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Abstract

A rapidly growing body of research on com-001
positional generalization investigates the abil-002
ity of a semantic parser to dynamically re-003
combine linguistic elements seen in training004
into unseen sequences. We present a sys-005
tematic comparison of sequence-to-sequence006
models and models guided by compositional007
principles on the recent COGS corpus (Kim008
and Linzen, 2020). Though seq2seq models009
can perform well on lexical tasks, they per-010
form with near-zero accuracy on structural011
generalization tasks that require novel syn-012
tactic structures; this holds true even when013
they are trained to predict syntax instead of014
semantics. In contrast, compositional mod-015
els achieve near-perfect accuracy on structural016
generalization; we present new results con-017
firming this from the AM parser (Groschwitz018
et al., 2021). Our findings show structural019
generalization is a key measure of composi-020
tional generalization and requires models that021
are aware of complex structure.022

1 Introduction023

Compositionality is a fundamental principle of nat-024

ural language semantics: “The meaning of a whole025

[expression] is a function of the meanings of the026

parts and of the way they are syntactically com-027

bined” (Partee, 1984). A growing body of research028

focuses on compositional generalization, the abil-029

ity of a semantic parser to combine known linguis-030

tic elements in novel structures in ways akin to031

humans. For example, observing the meanings032

of “The hedgehog ate a cake” and “A baby liked033

the penguin,” can a model predict the meaning of034

“A baby liked the hedgehog”? Dynamic, compo-035

sitional recombination helps explain efficient hu-036

man language learning and usage, and investigating037

whether NLP models make use of the same prop-038

erty offers important insight into their behavior.039

Current research on compositional generaliza-040

tion shows the task to be challenging and com-041

plex. Such research centers around a number of 042

corpora designed specifically for the task, includ- 043

ing SCAN (Lake and Baroni, 2018) and CFQ (Key- 044

sers et al., 2020). We focus on COGS (Kim and 045

Linzen, 2020), a synthetic semantic parsing corpus 046

of English whose test set consists of 21 generaliza- 047

tion types such as the example above (Section 2). 048

Kim and Linzen report that simple sequence-to- 049

sequence (seq2seq) models such as LSTMs and 050

Transformers struggle with many of their general- 051

ization types, achieving an overall highest accuracy 052

on the generalization set of 35%. Subsequent work 053

has improved accuracy on the COGS generaliza- 054

tion set considerably (Tay et al., 2021; Akyürek and 055

Andreas, 2021; Conklin et al., 2021; Csordás et al., 056

2021; Orhan, 2021; Zheng and Lapata, 2021), but 057

the accuracy of even the best seq2seq models re- 058

mains below 88%. By contrast, Liu et al. (2021) re- 059

port an accuracy of 98%, using an algebraic model 060

that implements compositionality (Section 3). 061

Here, we investigate whether this difference in 062

compositional generalization accuracy is inciden- 063

tal, or whether there is a systematic difference be- 064

tween seq2seq models and models that are guided 065

by compositional principles and aware of complex 066

structure. Comparisons between entire classes of 067

models must be made with care. Thus in order to 068

make claims about the class of compositional mod- 069

els, we first work out a second compositional model 070

for COGS (in addition to Liu et al.’s). We apply the 071

AM parser (Groschwitz et al., 2021), a composi- 072

tional semantic parser which can parse a variety of 073

graphbanks fast and accurately (Lindemann et al., 074

2020), to COGS after minimal adaptations (Sec- 075

tion 4). The AM parser achieves a generalization 076

accuracy above 98%, making it the first semantic 077

parser shown to perform accurately on both COGS 078

and broad-coverage semantic parsing. 079

We then compare these two compositional mod- 080

els to all published seq2seq models for COGS. We 081

find that the difference in generalization accuracy 082
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can be attributed specifically to structural types083

of compositional generalization, which require the084

parser to generalize to novel syntactic structures085

that were not observed in training. While the com-086

positional parsers achieve excellent accuracy on087

these generalization types, all known seq2seq mod-088

els perform very poorly, with accuracies close to089

zero. This is even true for BART (Lewis et al.,090

2020), which we apply to COGS for the first time;091

this is surprising because BART achieves very high092

accuracy on broad-coverage semantic parsing tasks093

(Bevilacqua et al., 2021). We conclude that seq2seq094

models, as a class, seem to have a weakness with re-095

gard to structural generalization that compositional096

models overcome (Section 5).097

Finally, we investigate the role of syntax in com-098

positional generalization (Section 6). We show099

that parsers which explicitly model syntactic tree100

structures can easily learn structural generaliza-101

tion when trained to predict syntax trees on COGS,102

whereas BART again performs poorly. BART does103

not learn structural generalization even if we enrich104

its input with syntactic information. Thus, the poor105

performance of seq2seq models on structural gener-106

alization is not specifically due to representational107

choices in COGS, or even to the specific compo-108

sitional demands of semantic parsing; structural109

generalization requires structure-aware models.110

We discuss implications for future work on com-111

positional generalization in Section 7. All code112

will be made publicly available upon acceptance.113

2 Compositional Generalization114

Compositional generalization is the ability to de-115

termine the meaning of unseen sentences using116

compositional principles. Humans can understand117

and produce a potentially infinite number of novel118

linguistic expressions by dynamically recombin-119

ing known elements (Chomsky, 1957; Fodor and120

Pylyshyn, 1988; Fodor and Lepore, 2002). For se-121

mantic parsers, compositional generalization tasks122

systematically vary language use between the train-123

ing and the generalization set; as such, the system124

must recombine parts of multiple training instances125

to predict the meaning of a single test instance.126

COGS (Kim and Linzen, 2020) is a synthetic se-127

mantic parsing dataset in which English sentences128

must be mapped to logic-based meaning represen-129

tations. It distinguishes 21 generalization types,130

each of which requires generalizing from training131

instances to test instances in a particular systematic132
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Figure 1: Structural generalization in COGS.

and linguistically-informed way. We follow the au- 133

thors and distinguish two classes of generalization 134

types; we further comment on a third class based 135

on data from model performance. 136

Lexical generalization involves recombining 137

known grammatical structures with words that were 138

not observed in these particular structures in train- 139

ing. An example is the generalization type “subject 140

to object (common)” (Table 1a), in which a com- 141

mon noun (“hedgehog”) is only seen as a subject 142

in training, whereas it is only used as on object in 143

the generalization testset. Note that the syntactic 144

structure at generalization time (e.g. that of a transi- 145

tive sentence) was already observed in training. On 146

the semantics side, the meaning representations are 147

identical, except for replacing some constants and 148

quantifiers and renaming some variables. Thus, lex- 149

ical generalization in COGS amounts to learning 150

how to fill fixed templates. 151

By contrast, structural generalization involves 152

generalizing to linguistic structures that were not 153

seen in training (cf. Table 1c,d). Examples are the 154

generalization types “PP recursion”, where training 155

instances contain prepositional phrases of depth up 156

to two and generalization instances have PPs of 157

depth 3–12; and “object PP to subject PP”, where 158

PPs modify only objects in training and only sub- 159

jects at test time. These structural changes are 160

illustrated in Fig. 1. 161

A third class we observe involves generalizing to 162

object usage of proper nouns (Table 1b). Though 163

technically a subset of lexical generalization, this 164

subgroup is harder than types of the same class 165
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Training Generalization

(a) LEX A hedgehog ate the cake.
*cake(x4); hedgehog(x1) ∧
eat.agent(x2, x1) ∧ eat.theme(x2, x4)

The baby liked the hedgehog.
*baby(x1); *hedgehog(x4);
like.agent(x2, x1) ∧ like.theme(x2, x4)

(b) PROP Charlie ate the cake.
*cake(x3); eat.agent(x1, Charlie) ∧
eat.theme(x1, x3)

The monster ate Charlie.
*monster(x1); eat.agent(x2, x1) ∧
eat.theme(x2, Charlie)

(c) STRUCT Ava saw a ball in a bowl on the table.
*table(x9); see.agent(x1, Ava)
∧ see.theme(x1, x3) ∧ ball(x3) ∧
ball.nmod.in(x3, x6) ∧ bowl(x6) ∧
bowl.nmod.on(x6, x9)

Ava saw a ball in a bowl on the table on the floor.
*table(x9); *floor(x12); see.agent(x1,
Ava) ∧ see.theme(x1, x3) ∧
ball(x3) ∧ ball.nmod.in(x3, x6) ∧
bowl(x6) ∧ bowl.nmod.on(x6, x9)
∧ table.nmod.on(x9, x12)

(d) STRUCT Noah ate the cake on the plate.
*cake(x3); *plate(x6);
eat.agent(x1, Noah) ∧ eat.theme(x1, x3)
∧ cake.nmod.on(x3, x6)

The cake on the table burned.
*cake(x1); *table(x4);
cake.nmod.on(x1, x4) ∧
burn.theme(x3, x1)

Table 1: Some examples from the COGS dataset. Examples (a) represent lexical generalization (LEX); (b), to
object proper noun generalization (PROP); and (c-d), structural generalization (STRUCT).

(cf. Section 5); we report and discuss it separately.166

Lexical generalization captures a very limited167

fragment of compositionality, in that it only re-168

quires to fill a fixed number of slots with new val-169

ues. The key point about compositionality in se-170

mantics is that language is infinitely productive,171

and humans can assign meaning to new grammati-172

cal structures based on finite experience. Assigning173

meaning to unseen structures is exercised only by174

structural types. This distinction is borne out in175

model performance (Section 5): while lexical gen-176

eralization can be handled by many neural archi-177

tectures, structural generalization requires parsing178

architectures aware of complex sentence structure.179

3 Related Work180

Kim and Linzen (2020) demonstrate that simple181

seq2seq models (LSTMs and Transformers) strug-182

gle with all generalization types in COGS. Sub-183

sequent work with novel seq2seq architectures184

achieve a much higher mean accuracy on the COGS185

generalization set (Akyürek and Andreas, 2021;186

Csordás et al., 2021; Conklin et al., 2021; Tay et al.,187

2021; Orhan, 2021; Zheng and Lapata, 2021), but188

their accuracy on the generalization set still lags189

more than ten points behind that on the in-domain190

test set.191

COGS can also be addressed with compositional192

models, which directly model linguistic structure193

and implement the Principle of Compositionality.194

The LeAR model of Liu et al. (2021) achieves a195

generalization accuracy of 98%, outperforming all196

known seq2seq models by at least ten points. LeAR197

also sets new states of the art on CFQ and Geoquery, 198

but has not been demonstrated to be applicable to 199

broad-coverage semantic parsing. 200

Compositional semantic parsers for other tasks 201

include the AM parser (Groschwitz et al., 2018; 202

Lindemann et al., 2020) (Section 4) and Span- 203

BasedSP (Herzig and Berant, 2021). The AM 204

parser has been shown to achieve high accuracy 205

and parsing speed on broad-coverage semantic 206

parsing datasets such as the AMRBank. Span- 207

BasedSP parses Geoquery, SCAN, and CLOSURE 208

accurately through unsupervised training of a span- 209

based chart parser. Shaw et al. (2021) combine 210

quasi-synchronous context-free grammars with the 211

T5 language model to obtain even higher accuracies 212

on Geoquery, demonstrating some generalization 213

from easy training examples to hard test instances. 214

Structural generalization has also been probed in 215

syntactic parsing tasks. Linzen et al. (2016) define 216

a number-prediction task that requires learning syn- 217

tactic structure and find that LSTMs perform with 218

some success; however, Kuncoro et al. (2018) find 219

that structure-aware RNNGs perform this task more 220

accurately. McCoy et al. (2020) found that hierar- 221

chical representations are necessary for human-like 222

syntactic generalizations on a question formation 223

task, which seq2seq models cannot learn. 224

4 Parsing COGS with the AM parser 225

4.1 The AM parser 226

To better understand how compositional models 227

perform on compositional generalization, we adapt 228
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Figure 2: (a) AM dependency tree with (b) its value.

the broad-coverage AM parser to COGS. The AM229

parser (Groschwitz et al., 2018) is a compositional230

semantic parser that learns to map sentences to231

graphs. It was the first semantic parser to perform232

with high accuracy across all major graphbanks233

(Lindemann et al., 2019) and can achieve very high234

parsing speeds (Lindemann et al., 2020). Thus,235

though not yet tested on synthetic generalization236

sets, the AM parser exhibits the ability to handle237

natural language and related generalizations in the238

wild.239

Instead of predicting the graph directly, the AM240

parser first predicts a graph fragment for each token241

in the sentence and a (semantic) dependency tree242

that connects them. This is illustrated in Fig. 2a;243

words that do not contribute to the sentence mean-244

ing are tagged with⊥. This dependency tree is then245

evaluated deterministically into a graph (Fig. 2b)246

using the operations of the AM algebra. The “Ap-247

ply” operation fills an argument slot of a graph248

(drawn in red) by inserting the root node (drawn249

with a bold outline) of another graph into this slot;250

for instance, this is how the APPs operation in-251

serts the “boy” node into the ARG0 of “want”.252

The “Modify” operation attaches a modifier to a253

node; this is how the MODm operation attaches the254

“manner-sound” graph to the “sleep” node. The255

dependency tree captures how the meaning of the256

sentence can be compositionally obtained from the257

meanings of the words.258

AM parsing is done by combining a neural de-259

pendency parser with a neural tagger for predicting260

the graph fragments. We follow Lindemann et al.261

(2019) and rely on the dependency parsing model262

of Kiperwasser and Goldberg (2016), which scores263

each dependency edge by feeding neural represen-264

tations for the two tokens to an MLP. We follow the265

setup of Groschwitz et al. (2021), which does not266

require explicit annotations with AM dependency267

trees, to train the parser.268

4.2 AM parsing for COGS269

We apply the AM parser to COGS by converting270

the semantic representations in COGS to graphs.271

*table(x9); see.agent(x1, Ava) ∧ see.theme(x1, x3) ∧

ball(x3) ∧ ball.nmod.in(x3, x6) ∧ bowl(x6) ∧

bowl.nmod.on(x6, x9)

Ava ball bowl table

see in on the

ag
en
t theme

nm
od
:o
p1 nmod:op2

nm
od
:o
p1 nmod:op2 io

ta

Figure 3: Logical form to graph conversion for “Ava
saw a ball in a bowl on the table” (cf. Table 1c).

The conversion is illustrated in Fig. 3. 272

Given a logical form of COGS, we create a 273

graph that has one node for each variable xi and 274

each constant (e.g. Ava). If a variable appears 275

as the first argument of an atom of the form 276

pred.arg(x, y), we assign it the node label pred 277

in the graph. We also add an edge from x to y with 278

label arg. E.g. see.agent(x1, Ava) turns 279

into an ‘agent’ edge from ‘see’ to ‘Ava’. Each iota 280

term *noun(xnoun) is treated as an edge from a 281

fresh node with label “the” to xnoun. Preposition 282

meaning bowl.nmod.on(x6, x9) is represented 283

as a node (labeled ‘on’) with outgoing edges to 284

the two arguments/nouns (‘nmod.op1’ to “bowl”, 285

‘nmod.op2’ to “table”). 286

By encoding the logical form as a graph, we lose 287

the ordering of the conjuncts. The ‘correct’ order is 288

restored in postprocessing. More details and graph 289

conversion examples are in Appendix E. 290

5 Experiments on COGS 291

With two compositional models available on 292

COGS, we can now compare compositional seman- 293

tic parsers, as a class, to seq2seq models, as a class, 294

on compositional generalization in COGS. 295

5.1 Experimental setup 296

We follow standard COGS practice and evaluate 297

all models on both the (in-distribution) test set and 298

the generalization set. In addition to the regular 299

COGS training set (‘train’) of 24,155 training in- 300

stances, we also report numbers for models trained 301

on the extended training set ‘train100’, of 39,500 302

instances (Kim and Linzen, 2020, Appendix E.2). 303

The ‘train100’ set extends ‘train’ with 100 copies 304

of each exposure example. For instance, for the 305

generalization instance in Table 1a, ‘train100’ will 306

contain 100 different sentences in which “the/a 307

hedgehog” appears as subject (rather than just one 308

in ‘train’). We report exact match accuracies, aver- 309
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train train100

Test Gen Test Gen

se
q-

to
-s

eq

Kim and Linzen 2020 96 35 94 63
Conklin et al. 2021 99 66.7 99 75.4
Csordás et al. 2021 100 81 - 75.4
Akyürek and Andreas 2021 - 83 99 84.5
Zheng and Lapata 2021 † - 87.9 - -
Orhan 2021 † - 84.6 - -
Tay et al. 2021 † 95 77.5 - -

BART † 100 77.5±0.4 100 82.7±1.4

BART+syn † 100 80.2±0.4 100 85.9±0.3

co
m

po
si

tio
na

l Liu et al. 2021: LeAR1 - 98.9±0.9 - -

AM 100 59.9± 2.7 100 91.1±2.3

AM+dist 100 62.6±10.8 100 88.6±4.9

AM+B † 100 79.6± 6.4 100 93.6±1.4

AM+B+dist † 100 78.3±22.9 100 98.4±0.9

Table 2: Exact match accuracies on COGS. Results in
gray are taken from the respective papers. †) models
that use pretraining.

aged across 5 training runs, along with their stan-310

dard deviations.311

Sequence-to-sequence models. We train BART312

(Lewis et al., 2020) as a semantic parser on COGS.313

This is a strong representative of the family of314

seq2seq models, as a slightly extended form of315

BART (Bevilacqua et al., 2021) set a new state of316

the art on semantic parsing on the AMR corpus (Ba-317

narescu et al., 2013). To apply BART on COGS, we318

directly fine-tune the pretrained bart-base model319

on it with the corresponding tokenizer. Training320

details are described in Appendix C.321

We also report results for all other published322

seq2seq models for COGS (Kim and Linzen, 2020;323

Conklin et al., 2021; Csordás et al., 2021; Akyürek324

and Andreas, 2021; Tay et al., 2021; Orhan, 2021;325

Zheng and Lapata, 2021). We retrained some of326

these models on train100 to measure the impact of327

the training set.328

Compositional models. We train the AM parser329

on the COGS graph corpus (cf. Section 4.2)330

and copied most hyperparameter values from331

Groschwitz et al. (2021)’s training setup for AMR332

to make overfitting to COGS less likely; details are333

described in Appendix B.334

The AM parser either receives pretrained word335

embeddings from BERT (Devlin et al., 2019)336

(‘AM+B’) or learns embeddings from the COGS337

data only (‘AM’). We run the training algorithm338

with up to three argument slots to enable the anal-339

ysis of ditransitive verbs. For evaluation, we re-340

vert the graph conversion to reconstruct the logical 341

forms. 342

For PP recursion, COGS eliminates potential 343

PP attachment ambiguities and assumes that each 344

PP modifies the noun immediately to its left. We 345

hypothesize that explicit distance information be- 346

tween tokens could help the AM parser learn this 347

regularity: Instead of passing only the representa- 348

tions of the potential parent and child node to the 349

edge-scoring model, we also pass an encoding of 350

their relative distance in the string (Vaswani et al., 351

2017), yielding the AM parser models with the 352

“+dist” suffix. 353

Finally, we report evaluation results for LeAR, 354

the compositional COGS parser of Liu et al. (2021). 355

5.2 Results 356

The results are summarized in Table 2. 357

Compositional outperforms seq2seq. While all 358

models achieve near-perfect accuracy on the in- 359

distribution test sets, we find that when trained on 360

‘train100’, all compositional models outperform 361

all seq2seq models on the generalization set, by a 362

wide margin. This includes the very strong BART 363

baseline, which holds the state of the art in broad- 364

coverage parsing for AMR. 365

LeAR even achieves its near-perfect accuracy 366

when trained on ‘train’, and outperforms all 367

seq2seq models trained on either dataset. See be- 368

low for a detailed discussion of the AM parser. 369

Performance by generalization type. To under- 370

stand this result more clearly, we break down the 371

accuracy by generalization type. This analysis is 372

shown in Table 3. We will explain “BART+syn” in 373

Section 6.2 and the “syntax” rows in Section 6.1. 374

We compare the compositional models against all 375

seq2seq models that report these fine-grained num- 376

bers or for which they were easy to reproduce (see 377

Appendices C and D for details). 378

The results group neatly with the three classes 379

of generalization types outlined in Section 2: LEX, 380

STRUCT, and PROP. All recent models achieve 381

near-perfect accuracy on each of the 16 lexical 382

generalization types. On structural generalization 383

types, seq2seq models achieve very low accuracies, 384

whereas the compositional parsers (AM+B+dist 385

and LeAR) are still very accurate. The proper-noun 386

object cases are somewhere in the middle, with the 387

seq2seq models reporting middling numbers. 388

1All LeAR numbers are based on our reproduction of their
COGS evaluation; they report an accuracy of 97.7.
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Class STRUCT PROP LEX
Gen. type Obj to Subj PP CP recursion PP recursion prim to obj (proper) subj to obj (proper) all 16 other types Overall

se
m

an
tic

s

AM+B train100 49 100 41 85 90 100 94
AM+B+dist train100 78 100 99 94 96 100 98
LeAR train 93 100 99 93 93 100 99

Kim and Linzen 2020 train 0 0 0 0 30 45 35
Akyürek and Andreas 2021 train 0 0 1 66 64 100 82
Orhan 2021 train 0 0 10 84 86 100 85
Zheng and Lapata 2021 train 0 12 39 92 91 100 89
Kim and Linzen 2020 train100 0 0 0 23 54 77 63
Conklin et al. 2021 train100 0 0 0 20 66 94 75
Csordás et al. 2021 train100 0 0 0 55 62 92 75
BART train100 0 0 10 55 86 99 83
BART+syn train100 0 7 8 98 95 100 86

sy
nt

ax Benepar train100 84 95 98 99 100 100 99

BART train100 1 4 8 97 94 96 83

Table 3: Exact match accuracies on the individual generalization types. We have compressed all 16 generalization
types of the LEX class into a single column and report the average accuracy.

PP recursion depth
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Figure 4: Influence of PP recursion depth on overall PP
depth generalization accuracy.

Depth generalization (recursion). There is a389

particularly pronounced difference between compo-390

sitional and seq2seq models on the two “recursion”391

generalization types (cf. Fig. 1b). In these cases,392

the training data contains examples up to depth393

two and the generalization data has depths 3–12.394

Figure 4 shows the accuracy of several models on395

PP recursion in detail. As we see, the accuracy396

of BART (even when informed by syntax, cf. Sec-397

tion 6.2) degrades quickly with recursion depth.398

By contrast, both LeAR and AM+B+dist main-399

tain their high accuracy across all recursion depths.400

This suggests that they learn the correct structural401

generalizations even from training observations of402

limited depth.403

Effect of distance encoding for AM parser. As404

illustrated in Fig. 4, the accuracy of the unmodified405

AM parser without the distance feature degrades406

with increasing PP recursion depth. An error anal-407

ysis showed that this is because the AM parser is408

uncertain about the attachment of PPs in the mid- 409

dle of the string, confirming our hypothesis that it 410

does not learn the idiosyncratic treatment of PPs 411

in COGS (always attach low). Adding the distance 412

feature solves this problem. 413

There is an interesting asymmetry between the 414

behavior of the AM parser on PP recursion and 415

CP recursion, which nests sentential complements 416

within each other (“Emma said that Noah knew 417

that the cat danced”): The accuracy of the unmod- 418

ified AM parser is stable across recursion depths 419

for CP recursion, and the distance feature is only 420

needed for PPs. This can be explained by the way 421

in which the AM parser learns to incorporate PPs 422

and CPs into the dependency tree: it uses APP 423

edges to combine verbs with CPs, which ensures 424

that only a single CP can be combined with each 425

sentence-embedding verb. By contrast, each NP 426

can be modified by an arbitrary number of PPs us- 427

ing MOD edges. Thus a confusion over attachment 428

is only possible for PPs, not CPs. 429

Effect of training regime. Parsers on COGS are 430

traditionally not allowed any pretraining (Kim and 431

Linzen, 2020), in order to judge their ability to 432

generalize from limited observations. We see in the 433

experiments above that the use of pretrained word 434

embeddings helps the AM parser achieve accuracy 435

parity with LeAR, but is not needed to outperform 436

all seq2seq models on ‘train100’. 437

Training on ‘train100’ helps the AM parser more 438

than any other model in Table 2. The difference 439

between its accuracy on ‘train’ and ‘train100’ is 440

due to lexical issues: we found that when trained 441

on ‘train’, the AM parser typically predicts the 442

correct delexicalized formulas and then inserts an 443
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incorrect but related constant or predicate symbol444

(e.g. “Emma” instead of “Charlie” in Table 1b).445

Trained on ‘train’, AM+B+dist achieves a mean446

accuracy on STRUCT of 89.6 (compared to 92.3447

for ‘train100’), whereas the mean accuracy on LEX448

drops to 76. Even without BERT and trained on449

‘train’, AM+dist gets 74.6 on STRUCT, drastically450

outperforming the seq2seq models (Appendix D).451

6 The role of syntax452

Our finding that seq2seq models perform so poorly453

on structural generalization in COGS begs the ques-454

tion: Is there anything special about the meaning455

representations in COGS that makes structural gen-456

eralization hard, or would seq2seq models struggle457

similarly on other target representations for these458

generalization types? Do seq2seq models have a459

specific weakness regarding semantic composition-460

ality? Or is it because they systematically lack a461

bias that would help them generalize over structure462

in language? In this section, we investigate these463

questions by recasting COGS as a syntactic corpus.464

6.1 Syntactic generalization465

We obtain a syntactic annotation for each instance466

in COGS from the (unambiguous) original PCFG467

grammar used to generate COGS (cf. Fig. 1).468

We replace the very fine-grained non-terminals469

(e.g. NP_animate_dobj_noPP) of the origi-470

nal PCFG with more general ones (e.g. NP) and471

remove duplicate rules (e.g. NP→NP) resulting472

from this. We train BART on predicting linearized473

constituency trees from the input strings. For474

comparison, we also train the Neural Berkeley475

Parser (Kitaev and Klein, 2018) on COGS syn-476

tax (“Benepar” in the tables). This parser consists477

of a self-attention encoder and a chart decoder. It478

is therefore structure-aware, in that it explicitly479

models tree structures; this is the analogue of a480

compositional parser for semantics.481

Results are shown in the two bottom rows of482

Table 3. We find the same pattern as in the seman-483

tic parsing case: the seq2seq model does well on484

PROP and LEX, but struggles with STRUCT. The485

structure-aware Berkeley parser handles all three486

generalization types well. Thus, the difficulties that487

seq2seq models have on structural generalization488

on COGS are not limited to semantics: rather, they489

seem to be a general limitation in the ability of490

seq2seq models to learn linguistic structure from491

structurally simple examples and use it produc-492

tively. Not only does compositional generalization 493

require compositional parsers; structural general- 494

ization in semantics or syntax seems to require 495

parsers which are aware of that structure. 496

6.2 Compositional generalization from 497

correct syntax 498

But perhaps the poor performance of seq2seq se- 499

mantic parsers on STRUCT is caused only by their 500

inability to learn to generalize syntactically? Would 501

their accuracy catch up with that of compositional 502

models if we gave them access to syntax? 503

We retrained BART on predicting semantic rep- 504

resentations, but instead of feeding it the raw sen- 505

tence, we provide as input the linearized gold con- 506

stituency tree (“(NP (Det a) (N rose))”), 507

both for training and inference. This method is 508

similar to Li et al. (2017) and Currey and Heafield 509

(2019), but we allow attention over special tokens 510

such as “(” during decoding. 511

We report the results as “BART+syn” in Table 2 512

and Table 3; the overall accuracy increases by 3.2% 513

over BART. This is mostly because providing the 514

syntax tree allows BART to generalize correctly 515

on PROP. However, STRUCT remains out of reach 516

for BART+syn, confirming the deep difficulty of 517

structural generalization for seq2seq models. 518

We also explored other ways to inform BART 519

with syntax, through multi-task learning (Sennrich 520

et al., 2016; Currey and Heafield, 2019) and syntax- 521

based masking in the self-attention encoder (Kim 522

et al., 2021). Neither method substantially im- 523

proved the accuracy of BART on the COGS gen- 524

eralization set (+1.4% and +2.1% overall accu- 525

racy, respectively). More detailed results are in 526

Appendix D. 527

7 Discussion 528

Compositional generalization requires compo- 529

sitional parsers. Table 3 paints a clear picture: 530

compositional generalization in COGS can be 531

solved by semantic parsers that have composition- 532

ality built in, but seq2seq models perform poorly 533

on structural generalization. This remains true even 534

for seq2seq models that are known to perform well 535

on semantic parsing, for syntactic rather than se- 536

mantic generalization, and for seq2seq models that 537

are biased towards learning structure-aware repre- 538

sentations by incorporating information about syn- 539

tax. Obviously, statements about entire classes of 540

models must be made with care. But when despite 541
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the best efforts of an active research community all542

seq2seq models underperform the compositional543

models, that seems like rather strong evidence.544

Our results are surprising, in that seq2seq mod-545

els have been shown through probing tasks to learn546

some linguistic structure, both with respect to syn-547

tax (Blevins et al., 2018) and semantics (Tenney548

et al., 2019). At the same time, as mentioned above,549

seq2seq models like BART perform very well on550

broad-coverage tasks such as AMR parsing. It is an551

interesting question for future research to reconcile552

the ability of seq2seq models to learn soft struc-553

tural information with their apparent difficulties554

in exploiting this ability to generalize structurally;555

perhaps their ability to learn structure rests on the556

variety of structures observed in broad-coverage557

training sets, but not in COGS.558

Focus on structural generalization. Our exper-559

iments indicate that STRUCT is consistently harder560

than PROP and LEX with respect to generalization561

accuracy. Not only is LEX essentially a solved562

problem; but as we discussed in Section 2, the in-563

finitely productive nature of full compositionality564

is only captured by structural types of generaliza-565

tion. Compositionality is not just about using new566

and similar words in known structures (slot filling),567

but also about building new, acceptable structures568

based on known ones.569

When papers only report the mean accuracy of a570

system across all generalization types, the accuracy571

on the 16 lexical generalization types overshadows572

the accuracy on the three structural generalization573

types. The overall accuracy can make systems look574

more capable of compositional generalization than575

they really are.576

Future work on compositional generalization577

will benefit from (i) reporting the accuracy on struc-578

tural generalization tasks separately and (ii) ex-579

panding datasets that test compositional general-580

ization to include more types of structural general-581

ization. We hope to offer such a dataset in future582

research.583

What’s so difficult about objPP to subjPP?584

“ObjPP to subjPP” is the most challenging gen-585

eralization type across all models. It is illuminating586

to investigate the errors that happen here, as they587

differ across models.588

Table 4 shows typical errors of BART and the589

AM parser. The AM parser chooses to use the most590

recent simple NP (“the house”) as the agent of591

Gold *baby(x1); *house(x7);
baby.nmod.on(x1, x4) ∧ tray(x4)
∧ tray.nmod.in(x4, x7) ∧
scream.agent(x8, x1)

BART *baby(x1); *house(x7);
scream.agent(x2, x1) ∧
scream.theme(x2, x4) ∧ tray(x4)
∧ tray.nmod.in(x4, x7)

AM *baby(x1); *house(x7);
baby.nmod.on(x1, x4) ∧ tray(x4)
∧ tray.nmod.in(x4, x8) ∧
scream.agent(x8, x7)

Table 4: Error analysis for the sentence “The baby on a
tray in the house screamed”.

“scream” and then attaches “the baby on a tray” in 592

some random place. By contrast, BART analyzes 593

the sentence as “the baby screamed the tray on the 594

house”, preferring to reuse the pattern for object- 595

PP sentences even if the intransitive verb does not 596

license it. BART also displays an unawareness of 597

word order that is reminiscent of the difficulties that 598

seq2seq models otherwise face in relating syntax 599

to word order (McCoy et al., 2020). 600

We see from both examples that “objPP to 601

subjPP” involves major structural changes to the 602

formula that must be grounded in both lexical (verb 603

valency) and structural (word order) information. 604

Developing a model that learns to do this with per- 605

fect accuracy remains an interesting challenge. 606

8 Conclusion 607

We have shown that compositional semantic parsers 608

systematically outperform recent seq2seq models 609

on structural generalization in COGS. While both 610

BART and the AM parser support accurate broad- 611

coverage semantic parsing, we find that BART 612

struggles with structural compositional generaliza- 613

tion as much as other seq2seq models, whereas the 614

compositional AM parser achieves state-of-the-art 615

generalization accuracy on COGS. 616

These results suggests that even powerful 617

seq2seq models lack a structural bias that is re- 618

quired to generalize across linguistic structures as 619

humans do. This lack of bias is not limited to 620

semantics; our findings indicate that seq2seq mod- 621

els struggle just as hard to learn syntactic general- 622

izations that are easy for structure-aware models. 623

Given that all recent models are accurate on most 624

generalization types, we suggest focusing future 625

evaluations on a model’s accuracy on structural 626

generalization types, and perhaps extend COGS to 627

a corpus that offers a greater variety of these. 628
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A COGS dataset statistics864

The COGS dataset contains English declara-865

tive sentences mapped with logical forms. It866

was created by Kim and Linzen (2020) and is867

publicly available at https://github.com/868

najoungkim/COGS (MIT license). We use the869

version from April 2nd 2021 commit 6f66383870

and use the dataset as-is (no datapoints excluded871

or changed, use their data set splits), except for the872

AM parser for which we conduct the logical form873

to graph preprocessing described in Section 4.2.874

The normal training set (‘train’) consists of 24,155875

samples (24k in distribution, 143 primitives, 12876

exposure examples), the dev and test set both con-877

tain 3k in distribution samples each. Primitives and878

exposure examples contain ‘lexical trigger words’879

necessary for all but the three structural generaliza-880

tion types: these lexical trigger words each appear881

only once and in one sample in the whole training882

set. Primitives are one-word sentences, therefore883

presenting word-meaning mapping without context884

of a sentence (necessary for the types Primitive885

to *). In contrast, exposure examples are full sen-886

tences e.g. for the subject to object (common noun)887

generalization this sentence contains “hedgehog”888

as the subject. In the generalization set this word889

appears in 1k samples, but in a different syntactic890

configuration compared to the exposure example891

(e.g. “hedgehog” in object position). There is also892

an additional larger training set (‘train100’) with893

39,500 samples containing the lexical trigger words894

in 100 samples each, instead of just in one sample.895

The out-of-distribution generalization set contains896

21k samples, 1k per generalization type.897

B Training details of the AM parser898

The corresponding code will be made publicly899

available upon acceptance.900

Hyperparameters. For the AM parser, we901

mostly copied the hyperparameter values from the902

AMR experiments of Groschwitz et al. (2021). This903

should help against overfitting on COGS, but we904

also note that hyperparameter tuning for composi- 905

tional generalization datasets can be difficult any- 906

ways since one can typically easily achieve perfect 907

scores on an in-doman dev set. Copied values in- 908

clude for instance the number of epochs (60 due 909

to supervised loss for edge existence and lexical 910

labels), the batch size, the number and dimension- 911

ality of neural network layers and not using early 912

stopping (but selecting best model based on per 913

epoch evaluation metric on the dev set). Choos- 914

ing 3 sources has worked well on other datasets 915

(Groschwitz et al., 2021) and we adopt this hyper- 916

parameter choice. We note that with ditransitive 917

verbs (i.e. verbs requiring NPs filling agent, theme, 918

and recipient roles) present in COGS we need at 919

least three sources anyway to account for these. 920

Deviations from Groschwitz et al. (2021)’s set- 921

tings. For training on train (but not train100), we 922

set the vocabulary threshold from 7 down to 1 to 923

account for the fact that the lexical generalizations 924

rely on a single occurrence of a word in the training 925

data (on train100 we keep 7 as a threshold since 926

the trigger words occur 100 times in there). Fur- 927

thermore, the COGS dataset doesn’t have part-of- 928

speech, lemma or named-entity annotations, so we 929

just don’t use embeddings for these. For the word 930

embeddings we either use BERT-Large-uncased 931

(Devlin et al., 2019) or learn embeddings from the 932

dataset only (embedding dimension 1024, same as 933

for the BERT model). We also decreased the learn- 934

ing rate from 0.001 to 0.0001: we observed that the 935

learning curves are still converging very quickly 936

and hypothesize that COGS training set might also 937

be easier than the AMR one used in Groschwitz 938

et al. (2021). 939

Unlike them we didn’t use the fixed-tree decoder 940

(described in Groschwitz et al. 2018), but opted 941

for the projective A* decoder (Lindemann et al., 942

2020, §4.2): in pre-experiments this showed better 943

results. In addition, it makes comparison to related 944

work (such as LeAR by Liu et al. (2021)) easier 945

which uses only projective latent trees. We also 946

use supervised loss for edge existence and lexical 947

labels: we can use supervised loss for both as they 948

do not depend on the source names to be learnt. In 949

preliminary experiments this yielded better results 950

than using the automaton-based loss for them too. 951

The supervised loss wasn’t described in Groschwitz 952

et al. (2021), but already implemented in their code 953

base and they note there that the effect on perfor- 954

mance was mixed in their experiments (similar for 955
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SDP, worse for AMR).956

Relative distance encoding. For the relative dis-957

tance encodings we added to the dependency edge958

existence scoring, we used sine-cosine interleaved959

encoding function introduced by Vaswani et al.960

(2017, §3.5) and as input to it use the relative dis-961

tance dist(i, j) = i−j between sentence positions962

i and j. We use a dimensionality of 64 for the dis-963

tance encodings (dmodel in Vaswani et al. (2017) is964

512). These distance encodings are then concate-965

nated together with the BiLSTM representations966

for possible heads and dependents used in the stan-967

dard Kiperwasser and Goldberg (2016) edge scor-968

ing model. This constitutes the input to the MLP969

emitting a score for each token pair. In other words,970

for each token pair 〈i, j〉 the MLP has to decide971

edge existence based on the representations of the972

tokens at positions i and j, and an encoding of the973

relative distance dist(i, j) = i− j. These models974

have the suffix ‘dist’ in the tables.975

Runtimes. Training the AM parser took 5 to 7976

hours on train with 60 epochs and 6 to 9.5 hours977

on train100. In general, training with BERT took978

longer than without, same holds for adding relative979

distance encodings. Inference with a trained model980

on the full 21k generalization samples took about981

15 minutes using the Astar decoder with the ‘ignore982

aware’ heuristic. All AM parser experiments were983

performed using Intel Xeon E5-2687W v3 10-core984

processors at 3.10Ghz and 256GB RAM, and MSI985

Nvidia Titan-X (2015) GPU cards (12GB).986

Number of parameters. For their models, Kim987

and Linzen (2020) tried to keep the number of pa-988

rameters comparable (9.5 to 11 million) and there-989

fore rule out model capacity as a confound. The990

number of trainable parameters of the AM parser991

model used is 10.7 to 11.5million (lower one is992

with BERT, higher without. Impact of relative dis-993

tance encoding is rather minimal: < 17k), so the994

improved performance is not just due to a higher995

number of parameters.996

Dev set performance. As usual for composi-997

tional generalization datasets, it is relatively easy to998

get (near) perfect results on the (in domain) dev/test999

sets. We observed this too: all AM parser models1000

had an exact match score of at least 99.9 on the dev1001

set and at least 99.8 on the (in distribution) test set.1002

Evaluation procedure. Unfortunately, Kim and1003

Linzen (2020) didn’t provide a separate evaluation1004

script. As a main evaluation metric they use (string) 1005

exact match accuracy on the logical forms which 1006

we adopt. Note that this requires models to learn 1007

the ‘correct’ order of conjuncts: even if a logically 1008

equivalent form with a different order of conjuncts 1009

would be predicted, string exact match would count 1010

it as a failure. In lack of an official evaluation 1011

script we implemented our own evaluation script 1012

to compute exact match. 1013

C Training details of Seq2seq 1014

Hyperparameters. We use the same hyperpa- 1015

rameter setting for BART on both syntactic and 1016

semantic experiments. We use bart-base2 model 1017

in all our experiments. Our batch size is 64. We 1018

use Adam optimizer (Kingma and Ba, 2015) with 1019

learning rate 1e-4 and gradient accumulation steps 1020

8. Loss averaged over tokens is used as the val- 1021

idation metric for early stopping following Kim 1022

and Linzen (2020). During inference, we use beam 1023

search with beam size 4. 1024

Dev set performance. The exact match accuracy 1025

is at least 99.6 for both dev set and (in-distribution) 1026

test set in all experiments. 1027

Other details. Training took 4 hours for BART 1028

with about 80 epochs on train and 5 hours with 1029

about 50 epochs on train100. Inference on gener- 1030

alization set took about 1 hour. All BART experi- 1031

ments were run on Tesla V100 GPU cards (32GB). 1032

The number of parameters in our BART model is 1033

140 million. 1034

Syntactic annotations. To obtain syntactic an- 1035

notations, we use NLTK3 to parse each sen- 1036

tence in COGS with PCFG grammar generat- 1037

ing COGS. In our experiments, we found this 1038

parsing process did not yield any ambiguous 1039

tree. The original PCFG grammar contains 1040

rules such as NP→NP_animate_dobj_noPP. 1041

We replace such fine-grained nonterminals (e.g. 1042

NP_animate_dobj_noPP) with general non- 1043

terminals (e.g. NP). This results in duplicate pat- 1044

terns (e.g. NP→NP) and we further remove such 1045

patterns from the output tree. 1046

2https://huggingface.co/facebook/
bart-base

3https://www.nltk.org/
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Results from other papers. Conklin et al.1047

(2021)4, Akyürek and Andreas (2021)5, Csordás1048

et al. (2021)6 and Tay et al. (2021) did not report1049

performance of their model on train100 set. To1050

report these numbers, we additionally use their1051

published code to train their model on train100 for1052

5 runs. We use seed 6-10 for Conklin et al. (2021)1053

and random number seeds for Csordás et al. (2021),1054

following their default setting. We use their default1055

configuration file for their best model to set the1056

hyperparameters. Tay et al. (2021), did not publish1057

their code so we did not report that. Orhan (2021)71058

and Zheng and Lapata (2021) are the two most re-1059

cently published seq2seq approaches. Both did not1060

provide numbers for train100 training and because1061

of their recency we weren’t able to run their models1062

on the train100 set so far. We thus only report their1063

published results for train set.1064

D Detailed evaluation results1065

The main results are summarized in the main paper1066

in Section 5.2 with Table 2 and Table 3. Here we1067

present AM parser (Table 5), LeAR (Table 6) and1068

BART (Table 7) performance for each of COGS’ 211069

generalization types separately with the usual mean1070

and standard deviation of 5 runs. For descriptions1071

of the generalization types we refer to Kim and1072

Linzen (2020, §3 and Fig. 1).1073

On accuracy computation for LeAR. We ob-1074

served that the LeAR model skips 22 sentences1075

in the generalization set due to out-of-vocabulary1076

tokens.8 We do include these sentences in the ac-1077

curacy computation (as failures) for the general-1078

ization set. The published LeAR code does not1079

convert its internally used representation back to1080

logical forms, therefore we evaluate on the logical1081

forms like it is done for other models, but have to1082

rely on accuracy computation done in the LeAR1083

code for the internal representation. Furthermore1084

we would like to note that–based on inspecting the1085

published code9–, LeAR made the preprocessing1086

4https://github.com/berlino/
tensor2struct-public

5https://github.com/ekinakyurek/
lexical

6https://github.com/robertcsordas/
transformer_generalization

7https://github.com/eminorhan/
parsing-transformers

8The words “gardner” and “monastery” occur zero times in
the train set, but in total in 22 sentences of the generalization
set. The majority (15) of these appear in PP recursion samples.

9https://github.com/thousfeet/LEAR

choice to ignore the contribution of the definite de- 1087

terminer, basically treating indefinite and definite 1088

NPs equally, resulting in a big conjunction without 1089

any iota (‘*’) prefixes. 1090

On model numbers copied from other papers. 1091

Kim and Linzen (2020) provide three baseline mod- 1092

els, among which the Transformer model reached 1093

the best performance on train and train100. Per 1094

generalization type results can be found in their 1095

Appendix F (Table 5 on page 9105) from which we 1096

report the Transformer model numbers. 1097

The strongest model of Akyürek and Andreas 1098

(2021) is actually ‘Lex:Simple:Soft’ (cf. their Ta- 1099

ble 5) with a generalization accuracy of 83% (also 1100

reported in our Table 2), whereas their Lex:Simple 1101

model lags 1 point behind. For the latter, but not 1102

for the former, the authors provide per general- 1103

ization type output in their accompanying GitHub 1104

repository as part of a jupyter notebook. There- 1105

fore numbers in Table 3 are for Lex:Simple, not 1106

Lex:Simple:Soft. 1107

We picked the best performing model of 1108

Orhan (2021): According to their Table 2 the 1109

t5-3b mt5_xlmodel shows the best generaliza- 1110

tion performance (84.6% average accuracy). From 1111

the accompanying GitHub repository10 we copy the 1112

model’s results, specifically we average over the 5 1113

runs of the model 3b-cogs-mt5-epochs10 (commit 1114

04a2508). We note that other models reported in 1115

Orhan (2021) showed the same performance pat- 1116

tern with respect to our three generalization classes 1117

LEX, PROP, and STRUCT. 1118

For Zheng and Lapata (2021), our reported number 1119

is slightly different from the original paper. This 1120

is because we asked the authors for detailed re- 1121

sults and they provide us with their newest results 1122

averaged over 5 runs. 1123

Abbreviations in the tables. ‘Subj’ means ‘sub- 1124

ject’, ‘Obj’ means ‘object’, ‘Prim’ means ‘primi- 1125

tive’, ‘Infin. arg’ means ‘infinitival argument’, ‘Ob- 1126

jmodPP to SubjmodPP’ means ‘object-modifying 1127

PP to subject-modifying PP’, ‘ObjOTrans.’ means 1128

‘object omitted transitive’, ‘trans.’ means ‘transi- 1129

tive’, ‘unacc’ means ‘unaccusative’, ‘Dobj’ means 1130

‘Double Object’. 1131

10https://github.com/eminorhan/
parsing-transformers
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train train100

Type AM AM+dist AM+B AM+B+dist AM AM+dist AM+B AM+B+dist

Subj to Obj (common noun) 65.8±43.4 88.3±10.9 99.7± 0.1 96.5± 6.8 99.9± 0.1 99.9± 0.1 100.0± 0.1 99.9± 0.2
Subj to Obj (proper noun) 69.9± 9.8 48.1±32.0 66.3±38.8 61.8±47.3 98.9± 1.7 100.0± 0.0 89.6± 8.1 95.8± 9.3
Obj to Subj (common noun) 53.1±45.0 97.9± 4.4 99.9± 0.2 88.0±26.7 99.9± 0.1 99.8± 0.2 100.0± 0.1 99.9± 0.1
Obj to Subj (proper noun) 90.0±21.4 88.3±25.9 88.9±11.2 78.8±42.9 99.8± 0.0 99.8± 0.1 99.9± 0.0 99.9± 0.0

Prim to Subj (common noun) 3.4± 7.6 0.0± 0.0 76.2±42.2 80.3±42.2 98.0± 4.5 59.9±54.7 100.0± 0.0 100.0± 0.0
Prim to Subj (proper noun) 4.7±10.6 1.0± 2.3 99.9± 0.1 100.0± 0.0 99.8± 0.3 99.9± 0.1 100.0± 0.0 100.0± 0.1
Prim to Obj (common noun) 0.2± 0.4 0.0± 0.0 74.5±32.5 80.1±40.7 95.9± 8.9 59.9±54.7 100.0± 0.0 100.0± 0.0
Prim to Obj (proper noun) 10.4± 9.1 22.0±15.6 90.5± 9.9 94.9± 3.7 98.8± 2.4 99.8± 0.4 84.9± 9.1 94.4± 9.0
Prim verb to Infin. arg 59.7±54.2 55.2±50.5 100.0± 0.0 82.9±38.2 17.6±30.8 1.0± 2.2 100.0± 0.0 100.0± 0.0

ObjmodPP to SubjmodPP 38.1±23.1 26.1±15.1 59.0±40.8 71.5±24.0 48.0±17.3 44.8±23.9 49.1±27.5 77.7± 7.1
CP recursion 100.0± 0.0 100.0± 0.1 100.0± 0.0 100.0± 0.0 99.9± 0.1 100.0± 0.0 100.0± 0.0 100.0± 0.0
PP recursion 60.5± 4.2 97.6± 0.9 36.3± 8.0 97.3± 2.0 57.2± 8.3 97.0± 1.1 41.5±11.2 98.6± 0.5

Active to Passive 69.3±42.2 41.7±52.3 83.0±24.8 78.8±31.3 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Passive to Active 51.6±45.2 46.6±50.2 45.5±27.2 52.0±43.6 99.6± 0.7 99.9± 0.1 100.0± 0.0 100.0± 0.0
ObjOTrans. to trans. 79.6±33.6 77.8±28.2 22.3±24.0 35.6±33.4 99.9± 0.1 100.0± 0.1 100.0± 0.0 100.0± 0.0
Unacc to transitive 33.2±36.1 51.2±47.2 48.2±35.8 48.9±41.5 99.6± 0.7 100.0± 0.1 100.0± 0.0 100.0± 0.0
Dobj dative to PP dative 99.3± 0.8 98.8± 2.0 99.8± 0.1 95.0±11.0 99.9± 0.1 99.9± 0.1 100.0± 0.0 100.0± 0.0
PP dative to Dobj dative 90.4±11.9 79.5±44.5 85.6±21.7 89.5±11.5 99.7± 0.1 99.8± 0.1 100.0± 0.0 100.0± 0.0

Agent NP to Unacc Subj 78.5±43.4 99.7± 0.6 95.3± 6.4 78.2±43.9 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Theme NP to ObjOTrans. Subj 99.9± 0.1 99.2± 1.7 99.9± 0.1 70.5±41.9 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Theme NP to Unergative Subj 100.0± 0.1 96.6± 7.6 99.9± 0.1 64.4±49.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0

Total 59.9±21.1 62.7±18.7 79.6±15.4 78.3±27.7 91.1± 3.6 88.6± 6.6 93.6± 2.7 98.4± 1.3

Table 5: Exact match accuracy on the generalization set by generalization type for all AM parser models.

train
Type LeAR

Subj to Obj (common noun) 99.8± 0.0
Subj to Obj (proper noun) 93.1±10.2
Obj to Subj (common noun) 100.0± 0.0
Obj to Subj (proper noun) 99.9± 0.0

Prim to Subj (common noun) 100.0± 0.0
Prim to Subj (proper noun) 100.0± 0.0
Prim to Obj (common noun) 99.8± 0.0
Prim to Obj (proper noun) 93.1±10.2
Prim verb to Infin. arg 100.0± 0.0

ObjmodPP to SubjmodPP 92.5± 9.4
CP recursion 100.0± 0.0
PP recursion 98.5± 0.0

Active to Passive 100.0± 0.0
Passive to Active 100.0± 0.0
ObjOTrans. to trans. 100.0± 0.0
Unacc to transitive 100.0± 0.0
Dobj dative to PP dative 99.9± 0.0
PP dative to Dobj dative 90.9± 0.0

Agent NP to Unacc Subj 100.0± 0.0
Theme NP to ObjOTrans. Subj 100.0± 0.0
Theme NP to Unergative Subj 100.0± 0.0

Total 98.9± 0.9

Table 6: Exact match accuracy on the generalization set
by generalization type for the LeAR reproduction runs
on train.

E Additional information on COGS to1132

graph conversions1133

This is a more detailed explanation of the COGS1134

logical form to graph conversion described in Sec-1135

tion 4.2 based on four additional example sen-1136

tences:1137

(1) The boy wanted to go.1138

*boy(x1); want.agent(x2, x1) ∧1139

want.xcomp(x2, x4)1140

∧ go.agent(x4, x1)1141

(2) Ava was lended a cookie in a bottle.1142

lend.recipient(x2, Ava)1143

x2 / wantx0 / the

x1 / boy x4 / go

agent
xcomp

agent

iota

* boy(x1) ; want.agent(x2, x1) ∧
want.xcomp(x2, x4) ∧ go.agent(x4, x1)

Figure 5: Logical form to graph conversion for “The
boy wanted to go” (cf. (1)). For illustration only we
use node names (the part before the ‘/’) to outline the
token alignment.

∧ lend.theme(x2, x4) 1144

∧ cookie(x4) 1145

∧ cookie.nmod.in(x4, x7) 1146

∧ bottle(x7) 1147

(3) Ava said that Ben declared that Claire slept. 1148

say.agent(x1, Ava) 1149

∧ say.ccomp(x1, x4) 1150

∧ declare.agent(x4, Ben) 1151

∧ declare.ccomp(x4, x7) 1152

∧ sleep.agent(x7, Claire) 1153

(4) touch 1154

λa.λb.λe. touch.agent(e, b) ∧ 1155

touch.theme(e, a) 1156

The first of these is used as the main example for 1157

now. Its graph conversion can be found in Fig. 5. 1158

Basic ideas. Arguments of predicates (variables 1159

like xi or proper names like Ava) are translated 1160

to nodes. The first part of each predicate name 1161

(e.g. boy, want, go) is the lemma of the token 1162

pointed to by the first argument (e.g. x1, x2, x4), we 1163
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train train100

Type BART BART+syn BART BART+syn BART+mtl BART+mask

Subj to Obj (common noun) 98.6±0.8 99.6± 0.2 99.2± 0.2 99.8± 0.1 99.6± 0.1 92.9± 1.2
Subj to Obj (proper noun) 68.7±1.1 87.0± 3.2 85.7± 6.7 94.7± 5.3 80.1± 5.5 93.3± 3.4
Obj to Subj (common noun) 99.2±0.6 99.8± 0.1 99.1± 1.3 99.7± 0.1 99.6± 0.2 98.7± 0.4
Obj to Subj (proper noun) 99.4±0.4 99.8± 0.0 99.5± 0.2 99.8± 0.1 97.8± 1.5 99.3± 0.3

Prim to Subj (common noun) 98.4±1.3 99.9± 0.0 95.0± 9.0 99.9± 0.0 99.7± 0.0 99.6± 0.2
Prim to Subj (proper noun) 98.6±0.9 100.0± 0.1 95.5± 4.3 100.0± 0.0 99.9± 0.1 98.9± 1.1
Prim to Obj (common noun) 98.9±0.6 99.5± 0.2 99.4± 0.2 99.8± 0.0 99.6± 0.1 96.1± 0.9
Prim to Obj (proper noun) 65.2±4.4 88.6± 4.3 55.2±27.1 98.1± 2.1 94.6± 0.3 94.8± 2.0
Prim verb to Infin. arg 99.9±0.1 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 99.9± 0.0

ObjmodPP to SubjmodPP 0.0±0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
CP recursion 0.3±0.3 5.9± 1.2 0.2± 0.4 6.5± 0.5 0.2± 0.2 1.1± 0.5
PP recursion 11.2±1.7 6.7± 0.2 10.2± 1.8 7.5± 0.4 11.7± 0.3 10.6± 1.4

Active to Passive 99.9±0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0 100.0± 0.0 99.9± 0.0
Passive to Active 99.5±0.2 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.1 99.8± 0.2
ObjOTrans. to trans. 99.6±0.3 100.0± 0.0 99.9± 0.1 100.0± 0.0 99.9± 0.1 99.9± 0.2
Unacc to transitive 0.0±0.0 0.0± 0.0 99.9± 0.0 100.0± 0.0 99.9± 0.1 99.7± 0.2
Dobj dative to PP dative 98.3±1.2 99.4± 0.3 99.2± 0.2 99.5± 0.2 99.3± 0.0 99.1± 0.1
PP dative to Dobj dative 98.6±1.6 99.8± 0.0 99.5± 0.1 99.9± 0.1 99.6± 0.2 99.2± 0.3

Agent NP to Unacc Subj 96.2±1.4 99.1± 1.0 99.8± 0.2 99.6± 0.3 100.0± 0.0 96.2± 0.9
Theme NP to ObjOTrans. Subj 98.8±0.8 99.8± 0.3 99.6± 0.2 99.9± 0.0 100.0± 0.0 92.5± 5.5
Theme NP to Unergative Subj 99.1±0.7 99.8± 0.3 99.8± 0.2 99.8± 0.1 100.0± 0.0 94.1± 4.1

Total 77.5±0.4 80.2± 0.4 82.7± 1.3 85.9± 0.3 84.8± 0.2 84.1± 0.4

Table 7: Exact match accuracy on the generalization set by generalization type for all BART models.

strip this lemma (‘delexialize’) from the predicate1164

and insert it as the node label of the first argument1165

(post-processing reverses this).1166

Binary predicates (i.e. terms with 2 argu-1167

ments) are translated into edges, pointing1168

from their first to their second argument,1169

e.g. want.agent(x2, x1) is converted to an1170

‘agent’ edge from node x2 (the ‘want’ node) to1171

node x1. Because of the delexicalization de-1172

scribed above, there are only 8 different edge labels:1173

‘agent’, ‘theme’, ‘recipient’, ‘xcomp’, ‘ccomp’,1174

‘iota’ and 2 preposition-introduced edges described1175

below.1176

For unary predicates like boy(x1) the delexical-1177

ization already suffices, so we don’t add any edge1178

(in lack of a proper target node). We restore unary1179

predicates during postprocessing for nodes with no1180

outgoing edges.1181

Each iota term *noun(xnoun); is treated as1182

if it was a conjunction of the noun meaning1183

(i.e. noun(xnoun)) and ‘definite determiner mean-1184

ing’ binary predicate the.iota(xthe, xnoun).1185

The AM parser further requires one node to be the1186

root node. For non-primitives we select it heuristi-1187

cally as the node with no incoming edges (exclud-1188

ing preposition and determiner nodes).1189

Prepositions. Instead of being treated as an edge1190

as the above would suggest, we ‘reify’ them, so1191

each preposition becomes a node of the graph with1192

outgoing ‘nmod’ edges to the modified NP and the1193

argument NP. So for “cookie in the bottle” (cf. (2)1194

and Fig. 6a) we create a node with label ‘in’ and1195

draw an outgoing ‘nmod.op1’ edge to the ‘cookie’- 1196

node and an ‘nmod.op2’ edge to the ‘bottle’-node. 1197

Alignments. For training the AM parser addi- 1198

tionally needs alignments of the nodes to the input 1199

tokens. Luckily all xi nodes naturally provide align- 1200

ments (alignment to ith input token). For proper 1201

names we simply align them to the first occurrence 1202

in the sentence11, the special determiner node is 1203

aligned to the token preceding the corresponding 1204

xnoun.12 The edges are implicitly aligned by the 1205

blob heuristics, which are pretty simple here; every 1206

edge belongs to the blob of the node it originates 1207

from. 1208

Primitives. For primitive examples (e.g. “touch” 1209

(4)) we mostly follow the same procedure. Unlike 1210

non-primitives, however, their resulting graph 1211

can have open sources beyond the root node, 1212

e.g. “touch” would have sources at the nodes b and 1213

a (incoming ‘agent’ or ‘theme’ edge respectively). 1214

These nodes can receive any source out of the three 1215

available (S0,S1,S2)13, so the tree automaton 1216

build as part of Groschwitz et al. (2021)’s method 1217

would allow any combination of source names for 1218

the unfilled ‘arguments’. Because there is only 1219

one input token, the alignment is trivial. In fact, 1220

11this works because it seems that a name never appears
more than once within a sentence. Names in the logical forms
also seem to be ordered based on their token position.

12we can do so because there are –beyond “the” and “a”–
no pre-nominal modifiers like adjectives in this dataset.

13with the restriction that different nodes should have differ-
ent sources to prevent the nodes from being merged. Also we
don’t consider non-empty type requests for these nodes here.
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primitives quite closely resemble the ‘supertags’1221

of the AM parser.1222

1223

Note that by encoding the logical form as a graph1224

we get rid of the ordering of the conjuncts. The1225

‘correct’ order (crucial for exact match evaluation)1226

is restored during postprocessing.1227

The graph conversion for (1) was already pre-1228

sented in Fig. 5. For the other three examples (2)–1229

(4), we present the graph conversions in Fig. 6.1230

x2 / lend

x0 / Ava x4 / cookie

x5 / in

x7 / bottle

recipient theme nmod.op1 nmod.op2

(a) See also (2).

x1 / say

x0 / Ava

x4 / declare

x3 / Ben

x7 / sleep

x6 / Claire

agent

ccomp

agent

ccomp

agent

(b) See also (3).

e0 / touch

b0 / S0 a0 / S1

agent theme

(c) See also (4).

Figure 6: Results of the logical form to graph conver-
sion for (2)–(4). Actually for (c) the tree automaton
contained all possible source name combinations for
nodes a and b, not just 〈S0,S1〉.
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