Traditional methods have
typically employed exhaustive searches to identify images that conform to specific
perceptual or complexity metrics. However, the relationship between these met-
rics and the actual message hiding efficacy of an image is unclear, often yielding
less-than-ideal steganographic outcomes. Inspired by recent advancements in gen-
erative models, we introduce a novel cover selection framework, which involves
optimizing within the latent space of pretrained generative models to identify the
most suitable cover images, distinguishing itself from traditional exhaustive search
methods. Our method shows significant advantages in message recovery and image
quality. We also conduct an information-theoretic analysis of the generated cover
images, revealing that message hiding predominantly occurs in low-variance pixels,
reflecting the waterfilling algorithm’s principles in parallel Gaussian channels. Our
code can be found at https://github.com/karlchahine/Neural-Cover-Selection-for-
Image-Steganography.

1 Introduction

Image steganography embeds secret bit strings within typical cover images, making them impercep-
tible to the naked eye yet retrievable through specific decoding techniques. This method is widely
applied in various domains, including digital watermarking (Cox et al. [2007]), copyright certification
(Bilal et al. [2014]), e-commerce (Cheddad et al. [2010]), cloud computing (Zhou et al. [2015]), and
secure information storage (Srinivasan et al. [2004]).

Traditionally, hiding techniques such as modifying the least significant bits have been effective for
embedding small data volumes up to 0.5 bits per pixel (bpp) (Fridrich et al. [2001]). Leveraging
advancements in deep learning, recent approaches employ deep encoder-decoder networks to embed
and extract up to 6 bpp, demonstrating significant enhancements in capacity (Chen et al. [2022],
Baluja [2017], Zhang et al. [2019]). The encoder takes as input a cover image x and a secret message
m, outputting a steganographic image s that appears visually similar to the original x. The decoder
then estimates the message m̂ from s. The setup is illustrated in Fig. 1 (left).

The effectiveness of steganography is significantly influenced by the choice of the cover image x, a
process known as cover selection. Different images have varying capacities to conceal data without
detectable alterations, making cover selection a critical factor in maintaining the reliability of the
steganographic process (Baluja [2017], Yaghmaee and Jamzad [2010]).

From a theoretical standpoint, numerous studies have employed information-theoretic analyses to
investigate cover selection and determine the capacity limits of information-hiding systems, thereby
identifying the maximum number of bits that can be embedded (Moulin et al. [2000], Cox et al. [1999],
Moulin and O’Sullivan [2003]). For instance, in Moulin and O’Sullivan [2003], the steganographic

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/karlchahine/Neural-Cover-Selection-for-Image-Steganography
https://github.com/karlchahine/Neural-Cover-Selection-for-Image-Steganography

Figure 1: Left: Image steganography framework: the encoder takes as input the cover image x and
a secret binary message m and outputs the steganographic image s. The decoder then estimates
m̂ from s. Right: Randomly sampled cover images from the ImageNet dataset before and after
optimization using our framework (described in Section 3). These optimized images demonstrate a
significantly reduced error ||m− m̂|| while maintaining high image quality.

setup is conceptualized as a communication channel where the cover image x acts as side information.
However, such models are based on impractical assumptions: firstly, the steganographic process is
additive—where the message m is simply added to the cover x; and secondly, it presupposes that the
cover elements adhere to a Gaussian distribution.

From a practical standpoint, existing techniques for cover selection predominantly rely on exhaustive
searches to identify the most suitable cover image. These methods evaluate a variety of image
metrics to determine the best candidate from a database. Some strategies include counting modifiable
discrete cosine transform (DCT) coefficients to select images with a higher coefficient count for
covers (Kharrazi et al. [2006]), assessing visual quality to determine embedding suitability (Evsutin
et al. [2018]), and estimating the embedding capacity based on image complexity metrics (Yaghmaee
and Jamzad [2010], Wang and Zhang [2019]).

Traditional methods for selecting cover images have three key limitations: (i) They rely on heuristic
image metrics that lack a clear connection to steganographic effectiveness, often leading to suboptimal
message hiding. (ii) These methods ignore the influence of the encoder-decoder pair on the cover
image choice, focusing solely on image quality metrics. (iii) They are restricted to selecting from
a fixed set of images, rather than generating one tailored to the steganographic task, limiting their
ability to find the most suitable cover.

Recent progress in generative models, such as Generative Adversarial Networks (GANs) (Goodfellow
et al. [2020]) and diffusion models (Song et al. [2020], Ho et al. [2020]), have ignited significant
interest in the area of guided image generation (Shen et al. [2020], Avrahami et al. [2022], Brooks
et al. [2023], Gafni et al. [2022], Kim et al. [2022]). Inspired by these innovations, we propose a novel
approach that addresses the aforementioned limitations by treating cover selection as an optimization
problem.

In our proposed framework, a cover image x is first inverted into a latent vector, which is then passed
through a pretrained generative model to reconstruct the cover image. This image is processed by
a neural steganographic encoder to embed a secret message, followed by a decoder to recover the
message. We optimize the latent vector to generate an enhanced cover image x∗, minimizing message
recovery errors while preserving the visual and semantic integrity of the image. Fig. 1 (right) presents
message recovery errors for randomly selected images before and after optimization. Our approach
of optimizing the cover image uncovers a novel way to analyze the transformation from x to x∗,
revealing that the encoder embeds messages in low-variance pixels, analogous to the water-filling
algorithm in parallel Gaussian channels. To the best of our knowledge, this is the first work that
examines neural steganographic encoders by framing cover selection as a guided image reconstruction
problem.

2

Our contributions are outlined as follows:

1. Framework. We describe the limitations of current cover selection methods and introduce
a novel, optimization-driven framework that combines pretrained generative models with
steganographic encoder-decoder pairs. Our method guides the image generation process by
incorporating a message recovery loss, thereby producing cover images that are optimally
tailored for specific secret messages (Section 3).

2. Experiments. We validate our methodology through comprehensive experimentation on
public datasets such as CelebA-HQ, ImageNet, and AFHQ. Our results demonstrate that
the error rates of the optimized images are an order of magnitude lower than those of
the original images under specific conditions. Impressively, this optimization not only
reduces error rates but also enhances the overall image quality, as evidenced by established
visual quality metrics. We explore this intriguing phenomenon by examining the correlation
between image quality metrics and error rates (Section 3.3).

3. Interpretation. We investigate the workings of the neural encoder and find it hides messages
within low variance pixels, akin to the water-filling algorithm in parallel Gaussian channels.
Interestingly, we observe that our cover selection framework increases these low variance
spots, thus improving message concealment (Section 4).

4. Practical considerations. We extend our guided image generation process to practical
applications, demonstrating its robustness against steganalysis and resilience to JPEG
compression, as detailed in Section 5.

Related work. Recent research has explored the use of generative models in steganography. Zhang
et al. [2019] introduced a training framework where steganographic encoders and decoders are trained
adversarially, similar to GANs. Yu et al. [2024] harness the image translation capabilities of diffusion
models to transform a secret image directly into a steganographic image, bypassing the embedding
process, a framework known as coverless steganography (Qin et al. [2019]). Shi et al. [2018] is
notably relevant, as they created a GAN framework designed to produce images robust against
steganalysis. However, there are three key distinctions: (i) they overlooked message error rates,
focusing solely on evading detection, compromising the effectiveness of cover images for message
recovery; (ii) they trained their GAN from scratch, failing to leverage the advantages of existing
pretrained models; and (iii) the images generated were randomly sampled and not user-selectable,
limiting application flexibility.

2 Preliminaries

Image steganography aims to hide a secret bit string m ∈ {0, 1}H×W×B into a cover image
x ∈ [0, 1]H×W×3 where the payload B denotes the number of encoded bits per pixel (bpp) and
H,W denote the image dimensions. As depicted in Fig. 1 (left), the hiding process is done using a
steganographic encoder Enc, which takes as input x and m and outputs the steganographic image s
which looks visually identical to x. A decoder Dec recovers the message, m̂ = Dec(s) with minimal
error rate ||m−m̂||0

H×W×B .

Cover selection involves generating the ideal cover image x, to achieve three primary objectives:
(i) minimize the error rate as defined above, (ii) ensure that the steganographic image s visually
resembles x as closely as possible, and (iii) maintain the integrity of the cover image x using
established perceptual quality metrics.

Denoising Diffusion Implicit Models (DDIMs) (Song et al. [2020]) are a class of generative models
that learn the data distribution by adopting a two-phase mechanism. The forward phase incorporates
noise into a clean image, while the backward phase incrementally removes the noise. The formulation
for the forward diffusion in DDIM is presented as:

xt =
√
αtxt−1 +

√
1− αtϵ, ϵ ∼ N (0, I), (1)

where xt is the noisy image at the t-th step, αt is a predefined variance schedule, and t spans the
discrete time steps from 1 to T . The DDIM’s backward sampling equation is:

3

Figure 2: DDIM-based cover selection framework overview. The input cover image x0 is first
converted to the latent space xT via forward diffusion. Then, guided the message recovery loss, the
latent space is fine-tuned, and the updated cover image is generated via the reverse diffusion process.
The DDIM model as well as the steganographic encoder-decoder pair are pretrained.

xt−1 =
√
ᾱt−1fθ(xt, t)+

√
1− ᾱt−1 − σ2

t ϵθ(xt, t)+σ2
t ϵ, fθ(xt, t) =

xt −
√
1− ᾱtϵθ(xt, t)√

ᾱt
,

(2)

where ϵ ∼ N (0, I), ᾱt =
∏t

i=1 αi, and fθ is a denoising function reliant on the pretrained noise
estimator ϵθ.

This sampling allows the use of different samplers by changing the variance of the noise σt. Especially,
by setting this noise to 0, the DDIM backward process becomes deterministic, defined uniquely
by the initial variable xT . This initial value can be seen as a latent code, commonly utilized in
DDIM inversion, a process that utilizes DDIM to convert an image to latent noise and subsequently
reconstruct it to its original form (Kim et al. [2022]).

Generative Adversarial Networks (GANs) (Goodfellow et al. [2020]) are another type of generative
model designed to learn the data distribution p(x) of a target dataset through a min-max game
between two networks: a generator (G) and a discriminator (D). The generator creates synthetic
samples G(z) from a random noise vector z, drawn from a simple distribution p(z) such as a standard
normal. The discriminator evaluates samples it receives—either real data x from p(x) or fake data
from G—and tries to accurately classify them as real or fake. The objective of G is to generate data
that D mistakes as real, while D aims to distinguish between actual and generated data effectively.

3 Methodology

We propose two cover selection methodologies using pretrained Denoising Diffusion Implicit Models
(DDIM) and pretrained Generative Adversarial Networks (GAN) (Sections 3.1, 3.2), and compare the
performances of the two approaches (Section 3.3). Detailed descriptions of the training procedures
are in Appendix B. Broadly speaking, starting with a cover image x randomly selected from the
dataset, we gradually optimize this image to minimize the loss ||m− m̂||. Intriguingly, while our
primary focus is on reducing the error rate, we observe that all three objectives of cover selection
outlined in Section 2 are concurrently achieved. We investigate this phenomenon in Section 3.3.

3.1 DDIM-based cover selection

As depicted in Fig. 2, our DDIM approach consists of two steps. We get inspired from DDIM
inversion, which refers to the process of using DDIM to achieve the conversion from an image to a
latent noise and back to the original image (Kim et al. [2022]).

Step 1: latent computation. The initial cover image x0 (where the subscript denotes the diffusion
step) goes through the forward diffusion process described in Eq. 3 to get the latent xT .

4

xt+1 =
√
ᾱt+1fθ(xt, t) +

√
1− ᾱt+1ϵθ(xt, t) (3)

Step 2: guided image reconstruction. We optimize xT to minimize the loss ||m− m̂||. Specifically,
xT goes through the backward diffusion process described in Eq. 2 generating cover images that
minimize the loss. We evaluate the gradients of the loss with respect to xT using backpropagation
and use standard gradient based optimizers to get the optimal x∗

T after some optimization steps.

We use a pretrained DDIM (parametrized by θ), and a pretrained LISO, the state-of-the-art stegano-
graphic encoder and decoder from Chen et al. [2022], also described in Appendix A. The weights of
the DDIM and the steganographic encoder-decoder are fixed throughout xT ’s optimization process.

The idea is based on the approximation of forward and backward differentials in solving ordinary
differential equations (Song et al. [2020]). In the case of deterministic DDIM (σt = 0), Eq. 2 can be
used to perform the forward and backward process (Kim et al. [2022]) and achieve accurate image
reconstruction. Instead of adopting a fully deterministic DDIM, we find that having a deterministic
forward process (Eq. 3) with a stochastic backward process (Eq. 2) yields better results for our setup.

3.2 GAN-based cover selection

In the GAN-based approach, we start with a latent vector z randomly initialized from a Gaussian
distribution, which serves as input to the generator G. The objective is to identify an optimized z∗

such that the cover image G(z∗) minimizes the loss ||m− m̂||, i.e.:

z∗ = argmin
z
||Dec(Enc(G(z),m)−m|| (4)

Where Enc, Dec and m are the steganographic encoder, decoder and secret message respectively as
described in Section 2. We evaluate the gradients of the loss with respect to z using backpropagation
and use standard gradient based optimizers to get the optimal z∗ that minimizes the loss. All
other modules (Enc,Dec,G) are differentiable, pretrained and fixed during the optimization. We
utilize BigGAN’s pretrained conditional generator (Brock et al. [2018]), and a pretrained LISO
steganographic encoder-decoder pair (Chen et al. [2022]).

Note: To achieve consistency with the DDIM approach described in Section 3.1, instead of starting
with a randomly generated latent vector z, we can begin a cover image x and apply established GAN
inversion techniques to map it to its corresponding latent space (Xia et al. [2022]).

3.3 Performance comparison: DDIM & GAN

We compare the performance of the approaches from Sections 3.1 and 3.2 in Table 1. We show
the results of 10 randomly selected classes from the ImageNet dataset (Russakovsky et al. [2015]).
Following Chen et al. [2022], we assess error rate defined as ||m−m̂||0

H×W×B , the structural similarity index
(SSIM) and peak signal-to-noise ratio (PSNR) (Wang et al. [2004]) to measure changes between
cover and steganographic images. We further evaluate the generated cover image quality using the
no-reference BRISQUE metric (Mittal et al. [2012]). Our methods outperform traditional exhaustive
search techniques detailed in Section 1, which are omitted from the table for brevity.

Methods: For the DDIM-based cover selection, we generate a batch of 500 cover images, denoted
as {x(i)

0 }500i=1, and apply the cover selection framework to each image independently (Section 3.1).
Similarly, for the GAN-based cover selection, we produce a batch of 500 randomly initialized latent
vectors, represented as {z(i)}500i=1, and independently run the cover selection framework for each
vector (Section 3.2). We train a steganographic encoder-decoder pair using 1000 training images
from each class, adhering to the method used in Chen et al. [2022]. We then use this trained model, in
addition to a diffusion model and BigGAN’s conditional generator, both pretrained on ImageNet. We
consider a payload of B = 4 bpp (we explore different payloads in Section 5.1). The secret messages
are random binary bit strings, sampled from an independent Bernoulli(0.5) distribution. We use the
binary cross-entropy loss to optimize message recovery. For a comprehensive explanation on our
hyperparameter selection, please refer to Appendix B.

Observation 1: As shown in Table 1 the optimized images produced by both DDIM and GAN exhibit
significantly lower error rates compared to the original images by over 50% for some classes.

5

Table 1: Comparative performance of GAN-based and DDIM-based cover selection techniques on
the ImageNet dataset, with a payload B = 4 bpp. DDIM-optimized images achieve a significant gain
over the original images and GAN-optimized images in both error rate reduction and image quality.

Error Rate (%) ↓ BRISQUE↓ SSIM↑ PSNR↑
Classes Original GAN DDIM Original GAN DDIM Original GAN DDIM Original GAN DDIM
Robin 2.48 1.32 1.01 27.8 18.95 19.81 0.72 0.68 0.64 22.34 23.38 23.85

Snow Leopard 0.84 0.36 0.55 23.71 18.28 17.26 0.75 0.74 0.72 23.71 24.54 24.96
Daisy 1.75 0.97 1.43 9.85 9.79 7.71 0.61 0.59 0.61 26.01 26.7 26.63

Drilling Platform 2.29 1.88 1.85 25.08 25.85 27.42 0.41 0.39 0.37 21.33 21.56 21.41
Hartebeest 0.21 0.15 0.12 16.97 16.17 13.63 0.55 0.55 0.56 24.83 25.27 26.34

American Egret 0.95 0.77 0.78 24.4 22.9 12.03 0.63 0.63 0.64 22.72 22.87 24.49
Owl 0.21 0.02 0.09 26.01 27.77 21.3 0.73 0.76 0.71 24.02 24.62 26.01

Chihuahua 0.79 0.59 0.55 18.45 17.92 14.33 0.58 0.56 0.59 23.13 23.55 24.44
Cheetah 2.15 2.02 1.53 41.2 40.53 35.01 0.56 0.53 0.43 21.46 21.61 21.75

Lady’s Slipper 0.17 0.08 0.07 22.53 11.13 10.24 0.71 0.68 0.76 24.65 26.13 26.15

Surprisingly, although our training objective for cover selection focused solely on minimizing the
error rate, we observed improved image quality as evidenced by BRISQUE, SSIM, and PSNR scores.
This intriguing relationship between higher image quality and lower error rates is further explored in
Appendix H. In summary, our analysis reveals that certain image complexity metrics, including edge
density and entropy, negatively correlate with both error rates and BRISQUE scores. This suggests
that our cover selection framework modifies features such as edges and entropy during optimization,
resulting in enhancements to both image quality and error reduction.

Observation 2: DDIM-based optimization consistently outperforms GAN-based methods across all
metrics, aligning with previous findings on DDIM’s superior image generation capabilities (Dhariwal
and Nichol [2021]). We further explore and compare the outputs of both methods, presenting sample
steganographic images before and after optimization in Appendix G. Notably, DDIM maintains the
semantic integrity of images, preserving key elements like object positions and orientations—such as
a bird’s unchanged gaze. In contrast, GANs may significantly modify an image’s composition, even
altering a bird’s gaze from left to right, which impacts its semantic content.

For the remainder of the paper, we will utilize the DDIM-based approach, due to its enhanced
performance in both error reduction and image quality.

4 Analysis

In this section, we explore the reasons behind the enhanced performance achieved by our framework.
Initially, we analyze the behavior of the pretrained steganographic encoder (Section 4.1). Our
observations indicate that the encoder preferentially embeds messages within pixels of low variance.
To validate these findings, we compare the encoder’s behavior with the waterfilling technique
applied to parallel Gaussian channels (Section 4.2). Lastly, we demonstrate that the cover selection
optimization effectively increases the presence of low variance pixels. This adjustment equips the
encoder with greater flexibility to hide messages, thereby improving overall performance (Section
4.3). We present the results for the ImageNet Robin class with a payload of B = 4 bpp. Additional
results for various classes and datasets are presented in Appendix D.

4.1 Encoding in low-variance pixels

We begin by investigating the underlying mechanism of the pretrained steganographic encoder (Chen
et al. [2022]). We hypothesize that the encoder preferentially hides messages in regions of low pixel
variance. To test this hypothesis, we structure our analysis into two steps.

Step 1: variance analysis. In Fig. 3 (top), we illustrate the variance of each pixel position for the
three color channels, calculated across a batch of images and normalized to a range between 0 and 1,
as detailed in Appendix D. The plot reveals significant disparities in variance, with certain regions
displaying notably lower variance compared to others.

Step 2: residual computation. Using the same batch of images, we pass them through the stegano-
graphic encoder to obtain the corresponding steganographic images. We then compute the residuals
by calculating the absolute difference between the cover and steganographic images and averaging

6

Figure 3: Normalized pixel variances (top) and residuals (bottom) calculated across a batch of 500
Robin images for each color channel, before optimization.

these differences across the batch. This process yields three maps, one for each color channel, which
are subsequently normalized to a range between 0 and 1. Those maps are plotted in Fig. 3 (bottom).

As shown in Fig. 3, we observe correlations between the variance and the magnitude of the residual
values; where pixels with lower-variance tends to have higher residual magnitudes. To quantify
this observation, we introduced a threshold value of 0.5. In the residual maps (from Step 2),
locations exceeding this threshold are classified as “high-message regions” and assigned a value of
1. Conversely, locations in the variance maps (from Step 1) falling below this threshold are defined
as “low-variance regions”, also set to 1. We discovered that 81.6% of the high-message regions
coincide with low-variance pixels. This substantial overlap confirms our hypothesis and underscores
the encoder’s tactic of utilizing low-variance areas to embed messages, which is a highly desired
and natural behavior. We highlight that we are the first to make this observation, despite there being
several relevant works on learning-driven steganography; none of these prior studies conducted an
interpretation analysis of the encoder to uncover this behavior.

Interestingly, we find that the learned message embedding behavior closely aligns with the water-
filling strategy, the theoretically optimal embedding strategy for parallel Additive Gaussian Noise
channels, a fundamental concept in communication theory (Cover [1999]). This strategy involves
embedding more messages in lower-variance pixel positions, which increases message recovery
accuracy. Surprisingly, steganography methods tend to adopt this strategy implicitly, without explicit
training to do so. In the subsequent section, we delve deeper into this analogy and further demonstrate
the relationship between these two processes.

4.2 Analogy to waterfilling

To validate the findings presented in Section 4.1, we draw parallels between our analysis and the
waterfilling problem for Gaussian channels. We conceptualize the process of hiding secret messages
as transmitting information through N parallel communication channels, where N corresponds to the
number of pixels in an image. In this analogy, each pixel operates as an individual communication
link, with the secret message functioning as the signal to be hidden and later recovered. The cover
image, which embeds the hidden message, serves as noise unknown to the decoder.

We consider a simple additive steganography scheme: si = xi + γimi, for i = 1, 2, ..., N , where
N = H ×W × 3 is the image dimension, mi = {−1, 1} indicates the i-th message to be embedded,
γi its corresponding power, xi and si represent the i-th element of the cover and steganographic
images respectively. We assume a power constraint P that restricts the deviation between the cover
and steganographic images: E

[∑N
i=1(si − xi)

2
]
≤ P .

This formulation is similar to the waterfilling solution for N parallel Gaussian channels (Cover
[1999]), where the objective is to distribute the total power P among the N channels so as to
maximize the capacity C, which is maximum rate at which information can be reliably transmitted

7

over a channel, defined as: C =
∑N

i=1 log2

(
1 +

γ2
i

σ2
i

)
, where σ2

i is the variance of xi. The problem
can be formulated as a constrained optimization problem, where the optimal power allocation is given

by γ2
i =

(
1

λ ln(2) − σ2
i

)+

, where (x)+ = max(x, 0) and λ is chosen to satisfy the power constraint.

We calculate {σ2
i }

3×H×W
i=1 using a batch of images, and find the optimized {γ2

i }
3×H×W
i=1 using the

approach described above. We plot the γi’s for each color channel in Fig. 4.

Figure 4: Power coefficients γi for each color channel, calculated using a batch of 500 Robin images.

We observe a degree of similarity when comparing with Fig. 3 (bottom). To quantitatively assess
this resemblance across color channels, we quantize the three matrices by setting values greater
than 0.5 to 1 and values less than 0.5 to 0. For each channel, the similarity is calculated using the

equation
∑

i,j 1(W(k)
ij =R(k)

ij)

256×256 , where W(k)
ij and R(k)

ij are the (i, j)-th pixels of the quantized waterfilling
and residual matrices, respectively, for the channel k. The computed similarity scores are 81.8%
for red, 65.5% for green, and 74.9% for blue, revealing varying degrees of resemblance with the
waterfilling strategy across the color channels. The variation underscores that the waterfilling strategy
is implemented more effectively in some channels than in others.

4.3 Impact of cover selection

A natural question becomes: what is the cover selection optimization doing? We plot the variance
maps of the optimized cover images in Fig. 5.

Figure 5: Normalized pixel variances across a batch of 500 Robin images for each color channel,
after optimization.

We notice that the number of low variance spots significantly increased as compared to Fig. 3 (top),
meaning that the encoder has more freedom in encoding the secret message. Quantitatively, we
find that 92.4% of the identified high-message positions are encoded in low-variance pixels, as
compared to 81.6% before optimization. Given that the encoder preferentially embeds data in these
low variance areas, this increase provides greater flexibility for data embedding, thereby explaining
the performance gains observed in our framework.

5 Practical settings

In this section, we adapt our framework for practical considerations. We evaluate its performance
across different payloads (Section 5.1), adapt it for JPEG compression (Section 5.2), and confirm
security against steganalysis (Section 5.3). Computational times are detailed in Appendix I. We use
two datasets, CelebA-HQ (Karras et al. [2017]) and AFHQ-Dog (Choi et al. [2020]), using the same
settings described in Section 3.3.

8

Table 2: Performance comparison across AFHQ-Dog and CelebA-HQ across various payloads. We
observe that the error rates of DDIM-optimized images are significantly lower than original images.

Payload B
Error Rate (%) ↓ BRISQUE ↓ SSIM ↑ PSNR ↑

Original DDIM Original DDIM Original DDIM Original DDIM

C
el

eb
A

-H
Q 1 bpp 2.6E-04 1.5E-05 2.75 4.07 0.95 0.94 36.25 36.37

2 bpp 2.3E-03 9E-04 5.9 9.7 0.91 0.92 31.82 32.46
3 bpp 0.011 0.002 9.95 9.83 0.86 0.87 32.16 33.88
4 bpp 0.051 0.019 11.91 11.04 0.81 0.83 30.91 32.46

A
FH

Q
-D

og 1 bpp 8E-05 0.00 12.14 12.11 0.94 0.93 36.84 36.87
2 bpp 8E-04 6.8E-05 4.12 7.19 0.93 0.94 35.1 34.4
3 bpp 0.007 0.002 10.34 6.87 0.86 0.85 32.5 32.6
4 bpp 0.11 0.09 13.49 13.42 0.75 0.76 28.97 28.99

5.1 Payload impact on performance

We explore different payload capacities B, highlighted in Table 2. We show the results for
B = 1, 2, 3, 4 bits per pixel (bpp). DDIM-optimized images show error rates significantly lower than
originals, with image quality metrics like BRISQUE, SSIM, and PSNR largely preserved, though
some quality decline was noted at lower bpp levels in CelebA-HQ and AFHQ-Dog. We include
sample generared cover images generated using the DDIM framework in Appendix E. Despite experi-
menting with various regularization techniques aimed at maintaining image quality, no noticeable
improvement was observed (Appendix C). Considering this, extending our framework to explore
novel regularization techniques for such payload capacities is an interesting future direction. We also
provide example cover and steganographic images generated by the LISO framework under different
payload values in Appendix F.

5.2 JPEG compression

Robustness against lossy image compression is crucial for steganography. We extend our framework
to accommodate JPEG compression (Wallace [1991]). Following Athalye et al. [2018], we implement
an approximate JPEG layer where the forward pass executes standard JPEG compression, while
the backward pass operates as an identity function. Once the encoder-decoder pair is trained, we
generate a JPEG-compliant cover image following the framework described in Section 3.1, augmented
by adding a JPEG layer post-encoding. In Table 3, we demonstrate that our framework achieves
improved error rates for B = 1 bpp, thereby validating our approach’s capability to optimize cover
images under JPEG compression constraints. In addition, we show robustness results to Gaussian
noise in Appendix K.

Table 3: JPEG results for B = 1 bpp.
Error Rate % ↓ PSNR ↑

Dataset Original DDIM Original DDIM
CelebA-HQ 0.12 0.06 21.09 21.53
AFHQ-Dog 0.15 0.11 19.34 19.63

Table 4: Steganalysis results AFHQ-Dog.

Payload B
Error Rate (%) ↓ XuNet Det. (%) ↓

Original DDIM Original DDIM

Sc
en

ar
io

1 1 bpp 8E-05 0.00 37.1 37.5
2 bpp 8E-04 6.8E-05 31.34 15.42
3 bpp 0.007 0.002 20.39 34.82
4 bpp 0.11 0.09 97.37 97.35

Sc
en

ar
io

2 1 bpp 0.0026 2E-05 0.0 0.0
2 bpp 0.0024 1E-04 0.0 0.0
3 bpp 0.01 0.003 3.2 2.1
4 bpp 0.23 0.22 9.2 8.6

5.3 Steganalysis

Steganalysis systems are designed to detect whether there is hidden information within images. As
these tools evolve, neural steganography techniques now integrate these systems into their end-to-end
pipelines to create images that can bypass detection (Chen et al. [2022], Shang et al. [2020]). We show
our results in Table 4 on the AFHQ-Dog dataset. Following the approach in Chen et al. [2022], we
evaluate the security of our optimized images by measuring the detection rate using the steganalysis
tool XuNet (Xu et al. [2016]) and also record message recovery error rates. The image quality metrics,
such as BRISQUE, SSIM, and PSNR, are comparable to those listed in Table 2 and have therefore
been omitted for brevity. We explore two different scenarios:

9

Scenario 1: In this scenario, the experimental setup remains the same as described in Section 3.1 and
illustrated in Fig. 2. The steganographic encoder-decoder pair is trained without regularizers to evade
steganalysis detection. The DDIM-optimized images exhibit comparable detection rates at payloads
of B = 1 and B = 4, superior performance at B = 2, and inferior performance at B = 3, all while
achieving significantly lower error rates. While it is puzzling that detection rates do not consistently
decrease with lower payload size, this phenomenon is also observed in LISO Chen et al. [2022], on
which our framework is built. We provide a more detailed discussion in Appendix J.

Scenario 2: We leverage the differentiability of XuNet as described in Chen et al. [2022]. During
the optimization of the steganographic encoder-decoder pair, we introduce an additional loss term to
account for steganalysis. This adjustment leads to a notable reduction in detection rates across all
payload sizes, while maintaining consistently low error rates for both original and DDIM-optimized
images. Notably, DDIM-optimized images exhibit even lower detection and error rates compared to
the original images, demonstrating superior performance.

Further implementation details, along with results using an alternative steganalysis method, SRNet
(Boroumand et al. [2018]), are provided in Appendix J.

6 Conclusion

We propose a novel cover selection framework for steganography leveraging pretrained generative
models. We demonstrate that by carefully optimizing the latent space of these models, we generate
steganographic images that exhibit high visual quality and embedding capacity. Additionally, our
information-theoretic analysis shows that message hiding predominantly occurs in low-variance
pixels, reflecting the waterfilling algorithm’s approach to parallel Gaussian channels. Our framework
is versatile, allowing for the incorporation of further constraints to produce JPEG-resistant stegano-
graphic images or to evade detection by particular steganalysis systems. For future work, we aim to
expand our analysis (Section 4.2) to draw similarities with correlated Gaussian channels, moving
beyond the independent channels considered in this work.

Acknowledgments

This work was partly supported by ARO Award W911NF2310062, ONR Award N000142412542,
and the 6G@UT center within the Wireless Networking and Communications Group (WNCG) at the
University of Texas at Austin.

References
Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of

security: Circumventing defenses to adversarial examples. In International conference on machine
learning, pages 274–283. PMLR, 2018.

Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of natural
images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 18208–18218, 2022.

Shumeet Baluja. Hiding images in plain sight: Deep steganography. Advances in neural information
processing systems, 30, 2017.

Ifra Bilal, Rajiv Kumar, Mahendra Singh Roj, and PK Mishra. Recent advancement in audio
steganography. In 2014 International Conference on Parallel, Distributed and Grid Computing,
pages 402–405. IEEE, 2014.

Mehdi Boroumand, Mo Chen, and Jessica Fridrich. Deep residual network for steganalysis of digital
images. IEEE Transactions on Information Forensics and Security, 14(5):1181–1193, 2018.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. In International Conference on Learning Representations, 2018.

10

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18392–18402, 2023.

Tu Bui, Shruti Agarwal, Ning Yu, and John Collomosse. Rosteals: Robust steganography using
autoencoder latent space. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 933–942, 2023.

Abbas Cheddad, Joan Condell, Kevin Curran, and Paul Mc Kevitt. Digital image steganography:
Survey and analysis of current methods. Signal processing, 90(3):727–752, 2010.

Xiangyu Chen, Varsha Kishore, and Kilian Q Weinberger. Learning iterative neural optimizers for
image steganography. In The Eleventh International Conference on Learning Representations,
2022.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8188–8197, 2020.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital watermarking
and steganography. Morgan kaufmann, 2007.

Ingemar J Cox, Matthew L Miller, and Andrew L McKellips. Watermarking as communications with
side information. Proceedings of the IEEE, 87(7):1127–1141, 1999.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Oleg Evsutin, Anna Kokurina, and Roman Meshcheryakov. Approach to the selection of the best
cover image for information embedding in jpeg images based on the principles of the optimality.
Journal of Decision Systems, 27(sup1):256–264, 2018.

Jessica Fridrich, Miroslav Goljan, and Rui Du. Detecting lsb steganography in color, and gray-scale
images. IEEE multimedia, 8(4):22–28, 2001.

Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman. Make-
a-scene: Scene-based text-to-image generation with human priors. In European Conference on
Computer Vision, pages 89–106. Springer, 2022.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style. arXiv
preprint arXiv:1508.06576, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Mehdi Kharrazi, Husrev T Sencar, and Nasir Memon. Cover selection for steganographic embedding.
In 2006 International Conference on Image Processing, pages 117–120. IEEE, 2006.

Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models
for robust image manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2426–2435, 2022.

Varsha Kishore, Xiangyu Chen, Yan Wang, Boyi Li, and Kilian Q Weinberger. Fixed neural network
steganography: Train the images, not the network. In International Conference on Learning
Representations, 2021.

11

Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality as-
sessment in the spatial domain. IEEE Transactions on image processing, 21(12):4695–4708,
2012.

Pierre Moulin and Joseph A O’Sullivan. Information-theoretic analysis of information hiding. IEEE
Transactions on information theory, 49(3):563–593, 2003.

Pierre Moulin, Mehmet Kivanç Mihcak, and Gen-Iu Lin. An information-theoretic model for image
watermarking and data hiding. In Proceedings 2000 International Conference on Image Processing
(Cat. No. 00CH37101), volume 3, pages 667–670. IEEE, 2000.

Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion. IEEE
Transactions on pattern analysis and machine intelligence, 12(7):629–639, 1990.

Jiaohua Qin, Yuanjing Luo, Xuyu Xiang, Yun Tan, and Huajun Huang. Coverless image steganogra-
phy: a survey. IEEE access, 7:171372–171394, 2019.

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

Yueyun Shang, Shunzhi Jiang, Dengpan Ye, and Jiaqing Huang. Enhancing the security of deep
learning steganography via adversarial examples. Mathematics, 8(9):1446, 2020.

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for
semantic face editing. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9243–9252, 2020.

Haichao Shi, Jing Dong, Wei Wang, Yinlong Qian, and Xiaoyu Zhang. Ssgan: Secure steganography
based on generative adversarial networks. In Advances in Multimedia Information Processing–
PCM 2017: 18th Pacific-Rim Conference on Multimedia, Harbin, China, September 28-29, 2017,
Revised Selected Papers, Part I 18, pages 534–544. Springer, 2018.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2020.

Yeshwanth Srinivasan, Brian Nutter, Sunanda Mitra, Benny Phillips, and Daron Ferris. Secure
transmission of medical records using high capacity steganography. In Proceedings. 17th IEEE
Symposium on Computer-Based Medical Systems, pages 122–127. IEEE, 2004.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp: Invisible hyperlinks in physical pho-
tographs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 2117–2126, 2020.

Gregory K Wallace. The jpeg still picture compression standard. Communications of the ACM, 34(4):
30–44, 1991.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Zichi Wang and Xinpeng Zhang. Secure cover selection for steganography. IEEE Access, 7:57857–
57867, 2019.

Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan Yang. Gan
inversion: A survey. IEEE transactions on pattern analysis and machine intelligence, 45(3):
3121–3138, 2022.

12

Guanshuo Xu, Han-Zhou Wu, and Yun-Qing Shi. Structural design of convolutional neural networks
for steganalysis. IEEE Signal Processing Letters, 23(5):708–712, 2016.

Farzin Yaghmaee and Mansour Jamzad. Estimating watermarking capacity in gray scale images
based on image complexity. EURASIP Journal on Advances in Signal Processing, 2010:1–9, 2010.

Jiwen Yu, Xuanyu Zhang, Youmin Xu, and Jian Zhang. Cross: Diffusion model makes controllable,
robust and secure image steganography. Advances in Neural Information Processing Systems, 36,
2024.

Kevin Alex Zhang, Alfredo Cuesta-Infante, Lei Xu, and Kalyan Veeramachaneni. Steganogan: High
capacity image steganography with gans. arXiv preprint arXiv:1901.03892, 2019.

Zhili Zhou, Huiyu Sun, Rohan Harit, Xianyi Chen, and Xingming Sun. Coverless image steganog-
raphy without embedding. In Cloud Computing and Security: First International Conference,
ICCCS 2015, Nanjing, China, August 13-15, 2015. Revised Selected Papers 1, pages 123–132.
Springer, 2015.

13

A Learned Iterative Steganography Optimization (LISO)

LISO (Chen et al. [2022]) advances the method established in Kishore et al. [2021], which is centered
around Optimization-based Image Steganography. Leveraging a differentiable decoder equipped with
either randomly initialized or pretrained weights (as referenced in the preceding paragraph), Kishore
et al. [2021] formulates the steganography encoding as an optimization task for each sample. This
approach is similar to the generation of adversarial perturbations as discussed in Szegedy et al. [2013].
Specifically, the technique described in Kishore et al. [2021] seeks to compute a steganographic
image by addressing a constrained optimization problem that ensures the perturbed image remains
within the bounds of the [0, 1]H×W×3 hypercube.

min
s∈[0,1]H×W×3

Lacc(Dec(s),m) + λLqua(s,x) (5)

where
Lacc(m̂,m) := ⟨m, log m̂⟩+ ⟨(1−m), log(1− m̂)⟩ (6)

Lqua(s,x) :=
1

N
∥s− x∥2, (7)

where m represents the secret message, m̂ is the decoded message, x is the cover image, and s
is the steganographic image. The operation ⟨·⟩ signifies the dot product, λ is a scaling factor, and
N = H ×W × 3 represents the total number of pixels in the image, with H and W being the height
and width of the image, respectively. The accuracy loss, Lacc(m̂,m), is calculated using binary cross
entropy to minimize the distance between the estimated and actual messages, while the quality loss,
Lqua(s,x), employs mean squared error to ensure the steganographic image closely resembles the
cover image. This objective function is represented as ℓ(x,m). To solve the optimization problem
outlined above, various solvers can be utilized and as shown in Algorithm 1, with iterative, gradient-
based algorithms. In Algorithm 1, η > 0 is the step size, and g(·) describes the update function
specific to the optimization method used. The perturbation δ is iteratively adjusted to minimize the
loss ℓ while adhering to the pixel constraints of the image.

Algorithm 1 Iterative Optimization

1: δ0 ← 0
2: for t = 1 to T do
3: δt ← δt−1 + η · g (∇δℓ(x+ δt−1,m),x, δt−1)
4: end for
5: s← x+ δT

In LISO, The function g(·) in Algorithm 1 is approximated using a fully convolutional network
designed around a gated recurrent unit (GRU). The complete LISO framework, which includes
the iterative encoder, decoder, and critic, undergoes end-to-end training on a diverse image dataset.
Similar to the training process of Generative Adversarial Networks (GANs), the training of LISO
alternates between optimizing the critic and the encoder-decoder networks. Throughout this training
phase, losses for all intermediate updates are calculated with exponentially increasing weights
(γT−t at step t). With intermediate predictions denoted as m̂1, . . . , m̂T the loss is:

Ltrain =

T∑
t=1

γT−t [Lacc(m, m̂t) + λLqua(x, st) + µLcrit(x, st)] ,

where γ ∈ (0, 1) is a decay factor and Lcrit denotes the critic loss to generate real-looking images
(with weight µ > 0).

B Training details

B.1 GAN-based cover selection

In our GAN-based cover selection method, we utilize the BigGAN generator (Brock et al. [2018])
and a LISO encoder-decoder pair (Chen et al. [2022]), both pretrained on the ImageNet dataset

14

(Russakovsky et al. [2015]). Specifically, the BigGAN generator receives a latent vector z, a 128-
dimensional vector initialized from a truncated normal distribution with truncation set at 0.4, and a
class index c. It then produces the cover image x ∈ [0, 1]H×W×3. The LISO encoder processes x
along with the secret message m ∈ {0, 1}H×W×B to create the steganographic image s, while the
LISO decoder attempts to recover m̂ from s. We consider a payload B = 4. To optimize the latent
vector z, we minimize the binary cross-entropy loss BCE(m, m̂) using the Adam optimizer with
a learning rate of 0.01 over 100 epochs. Both the GAN generator and the LISO encoder-decoder
are configured with the same architecture and parameters as described in their respective original
publications.

To replicate the results presented in Table 1, we optimize a batch of 500 latent vectors {z(i)}500i=1
for each class. These vectors are randomly initialized and subsequently optimized. We then report
several metrics: the average error rate between the original message m and the estimated message
m̂, the average BRISQUE scores of the cover images to assess their naturalness, and both the SSIM
(Structural Similarity Index) and PSNR (Peak Signal-to-Noise Ratio) values to evaluate the similarity
and quality between the cover and steganographic image pairs.

B.2 DDIM-based cover selection

In our cover selection method based on Denoising Diffusion Implicit Models (DDIM), we employ
three DDIM models alongside LISO encoder-decoder pairs, each pretrained on different datasets:
ImageNet (Russakovsky et al. [2015]), AFHQ-Dog (Choi et al. [2020]), and CelebA-HQ (Karras
et al. [2017]).

Following the procedure outlined in Section 3.1, we initiate the process by sampling a random image
x0. We then execute the deterministic forward DDIM process over T steps, with each step defined as
follows:

xt+1 =
√
ᾱt+1fθ(xt, t) +

√
1− ᾱt+1ϵθ(xt, t) (8)

After obtaining the latent representation xT , we initiate the stochastic reverse DDIM process, which
spans E epochs. Within each epoch, we perform the reverse DDIM process on the acquired latent for
N iterations. Each iteration proceeds as follows:

xt−1 =
√
ᾱt−1fθ(xt, t) +

√
1− ᾱt−1 − σ2

t ϵθ(xt, t) + σ2
t ϵ (9)

Where ϵθ is a pretrained network, fθ is a function of ϵθ , σ2
t =

√
0.5 ·

((
1− ᾱt

ᾱt−1

)
· 1−ᾱt−1

1−ᾱt

)
, and

ϵ ∼ N (0, I).

We configure our model with the following parameters: E = 50 epochs, T = 40 time steps, and
N = 6 iterations per epoch. For optimization, we employ the Adam optimizer with a learning rate of
2E − 06. The variance schedule that determines ᾱt and ᾱt−1, as well as the DDIM architectures, are
consistent with those described in Kim et al. [2022].

C Regularization effect

Despite testing several regularization methods intended to preserve image quality—including total
variation (Rudin et al. [1992]), edge preservation (Perona and Malik [1990]), feature matching with a
pre-trained VGG network (Gatys et al. [2015]), and a classic l1 distance between the original and
updated cover images—we observed no significant enhancements. These results are shown in Table
5.

D Encoding operation analysis: additional results

In this section, we further describe the encoder’s strategy of embedding messages in regions with low
pixel variance, as described in Section 4.1.

15

Table 5: Performance results with regularization on CelebA-HQ with a payload B = 2 bpp. We show
the resuls for edge preservation (EP), l1 distance between original and updated cover images (l1),
total variation (TV), and VGG feature matching (VGG).

Error Rate (%) ↓ BRISQUE↓ SSIM↑ PSNR↑
Method Original DDIM Original DDIM Original DDIM Original DDIM

EP 2E-03 7E-04 11.62 13.25 25.57 25.65 0.85 0.85
l1 2E-03 1E-03 11.94 13.45 25.65 25.7 0.85 0.85

TV 2E-03 7E-04 11.58 13.43 25.48 25.57 0.85 0.85
VGG 2.1E-03 7.5E-04 11.32 13.65 25.59 25.65 0.85 0.85

We calculate the variance for each pixel position across a batch of 500 images, separately for each of
the three color channels. This results in three variance maps, each of shape 256x256 (corresponding
to the dimensions of the images). These variance maps are normalized to a range between 0 and 1 to
facilitate subsequent analysis.

We present variance and residual maps for three additional ImageNet classes: Daisy (Fig. 6), Yellow
Lady’s Slipper (Fig. 7), and American Egret (Fig. 8). These visualizations validate that the encoder
predominantly conceals messages within areas of low variance. Further analysis includes the CelebA-
HQ dataset with a payload of B = 2 bpp, illustrated in Fig. 9. Notably, in the Blue channel,
the encoder distinctly favors low variance pixels for message concealment. Intriguingly, in the
Green channel, regions such as the eyes, nose, and mouth are preferred for embedding messages.
Investigating the underlying reasons for this selective use is an interesting open problem.

Figure 6: Normalized pixel variances (top) and residuals (bottom) across a batch of 500 images for
the ImageNet Daisy class.

16

Figure 7: Normalized pixel variances (top) and residuals (bottom) across a batch of 500 images for
the ImageNet Yellow Lady’s Slipper class.

Figure 8: Normalized pixel variances (top) and residuals (bottom) across a batch of 500 images for
the ImageNet American Egret class.

17

Figure 9: Normalized pixel variances (top) and residuals (bottom) across a batch of 500 images for
the CelebA-HQ dataset.

E DDIM sample cover images

In this section, we present optimized cover images generated by our DDIM cover selection framework.
Samples from both the CelebA-HQ and AFHQ-Dog datasets are displayed, showcasing variations for
different payload capacities with B = 1, 2, 3, 4 bits per pixel (bpp).

Original Optimized (1 bpp) Optimized (2 bpp) Optimized (3 bpp) Optimized (4 bpp)

Figure 10: Generated DDIM cover images for different message payload values.

18

F Sample steganographic images

In this section, we present a selection of randomly sampled cover images from CelebA-HQ and
AFHQ alongside their steganographic counterparts generated using the LISO framework (Chen et al.
[2022]). The results are demonstrated for various payload capacities, ranging from B = 1 to 4 bits
per pixel (bpp).

Cover image 1 bpp 2 bpp 3 bpp 4 bpp

Figure 11: Covers and their corresponding steganographic images.

G Sample steganographic images: DDIM vs GAN

We compare the outputs of both methods, presenting sample steganographic images before and after
optimization in Fig 12 for a payload B = 4 bits per pixel. DDIM conserves the semantic essence of
images, maintaining critical aspects such as the positions and orientations of objects—for instance,
a bird’s gaze remains consistent. In contrast, GANs can substantially alter an image’s structure,
potentially changing a bird’s gaze direction, thus affecting its semantic meaning.

H Image complexity metrics

In this section, we explore the intriguing observation that optimizing for error rate not only preserves
image quality but, in some instances, even enhances it. This occurs despite the fact that our primary
focus is not directly on image quality optimization.

We assess various complexity metrics—entropy, edge density, compression ratio, and color diver-
sity—across a dataset of 500 images from the AFHQ-Dog collection, each embedded with a payload
of B = 4 bits per pixel. Our analysis investigates how these metrics correlate with the message error
rate, as depicted in Figure 13. Furthermore, we investigate the relationship between these complexity
metrics and the BRISQUE image quality score, as shown in Figure 14.

19

Cover image Steganographic
image

DDIM-optimized
steganographic

image

GAN-optimized
steganographic

image

Figure 12: Generated steganographic images: GAN vs DDIM.

The entropy of an image measures the randomness of intensity values and is calculated as
−
∑256

i=1 pi log2 pi, where pi is the probability of occurrence of the ith intensity value, calculated
over a batch images. The probabilities are determined from the grayscale version of each image
C, where the grayscale conversion simplifies the entropy calculation by focusing on the luminance
information while discarding color details.

The edge density of an image measures the proportion of pixels that are part of edges to the total
number of pixels in the image. This is typically calculated by first applying an edge detection
algorithm, such as the Sobel or Canny operator, to identify edge pixels. The edge density is then
quantified as ne

N , where ne is the number of edge pixels identified, and N is the total number of pixels
in the image.

The compression ratio of an image is a measure of the efficiency of a compression algorithm, defined
as the ratio of the original file size to the compressed file size. Mathematically, it can be expressed
as Soriginal

Scompressed
where Soriginal is the original file size in bytes, and Scompressed is the size of the

file after compression. A higher compression ratio indicates more effective compression, reducing
storage and transmission resource requirements.

The color diversity in an image refers to the variety and distribution of colors present within the
image. It can be quantified by analyzing the image’s color histogram, which represents the frequency
of each color in the image. Color diversity is often measured using metrics such as the number of
distinct colors, or the evenness of their distribution. A common approach is to calculate the Shannon
diversity index, expressed as −

∑k
i=1 p(ci) log2 p(ci), where p(ci) denotes the proportion of pixels

of color ci and k is the total number of unique colors in the histogram. High color diversity indicates
a rich variety of colors, which typically contributes to the visual complexity and aesthetic quality of
the image.

20

(a) Entropy (b) Edge Detection Density

(c) Compression Ratio (d) Color Diversity

Figure 13: Image complexity metrics vs error rate

(a) Entropy (b) Edge Detection Density

(c) Compression Ratio (d) Color Diversity

Figure 14: Image complexity metrics vs BRISQUE

While we do not observe a perfect correlation across all metrics, we note consistent trends with certain
measures such as entropy and edge density. Specifically, as entropy and edge density increase, both
the error rate and BRISQUE scores tend to decrease. We hypothesize that optimizing for error rate
influences certain image characteristics, such as entropy and edge density, which are also associated
with BRISQUE scores. This relationship may partially explain why we observe improved BRISQUE
scores even though our primary focus is on minimizing error rate. For the other metrics, namely
compression ratio and color diversity, the patterns are not as clear.

I Computational time

We show the average time required to optimize images using the DDIM-based cover selection method
in Table 6 for both the CelebA-HQ and AFHQ-Dog datasets. We calculate computation time by
determining the number of DDIM backward sampling steps required to achieve the lowest message
recovery error, and then multiplying that number by the average duration of each step. As anticipated,
for the CelebA-HQ dataset, the average computation time increases with the payload size. A similar

21

trend is observed in the AFHQ-Dog dataset; however, an exception occurs at a payload of B = 4 bpp.
This anomaly can be attributed to the fact that, as shown in Table 2, the DDIM-optimized images
for this payload do not exhibit a significantly lower error rate compared to the original images. All
experiments were conducted using a NVIDIA A-100 GPU.

Table 6: Average computation time of DDIM-based cover selection (in seconds) for different payload
values.

Dataset 1 bpp 2 bpp 3 bpp 4 bpp

CelebA-HQ 0.69 6.85 11.52 24.83
AFHQ-Dog 0.04 0.91 5.33 0.34

J Steganalysis: detailed settings and additional experiments

We adopt the simulation settings outlined in Chen et al. [2022] for our experiments. In Scenario 1,
the steganography model M is trained without specific techniques to avoid detection by steganalysis.
We assume the attacker, who performs steganalysis, knows the architecture of M but has no access to
its weights, training data, or hyperparameters. However, the attacker can train a surrogate model M’
to generate their own steganographic images. To simulate this scenario, we trained a steganalysis
model on the CelebA dataset and used it to detect steganographic images generated from the AFHQ-
Dog dataset. Interestingly, detection rates did not consistently decrease with lower payload sizes,
a phenomenon also noticed in LISO Chen et al. [2022], on which our framework is based. We
hypothesize this behavior arises from the distributional mismatch between training and testing data,
as discussed earlier. In scenario 2, We leverage the fact that neural steganalysis methods are entirely
differentiable, and that LISO uses gradient-based optimization. This allows us to reduce security risk
by incorporating an additional loss term from the steganalysis system into the LISO optimization
process. Specifically, during evaluation, if an image is identified as steganographic, we add the logit
value of the steganographic class to the loss function.

In addition to XuNet (Xu et al. [2016]), we compute the steganalysis results of SRNet, another state-
of-the-art steganalysis system (Boroumand et al. [2018]). The results of both schemes are compared
in Table 7. Our observations indicate that the images generated by our framework effectively resist
steganalysis by SRNet. This is evidenced by the significant drop in detection rate when transitioning
from scenario 1 to scenario 2. As a reminder, in scenario 2, we exploit the differentiability of the
steganalyzer (SRNet) and incorporate an additional loss term to account for steganalysis.

Table 7: Steganalysis results with SRNet and XuNet.

Payload B
SRNet Det. (%) ↓ XuNet Det. (%) ↓
Original DDIM Original DDIM

Sc
en

ar
io

1 1 bpp 15 13 37.1 37.5
2 bpp 14.5 32.5 31.34 15.42
3 bpp 61.5 55.5 20.39 34.82
4 bpp 76 76 97.37 97.35

Sc
en

ar
io

2 1 bpp 0.0 0.0 0.0 0.0
2 bpp 0.0 0.0 0.0 0.0
3 bpp 0.0 0.0 3.2 2.1
4 bpp 2 1 9.2 8.6

K Robustness to Gaussian noise

In this section, we evaluate the robustness of our DDIM-based approach to Gaussian noise. The
experimental setup remains the same as described in Section 3.1 and illustrated in Fig. 2, with the
only modification being the injection of Gaussian noise, distributed as N (0, β), into the output of
the steganographic encoder. The decoder subsequently processes the noisy steganographic image
to estimate the embedded message. Results of this experiment are presented in Table 8. Our
findings demonstrate that the proposed framework produces cover images resilient to Gaussian noise,

22

Table 8: Robustness to Gaussian noise for a payload B = 4 bpp on CelebA-HQ.

Variance β
Error Rate (%) ↓ BRISQUE ↓ SSIM ↑ PSNR ↑

Original DDIM Original DDIM Original DDIM Original DDIM
0.01 2.2 1.9 12.1 12.8 0.62 0.63 26.85 27.6
0.02 7.1 6.5 15.98 14.33 0.57 0.56 25.75 26.34
0.03 12.3 11.8 15.01 14.38 0.56 0.58 25.73 26.32

achieving lower error rates while preserving high visual quality. This is confirmed by visual quality
metrics such as BRISQUE, SSIM, and PSNR, which remain comparable to those of the original
images. An intriguing future direction is to extend this setup to handle perturbations beyond Gaussian
noise. One approach could involve pretraining the LISO steganographic encoder-decoder pair under
such conditions before applying our framework. Alternatively, our method could be applied to
steganographic frameworks other than LISO, particularly those explicitly designed to handle image
perturbations, such as Tancik et al. [2020] and Bui et al. [2023].

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the introduction and abstract, such as advantages in
message recovery and image quality, as well as the analogy to the waterfilling algorithm are
all described in Sections 3.3, 4, 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss two limitations of our work: 1) we noticed some image quality
decline at lower bpp levels in CelebA-HQ and AFHQ-Dog, and discussed some regulariza-
tions methods that we tried (Section 5.1 and Appendix C). 2) In the conclusion, we mention
that we focused on independent Gaussian channels in Section 4, and that we would like to
extend the setup to correlated channels in future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

24

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we described detailed training procedures in Section 3 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

25

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We mention all the datasets and pretrained models that we used. Our code will
be made public upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we described all the training details and hyperparameters in Section 3 and
Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars were not reported for computational reasons and time constraints.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the time required for our method as well as the resources in
Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the main uses of Steganography in Section 1, and the benefits of
our cover selection approach under practical settings in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

27

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work doesn’t pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we cite all the existing assets throughout the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

28

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, we describe our algorithm in Section 3 and Appendix B. Our code will be
released upon acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work didn’t involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

29

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Preliminaries
	Methodology
	DDIM-based cover selection
	GAN-based cover selection
	Performance comparison: DDIM & GAN

	Analysis
	Encoding in low-variance pixels
	Analogy to waterfilling
	Impact of cover selection

	Practical settings
	Payload impact on performance
	JPEG compression
	Steganalysis

	Conclusion
	Learned Iterative Steganography Optimization (LISO)
	Training details
	GAN-based cover selection
	DDIM-based cover selection

	Regularization effect
	Encoding operation analysis: additional results
	DDIM sample cover images
	Sample steganographic images
	Sample steganographic images: DDIM vs GAN
	Image complexity metrics
	Computational time
	Steganalysis: detailed settings and additional experiments
	Robustness to Gaussian noise

