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ABSTRACT

Graph representation learning has become important in order to understand and
predict intrinsic structures in complex networks. A variety of embedding meth-
ods has in recent years been developed including the Latent Distance Modeling
(LDM) approach. A major challenge is scaling network embedding approaches
to very large networks and a drawback of LDM is the computational cost invoked
evaluating the full likelihood having O(N2) complexity, making such analysis of
large networks infeasible. We propose a novel multiscale hierarchical estimate
of the full likelihood of LDMs providing high-details where the likelihood ap-
proximation is most important while scaling in complexity at O(N logN). The
approach relies on a clustering procedure approximating the Euclidean norm of
every node pair according to the multiscale hierarchical structure imposed. We
demonstrate the accuracy of our approximation and for the first time embed very
large networks in the order of a million nodes using LDM and contrast the pre-
dictive performance to prominent scalable graph embedding approaches. We find
that our approach significantly outperforms these existing scalable approaches in
the ability to perform link prediction, node clustering and classification utilizing
a surprisingly low embedding dimensionality of two to three dimensions whereas
the extracted hierarchical structure facilitates network visualization and interpre-
tation. The developed scalable hierarchical embedding approach enables accurate
low dimensional representations of very large networks providing detailed visual-
izations that can further our understanding of their properties and structure.

1 INTRODUCTION

Networks naturally arise in a plethora of scientific areas to model the interactions between entities
from physics to sociology and biology, with many instances such as collaboration, protein-protein
interaction, and brain connectivity networks (Newman, 2003). In recent years Graph Representa-
tion Learning (GRL) approaches have attracted great interest with their outstanding performance
compared to the classical techniques for the challenging network analysis problems such as link
prediction (Liben-Nowell & Kleinberg, 2003; Backstrom & Leskovec, 2011), node classification
(Getoor & Taskar, 2007; Grover & Leskovec, 2016), and community detection (Fortunato, 2010).

Many existing GRL methods (Hamilton et al., 2017b; Zhang et al., 2020) mainly aim to capture
the underlying intrinsic relationships among the nodes by either performing random walks (Per-
ozzi et al., 2014; Grover & Leskovec, 2016) over the network or designing a matrix capturing the
first and high order node proximities (Cao et al., 2015; Ou et al., 2016). However, they require
high computational and space costs because of the exact node sampling procedures or the expensive
factorization of dense proximity matrices. The recent Graph Neural Networks (GNNs) (Hamilton
et al., 2017b; Zhang et al., 2020; Wang et al., 2016) methods provide effective tools in learning
the node representations by leveraging the side information such as node attribute features; never-
theless, they also face computational difficulties, especially for large-scale networks consisting of
millions of nodes and edges. Although the recent studies aim to alleviate the computational burden
of the algorithms through matrix sparsification tools (Qiu et al., 2019) or hierarchical representations
(Bhowmick et al., 2020; Chen et al., 2018), the performance of the methods in the downstream tasks
significantly drops, and they require larger embedding sizes to compensate for the loss.
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Figure 1: Schematics of the distance matrix calculation for a hierarchical structure of tree height
L = 3 and number of observations N = 64.

Latent Space Models (LSMs) for the representation of graphs have been quite popular over the past
years, especially for social networks analysis (Hoff et al., 2002). LSMs utilize the generalized linear
model framework to obtain informative latent node embeddings while preserving network charac-
teristics. The choice of latent effects in modeling the link probabilities between the nodes leads to
different expressive capabilities characterizing network structure. We consider the Latent Distance
Model (LDM) (Hoff et al., 2002) with the Euclidean norm, in which nodes are placed closer in the
latent space if they are similar or vice-versa. LDM obeys the triangle inequality and thus naturally
represents transitivity and network homophily. These methods are attractive due to their simplicity,
as they define well-structured inference problems and are characterized by high explanatory power.
The time and space complexities are their main drawbacks, which scale quadratically with the num-
ber of nodes in the graph.

Many real-world networks can be expressed as hierarchical structures of different scales (Ravasz &
Barabási, 2003). For this purpose, several hierarchical network modeling tools have been proposed,
such as the extensions of the stochastic block model to binary and multifurcating hierarchical struc-
tures (Clauset et al., 2008; Roy et al., 2007; Blundell et al., 2012; Herlau et al., 2012; 2013) as well
as agglomerative (Blondel et al., 2008; Ahn et al., 2010) and recursive partitioning procedures (Li
et al., 2020) relying on various measures of similarity. Learning the node representations preserv-
ing the hierarchical structure of the network is also a very promising task, and it can facilitate the
visualization and the understanding of the inner dynamics of the network.

In this work, we propose the Scalable Hierarchical Latent Distance Model (SH-LDM) combining
embedding and hierarchical representations for graph representation learning. Importantly, the hier-
archical structure imposed in (SH-LDM) reduces the total time and space complexity of the LDM
to linearithmic in terms of the number of nodes (i.e., O(N logN)) at the same time providing ac-
curate interpretable representation of structure at different scales. Using the SH-LDM we embed
moderate sized and large-scale networks containing more than a million nodes and establish the per-
formance of LDM in terms of link prediction and node classification to existing prominent scalable
graph embedding approaches. We further highlight how the inferred hierarchical organization can
facilitate accurate visualization of network structure even when using only D = 2 dimensional rep-
resentations providing favorable performance in all the considered GRL tasks; link-prediction, node
classification, node clustering, and network reconstruction.

In summary, our contributions are to reconcile embedding and hierarchical representations providing
accurate linearithmic approximation of the full likelihood, efficient inference, enhanced visualiza-
tion and network compression utilizing ultra-low embedding dimensions and hierarchical represen-
tations.

2 THE SCALABLE HIERARCHICAL-LATENT DISTANCE MODEL

We presently concentrate our study on the case of undirected networks, but we note that our approach
generalizes to both directed and bipartite graphs as described in the supplementary material. Let
G = (V,E) be a graph where N := |V | is the number of nodes and YN×N = [yi,j ] be the adjacency
matrix of the graph such that yi,j = 1 if there is an edge between the nodes vi and vj and otherwise
it is equal 0 for all 1 ≤ i < j ≤ N .
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A Latent Space Model (LSM) defines a RD-dimensional latent space in which every node of the
graph is characterized through the unobserved but informative node-specific variables {zi ∈ RD}.
These variables are considered sufficient to describe and explain the underlying relationships be-
tween the nodes of the network, such as transitivity and homophily. The probability of an occurring
edge between an ordered pair of the graph is considered conditionally independent given the unob-
served latent positions. Consequently, the total probability distribution of the network can be written
as:

P (Y |Z,θ) =
N∏
i<j

p(yi,j |zi, zj), (1)

A popular and convenient parameterization of equation 1 for binary data is through the logistic re-
gression model (Hoff et al., 2002; Handcock et al., 2007; Krivitsky et al., 2009; Hoff, 2005). In
contrast, we adopt the Poisson regression model as proposed in Hoff (2005) under a generalized
linear model framework for the LSM. The use of a Poisson likelihood for modelling binary rela-
tionships in a network does not decrease the predictive performance nor the ability of the model to
detect the network structure, as shown in Wind & Mørup (2012) and also generalize the analysis to
integer weighted graphs. In addition, the exchange of the logit to a log link function when transi-
tioning from a Bernoulli to a Poisson model defines nice decoupling properties over the predictor
variables in the likelihood (Karrer & Newman, 2011; Herlau et al., 2014). Utilizing the Poisson La-
tent Distance Model (LDM) of the LSM family framework, the rate of an occurring edge depends
on a distance metric between the latent positions of the two nodes. We consider the LDM with
node-specific biases or random-effects (Hoff, 2005; Krivitsky et al., 2009) such that the expression
for the Poisson rate becomes:

λij = exp
(
γi + γj − d

(
zi, zj

))
. (2)

where γi denotes the node-specific random-effects and dij(·, ·) denotes any distance metric obeying

the triangle inequality
{
dij ≤ dik + dkj , ∀(i, j, k)

}
. Considering variables z as the latent charac-

teristics, Eq. equation 2 shows that similar nodes will be placed closer in the latent space, yielding
a high probability of an occurring edge and thus modeling homophily and satisfies network transi-
tivity and reciprocity through the triangle inequality whereas the node specific bias can account for
degree heterogeneity. The conventional LDM utilizing a global bias, γg , corresponds to the special
case in which γi = γj = 0.5γg . As in Hoff et al. (2002), we presently adopt the Euclidean distance
as the choice for the distance metric dij(·, ·).

2.1 SCALING THE LATENT DISTANCE MODEL

Optimizing the LDM requires the computation of the log-likelihood which is defined as the sum
over each ordered pair of the network as:

logP (Y |λ) =
∑
i<j

(
yij log(λij)− λij

)
=

∑
i<j:yij=1

log(λij) −
∑
i<j

λij , (3)

For brevity, we presently ignore the linear scaling of the above log-likelihood by dimensionality D.
Large networks are highly sparse (Barabási & Pósfai, 2016) with the number of edges for very sparse
networks being proportional to the number of nodes in the network. As a result, the computation of
the link contribution

∑
yi,j=1 log(λi,j) is relatively cheap scaling linearithmic or sub-linearithmic

(see also supplementary material). This is not the case for the second term which still requires
the computation of all node pairs scaling as O(N2) making the evaluation of the above likelihood
infeasible for large networks.

To reduce the complexity, we propose to approximate the non-link term O(N2) using blocks, i.e.,
akin to stochastic block models White et al. (1976); Holland et al. (1983); Nowicki & Snijders
(2001), in which we when grouping the nodes into K clusters define the rate between block k and
k′ in terms of their distance between centroids,
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∑
i<j

λij ≈
K∑
k

( ∑
i,j∈Ck

e(γi+γj−||zi−zj ||2) +
∑

i∈k,j /∈Ck

e(γi+γj−||µk−µk′ ||2)

)

=

(
K∑
k

∑
i,j∈Ck

e(γi+γj−||zi−zj ||2)

)
+
∑
k>k′

e−||µk−µk′ ||2

(∑
i∈Ck

eγi

)( ∑
j∈Ck′

eγj

)
,

(4)

where µk denotes the k’th cluster centroid of the set C = {C1, . . . , CK}, and has absorbed the
dependency over the variables Z.

Overall, considering the main principle of the LDM that connected and homophilic nodes will be
placed closer in the latent space, this approximation generalizes this principle introducing a cluster-
ing procedure that obeys ”cluster-homophily” and ”cluster-transitivity” over the latent space. More
specifically, we can assume that closely related nodes will be positioned in the same cluster while
related or interconnected clusters will also be positioned close in the latent space, providing an ac-
curate approximation schema. Assuming equally sized clusters having N/K nodes the first part
scales O(N2/K) whereas the second part scales O(K2). As such, there is an undesirable inherent
trade-off in which the first term reduces by K but the second term increases quadratically. Thus, by
setting K = N/log(N) we reduce the first part to scale asO(N logN) but at the cost of the second
term scaling O(N2/log(N)2) which for large networks is still prohibitive.

2.1.1 HIERARCHICAL APPROXIMATION OF THE LATENT DISTANCE MODEL

For the second term to be scalable, we need for K = N/log(N) the contribution for the second
term to scale also at O(N logN). To achieve this, we adopt a multiresolution KD tree (mrkd-tree)
structure similar to Moore (1999) which endorses a hierarchical divisive clustering architecture.
The root of the tree contains the total amount of latent variables Z. At every level of the tree, we
perform partitioning of the tree-nodes which are not considered as leafs. The tree-nodes belonging
to a specific level are considered as the clusters for that specific tree height. Every novel partition
of a non-leaf node is performed only on the set of points allocated to the parent tree-node (cluster).
A node is considered as a leaf if the corresponding cluster contains less than a specific amount of
datapoints which for K = N/log(N) is set to be approximately equal to N/K = logN . For
every level of the tree, we consider the pairwise distances of datapoints belonging to different tree-
nodes as the distance between the corresponding cluster centroids, as illustrated by Figures 1b, 1c
and 1d. Based on these distances, we calculate the likelihood contribution of these approximation
blocks and continue down the tree for the non-leaf tree-nodes. In the last level (or when all tree-
nodes are considered as leafs) we calculate analytically the inner cluster pairwise distances for the
corresponding likelihood contribution of analytical blocks, as shown by Figure 1e.

We can thereby define a Scalable Hierarchical-Latent Distance Model with Random Effects (SH-
LDM-RE) as:

logP (Y |λ) =
∑
yi,j=1

(
γi + γj − ||zi − zj ||2

)
−∑KL

kL

(∑
i,j∈CkL

e(γi+γj−||zi−zj ||2)

)
(5)

−∑L
l

(∑
kl>k′l

e
−||µkl

−µk′
l
||2

(∑
i∈Ckl

eγi

)(∑
j∈Ck′

l

eγj

))
,(6)

where l = [1, · · ·L] denotes the l’th mrkd-tree level, kl is the index representing the cluster id for the
different tree levels and µkl the corresponding centroid. We also consider a Scalable Hierarchical-
Latent Distance Model (SH-LDM) without the random effects setting γi = 0.5γg . For a multi-
furcating tree splitting in C clusters and having N/log(N) terminal nodes (clusters) the number of
internal nodes areO(N/(C logN)) and each node needs to evaluateO(C2) pairs providing an over-
all complexity of O(NC/ logN), thus C ≤ logN2 to achieve O(N logN) scaling (Epp, 2010).

2.1.2 DIVISIVE PARTITIONING USING K-MEANS WITH A EUCLIDEAN DISTANCE METRIC

Whereas the likelihood in equation 6 can be directly minimized by assigning nodes to the clusters
given by the tree structure this evaluation for all N nodes scales prohibitively as O(N2/ logN).
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To reduce this scaling we use a more efficient divisive partitioning procedure. For efficiency instead
of considering minimizing the full expression in equation 6 we consider minimizing the Euclidean
norm ||µkl − µk′l ||2. The divisive clustering procedure thus relies on the following Euclidean norm
objective

J(r,µ) =

N∑
i=1

K∑
k=1

rik||zi − µk||2, (7)

where k denotes the cluster id, zi is the i’th data observation, rik the cluster responsibil-
ity/assignment, and µk the cluster centroid.

This objective function is unfortunately not accounted for by existing k-means clustering algorithms
relying on the squared Euclidean norm. We therefore presently derive an optimization procedure
for k-means clustering with Euclidean norm utilizing the auxiliary function framework of Tsutsu &
Morikawa (2012) developed in the context of compressed sensing. We define an auxiliary function
for Eq. equation 7 as:

J+(φ, r,µ) =

N∑
i=1

K∑
k=1

rik

( ||zi − µk||22
2φik

+
1

2
φik

)
, (8)

where φ are the auxiliary variables. Thereby, minimizing Eq. equation 8 with respect to φnk yields
φ∗ik = ||zi − µk||2 and by plugging φ∗ik back to Eq. equation 7 we obtain J+(φ∗, r,µ) = J(r,µ)
verifying that Eq. equation 8 is indeed a valid auxiliary function for Eq. equation 7. The algorithm
proceeds by optimizing cluster centroids as µk =

(∑
i∈k

xi

φik
/
∑
i∈k

1
φik

)
and assigning points to

centroids as argminC =
∑K
k=1

∑
z∈Ck

(
||z−µk||22

2φk
+ 1

2φk

)
upon which φk is updated. The overall

complexity of this procedure is O(TKND) (Hartigan & Wong, 1979) where T is the number of
iterations required to converge.

A simple approach to construct the tree structure would be to use the above Euclidean k-means pro-
cedure to split the nodes intoK = N/ log(N) clusters and construct the tree according to agglomer-
ation as in hierarchical clustering. Unfortunately, such a strategy is prohibitive for K = N/ logN ,
and maximallyK = logN clusters can be obtained for scaling ofO(N logN). It would be tempting
to continue splitting into logN clusters, however, for a balanced multifurcating tree with N/ logN
leaf clusters this will result in a height scaling as O(logN/ log logN) and thus an overall com-
plexity of O(N logN2/ log logN) (Epp, 2010). Whereas using a balanced binary tree at all levels
below the root results in a height scaling asO(logN) providing an overall complexity when includ-
ing the linear scaling by dimensionality D of O(DN logN) for the SH-LDM. Figure 1a illustrates
the resulting tree for a small problem of N = 64 nodes in which we first split into 4 (≈ log(64))
clusters and subsequently create binary splits until each cluster contains 4 (≈ log(64)) nodes.

2.2 RELATED WORK

In recent years, we have witnessed a tremendous increase in the number of GRL methods. The
leading initial works are the random walk-based methods (Perozzi et al., 2014; Grover & Leskovec,
2016; Tang et al., 2015; Nguyen & Malliaros, 2018), which generate fixed-length node sequences
by following a strategy and leverages the Skip-Gram algorithm (Mikolov et al., 2013) to learn the
node representations. Another prominent class of techniques is the matrix factorization-based algo-
rithms (Cao et al., 2015; Ou et al., 2016; Zhang et al., 2020). They extract the embedding vectors by
decomposing a designed feature matrix. The neural networks are undoubtedly one of the most out-
standing models, and many models (Hamilton et al., 2017b; Wang et al., 2016; Zhang et al., 2020;
Cao et al., 2016; Vincent et al., 2010; Kipf & Welling, 2017; Hamilton et al., 2017a) allowing to
incorporate the node attributes with the network structure when learning the embeddings have been
proposed for graph-structured data. Although these approaches are quite effective in downstream
tasks, they require a high computational burden, making them inapplicable for large-scale networks.
Therefore, the recent works (Bhowmick et al., 2020; Zhang et al., 2019) capitalize on the computa-
tional challenges emerging for large networks by either incorporating fast approximation techniques
with the existing models (Qiu et al., 2019) or developing novel approaches relying on fast hashing
schemes (Yang et al., 2019; Zhang et al., 2018). Our approach is related to current efforts in scaling
graph embedding approaches for the analysis of very large networks.
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Table 1: Statistics of networks. N : number of nodes, M : number of edges.
Cora Dblp AstroPh GrQc Facebook HepTh Amazon YouTube Flickr Flixster

N 2,708 27,199 17,903 5,242 4,039 8,638 334,868 1,138,499 1,715,255 2,523,386
M 5,278 66,832 197,031 14,496 88,234 24,827 925,876 2,990,443 15,555,042 7,918,801

Table 2: Area Under Curve scores for representation sizes of 2 and 8 over moderate-sized networks.
AstroPh GrQc Facebook HepTh Cora DBLP

Dimension (D) 2 8 2 8 2 8 2 8 2 8 2 8

DEEPWALK .831 .945 .845 .919 .958 .986 .773 .874 .684 .782 .803 .939
NODE2VEC .825 .950 .809 .884 .914 .988 .780 .881 .640 .776 .803 .945

LINE .632 .910 .688 .920 .751 .980 .659 .874 .634 .521 .625 .503
NETMF .800 .814 .830 .860 .872 .935 .757 .792 .629 .739 .838 .858

NETSMF .828 .891 .756 .805 .907 .976 .705 .810 .605 .737 .766 .857
RANDNE .524 .554 .534 .560 .614 .657 .519 .509 .508 .556 .508 .517

LOUVAINNE .798 .813 .861 .868 .957 .958 .774 .874 .767 .747 .900 .904
PRONE .768 .907 .818 .883 .900 .971 .678 .823 .675 .764 .813 .924

SH-LDM .917 .960 .898 .944 .980 .986 .847 .912 .786 .792 .919 .956
SH-LDM-RE .931 .962 .910 .953 .986 .988 .869 .923 .759 .795 .930 .963

The most related scalable study to our method is the work for the LDM Raftery et al. (2012) where
the O(N2) complexity is lowered to O(cE) with c � N via a case-control approach motivated
by epidemiology studies. While the overall complexity of the case-control model can scale the
analysis of LDMs to massive networks creating the All-Pairs Shortest Paths matrix that is required
to perform the proposed stratified sampling over non-links, is not possible for large networks, both
in terms of time and space complexity (> O(N2)) and the authors did not consider networks larger
than N = 2716 nodes. In the supplementary material, we therefore examine a scalable version of
the case-control approach. In order to scale the case-control model to the order of millions of nodes
as presently considered we exchanged the stratified sampling with a uniform sampling procedure
which as argued by the authors may not be the best estimator. We conclude that also the case-
control approach can be used to successfully scale the LDMs. Notably, the case-control approach
does not yield a hierarchical representation of network structure as the presently developed SH-
LDM. However, the developed hierarchical clustering procedure can be used as a post-processing
step to extract hierarchical representations from the learned embeddings.

3 EXPERIMENTS

We extensively evaluate the performance of our approach compared to other baseline approaches
on ten networks of various sizes and structures. We consider each network as undirected and un-
weighted for the consistency of the experiments, and the detailed statistics of the networks are given
in Table 1. We have conducted all the experiments regarding the SH-LDM and SH-LDM-RE on
a 32 GB Tesla V100 GPU machine. For the SH-LDM and SH-LDM-RE models, we optimize the
negative log-likelihood via the Adam (Kingma & Ba, 2017) optimizer while setting the learning rate
to lr = 0.1 for all networks. The parameters of the baseline approaches have been tuned. Because
of the limitation in the number of pages, the details of the parameter settings, the datasets as well as
a scalable spectral clustering initialization scheme for SH-LDM are provided as supplementary ma-
terials. In the following we report results on the prominent graph representation learning tasks; link
prediction, node classification, and network visualization. For the network visualization we further
include quantitative evaluations in terms of network reconstruction and node clustering quality.

Link Prediction: We report results for the area under the curve of the receiver operator characteris-
tic (AUC) whereas we defer the corresponding Precision-Recall AUC to the supplementary material.
For the experimental setup, we follow the commonly applied strategy (Perozzi et al., 2014; Grover
& Leskovec, 2016), and we remove half of the edges of a given network by keeping the residual
network connected. For the large-scale networks , this approach is infeasible, so we apply a scalable
evaluation technique (Bhowmick et al., 2020; Zhang et al., 2018). We hide 30% of the edges of a

6



Under review as a conference paper at ICLR 2022

Table 3: Area Under Curve scores for varying representation sizes over the large-scale networks.
The symbol ”-” indicates that the running time of the corresponding model takes more than 20 hours
and ”x” shows that the method is not able to run due to insufficient memory space.

Amazon YouTube Flickr Flixster

Dimension (D) 2 3 8 2 3 8 2 3 8 2 3 8

DEEPWALK .839 .932 .972 .822 .891 .921 .889 .937 .972 .820 .866 .921
NODE2VEC .813 .880 .968 - - - - - - - - -

LINE .626 .501 .500 .660 .832 .878 .685 .889 .921 .523 .868 .936
NETMF .829 .831 .858 x x x x x x x x x

NETSMF .768 .786 .835 .939 .940 .949 .974 .977 .980 .987 .987 .987
RANDNE .507 .511 .514 .672 .700 .762 .833 .869 .903 .700 .739 .835

LOUVAINNE .955 .954 .954 .820 .819 .815 .898 .899 .909 .735 .718 .746
PRONE .847 .901 .944 .691 .761 .861 .623 .819 .908 .756 .803 .846

SH-LDM .974 .980 .988 .899 .920 .935 .972 .979 .986 .897 .916 .932
SH-LDM-RE .976 .981 .988 .940 .947 .957 .980 .985 .988 .962 .969 .971

given initial network and consider the greatest connected component (GCC) of the residual network
to learn the node representations. We utilize the residual network to learn the node embeddings and
report the best performing binary operator (Grover & Leskovec, 2016) used for logistic regression
with L2 regularization (detailed list of the operators are given in the supplementary material). For
SH-LDM and SH-LDM-RE the predictions are made directly based on the learned Poisson rates
of the test set pairs {ij}, i.e. λij = exp (γi + γj − ||zi − zj ||2). Error bars for the following AUC
scores were found to be in the scale of 10−3 and thus provided in the supplementary material.

Results for the moderate-sized networks are given in Table 2. We here observe that the SH-LDM
and SH-LDM-RE perform significantly better or on par with the performance of the considered
baseline approaches. In particular, the SH-LDM and SH-LDM-RE perform better than all base-
lines when D = 2 which highlights the superiority of LDMs in learning very low-dimensional
network representations that accurately accounts for the network structure. We further observe that
representing degree heterogeneity with random effects provides extended representational power as
the SH-LDM-RE consistently outperforms the SH-LDM. In Figure 2 in the first and second panel
we provide the underlying hierarchical structure, as well as an analysis of the accuracy of the SH-
LDM when contrasted with the full likelihood evaluated on the moderate-sized network Facebook
(results for more networks are provided in the supplementary material). We here observe that the
SH-LDM likelihood approximation corresponds well with the true full likelihood providing system-
atically slightly lower likelihood estimates which we attribute to the SH-LDM inference minimizing
the hierarchical approximation. In Figure 2 third panel we observe the predictive performance as a
function of latent dimension D and here in general observe that modest improvements in the pre-
dictive performance are attained when increasing the embedding dimensions from D = 2 to D = 8
with no further improvements increasing to D = 128 highlighting the efficiency in which SH-
LDM and SH-LDM-RE utilize very low-dimensional representations. Results for the large-scale
networks are given in Table 3. Again we observe that SH-LDM-RE outperforms the baselines only
being surpassed in performance by NETSMF for the Flixster dataset. Notably, we again observe
very good performance for the SH-LDM-RE, but also NETSMF when utilizing the very low em-
bedding dimension of D = 2. In Figure 2, the fourth panel we investigate the convergence of the
best performing SH-LDM-RE for the large networks and here observe that the model rapidly con-
verges such that we already after a couple of thousand iterations (scalable regime) obtain competitive
performance for link prediction which then gently increases until convergence.

Node classification: We assess the success of the proposed framework in the uni-label/multi-label
classification task and provide the Micro-F1 scores (Macro-F1 scores are reported in the supple-
mentary). For the experimental setup, we randomly pick 50% of nodes as the training set and use
the rest as the testing set. For an accurate comparison across different methods we used two sim-
ple classifiers, one linear (logistic regression) and one non-linear (linearithmic k-nearest neighbors
classifier (kNN )) and reported the highest scores. We found that all methods benefit from using
kNN. The number of neighbors was set to k = 10 (similar results were obtained with higher choices
for k as well). Lastly, we report the average Micro-F1 scores across 10 repeated trials. Results
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Figure 2: (i) Facebook ordered adjacency matrix for the learned D = 2 embeddings of SH-LDM-
RE for a hierarchical structure of L = 3. (ii) NLL comparison between SH-LDM and LDM for
Facebook with D = 2. (iii) AUC performance over various networks for varying embedding sizes.
(iv) AUC scores of SH-LDM-RE in terms of iterations for large-scale networks.

Table 4: Micro-F1 scores varying embedding dimensions for two moderate and large-scale networks.
Cora DBLP Amazon YouTube

Dimension (D) 2 3 128 2 3 128 2 3 8 2 3 8

DEEPWALK .502 .712 .838 .519 .605 .822 .231 .596 .929 .293 .351 .413
NODE2VEC .419 .658 .835 .448 .540 .815 .096 .305 .895 - - -

LINE .197 .191 .794 .328 .294 .771 .005 .003 .003 .185 .134 .177
NETMF .389 .653 .835 .654 .707 .742 x x x x x x

NETSMF .554 .705 .842 .622 .732 .829 .387 .649 .845 .317 .361 .397
RANDNE .271 .337 .731 .406 .473 .718 .223 .411 .787 .211 .226 .277

LOUVAINNE .804 .811 .801 .780 .812 .825 .970 .971 .974 .362 .360 .359
PRONE .450 .611 .830 .574 .634 .825 .420 .750 .933 .218 .274 .379

SH-LDM .789 .807 .816 .812 .814 .772 .970 .971 .931 .320 .366 .414
SH-LDM-RE .805 .809 .818 .805 .822 .808 .956 .955 .931 .326 .367 .414

for the uni-labeled Cora and DBLP networks are reported in the two leftmost columns of Table 4.
We observe that SH-LDM-RE and SH-LDM significantly outperform the baselines for the regimes
of D = 2, 3 with only LOUVAINNE being competitive. Results for large-scale and multi-labeled
networks Amazon and YouTube are provided by the two rightmost columns in Table 4. Again, the
proposed framework outperforms the baselines for the low-dimensional regime with LOUVAINNE
being on par. The superiority of SH-LDM for low-dimensions verifies that homophily and transi-
tivity can express accurately the underlying node class structure.

Network visualization: The existing graph representation learning literature mainly focuses on
embeddings with dimensionality greater than D = 2 and 3. As a direct consequence explanatory
analysis and network visualizations rely on dimensionality reduction frameworks, typically using
the t-distributed Stochastic Neighbor Embedding (t-SNE) van der Maaten & Hinton (2008). In
order to verify the validity of the t-SNE constructed Space (t-SNES), in Figure 3 we provide the
labeled-colored True Embedding Space (TES) for D = 2, as well as for D = 2 and D = 128
mapped to D = 2 via the use of t-SNE for Cora and DBLP. We report the performance over the
tasks of network reconstruction, clustering and classification respectively reporting the AUC, the
Normalized Mutual Information (NMI) and Micro-F1 scores. Our proposed SH-LDM and SH-
LDM-RE have the most consistent and reliable scores across both the TES and the t-SNES. For
the network reconstruction task we see relatively small decrease in AUC-ROC when transitioning
from TES to t-SNES, meaning that the network structure is preserved. For the classification task
we observe that SH-LDM SH-LDM-RE benefit from transitioning to t-SNES as the scores for both
D = 2 and D = 128 increase, as summarized in Figure 3 and Table 4. This is not the case for
NODE2VEC and LOUVAINNE as their Micro-F1 scores dramatically drop. For most methods NMI
benefits when transitioning to t-SNES with SH-LDM giving on par performance for Cora while
SH-LDM-RE has the highest overall NMI for DBLP (D=128+t-SNE). We attribute the increase in
clustering performance while using high-dimensions and t-SNE (especially for DBLP ) to the fact
that peripheral nodes which act as noise are grouped in a unique cluster, as it is evident from the third
and sixth columns in Figure 3. The visualization experiments positions our proposed models as the
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silver lining between consistent performance across all GRL downstream tasks as well as network
visualizations. All baseline results are available in the supplementary.

Cora DBLP

D 2 (TES) 2 (t-SNES) 128 (t-SNES) 2 (TES) 2 (t-SNES) 128 (t-SNES)

N
O

D
E

2V
E

C

(.175, .419, .863) (.147, .226, .841) (.378, .204, .975) (.072, .448, .920) (.004, .306, .820) (.117, .298, .974)

N
E

T
S

M
F

(.268, .554, .860) (.265, .560, .873) (.397, .836, .970) (.113, .622, .940) (.035, .624, .951) (.114, .823, .975)

L
O

U
V

A
IN

N
E

(.253, .804, .948) (.217, .216, .935) (.268, .222, .941) (.012, .780, .960) (.005, .295, .944) (.008, .290, .951)

S
H

-L
D

M

(.212, .789, .975) (.235, .780, .967) (.383, .814, .970) (.047, .793, .985) (.028, .796, .953) (.076, .818, .975)

S
H

-L
D

M
-R

E

(.283, .805, .975) (.311, .791, .969) (.367, .824, .966) (.036, .805, .985) (.027, .802, .958) (.118, .824, .975)

Figure 3: The first two columns for each dataset represent the node embeddings learned in two-
dimensional space and t-SNE algorithm is applied for the second and the third columns to reduce
the dimension size for the visualization task and to demonstrate the influence of t-SNE algorithm on
the embeddings. For each network, NMI (node clustering), Micro-F1 (node classification) and AUC
scores (network reconstruction) are reported, respectively.

4 CONCLUSION AND LIMITATIONS

We proposed the Scalable Hierarchical Latent Distance Model (SH-LDM), a scalable approach em-
bedding networks using the latent distance model (LDM) enabling characterization of structure at
multiple scales. Notably, the approximation provides high accuracy where the likelihood approxi-
mation is most important while scaling in complexity by O(DN logN). We analyzed ten networks
from moderate sizes to large-scale and found that the SH-LDM had favorable performance when
compared to existing scalable embedding procedures. In particular, we observed that the SH-LDM
well predicts links and node classes utilizing a very low embedding dimension of D = 2 providing
favorable network visualizations and characterization of structure at multiple scales. The SH-LDM
is based on the latent distance model (LDM) and thus good at characterizing transitivity and ho-
mophily whereas the random effects enable to take degree heterogeneity into account. Notably, the
SH-LDM suffers from the limitations of the LDM and is thus unable to account for stochastic equiv-
alence (Hoff, 2007). Future work should thus investigate how the proposed hierarchical embedding
structure can be imposed on more flexible embedding procedures such as the eigenmodel.
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