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Abstract

A rapidly growing body of research on com-
positional generalization investigates the abil-
ity of a semantic parser to dynamically re-
combine linguistic elements seen in training
into unseen sequences. We present a sys-
tematic comparison of sequence-to-sequence
models and models guided by compositional
principles on the recent COGS corpus (Kim
and Linzen, 2020). Though seq2seq models
can perform well on lexical tasks, they per-
form with near-zero accuracy on structural
generalization tasks that require novel syn-
tactic structures; this holds true even when
they are trained to predict syntax instead of
semantics. In contrast, compositional mod-
els achieve near-perfect accuracy on structural
generalization; we present new results con-
firming this from the AM parser (Groschwitz
et al., 2021). Our findings show structural
generalization is a key measure of composi-
tional generalization and requires models that
are aware of complex structure.

1 Introduction

Compositionality is a fundamental principle of nat-
ural language semantics: “The meaning of a whole
[expression] is a function of the meanings of the
parts and of the way they are syntactically com-
bined” (Partee, 1984). A growing body of research
focuses on compositional generalization, the abil-
ity of a semantic parser to combine known linguis-
tic elements in novel structures in ways akin to
humans. For example, observing the meanings
of “The hedgehog ate a cake” and “A baby liked
the penguin,” can a model predict the meaning of
“A baby liked the hedgehog”? Dynamic, compo-
sitional recombination helps explain efficient hu-
man language learning and usage, and investigating
whether NLP models make use of the same prop-
erty offers important insight into their behavior.
Current research on compositional generaliza-
tion shows the task to be challenging and com-

plex. Such research centers around a number of
corpora designed specifically for the task, includ-
ing SCAN (Lake and Baroni, 2018) and CFQ (Key-
sers et al., 2020). We focus on COGS (Kim and
Linzen, 2020), a synthetic semantic parsing corpus
of English whose test set consists of 21 generaliza-
tion types such as the example above (Section 2).
Kim and Linzen report that simple sequence-to-
sequence (seq2seq) models such as LSTMs and
Transformers struggle with many of their general-
ization types, achieving an overall highest accuracy
on the generalization set of 35%. Subsequent work
has improved accuracy on the COGS generaliza-
tion set considerably (Tay et al., 2021; Akyiirek and
Andreas, 2021; Conklin et al., 2021; Csordas et al.,
2021; Orhan, 2021; Zheng and Lapata, 2021), but
the accuracy of even the best seq2seq models re-
mains below 88%. By contrast, Liu et al. (2021) re-
port an accuracy of 98%, using an algebraic model
that implements compositionality (Section 3).

Here, we investigate whether this difference in
compositional generalization accuracy is inciden-
tal, or whether there is a systematic difference be-
tween seq2seq models and models that are guided
by compositional principles and aware of complex
structure. Comparisons between entire classes of
models must be made with care. Thus in order to
make claims about the class of compositional mod-
els, we first work out a second compositional model
for COGS (in addition to Liu et al.’s). We apply the
AM parser (Groschwitz et al., 2021), a composi-
tional semantic parser which can parse a variety of
graphbanks fast and accurately (Lindemann et al.,
2020), to COGS after minimal adaptations (Sec-
tion 4). The AM parser achieves a generalization
accuracy above 98%, making it the first semantic
parser shown to perform accurately on both COGS
and broad-coverage semantic parsing.

We then compare these two compositional mod-
els to all published seq2seq models for COGS. We
find that the difference in generalization accuracy



can be attributed specifically to structural types
of compositional generalization, which require the
parser to generalize to novel syntactic structures
that were not observed in training. While the com-
positional parsers achieve excellent accuracy on
these generalization types, all known seq2seq mod-
els perform very poorly, with accuracies close to
zero. This is even true for BART (Lewis et al.,
2020), which we apply to COGS for the first time;
this is surprising because BART achieves very high
accuracy on broad-coverage semantic parsing tasks
(Bevilacqua et al., 2021). We conclude that seq2seq
models, as a class, seem to have a weakness with re-
gard to structural generalization that compositional
models overcome (Section 5).

Finally, we investigate the role of syntax in com-
positional generalization (Section 6). We show
that parsers which explicitly model syntactic tree
structures can easily learn structural generaliza-
tion when trained to predict syntax trees on COGS,
whereas BART again performs poorly. BART does
not learn structural generalization even if we enrich
its input with syntactic information. Thus, the poor
performance of seq2seq models on structural gener-
alization is not specifically due to representational
choices in COGS, or even to the specific compo-
sitional demands of semantic parsing; structural
generalization requires structure-aware models.

We discuss implications for future work on com-
positional generalization in Section 7. All code
will be made publicly available upon acceptance.

2 Compositional Generalization

Compositional generalization is the ability to de-
termine the meaning of unseen sentences using
compositional principles. Humans can understand
and produce a potentially infinite number of novel
linguistic expressions by dynamically recombin-
ing known elements (Chomsky, 1957; Fodor and
Pylyshyn, 1988; Fodor and Lepore, 2002). For se-
mantic parsers, compositional generalization tasks
systematically vary language use between the train-
ing and the generalization set; as such, the system
must recombine parts of multiple training instances
to predict the meaning of a single test instance.
COGS (Kim and Linzen, 2020) is a synthetic se-
mantic parsing dataset in which English sentences
must be mapped to logic-based meaning represen-
tations. It distinguishes 21 generalization types,
each of which requires generalizing from training
instances to test instances in a particular systematic
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Figure 1: Structural generalization in COGS.

and linguistically-informed way. We follow the au-
thors and distinguish two classes of generalization
types; we further comment on a third class based
on data from model performance.

Lexical generalization involves recombining
known grammatical structures with words that were
not observed in these particular structures in train-
ing. An example is the generalization type “subject
to object (common)” (Table 1a), in which a com-
mon noun (“hedgehog”) is only seen as a subject
in training, whereas it is only used as on object in
the generalization testset. Note that the syntactic
structure at generalization time (e.g. that of a transi-
tive sentence) was already observed in training. On
the semantics side, the meaning representations are
identical, except for replacing some constants and
quantifiers and renaming some variables. Thus, lex-
ical generalization in COGS amounts to learning
how to fill fixed templates.

By contrast, structural generalization involves
generalizing to linguistic structures that were not
seen in training (cf. Table 1c,d). Examples are the
generalization types “PP recursion”, where training
instances contain prepositional phrases of depth up
to two and generalization instances have PPs of
depth 3—12; and “object PP to subject PP”, where
PPs modify only objects in training and only sub-
jects at test time. These structural changes are
illustrated in Fig. 1.

A third class we observe involves generalizing to
object usage of proper nouns (Table 1b). Though
technically a subset of lexical generalization, this
subgroup is harder than types of the same class



Training Generalization
(a) LEX A hedgehog ate the cake. The baby liked the hedgehog.
xcake (z4) ; hedgehog(z1) A *baby (z1); =*hedgehog(za);
eat.agent (z2,x1) A eat.theme (z2,x4) like.agent (z2,x1) A like.theme (r2,T4)
(b) PROP  Charlie ate the cake. The monster ate Charlie.
~cake (z3); eat.agent (zx1, Charlie) A *monster (r1); eat.agent (z2,r1) A
eat.theme (z1,23) eat.theme (z2, Charlie)
(c) STRUCT Ava saw a ball in a bowl on the table. Ava saw a ball in a bowl on the table on the floor.
xtable (z9); see.agent (z1, Ava) *table (zg); =xfloor (x12); see.agent (1,
A see.theme (z1,23) A ball(x3) A Ava) A see.theme(zi1,23) A
ball.nmod.in (z3,z6) A bowl (xg) A ball(x3z) A ball.nmod.in(z3,xe) A
bowl.nmod.on (g, T9) bowl (zg) A bowl.nmod.on (xe,Tg)
A table.nmod.on (xg,Z12)
(d) STRUCT Noabh ate the cake on the plate. The cake on the table burned.

«xcake (x3); *plate (wxe);
eat.agent (z1, Noah)
A cake.nmod.on (x3,Te)

N eat.theme (z1,x3)

xcake (x1); =*table(x4);
cake.nmod.on (x1,x4) A
burn.theme (z3,21)

Table 1: Some examples from the COGS dataset. Examples (a) represent lexical generalization (LEX); (b), to
object proper noun generalization (PROP); and (c-d), structural generalization (STRUCT).

(cf. Section 5); we report and discuss it separately.

Lexical generalization captures a very limited
fragment of compositionality, in that it only re-
quires to fill a fixed number of slots with new val-
ues. The key point about compositionality in se-
mantics is that language is infinitely productive,
and humans can assign meaning to new grammati-
cal structures based on finite experience. Assigning
meaning to unseen structures is exercised only by
structural types. This distinction is borne out in
model performance (Section 5): while lexical gen-
eralization can be handled by many neural archi-
tectures, structural generalization requires parsing
architectures aware of complex sentence structure.

3 Related Work

Kim and Linzen (2020) demonstrate that simple
seq2seq models (LSTMs and Transformers) strug-
gle with all generalization types in COGS. Sub-
sequent work with novel seq2seq architectures
achieve a much higher mean accuracy on the COGS
generalization set (Akyiirek and Andreas, 2021;
Csordds et al., 2021; Conklin et al., 2021; Tay et al.,
2021; Orhan, 2021; Zheng and Lapata, 2021), but
their accuracy on the generalization set still lags
more than ten points behind that on the in-domain
test set.

COGS can also be addressed with compositional
models, which directly model linguistic structure
and implement the Principle of Compositionality.
The LeAR model of Liu et al. (2021) achieves a
generalization accuracy of 98%, outperforming all
known seq2seq models by at least ten points. LeAR

also sets new states of the art on CFQ and Geoquery,
but has not been demonstrated to be applicable to
broad-coverage semantic parsing.

Compositional semantic parsers for other tasks
include the AM parser (Groschwitz et al., 2018;
Lindemann et al., 2020) (Section 4) and Span-
BasedSP (Herzig and Berant, 2021). The AM
parser has been shown to achieve high accuracy
and parsing speed on broad-coverage semantic
parsing datasets such as the AMRBank. Span-
BasedSP parses Geoquery, SCAN, and CLOSURE
accurately through unsupervised training of a span-
based chart parser. Shaw et al. (2021) combine
quasi-synchronous context-free grammars with the
T5 language model to obtain even higher accuracies
on Geoquery, demonstrating some generalization
from easy training examples to hard test instances.

Structural generalization has also been probed in
syntactic parsing tasks. Linzen et al. (2016) define
a number-prediction task that requires learning syn-
tactic structure and find that LSTMs perform with
some success; however, Kuncoro et al. (2018) find
that structure-aware RNNGs perform this task more
accurately. McCoy et al. (2020) found that hierar-
chical representations are necessary for human-like
syntactic generalizations on a question formation
task, which seq2seq models cannot learn.

4 Parsing COGS with the AM parser

4.1 The AM parser

To better understand how compositional models
perform on compositional generalization, we adapt
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Figure 2: (a) AM dependency tree with (b) its value.

the broad-coverage AM parser to COGS. The AM
parser (Groschwitz et al., 2018) is a compositional
semantic parser that learns to map sentences to
graphs. It was the first semantic parser to perform
with high accuracy across all major graphbanks
(Lindemann et al., 2019) and can achieve very high
parsing speeds (Lindemann et al., 2020). Thus,
though not yet tested on synthetic generalization
sets, the AM parser exhibits the ability to handle
natural language and related generalizations in the
wild.

Instead of predicting the graph directly, the AM
parser first predicts a graph fragment for each token
in the sentence and a (semantic) dependency tree
that connects them. This is illustrated in Fig. 2a;
words that do not contribute to the sentence mean-
ing are tagged with L. This dependency tree is then
evaluated deterministically into a graph (Fig. 2b)
using the operations of the AM algebra. The “Ap-
ply” operation fills an argument slot of a graph
(drawn in red) by inserting the root node (drawn
with a bold outline) of another graph into this slot;
for instance, this is how the APP; operation in-
serts the “boy” node into the ARGO of “want”.
The “Modify” operation attaches a modifier to a
node; this is how the MOD,,, operation attaches the
“manner-sound” graph to the “sleep” node. The
dependency tree captures how the meaning of the
sentence can be compositionally obtained from the
meanings of the words.

AM parsing is done by combining a neural de-
pendency parser with a neural tagger for predicting
the graph fragments. We follow Lindemann et al.
(2019) and rely on the dependency parsing model
of Kiperwasser and Goldberg (2016), which scores
each dependency edge by feeding neural represen-
tations for the two tokens to an MLP. We follow the
setup of Groschwitz et al. (2021), which does not
require explicit annotations with AM dependency
trees, to train the parser.

4.2 AM parsing for COGS

We apply the AM parser to COGS by converting
the semantic representations in COGS to graphs.

~table (zg); see.agent (x1, Ava) A see.theme(xi,x3) A

ball(x3) A ball.nmod.in(x3,xe) A bowl(xzg) A

bowl.nmod.on (zg, Tg)

Figure 3: Logical form to graph conversion for “Ava
saw a ball in a bowl on the table” (cf. Table 1c).

The conversion is illustrated in Fig. 3.

Given a logical form of COGS, we create a
graph that has one node for each variable z; and
each constant (e.g. Ava). If a variable appears
as the first argument of an atom of the form
pred.arg(x,y), we assign it the node label pred
in the graph. We also add an edge from x to y with
label arg. E.g. see.agent (x1, Ava) turns
into an ‘agent’ edge from ‘see’ to ‘Ava’. Each iota
term *noun (Tnoun) 1S treated as an edge from a
fresh node with label “the” to xyou,. Preposition
meaning bowl .nmod. on (xg, Xg) is represented
as a node (labeled ‘on’) with outgoing edges to
the two arguments/nouns (‘nmod.opl’ to “bowl”,
‘nmod.op2’ to “table”).

By encoding the logical form as a graph, we lose
the ordering of the conjuncts. The ‘correct’ order is
restored in postprocessing. More details and graph
conversion examples are in Appendix E.

S Experiments on COGS

With two compositional models available on
COGS, we can now compare compositional seman-
tic parsers, as a class, to seq2seq models, as a class,
on compositional generalization in COGS.

5.1 Experimental setup

We follow standard COGS practice and evaluate
all models on both the (in-distribution) test set and
the generalization set. In addition to the regular
COGS training set (‘train’) of 24,155 training in-
stances, we also report numbers for models trained
on the extended training set ‘train100’, of 39,500
instances (Kim and Linzen, 2020, Appendix E.2).
The ‘train100’ set extends ‘train’ with 100 copies
of each exposure example. For instance, for the
generalization instance in Table 1a, ‘train100” will
contain 100 different sentences in which “the/a
hedgehog” appears as subject (rather than just one
in ‘train’). We report exact match accuracies, aver-
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Table 2: Exact match accuracies on COGS. Results in
gray are taken from the respective papers. ') models
that use pretraining.

aged across 5 training runs, along with their stan-
dard deviations.

Sequence-to-sequence models. We train BART
(Lewis et al., 2020) as a semantic parser on COGS.
This is a strong representative of the family of
seq2seq models, as a slightly extended form of
BART (Bevilacqua et al., 2021) set a new state of
the art on semantic parsing on the AMR corpus (Ba-
narescu et al., 2013). To apply BART on COGS, we
directly fine-tune the pretrained bart-base model
on it with the corresponding tokenizer. Training
details are described in Appendix C.

We also report results for all other published
seq2seq models for COGS (Kim and Linzen, 2020;
Conklin et al., 2021; Csordds et al., 2021; Akyiirek
and Andreas, 2021; Tay et al., 2021; Orhan, 2021;
Zheng and Lapata, 2021). We retrained some of
these models on train100 to measure the impact of
the training set.

Compositional models. We train the AM parser
on the COGS graph corpus (cf. Section 4.2)
and copied most hyperparameter values from
Groschwitz et al. (2021)’s training setup for AMR
to make overfitting to COGS less likely; details are
described in Appendix B.

The AM parser either receives pretrained word
embeddings from BERT (Devlin et al., 2019)
(‘AM+B’) or learns embeddings from the COGS
data only (‘AM’). We run the training algorithm
with up to three argument slots to enable the anal-
ysis of ditransitive verbs. For evaluation, we re-

vert the graph conversion to reconstruct the logical
forms.

For PP recursion, COGS eliminates potential
PP attachment ambiguities and assumes that each
PP modifies the noun immediately to its left. We
hypothesize that explicit distance information be-
tween tokens could help the AM parser learn this
regularity: Instead of passing only the representa-
tions of the potential parent and child node to the
edge-scoring model, we also pass an encoding of
their relative distance in the string (Vaswani et al.,
2017), yielding the AM parser models with the
“+dist” suffix.

Finally, we report evaluation results for LeAR,
the compositional COGS parser of Liu et al. (2021).

5.2 Results

The results are summarized in Table 2.

Compositional outperforms seq2seq. While all
models achieve near-perfect accuracy on the in-
distribution test sets, we find that when trained on
‘train100’, all compositional models outperform
all seq2seq models on the generalization set, by a
wide margin. This includes the very strong BART
baseline, which holds the state of the art in broad-
coverage parsing for AMR.

LeAR even achieves its near-perfect accuracy
when trained on ‘train’, and outperforms all
seq2seq models trained on either dataset. See be-
low for a detailed discussion of the AM parser.

Performance by generalization type. To under-
stand this result more clearly, we break down the
accuracy by generalization type. This analysis is
shown in Table 3. We will explain “BART+syn” in
Section 6.2 and the “syntax” rows in Section 6.1.
We compare the compositional models against all
seq2seq models that report these fine-grained num-
bers or for which they were easy to reproduce (see
Appendices C and D for details).

The results group neatly with the three classes
of generalization types outlined in Section 2: LEX,
STRUCT, and PROP. All recent models achieve
near-perfect accuracy on each of the 16 lexical
generalization types. On structural generalization
types, seq2seq models achieve very low accuracies,
whereas the compositional parsers (AM+B+dist
and LeAR) are still very accurate. The proper-noun
object cases are somewhere in the middle, with the
seq2seq models reporting middling numbers.

'All LeAR numbers are based on our reproduction of their
COGS evaluation; they report an accuracy of 97.7.



Class STRUCT

Gen. type | Obj to Subj PP CP recursion PP recursion | prim to obj (proper) subj to obj (proper) | all 16 other types

ProP LEX

Overall

AM+B train100 49 100 41 85 90 100 94
AM+B+dist train100 78 100 99 94 96 100 98
LeAR train 93 100 99 93 93 100 99
- Kim and Linzen 2020 train 0 0 0 0 30 45 35
é Akyiirek and Andreas 2021 train 0 0 1 66 64 100 82
S Orhan 2021 train 0 0 10 84 86 100 85
§ Zheng and Lapata 2021 train 0 12 39 92 91 100 89
Kim and Linzen 2020 train100 0 0 0 23 54 77 63
Conklin et al. 2021 train100 0 0 0 20 66 94 75
Csordds et al. 2021 train100 0 0 0 55 62 92 75
BART train100 0 0 10 55 86 99 83
BART+syn train100 0 7 8 98 95 100 86
% Benepar train100 | 84 95 98 | 99 100 | 100 | 99
=
2 BART train100 | 1 4 8 | 97 94 | 96 | 83

Table 3: Exact match accuracies on the individual generalization types. We have compressed all 16 generalization
types of the LEX class into a single column and report the average accuracy.
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Figure 4: Influence of PP recursion depth on overall PP
depth generalization accuracy.

Depth generalization (recursion). There is a
particularly pronounced difference between compo-
sitional and seq2seq models on the two “recursion”
generalization types (cf. Fig. 1b). In these cases,
the training data contains examples up to depth
two and the generalization data has depths 3—12.
Figure 4 shows the accuracy of several models on
PP recursion in detail. As we see, the accuracy
of BART (even when informed by syntax, cf. Sec-
tion 6.2) degrades quickly with recursion depth.
By contrast, both LeAR and AM+B+dist main-
tain their high accuracy across all recursion depths.
This suggests that they learn the correct structural
generalizations even from training observations of
limited depth.

Effect of distance encoding for AM parser. As
illustrated in Fig. 4, the accuracy of the unmodified
AM parser without the distance feature degrades
with increasing PP recursion depth. An error anal-
ysis showed that this is because the AM parser is

uncertain about the attachment of PPs in the mid-
dle of the string, confirming our hypothesis that it
does not learn the idiosyncratic treatment of PPs
in COGS (always attach low). Adding the distance
feature solves this problem.

There is an interesting asymmetry between the
behavior of the AM parser on PP recursion and
CP recursion, which nests sentential complements
within each other (“Emma said that Noah knew
that the cat danced”): The accuracy of the unmod-
ified AM parser is stable across recursion depths
for CP recursion, and the distance feature is only
needed for PPs. This can be explained by the way
in which the AM parser learns to incorporate PPs
and CPs into the dependency tree: it uses APP
edges to combine verbs with CPs, which ensures
that only a single CP can be combined with each
sentence-embedding verb. By contrast, each NP
can be modified by an arbitrary number of PPs us-
ing MOD edges. Thus a confusion over attachment
is only possible for PPs, not CPs.

Effect of training regime. Parsers on COGS are
traditionally not allowed any pretraining (Kim and
Linzen, 2020), in order to judge their ability to
generalize from limited observations. We see in the
experiments above that the use of pretrained word
embeddings helps the AM parser achieve accuracy
parity with LeAR, but is not needed to outperform
all seq2seq models on ‘train100’.

Training on ‘train100’ helps the AM parser more
than any other model in Table 2. The difference
between its accuracy on ‘train’ and ‘train100’ is
due to lexical issues: we found that when trained
on ‘train’, the AM parser typically predicts the
correct delexicalized formulas and then inserts an



incorrect but related constant or predicate symbol
(e.g. “Emma” instead of “Charlie” in Table 1b).
Trained on ‘train’, AM+B+dist achieves a mean
accuracy on STRUCT of 89.6 (compared to 92.3
for ‘train100’), whereas the mean accuracy on LEX
drops to 76. Even without BERT and trained on
‘train’, AM+dist gets 74.6 on STRUCT, drastically
outperforming the seq2seq models (Appendix D).

6 The role of syntax

Our finding that seq2seq models perform so poorly
on structural generalization in COGS begs the ques-
tion: Is there anything special about the meaning
representations in COGS that makes structural gen-
eralization hard, or would seq2seq models struggle
similarly on other target representations for these
generalization types? Do seq2seq models have a
specific weakness regarding semantic composition-
ality? Or is it because they systematically lack a
bias that would help them generalize over structure
in language? In this section, we investigate these
questions by recasting COGS as a syntactic corpus.

6.1 Syntactic generalization

We obtain a syntactic annotation for each instance
in COGS from the (unambiguous) original PCFG
grammar used to generate COGS (cf. Fig. 1).
We replace the very fine-grained non-terminals
(e.g. NP_animate_dobj_noPP) of the origi-
nal PCFG with more general ones (e.g. NP) and
remove duplicate rules (e.g. NP—NP) resulting
from this. We train BART on predicting linearized
constituency trees from the input strings. For
comparison, we also train the Neural Berkeley
Parser (Kitaev and Klein, 2018) on COGS syn-
tax (“Benepar” in the tables). This parser consists
of a self-attention encoder and a chart decoder. It
is therefore structure-aware, in that it explicitly
models tree structures; this is the analogue of a
compositional parser for semantics.

Results are shown in the two bottom rows of
Table 3. We find the same pattern as in the seman-
tic parsing case: the seq2seq model does well on
PROP and LEX, but struggles with STRUCT. The
structure-aware Berkeley parser handles all three
generalization types well. Thus, the difficulties that
seq2seq models have on structural generalization
on COGS are not limited to semantics: rather, they
seem to be a general limitation in the ability of
seq2seq models to learn linguistic structure from
structurally simple examples and use it produc-

tively. Not only does compositional generalization
require compositional parsers; structural general-
ization in semantics or syntax seems to require
parsers which are aware of that structure.

6.2 Compositional generalization from
correct syntax

But perhaps the poor performance of seq2seq se-
mantic parsers on STRUCT is caused only by their
inability to learn to generalize syntactically? Would
their accuracy catch up with that of compositional
models if we gave them access to syntax?

We retrained BART on predicting semantic rep-
resentations, but instead of feeding it the raw sen-
tence, we provide as input the linearized gold con-
stituency tree (“ (NP (Det a) (N rose))”),
both for training and inference. This method is
similar to Li et al. (2017) and Currey and Heafield
(2019), but we allow attention over special tokens
such as “ (” during decoding.

We report the results as “BART+syn” in Table 2
and Table 3; the overall accuracy increases by 3.2%
over BART. This is mostly because providing the
syntax tree allows BART to generalize correctly
on PROP. However, STRUCT remains out of reach
for BART+syn, confirming the deep difficulty of
structural generalization for seq2seq models.

We also explored other ways to inform BART
with syntax, through multi-task learning (Sennrich
et al., 2016; Currey and Heafield, 2019) and syntax-
based masking in the self-attention encoder (Kim
et al., 2021). Neither method substantially im-
proved the accuracy of BART on the COGS gen-
eralization set (+1.4% and +2.1% overall accu-
racy, respectively). More detailed results are in
Appendix D.

7 Discussion

Compositional generalization requires compo-
sitional parsers. Table 3 paints a clear picture:
compositional generalization in COGS can be
solved by semantic parsers that have composition-
ality built in, but seq2seq models perform poorly
on structural generalization. This remains true even
for seq2seq models that are known to perform well
on semantic parsing, for syntactic rather than se-
mantic generalization, and for seq2seq models that
are biased towards learning structure-aware repre-
sentations by incorporating information about syn-
tax. Obviously, statements about entire classes of
models must be made with care. But when despite



the best efforts of an active research community all
seq2seq models underperform the compositional
models, that seems like rather strong evidence.

Our results are surprising, in that seq2seq mod-
els have been shown through probing tasks to learn
some linguistic structure, both with respect to syn-
tax (Blevins et al., 2018) and semantics (Tenney
etal., 2019). At the same time, as mentioned above,
seq2seq models like BART perform very well on
broad-coverage tasks such as AMR parsing. It is an
interesting question for future research to reconcile
the ability of seq2seq models to learn soft struc-
tural information with their apparent difficulties
in exploiting this ability to generalize structurally;
perhaps their ability to learn structure rests on the
variety of structures observed in broad-coverage
training sets, but not in COGS.

Focus on structural generalization. Our exper-
iments indicate that STRUCT is consistently harder
than PROP and LEX with respect to generalization
accuracy. Not only is LEX essentially a solved
problem; but as we discussed in Section 2, the in-
finitely productive nature of full compositionality
is only captured by structural types of generaliza-
tion. Compositionality is not just about using new
and similar words in known structures (slot filling),
but also about building new, acceptable structures
based on known ones.

When papers only report the mean accuracy of a
system across all generalization types, the accuracy
on the 16 lexical generalization types overshadows
the accuracy on the three structural generalization
types. The overall accuracy can make systems look
more capable of compositional generalization than
they really are.

Future work on compositional generalization
will benefit from (i) reporting the accuracy on struc-
tural generalization tasks separately and (ii) ex-
panding datasets that test compositional general-
ization to include more types of structural general-
ization. We hope to offer such a dataset in future
research.

What’s so difficult about objPP to subjPP?
“ObjPP to subjPP” is the most challenging gen-
eralization type across all models. It is illuminating
to investigate the errors that happen here, as they
differ across models.

Table 4 shows typical errors of BART and the
AM parser. The AM parser chooses to use the most
recent simple NP (“the house”) as the agent of

Gold *baby (x1); xhouse (z7);
baby.nmod.on (x1,24) A tray(xa)
A tray.nmod.in (zg4,x7) A
scream.agent (xg,r1)

BART +baby (z1); =xhouse(z7);

scream.agent (r2,21) A
scream.theme (xr2,x4) AN tray(xa)
A tray.nmod.in (z4,2x7)

AM *baby (x1); =xhouse (x7)
baby.nmod.on (z1,z4) A t
A tray.nmod.in (z4,x8) A
scream.agent (xg,r7)

ray (x4)

Table 4: Error analysis for the sentence “The baby on a
tray in the house screamed”.

“scream” and then attaches “the baby on a tray” in
some random place. By contrast, BART analyzes
the sentence as “the baby screamed the tray on the
house”, preferring to reuse the pattern for object-
PP sentences even if the intransitive verb does not
license it. BART also displays an unawareness of
word order that is reminiscent of the difficulties that
seq2seq models otherwise face in relating syntax
to word order (McCoy et al., 2020).

We see from both examples that “objPP to
subjPP” involves major structural changes to the
formula that must be grounded in both lexical (verb
valency) and structural (word order) information.
Developing a model that learns to do this with per-
fect accuracy remains an interesting challenge.

8 Conclusion

We have shown that compositional semantic parsers
systematically outperform recent seq2seq models
on structural generalization in COGS. While both
BART and the AM parser support accurate broad-
coverage semantic parsing, we find that BART
struggles with structural compositional generaliza-
tion as much as other seq2seq models, whereas the
compositional AM parser achieves state-of-the-art
generalization accuracy on COGS.

These results suggests that even powerful
seq2seq models lack a structural bias that is re-
quired to generalize across linguistic structures as
humans do. This lack of bias is not limited to
semantics; our findings indicate that seq2seq mod-
els struggle just as hard to learn syntactic general-
izations that are easy for structure-aware models.
Given that all recent models are accurate on most
generalization types, we suggest focusing future
evaluations on a model’s accuracy on structural
generalization types, and perhaps extend COGS to
a corpus that offers a greater variety of these.
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A COGS dataset statistics

The COGS dataset contains English declara-
tive sentences mapped with logical forms. It
was created by Kim and Linzen (2020) and is
publicly available at https://github.com/
najoungkim/COGS (MIT license). We use the
version from April 2nd 2021 commit 6£66383
and use the dataset as-is (no datapoints excluded
or changed, use their data set splits), except for the
AM parser for which we conduct the logical form
to graph preprocessing described in Section 4.2.
The normal training set (‘train’) consists of 24,155
samples (24k in distribution, 143 primitives, 12
exposure examples), the dev and test set both con-
tain 3k in distribution samples each. Primitives and
exposure examples contain ‘lexical trigger words’
necessary for all but the three structural generaliza-
tion types: these lexical trigger words each appear
only once and in one sample in the whole training
set. Primitives are one-word sentences, therefore
presenting word-meaning mapping without context
of a sentence (necessary for the types Primitive
to *). In contrast, exposure examples are full sen-
tences e.g. for the subject to object (common noun)
generalization this sentence contains “hedgehog”
as the subject. In the generalization set this word
appears in 1k samples, but in a different syntactic
configuration compared to the exposure example
(e.g. “hedgehog” in object position). There is also
an additional larger training set (‘train100”) with
39,500 samples containing the lexical trigger words
in 100 samples each, instead of just in one sample.
The out-of-distribution generalization set contains
21k samples, 1k per generalization type.

B Training details of the AM parser

The corresponding code will be made publicly
available upon acceptance.

Hyperparameters. For the AM parser, we
mostly copied the hyperparameter values from the
AMR experiments of Groschwitz et al. (2021). This
should help against overfitting on COGS, but we
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also note that hyperparameter tuning for composi-
tional generalization datasets can be difficult any-
ways since one can typically easily achieve perfect
scores on an in-doman dev set. Copied values in-
clude for instance the number of epochs (60 due
to supervised loss for edge existence and lexical
labels), the batch size, the number and dimension-
ality of neural network layers and not using early
stopping (but selecting best model based on per
epoch evaluation metric on the dev set). Choos-
ing 3 sources has worked well on other datasets
(Groschwitz et al., 2021) and we adopt this hyper-
parameter choice. We note that with ditransitive
verbs (i.e. verbs requiring NPs filling agent, theme,
and recipient roles) present in COGS we need at
least three sources anyway to account for these.

Deviations from Groschwitz et al. (2021)’s set-
tings. For training on train (but not train100), we
set the vocabulary threshold from 7 down to 1 to
account for the fact that the lexical generalizations
rely on a single occurrence of a word in the training
data (on train100 we keep 7 as a threshold since
the trigger words occur 100 times in there). Fur-
thermore, the COGS dataset doesn’t have part-of-
speech, lemma or named-entity annotations, so we
just don’t use embeddings for these. For the word
embeddings we either use BERT-Large-uncased
(Devlin et al., 2019) or learn embeddings from the
dataset only (embedding dimension 1024, same as
for the BERT model). We also decreased the learn-
ing rate from 0.001 to 0.0001: we observed that the
learning curves are still converging very quickly
and hypothesize that COGS training set might also
be easier than the AMR one used in Groschwitz
et al. (2021).

Unlike them we didn’t use the fixed-tree decoder
(described in Groschwitz et al. 2018), but opted
for the projective A* decoder (Lindemann et al.,
2020, §4.2): in pre-experiments this showed better
results. In addition, it makes comparison to related
work (such as LeAR by Liu et al. (2021)) easier
which uses only projective latent trees. We also
use supervised loss for edge existence and lexical
labels: we can use supervised loss for both as they
do not depend on the source names to be learnt. In
preliminary experiments this yielded better results
than using the automaton-based loss for them too.
The supervised loss wasn’t described in Groschwitz
et al. (2021), but already implemented in their code
base and they note there that the effect on perfor-
mance was mixed in their experiments (similar for
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SDP, worse for AMR).

Relative distance encoding. For the relative dis-
tance encodings we added to the dependency edge
existence scoring, we used sine-cosine interleaved
encoding function introduced by Vaswani et al.
(2017, §3.5) and as input to it use the relative dis-
tance dist(i, j) = i — j between sentence positions
7 and 7. We use a dimensionality of 64 for the dis-
tance encodings (d,;,04¢; in Vaswani et al. (2017) is
512). These distance encodings are then concate-
nated together with the BiLSTM representations
for possible heads and dependents used in the stan-
dard Kiperwasser and Goldberg (2016) edge scor-
ing model. This constitutes the input to the MLP
emitting a score for each token pair. In other words,
for each token pair (7, j) the MLP has to decide
edge existence based on the representations of the
tokens at positions ¢ and 7, and an encoding of the
relative distance dist (i, j) = i — j. These models
have the suffix ‘dist’ in the tables.

Runtimes. Training the AM parser took 5 to 7
hours on train with 60 epochs and 6 to 9.5 hours
on train100. In general, training with BERT took
longer than without, same holds for adding relative
distance encodings. Inference with a trained model
on the full 21k generalization samples took about
15 minutes using the Astar decoder with the ‘ignore
aware’ heuristic. All AM parser experiments were
performed using Intel Xeon E5-2687W v3 10-core
processors at 3.10Ghz and 256GB RAM, and MSI
Nvidia Titan-X (2015) GPU cards (12GB).

Number of parameters. For their models, Kim
and Linzen (2020) tried to keep the number of pa-
rameters comparable (9.5 to 11 million) and there-
fore rule out model capacity as a confound. The
number of trainable parameters of the AM parser
model used is 10.7 to 11.5million (lower one is
with BERT, higher without. Impact of relative dis-
tance encoding is rather minimal: < 17k), so the
improved performance is not just due to a higher
number of parameters.

Dev set performance. As usual for composi-
tional generalization datasets, it is relatively easy to
get (near) perfect results on the (in domain) dev/test
sets. We observed this too: all AM parser models
had an exact match score of at least 99.9 on the dev
set and at least 99.8 on the (in distribution) test set.

Evaluation procedure. Unfortunately, Kim and
Linzen (2020) didn’t provide a separate evaluation
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script. As a main evaluation metric they use (string)
exact match accuracy on the logical forms which
we adopt. Note that this requires models to learn
the ‘correct’ order of conjuncts: even if a logically
equivalent form with a different order of conjuncts
would be predicted, string exact match would count
it as a failure. In lack of an official evaluation
script we implemented our own evaluation script
to compute exact match.

C Training details of Seq2seq

Hyperparameters. We use the same hyperpa-
rameter setting for BART on both syntactic and
semantic experiments. We use bart-base> model
in all our experiments. Our batch size is 64. We
use Adam optimizer (Kingma and Ba, 2015) with
learning rate le-4 and gradient accumulation steps
8. Loss averaged over tokens is used as the val-
idation metric for early stopping following Kim
and Linzen (2020). During inference, we use beam
search with beam size 4.

Dev set performance. The exact match accuracy
is at least 99.6 for both dev set and (in-distribution)
test set in all experiments.

Other details. Training took 4 hours for BART
with about 80 epochs on train and 5 hours with
about 50 epochs on train100. Inference on gener-
alization set took about 1 hour. All BART experi-
ments were run on Tesla V100 GPU cards (32GB).
The number of parameters in our BART model is
140 million.

Syntactic annotations. To obtain syntactic an-
notations, we use NLTK? to parse each sen-
tence in COGS with PCFG grammar generat-
ing COGS. In our experiments, we found this
parsing process did not yield any ambiguous
tree. The original PCFG grammar contains
rules such as NP—NP_animate_dobj_noPP.
We replace such fine-grained nonterminals (e.g.
NP_animate_dobj_noPP) with general non-
terminals (e.g. NP). This results in duplicate pat-
terns (e.g. NP—NP) and we further remove such
patterns from the output tree.

https://huggingface.co/facebook/
bart-base
*https://www.nltk.org/


https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-base
https://www.nltk.org/

Results from other papers. Conklin et al.
(2021)*, Akyiirek and Andreas (2021)°, Csordds
et al. (2021)® and Tay et al. (2021) did not report
performance of their model on train100 set. To
report these numbers, we additionally use their
published code to train their model on train100 for
5 runs. We use seed 6-10 for Conklin et al. (2021)
and random number seeds for Csordas et al. (2021),
following their default setting. We use their default
configuration file for their best model to set the
hyperparameters. Tay et al. (2021), did not publish
their code so we did not report that. Orhan (2021)’
and Zheng and Lapata (2021) are the two most re-
cently published seq2seq approaches. Both did not
provide numbers for train100 training and because
of their recency we weren’t able to run their models
on the train100 set so far. We thus only report their
published results for train set.

D Detailed evaluation results

The main results are summarized in the main paper
in Section 5.2 with Table 2 and Table 3. Here we
present AM parser (Table 5), LeAR (Table 6) and
BART (Table 7) performance for each of COGS’ 21
generalization types separately with the usual mean
and standard deviation of 5 runs. For descriptions
of the generalization types we refer to Kim and
Linzen (2020, §3 and Fig. 1).

On accuracy computation for LeAR. We ob-
served that the LeAR model skips 22 sentences
in the generalization set due to out-of-vocabulary
tokens.® We do include these sentences in the ac-
curacy computation (as failures) for the general-
ization set. The published LeAR code does not
convert its internally used representation back to
logical forms, therefore we evaluate on the logical
forms like it is done for other models, but have to
rely on accuracy computation done in the LeAR
code for the internal representation. Furthermore
we would like to note that—based on inspecting the
published code’—, LeAR made the preprocessing

*https://github.com/berlino/
tensor2struct-public

Shttps://github.com/ekinakyurek/
lexical

*https://github.com/robertcsordas/
transformer_generalization

"https://github.com/eminorhan/
parsing-transformers

8The words “gardner” and “monastery” occur zero times in
the train set, but in total in 22 sentences of the generalization
set. The majority (15) of these appear in PP recursion samples.

‘https://github.com/thousfeet /LEAR

13

choice to ignore the contribution of the definite de-
terminer, basically treating indefinite and definite
NPs equally, resulting in a big conjunction without
any iota (‘+’) prefixes.

On model numbers copied from other papers.
Kim and Linzen (2020) provide three baseline mod-
els, among which the Transformer model reached
the best performance on train and train100. Per
generalization type results can be found in their
Appendix F (Table 5 on page 9105) from which we
report the Transformer model numbers.

The strongest model of Akyiirek and Andreas
(2021) is actually ‘Lex:Simple:Soft’ (cf. their Ta-
ble 5) with a generalization accuracy of 83% (also
reported in our Table 2), whereas their Lex:Simple
model lags 1 point behind. For the latter, but not
for the former, the authors provide per general-
ization type output in their accompanying GitHub
repository as part of a jupyter notebook. There-
fore numbers in Table 3 are for Lex:Simple, not
Lex:Simple:Soft.

We picked the best performing model of
Orhan (2021): According to their Table 2 the
t5-3b mt5_x1 model shows the best generaliza-
tion performance (84.6% average accuracy). From
the accompanying GitHub repository'® we copy the
model’s results, specifically we average over the 5
runs of the model 3b-cogs-mt5-epochs10 (commit
04a2508). We note that other models reported in
Orhan (2021) showed the same performance pat-
tern with respect to our three generalization classes
LEX, PROP, and STRUCT.

For Zheng and Lapata (2021), our reported number
is slightly different from the original paper. This
is because we asked the authors for detailed re-
sults and they provide us with their newest results
averaged over 5 runs.

Abbreviations in the tables. ‘Subj’ means ‘sub-
ject’, ‘Obj’ means ‘object’, ‘Prim’ means ‘primi-
tive’, ‘Infin. arg’ means ‘infinitival argument’, ‘Ob-
jmodPP to SubjmodPP’ means ‘object-modifying
PP to subject-modifying PP’, ‘ObjOTrans.” means
‘object omitted transitive’, ‘trans.” means ‘transi-
tive’, ‘unacc’ means ‘unaccusative’, ‘Dobj’ means
‘Double Object’.

Yhttps://github.com/eminorhan/
parsing-transformers


https://github.com/berlino/tensor2struct-public
https://github.com/berlino/tensor2struct-public
https://github.com/ekinakyurek/lexical
https://github.com/ekinakyurek/lexical
https://github.com/robertcsordas/transformer_generalization
https://github.com/robertcsordas/transformer_generalization
https://github.com/eminorhan/parsing-transformers
https://github.com/eminorhan/parsing-transformers
https://github.com/thousfeet/LEAR
https://github.com/ekinakyurek/lexical/blob/e7a44e19d23a1d99726cd76c5cd88f56ca586653/analyze.ipynb
https://github.com/eminorhan/parsing-transformers/tree/9887632a348f9d2e3b010f86a7931691a0faf044/results/3b/cogs_mt5/epochs_10
https://github.com/eminorhan/parsing-transformers/tree/9887632a348f9d2e3b010f86a7931691a0faf044/results/3b/cogs_mt5/epochs_10
https://github.com/eminorhan/parsing-transformers/tree/9887632a348f9d2e3b010f86a7931691a0faf044/results/3b/cogs_mt5/epochs_10
https://github.com/eminorhan/parsing-transformers
https://github.com/eminorhan/parsing-transformers

| train | train100

Type ‘ AM AM-+dist AM+B AM+B+dist AM AM-+dist AM+B AM+B+dist
Subj to Obj (common noun) 65.8+43.4 88.3+10.9 99.74+ 0.1 96.5+ 6.8 99.9+ 0.1 99.9+ 0.1 100.0+ 0.1 99.9+ 0.2
Subj to Obj (proper noun) 69.9+ 9.8 48.1+32.0 66.31+38.8 61.8+47.3 98.9+ 1.7 100.0+ 0.0 89.6+ 8.1 95.8+ 9.3
Obj to Subj (common noun) 53.1+45.0 97.9+ 4.4 99.9+ 0.2 88.0+26.7 99.9+ 0.1 99.8+ 0.2 100.0+ 0.1 99.9+ 0.1
Obj to Subj (proper noun) 90.0+21.4 88.3+25.9 88.94+11.2 78.8+42.9 99.8+ 0.0 99.84 0.1 99.9+ 0.0 99.9+ 0.0
Prim to Subj (common noun) 3.4+ 7.6 0.0+ 0.0 76.2442.2 80.31+42.2 98.0+ 4.5 59.9454.7 100.0+ 0.0 100.0+ 0.0
Prim to Subj (proper noun) 4.74+10.6 1.0+ 2.3 99.9+ 0.1 100.0+ 0.0 99.8+ 0.3 99.9+ 0.1 100.04+ 0.0 100.0%+ 0.1
Prim to Obj (common noun) 0.2+ 0.4 0.0 0.0 74.5£32.5 80.11+40.7 95.9+ 8.9 59.9454.7 100.0+ 0.0 100.0% 0.0
Prim to Obj (proper noun) 10.4+ 9.1 22.0+15.6 90.5+ 9.9 94.9+ 3.7 98.8+ 2.4 99.8+ 0.4 84.9+ 9.1 94.4+ 9.0
Prim verb to Infin. arg 59.74+54.2 55.2450.5 100.0+ 0.0 82.9438.2 17.6£30.8 1.0+ 2.2 100.0+ 0.0 100.0+ 0.0
ObjmodPP to SubjmodPP 38.1+23.1 26.1+15.1 59.04+40.8 71.5+24.0 48.0+17.3 44.8+£23.9 49.14+27.5 77.7+ 7.1
CP recursion 100.0+ 0.0 100.0+ 0.1 100.0+ 0.0 100.0%+ 0.0 99.9+ 0.1 100.0+ 0.0 100.0+ 0.0 100.0%+ 0.0
PP recursion 60.5+ 4.2 97.6+ 0.9 36.3+ 8.0 97.3+ 2.0 57.24+ 8.3 97.0+ 1.1 41.5+11.2 98.6+ 0.5
Active to Passive 69.3+42.2 41.74+52.3 83.0+24.8 78.8+31.3 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0 100.0%+ 0.0
Passive to Active 51.61+45.2 46.6+50.2 45.5+27.2 52.01+43.6 99.6+ 0.7 99.9+ 0.1 100.0+ 0.0 100.0+ 0.0
ObjOTrans. to trans. 79.6+33.6 77.8428.2 22.3+24.0 35.64+33.4 99.9+ 0.1 100.0+ 0.1 100.0+ 0.0 100.0%+ 0.0
Unacc to transitive 33.2£36.1 51.24+47.2 48.2+35.8 48.9%41.5 99.6+ 0.7 100.0+ 0.1 100.0+ 0.0 100.0% 0.0
Dobj dative to PP dative 99.3+ 0.8 98.8+ 2.0 99.84 0.1 95.0+11.0 99.9+ 0.1 99.94+ 0.1 100.0+ 0.0 100.0% 0.0
PP dative to Dobj dative 90.4+11.9 79.5+44.5 85.6+21.7 89.5+11.5 99.7+ 0.1 99.84+ 0.1 100.0+ 0.0 100.0% 0.0
Agent NP to Unacc Subj 78.5+43.4 99.7+ 0.6 95.3+ 6.4 78.24+43.9 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0 100.0%+ 0.0
Theme NP to ObjOTrans. Subj 99.9+ 0.1 99.2+ 1.7 99.94+ 0.1 70.5+41.9 100.0+ 0.0 100.0£ 0.0 100.0%+ 0.0 100.0%+ 0.0
Theme NP to Unergative Subj 100.0+ 0.1 96.6+ 7.6 99.9+ 0.1 64.44+49.0 100.0+ 0.0 100.0+ 0.0 100.0%+ 0.0 100.0%+ 0.0
Total ‘ 59.94+21.1 62.7+18.7 79.6+£15.4 78.31+27.7 ‘ 91.1+ 3.6 88.6+ 6.6 93.6+ 2.7 98.4+ 1.3

Table 5: Exact match accuracy on the generalization set by generalization type for all AM parser models.

train

Type LeAR
Subj to Obj (common noun) 99.84+ 0.0
Subj to Obj (proper noun) 93.1+10.2
Obj to Subj (common noun) 100.0+ 0.0
Obj to Subj (proper noun) 99.9+ 0.0
Prim to Subj (common noun) 100.0+ 0.0
Prim to Subj (proper noun) 100.0% 0.0 * boy(x1) ; want.agent (z2,z1) A
Prim to Obj (common noun) 99.8+ 0.0
Prim to Obj (proper noun) 93.14+10.2 want .xcomp (r2,x4) A go.agent (x4,x1)
Prim verb to Infin. arg 100.0+ 0.0
ObjmodPP to SubjmodPP 92.54 9.4 Figure 5: Logical form to graph conversion for “The
CP recursion 100.0+ 0.0 i . :
PP recarsion 9854 0.0 boy wanted to go” (cf. (1)). For illustration only we
(YAl .
Aetive o Paive 100.0% 0.0 use node names (the part before the /’) to outline the
Passive to Active 100.04+ 0.0 token alignment.
ObjOTrans. to trans. 100.0+ 0.0
Unacc to transitive 100.0+ 0.0
Dobj dative to PP dative 99.9+ 0.0
PP dative to Dobj dative 90.9+ 0.0
) A lend.theme (x9,24)
Agent NP to Unacc Subj 100.0+£ 0.0
Theme NP to ObjOTrans. Subj 100.0+ 0.0 A cookie (CC4 )
Theme NP to Unergative Subj 100.0+ 0.0 , ,
— 9895 0.0 A cookie.nmod.in (x4, Z7)
A bottle (x7)
Table 6: E).cact.match accuracy on the generahz’fltlon set (3) Ava said that Ben declared that Claire slept.
by generalization type for the LeAR reproduction runs
. say.agent (r1, Ava)
on train.
N say.ccomp (T1,T4)
AN declare.agent (x4, Ben)
E Additional information on COGS to A declare.ccomp (T4, 27)
graph conversions N sleep.agent (x7, Claire)

(4) touch
Aa.Ab.Ae. touch.agent (e,b) A
touch.theme (e, a)

This is a more detailed explanation of the COGS
logical form to graph conversion described in Sec-
tion 4.2 based on four additional example sen-

tences: The first of these is used as the main example for

(1) The boy wanted to go. now. Its graph conversion can be found in Fig. 5.

*boy (x1); want.agent (zo,z1) A
want . xcomp (T2, T4)
A go.agent (x4,21)

Basic ideas. Arguments of predicates (variables
like z; or proper names like Ava) are translated
to nodes. The first part of each predicate name
(2) Ava was lended a cookie in a bottle. (e.g. boy, want, go) is the lemma of the token

lend.recipient (x3, Ava) pointed to by the first argument (e.g. 1, 2, T4), We
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| train

train100

Type ‘ BART BART+syn BART BART+syn BART+mtl BART+mask
Subj to Obj (common noun) 98.61+0.8 99.6+ 0.2 99.24+ 0.2 99.8+ 0.1 99.6+ 0.1 92.9+ 1.2
Subj to Obj (proper noun) 68.7+1.1 87.0+ 3.2 85.7+ 6.7 94.7+ 5.3 80.1+ 5.5 93.3+ 3.4
Obj to Subj (common noun) 99.24+0.6 99.8+ 0.1 99.1+ 1.3 99.7+ 0.1 99.6+ 0.2 98.7+ 0.4
Obj to Subj (proper noun) 99.44+0.4 99.8+ 0.0 99.5+ 0.2 99.8+ 0.1 97.8+ 1.5 99.3+ 0.3
Prim to Subj (common noun) 98.44+1.3 99.9+ 0.0 95.0+ 9.0 99.9+ 0.0 99.7+ 0.0 99.6%+ 0.2
Prim to Subj (proper noun) 98.61+0.9 100.0+ 0.1 95.5+ 4.3 100.0+ 0.0 99.9+ 0.1 98.9+ 1.1
Prim to Obj (common noun) 98.940.6 99.5+ 0.2 99.4+ 0.2 99.8+ 0.0 99.6+ 0.1 96.1+ 0.9
Prim to Obj (proper noun) 65.2+4.4 88.6+ 4.3 55.2+27.1 98.1+ 2.1 94.6+ 0.3 94.8t 2.0
Prim verb to Infin. arg 99.940.1 100.0+ 0.0 100.04+ 0.0 100.0+ 0.0 100.0+ 0.0 99.9+ 0.0
ObjmodPP to SubjmodPP 0.0+£0.0 0.0+ 0.0 0.0£ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
CP recursion 0.3£0.3 5.9+ 1.2 0.2+ 0.4 6.5+ 0.5 0.2+ 0.2 1.1+ 0.5
PP recursion 11.24+1.7 6.7+ 0.2 10.2+ 1.8 7.5 0.4 11.7£ 0.3 10.6x 1.4
Active to Passive 99.940.0 99.94+ 0.0 99.9+ 0.0 99.9+ 0.0 100.0+ 0.0 99.94+ 0.0
Passive to Active 99.54+0.2 99.94+ 0.0 99.9+ 0.0 99.9+ 0.0 99.9+ 0.1 99.8+ 0.2
ObjOTrans. to trans. 99.64+0.3 100.0+ 0.0 99.9+ 0.1 100.0+£ 0.0 99.9+ 0.1 99.94+ 0.2
Unacc to transitive 0.0+£0.0 0.0+ 0.0 99.9+ 0.0 100.0+ 0.0 99.9+ 0.1 99.7+ 0.2
Dobj dative to PP dative 98.3+1.2 99.44+ 0.3 99.2+ 0.2 99.5+ 0.2 99.3+ 0.0 99.1+ 0.1
PP dative to Dobj dative 98.6+1.6 99.8+ 0.0 99.5+ 0.1 99.9+ 0.1 99.6+ 0.2 99.2+ 0.3
Agent NP to Unacc Subj 96.2+1.4 99.1+ 1.0 99.8+ 0.2 99.6+ 0.3 100.0+ 0.0 96.2+ 0.9
Theme NP to ObjOTrans. Subj 98.84+0.8 99.8+ 0.3 99.6+ 0.2 99.9+ 0.0 100.0+£ 0.0 92.5+ 5.5
Theme NP to Unergative Subj 99.14+0.7 99.8+ 0.3 99.8+ 0.2 99.8+ 0.1 100.0+ 0.0 94.1+ 4.1
Total | 77.5+0.4 80.2+ 0.4 | 82.74+ 1.3 85.94+ 0.3 84.84 0.2 84.1+ 0.4

Table 7: Exact match accuracy on the generalization set by generalization type for all BART models.

strip this lemma (‘delexialize’) from the predicate
and insert it as the node label of the first argument
(post-processing reverses this).

Binary predicates (i.e. terms with 2 argu-
ments) are translated into edges, pointing
from their first to their second argument,
e.g. want.agent (x2,x1) is converted to an
‘agent’ edge from node x2 (the ‘want’ node) to
node x;. Because of the delexicalization de-
scribed above, there are only 8 different edge labels:
‘agent’, ‘theme’, ‘recipient’, ‘xcomp’, ‘ccomp’,
‘iota’ and 2 preposition-introduced edges described
below.

For unary predicates like boy (x1) the delexical-
ization already suffices, so we don’t add any edge
(in lack of a proper target node). We restore unary
predicates during postprocessing for nodes with no
outgoing edges.

Each iota term xnoun (Zpoun); 1S treated as
if it was a conjunction of the noun meaning
(i.e. noun (Zpoun) ) and ‘definite determiner mean-
ing’ binary predicate the.iota (Ztne, Thoun) -
The AM parser further requires one node to be the
root node. For non-primitives we select it heuristi-
cally as the node with no incoming edges (exclud-
ing preposition and determiner nodes).

Prepositions. Instead of being treated as an edge
as the above would suggest, we ‘reify’ them, so
each preposition becomes a node of the graph with
outgoing ‘nmod’ edges to the modified NP and the
argument NP. So for “cookie in the bottle” (cf. (2)
and Fig. 6a) we create a node with label ‘in’ and
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draw an outgoing ‘nmod.opl’ edge to the ‘cookie’-
node and an ‘nmod.op2’ edge to the ‘bottle’-node.

Alignments. For training the AM parser addi-
tionally needs alignments of the nodes to the input
tokens. Luckily all ; nodes naturally provide align-
ments (alignment to ith input token). For proper
names we simply align them to the first occurrence
in the sentence'!, the special determiner node is
aligned to the token preceding the corresponding
Tnoun-'> The edges are implicitly aligned by the
blob heuristics, which are pretty simple here; every
edge belongs to the blob of the node it originates
from.

Primitives. For primitive examples (e.g. “touch”
(4)) we mostly follow the same procedure. Unlike
non-primitives, however, their resulting graph
can have open sources beyond the root node,
e.g. “touch” would have sources at the nodes b and
a (incoming ‘agent’ or ‘theme’ edge respectively).
These nodes can receive any source out of the three
available (S0,S1,S2)'3, so the tree automaton
build as part of Groschwitz et al. (2021)’s method
would allow any combination of source names for
the unfilled ‘arguments’. Because there is only
one input token, the alignment is trivial. In fact,

"this works because it seems that a name never appears
more than once within a sentence. Names in the logical forms
also seem to be ordered based on their token position.

Zwe can do so because there are —beyond “the” and “a”—
no pre-nominal modifiers like adjectives in this dataset.

Bywith the restriction that different nodes should have differ-
ent sources to prevent the nodes from being merged. Also we
don’t consider non-empty type requests for these nodes here.



primitives quite closely resemble the ‘supertags’
of the AM parser.

Note that by encoding the logical form as a graph
we get rid of the ordering of the conjuncts. The
‘correct’ order (crucial for exact match evaluation)
is restored during postprocessing.

The graph conversion for (1) was already pre-
sented in Fig. 5. For the other three examples (2)—
(4), we present the graph conversions in Fig. 6.

(b) See also (3).

agent theme

(c) See also (4).

Figure 6: Results of the logical form to graph conver-
sion for (2)-(4). Actually for (c) the tree automaton
contained all possible source name combinations for
nodes a and b, not just (S0,S1).
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