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ABSTRACT

Understanding and explaining the mistakes made by trained models is critical
to many machine learning objectives, such as improving robustness, addressing
concept drift, and mitigating biases. However, this is often an ad hoc process
that involves manually looking at the model’s mistakes on many test samples and
guessing at the underlying reasons for those incorrect predictions. In this paper, we
propose a systematic approach, conceptual counterfactual explanations (CCE), that
explains why a classifier makes a mistake on a particular test sample(s) in terms of
human-understandable concepts (e.g. this zebra is misclassified as a dog because
of faint stripes). We base CCE on two prior ideas: counterfactual explanations and
concept activation vectors, and validate our approach on well-known pretrained
models, showing that it explains the models’ mistakes meaningfully. In addition, for
new models trained on data with spurious correlations, CCE accurately identifies
the spurious correlation as the cause of model mistakes from a single misclassified
test sample. On two challenging medical applications, CCE generated useful
insights, confirmed by clinicians, into biases and mistakes the model makes in
real-world settings. The code for CCE is publicly available and can easily be
applied to explain mistakes in new models.

1 INTRODUCTION

People who use machine learning (ML) models often need to understand why a trained model
is making a particular mistake. For example, upon seeing a model misclassify an image, an ML
practitioner may ask questions such as: Was this kind of image underrepresented in my training
distribution? Am I preprocessing the image correctly? Has my model learned a spurious correlation
or bias that is hindering generalization? Answering this question correctly affects the usability of a
model and can help make the model more robust. Consider a motivating example:

Example 1: Usability of a Pretrained Model. A pathologist downloads a pretrained model to
classify histopathology images. Despite a high reported accuracy, he finds the model performing
poorly on his images. He investigates why that is the case, finding that the hues in his images are
different than in the original training data. Realizing the issue, he is able to transform his own images
with some preprocessing, matching the training distribution and improving the model’s performance.

In the above example, we have a domain shift occurring between training and test time, which
degrades the model’s performance (Subbaswamy et al., 2019; Koh et al., 2020). By explaining the
cause of the domain shift, we are able to easily fix the model’s predictions. On the other hand, if the
domain shift is due to more complex spurious correlations the model has learned, it might need to
be completely retrained before it can be used. During development, identifying and explaining a
model’s failure points can also make it more robust (Abid et al., 2019; Kiela et al., 2021), as in the
following example:

Example 2: Discovering Biases During Development. A dermatologist trains a machine learning
classifier to classify skin diseases from skin images collected from patients at her hospital. She shares
her trained model with a colleague at a different hospital, who reports that the model makes many
mistakes with his own patients. She investigates why the model is making mistakes, realizing that
patients at her colleague’s hospital have different skin colors and ages. Answering this question
allows her to not only know her own model’s biases but also guides her to expand her training set
with the right kind of data to build a more robust model.
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Explaining a model’s mistakes is also useful in other settings where data distributions may change,
such as concept drift for deployed machine learning models (Lu et al., 2018). Despite its usefulness,
explaining a model’s performance drop is often an ad hoc process that involves manually looking at
the model’s mistakes on many test samples and guessing at the underlying reasons for those incorrect
predictions. We present counterfactual conceptual explanations (CCE), a systematic method for
explaining model mistakes in terms of meaningful human-understandable concepts, such as those in
the examples above (e.g. hues). In addition, CCE was developed with the following criteria:

• No training data or retraining: CCE does not require access to the training data or model
retraining.

• Only needs the model: CCE only needs white-box access to the model. The user can use
any dataset to learn desired concepts.

• High-level explanations: CCE provides high-level explanations of model mistakes using
concepts that are easy for users to understand.

African hunting dog (66%)

Correct label → Zebra

Stripes 1.00

Cow 0.52

Polka Dots -0.2

Dog –0.35

African 
Hunting Dog

Zebra

a) b) c)Generating Conceptual 
CounterfactualsLearning a Concept Bank

...
→ Concept explanation

Explaining Model Mistake

Figure 1: Explaining with Conceptual Counterfactuals: (a) In generating conceptual explanations,
the first step is to define a concept library. After defining a concept library, we then learn a concept
activation vector (CAV) (Kim et al., 2018) for each concept. (b) Given a misclassified sample, such
as the Zebra image shown here as an African hunting dog, we would like to generate a conceptual
counterfactual. Meaning that we would like to generate a perturbation in the embedding space that
would correct the model prediction, using a weighted sum of our concept bank. (c) Our method
assigns a score to the set of concepts. A large positive score means that adding that concept to the
image (e.g. stripes) will increase the probability of correctly classifying the image, as will removing
or reducing a concept with a large negative score (e.g. polka dots or dogness).

Fig. 1 provides an overview of our CCE method. To summarize our contributions, we develop a
novel method, CCE, that can systematically explain model mistakes in terms of high-level concepts
that are easy for users to understand. We show that CCE correctly identifies spurious correlations
in model training, and we quantitatively validate CCE across different experiments over natural
and clinical images. We have released all of the code and data needed for our method in a public
repository: https://github.com/conceptualcounterfactuals/iclr2022.

2 RELATED WORKS

CCE is inspired by prior efforts to explain machine learning models’ predictions. Two ideas are
particularly relevant: counterfactual explanations and concept activation vectors. Here, we provide
an overview of these methods and discuss the differences between them and our proposed approach.

Counterfactual Explanations Counterfactual explanations (Verma et al. (2020) provides a com-
prehensive review) are a class of model interpretation methods that seek to answer: what perturbations
to the input are needed for a model’s prediction to change in a particular way? A large number
of counterfactual explanation methods have been proposed with various desiderata such as sparse
perturbations (Wachter et al., 2017), perturbations that remain close to the data manifold (Dhurandhar
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et al., 2018), and causality (Mahajan et al., 2019). What these methods share in common is that they
provide an interpretable link between model predictions and perturbations to input features. There
are several works focusing on counterfactual explanations for image data(Goyal et al., 2019; Singla
et al., 2020) and many of these methods use distractor images or modify input images to explain the
model behavior. However, perturbations or saliency maps in the input space are shown to be tricky to
interpret and be adopted by users(Alqaraawi et al., 2020; Adebayo et al., 2018).

To compute CCE, we use a similar approach, perturbing input data to change its predictions, but for
a complementary goal: to understand the limitations and biases of our model and its training data,
rather than to change a specific prediction. Further improving upon existing work, we do this by
directly using human-interpretable concepts, without having access to training data.

Concept Activation Vectors To explain an image classification model’s mistakes in a useful way,
we need to operate not with low-level features, but with more meaningful concepts. Concept activation
vectors (CAVs) (Kim et al., 2018) are a powerful method to understand the internals of a network
in human-interpretable concepts. CAVs are linear classifiers trained in the bottleneck layers of a
network and correspond to concepts that are usually user-defined or automatically discovered from
data (Ghorbani et al., 2019). Unlike many prior interpretation methods, explanations produced
by CAVs are in terms of high-level, human-understandable concepts rather than individual pixels
(Simonyan et al., 2013; Zhou et al., 2016) or training samples (Koh & Liang, 2017).

In previous literature, CAVs have been used to test the association between a concept and the model’s
prediction on a class of training data (Kim et al., 2018) as well as provide visual explanations for
predictions (Zhou et al., 2018). Our approach extends CAVs by showing that perturbations along
the CAV can be used to change a model’s prediction on a specific test sample, e.g. to correct a
mistaken prediction, and thereby be used in a similar manner to counterfactuals. Since samples (even
of the same class) can be misclassified for different reasons (see Fig. 6), our approach allows a more
contextual understanding of a model’s behavior and mistakes.

Bias/Error Detection and Robustness Understanding a model’s behavior and explaining its mis-
takes is critical for building more robust and less biased models, as we have discussed in Section 1.
While some other methods, such as FairML (Adebayo & Kagal, 2016) and the What-If Tool (Wexler
et al., 2020), can also be used to discover biases and failure points in models, they are typically limited
to tabular datasets where sensitive features are explicitly designated, unlike our approach which is
designed for unstructured data and works with a more flexible and diverse set of concepts. In a similar
spirit to our work, Singh et al. (2020) aim to identify and mitigate contextual bias, however, they
assume access to the whole training setup and data; which is a limiting factor in practical scenarios.

Our approach can also be used to explain a model’s performance degradation with data drift. It is
complementary to methods for out-of-distribution sample detection (Hendrycks & Gimpel, 2016)
and black-box shift detection (Lipton et al., 2018), which can detect data drift, but cannot explain
the underlying reasons. There are also algorithmic approaches to improve model robustness with
data drift (Raghunathan et al., 2018; Nestor et al., 2019). Although these methods can provide some
guarantees around robustness for unstructured data, they are in terms of low-level perturbations and
do not hold with more conceptual and natural changes in data distributions. There are several recent
methods for detecting clusters of mistakes made by a model (Kim et al., 2019; d’Eon et al., 2021),
which is useful for detecting disparity in the model, for example. CCE differs in that instead of
finding mistake clusters, CCE explains errors from just one (or a few) image.

3 METHODS

In this section, we detail the key steps of our method. Let us define basic notations: let f : Rd → Rk
be a deep neural network, let x ∈ Rd be a test sample belonging to class y ∈ {1, . . . k}. We assume
that that the model misclassifies x, meaning that argmaxi f(x)i 6= y or simply that the model’s
confidence in class y, f(x)y, is lower than desired. Let m be the dimensionality of the bottleneck
layer L, and bL : Rd → Rm be the “bottom” of the network, which maps samples from the input
space to the bottleneck layer, and tL : Rm → Rk be the “top” of the network, defined analogously.
For readability, we will usually underline class names and italicize concepts throughout this paper.
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3.1 LEARNING CONCEPTS

In generating conceptual explanations, the first step is to define a concept library: a set of human-
interpretable concepts C = {c1, c2, ...} that occur in the dataset. For each concept, we collect positive
examples, Pci , that exhibit the concept, as well as negative examples, Nci , in which the concept is
absent. Unless otherwise stated, we use Pci = Nci = 100. These concepts can be defined by the
researcher, by non-ML domain experts, or even learned automatically from the data (Ghorbani et al.,
2019). Since concepts are broadly reusable within a data domain, they can also be shared among
researchers. For our experiments with natural images, we defined 170 general concepts that include
(a) the presence of specific objects (e.g. mirror, person), (b) settings (e.g. street, snow) (c) textures
(e.g. stripes, metal), and (d) image qualities (e.g. blurriness, greenness). Many of our concepts were
adapted from the BRODEN dataset of visual concepts (Fong & Vedaldi, 2018). Note that the data
used to learn concepts can differ from the data used to train the ML model that we evaluate.

After defining a concept library, we then learn an SVM and the corresponding CAV for each concept.
We follow the same procedure as in (Kim et al., 2018), for the penultimate layer of a ResNet18
pretrained in ImageNet. This step only needs to be done once for each model that we want to evaluate,
and the CAVs can then be used to explain any number of misclassified samples. We refer the reader
to Appendix A.1 for implementational details and Appendix B for a full list of concepts. We denote
the vector normal to the classification hyperplane boundary as ci(normalized, i.e. |ci| = 1) and
the intercept of the SVM as φi. To measure whether concepts are successfully learned, we keep a
hold-out validation set and measure the validation accuracy, disregarding concepts with accuracies
below a threshold (0.7 in our experiments, which left us with 168 of the 170 concepts). We provide
more details about the threshold in Appendix B.

3.2 CONCEPTUAL COUNTERFACTUAL EXPLANATIONS

Drawing inspiration from the counterfactual explanations literature (Verma et al., 2020), we generate
a perturbation for a given misclassified test sample by varying the amount of different concepts in a
way such that the perturbation satisfies the following principles:

1. Correctness: A counterfactual is considered correct if it achieves a desired outcome. In our
case, this would mean that the perturbed test point should be classified as the correct label.

2. Validity: We would like our counterfactuals to be valid, such that they would not violate
real-world conditions. In our case, this means ensuring that the perturbed points contain
realistic levels of each concept, as discussed below.

3. Sparsity: The ultimate goal of generating explanations is communicating them to users. An-
alyzing a large number of modifications and interactions may not be trivial, so perturbations
should change a small number of concepts.

Let LCE denote the cross entropy loss. Using the concept vectors and intercepts (ci, φi)(see 3.1),
we build our concept bank C ∈ RNc×m,φ ∈ RNc where Nc is the number of concepts and
m is the output dimension of the bottleneck layer. As our goal is to come up with a scoring
scheme for concepts, we need to define what it means to add a concept. For this purpose, we use
statistics of training samples. We compute the geometric margin to the decision boundary of the
SVM, di = cibL(xi)

T + φi, for all of the training examples. As different concepts have different
embedding volumes, we scale each concept by the maximum amount of the concept observed in the
data used to learn that concept. Let dmax

i denote the maximum margin in the training distribution.
We let c̃i = dmax

i ci, and using the scaled concept vectors we construct our final concept bank C̃. For
example, adding 1 unit of c̃redness would mean adding the maximum amount of redness seen before.

Our optimization problem is implemented as follows:

min
w

LCE(y, tL(bL(x) +wC̃)) + α|w|1 + β|w|2

s.t. wmin ≤ w ≤ wmax
(1)

By minimizing the cross entropy loss, we aim to flip the label of the model prediction to correct the
misclassification, to ultimately achieve correctness. We do this by adding a weighted sum of concept
vectors, weighted by the parameterw. Additionally, we apply elastic net regularization to introduce
sparsity in the concept scores.
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We further introduce validity constraints to make sure that the concept additions are within a realistic
range. Concretely, assume that we have a concept that already exists in the image. We can query
this fact by looking at the prediction of our concept SVM. If the concept already exists in the image,
adding that concept to the image would be less meaningful. Similarly, if a concept is already absent
in the image, then removing it should not be a valid action. Following these intuitions, we will use
the bounds [wmin, wmax] to guide the optimization.

First, we should not be able to add the concept to explain the model’s mistake if the concept is already
in the image, i.e. the score wi should not be positive:

wmax
i = 0 if cibL(x)

T + φi > κi (2)

Here, κi is an offset we use to predict the existence of the concept. Setting κi = 0 would mean
using the SVM as the decision boundary. As an alternative strategy, we can vary κi to allow for
weaker forms of validity regularization (e.g. by setting it to the mean positive margin over the training
samples).

Moreover, we should be able to restrict the amount of concept we are adding to the embedding, e.g.
adding an infinite amount of redness may not be meaningful. We first use the training samples to
identify the maximum geometric margin for the concept i, dmax

i . Then we restrict wi such that the
concept addition would result in a margin at most as large as the maximum margin over the training
samples. We want to have

cTi (bL(x) + wic̃i) + φi ≤ dmax
i (3)

and thus

wi ≤
dmax
i − cTi bL(x)− φi

cTi c̃i
=
dmax
i − cTi bL(x)− φi

dmax
i

(4)

Combining this with the Equation 2 would lead to our final constraint:

wmax
i =

{
0 if cibL(x)

T + φi > κi
dmax
i −cT

i bL(x)−φi

dmax
i

else
(5)

In a similar fashion, we calculate the lower bounds on scores as:

wmin
i =

{
0 if cTi bL(x)

T + φi < −κi
dmin
i −cT

i bL(x)−φi

dmin
i

else
(6)

We solve the problem in Equation 1 using Projected Gradient Descent, where we introduce projection
steps to enforce the validity constraints. Namely, after each gradient step, we clamp the values of the
scores to remain within the precomputed range. The final Conceptual Counterfactual Explanations
(CCE) algorithm is given in Algorithm 1. Throughout the experiments, unless otherwise stated, we
use α = 0.1, β = 0.01, γ = 0.01, η = 0.9, κi = 0.

Algorithm 1: Conceptual Counterfactual Explanations(CCE)

Input: x, y, [wmin,wmax], C̃
Hyperparameters :α, β, γ, η
Output: w

1 while w not converged do
2 ŷ ← tL(bL(x) +wC̃)
3 Ltotal ← LCE(ŷ, y) + α|w|1 + β|w|2
4 w ← GradientDescent(Ltotal,w, lr = γ,momentum = η)

5 w ← clamp(w,wmin,wmax)

In summary, we propose
that using our validity con-
straints and achieving a cor-
rect counterfactual, we can
explain the model mistakes
and behavior in an inter-
pretable (sparse) manner. A
large positive score means
that adding that concept to
the image will increase the
probability of correctly clas-
sifying the image, as will re-
moving or reducing a con-
cept with a large negative

score. CCE provides us with an assessment of which concepts explain a misclassified sample.
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4 RESULTS

In this section, we demonstrate how CCE can be used to explain model limitations. First, we show
that CCE reveals high-level spurious correlations learned by the model. We then show analogous
results for low-level image characteristics. Finally, we show real-world medical applications where
we are able to identify biases and spurious correlations in the training dataset and give users feedback
about the image quality. In all scenarios, CCE (Alg. 1) correctly identifies biases in the model and
artifacts in the image as explanations of model mistakes.

Train 
model 

Misclassified 
test sample 

+ Snow 1.00

+ Person 0.45

+ Bed 0.35

Do top 3 conceptual explanation scores 
recover the spurious correlation? 

a

b

Training dataset with spurious 
correlation:  dogs ≃ snow

Figure 2: Validating CCE by Identifying Spurious Correlations: (a) First, we train 5-class animal
classification models on skewed datasets that contain spurious correlations that occur in practice.
For example, one model is trained on images of dogs that are all taken with snow. This causes the
model to associate snow with dogs and incorrectly predicts dogs without snow to not be dogs. We
test whether our method can discover this spurious correlation. (b) We repeat this experiment with
20 different models, each that has learned a different spurious correlation, finding that in most cases
the model identifies the spurious correlation in more than 90% of the misclassified test samples.
For comparison, we also run CCE using a control model without the spurious correlation, and we
randomly select concepts as well. The random performance is evaluated by sampling three concepts
out of the available 150 and calculating the Precision@3.

4.1 CCE REVEALS SPURIOUS CORRELATIONS LEARNED BY THE MODEL

We start by demonstrating that CCE correctly identifies high-level spurious correlations that models
may have learned. For example, consider a training dataset that consists of images of different animals
in natural settings. A model trained on such a dataset may capture not only the desired correlations
related to the class of animals but spurious correlations related to other objects present in the images
and the setting of the images. We use CCE to identify these spurious correlations.

To systematically validate CCE, we need to know the ground-truth spurious correlations that a model
has learned. To this end, we train models with intentional and known spurious correlations using the
MetaDataset (Liang & Zou, 2021), a collection of labeled datasets of animals in different settings
and with different objects. We construct 20 different training scenarios, each consisting of 5 animal
classes (cat, dog, bear, bird, elephant). We trained a separate model for each scenario. In each
scenario, one class is only included with a specific confounding variable (e.g. all images of dogs
are with snow), inducing a spurious correlation in the model (images of dogs without snow will be
misclassified), which we can probe with CCE. We also train a control model using random samples
of animals across contexts, without intentional spurious correlations. In Appendix A.7.2, we provide
training distributions with less severe spurious correlations, i.e. where instead of all images having
the confounding concept, we use a varying level of severity in the correlations.

Our experimental setup is shown in Fig. 2(a). We train models with n = 750 images, fine-tuning a
pretrained ResNet18 model. In all cases, we achieve a validation accuracy of at least 0.7. We then
present the models with 50 out-of-distribution (OOD) images (randomly sampled from the entire
MetaDataset), i.e. images of the class without the confounding variable present during training.
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We then use CCE to recover the top 3 concepts that would explain a model’s mistake on each of
50 OOD images that are misclassified, then we report if the spurious concept is among these 3
concepts(Precision@3). For almost all images, CCE identifies the ground-truth spurious correlation
as one of the top 3 concepts (Fig. 2(b)). For example, in the model we trained with dogs confounded
with snow, CCE recovered the spurious correlation in 100% of test samples. We compare these results
to performing CCE using the control model, in which the same test images are presented, as well as
to picking concepts randomly, both of which result in the spurious correlation being identified much
less frequently. We provide results in Appendix A.7.3, where instead of doing a sample-by-sample
analysis we propose Batch-Mode CCE to analyze a set of mistakes to provide a holistic understanding
of the biases in the model.

Additionally, we compare our approach to a (simpler) univariate version of CCE, CCE(Univariate).
Instead of running our optimization method over multiple concepts simultaneously, we iterate over
each CAV and quantify how a perturbation in the direction of the concept (dmax

i ci) changes the predic-
tion probability of the correct class y. Specifically, we compute the CCE as the difference tL(bL(x)+
dmax
i ci)y − tL(x)y, for each concept, then we order the concepts by the change in the probability.

Method Mean Prec@3 Median Rank
Random 0.02 82.65(42.7, 120.4)

CCE(Control) 0.04 32.3(28.03, 40.05)
CCE(Univariate) 0.91 2.00(1.71, 2.35)

CCE 0.95 1.85(1.80, 2.10)

Table 1: Empirical evaluation for detecting spurious corre-
lations in training data. We report Precision@3 and ranks
averaged over 20 scenarios, the complete table is in Appendix
Table 2. Distribution of the Precision@K metric as we vary
K can be found in Appendix A.8.

Table 1 provides results over the 20
scenarios and the detailed results can
be found in Appendix Table 2. We
further provide the mean of the me-
dian rank of the concept in each sce-
nario, along with the mean of the first
and third quartiles of ranks. Both
CCE(univariate) and CCE recover the
ground-truth spurious correlation as
one of the top 3 concepts correctly
across the scenarios. The complete
(multivariate) CCE achieves the high-
est precision and the best median rank.
In Appendix A.7.1 we provide results

in more challenging scenarios, where the target spurious concept does not exist in the concept bank.

a) b) Spurious Correlation: Dog(Water) & Dog(Bed)

Images

Elephant 
(37%)

Univariate 4 1

CCE(no validity) 5 3

Full CCE 154 1

Bear 
(42%)

Bird 
(27%)

Method Water BedPred.

Univariate 2 1

CCE(no validity) 2 3

Full CCE 1 137

Univariate 6 2

CCE(no validity) 6 2

Full CCE 3 2

Figure 3: Validating CCE: (a) Here, we take an arbitrary test sample of a Granny Smith apple that
is originally correctly classified and perturb the image by turning it gray. We compute CCE scores
at each perturbed image and observe that the score for greenness increases as the image is grayed.
(b) We demonstrate the effectiveness of validity constraints in a qualitative scenario. In the last
two columns, we provide ranks of each concept when a particular method is used. Without validity,
methods can use concepts that already exist in the image to explain model mistakes.

4.2 CCE REVEALS LOW-LEVEL IMAGE ARTIFACTS

We show that CCE can capture low-level spurious correlations that models may have learned. For
example, the ImageNet(Deng et al., 2009) dataset on which SqueezeNet was trained includes a class
of green apples known as Granny Smith, which were always colored images. Fig. 3(a) shows that as
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the image is grayed, the probability of it being classified as Granny Smith decreases, while the CCE
for greenness increases. We provide details and examples about this experiment in Appendix A.6.

4.3 VALIDITY CONSTRAINT IMPROVES EXPLANATIONS

Here we demonstrate validity constraints are necessary to plausibly explain model mistakes. In these
experiments, instead of training the model with a single concept that is associated with a class, we
use two concepts. For instance, we use 50 dog images with water and 50 with bed during training. In
Figure 3a, we show such a scenario. In all of these images, CCE(Univariate) identifies both bed and
water concepts to explain the model mistakes. However, in the first image, there is already water and
in the second image, there is already a bed. Thus, using them in the counterfactual result in an invalid
explanation. However, when CCE with validity constraints is used, the score for the water concept
in the first image and the bed concept in the second image drops. Ultimately, this would result in a
plausible counterfactual explanation. More examples are provided in Appendix A.3.

4.4 EVALUATING CCE IN THE WILD

We run experiments where we evaluate CCE on real-world medical data and models. We demonstrate
that CCE helps identify learned biases and artifacts that provide insight into a model’s mistakes.
Throughout our evaluations, we worked with a board-certified dermatologist and cardiologist to
confirm the clinical relevance of CCE explanations.

Dermatology - Skin Condition Classification: We follow the model training procedure described
in (Groh et al., 2021) to train a ResNet18 model to predict one of the 114 skin conditions using the
Fitzpatrick17k dataset of 16,577 annotated skin images (Groh et al., 2021). This classifiation model
achieved 20% overall accuracy, closely matching the number reported in the paper (see Appendix
A.4 for details). To explain the model’s mistakes, in addition to the 168 concepts used in Sec. 3.1, we
also learned 8 clinically relevant concepts: defocus blur, zoom blur, brightness, motion blur, contrast,
dark skin type, skin hair, and zoom. To learn each of these concepts, we use 25 pairs of positive and
negative images (except the skin hair concept, for which we used 10 images, where the skin hair
images are obtained from the ISIC (Rotemberg et al., 2021) dataset). In Figure 4, we observe several

Label: Fixed Eruptions
Pred: Erythema 
Nodosum(35%)

- Blackness -0.42

- Dark Skin -0.67

+ Water 0.5

+ Outside arm 0.32

- Ashcan -1.02

- Defocus
 Blur -1.20

+ Blotchy 1.12

+ Eye 0.78

- Sofa -0.24

- Bed -0.38

+ Zoom 0.58

+ Water 0.47

Label: Allergic Contact     
           Dermatitis
Pred: Stasis Edema (19%)

- Motion Blur -0.51

- Skin Hair -0.52

+ Redness 0.31

+ Ashcan 0.26

a) b) c) d)Label: Mucinosis
Pred: Aplasia Cutis (9%)

Label: Sarcoidosis
Pred: Nevus Sebaceous 
of Jadassohn (36%)

Figure 4: CCE explains model mistakes using learned biases and image quality conditions. (a)
CCE identifies dark skin type correlation with the allergic contact dermatitis condition that exists in
the training dataset. (b, c, d) CCE identifies image artifacts that degrade the model performance.

ways CCE guides our understanding of model mistakes. In addition to the unbalanced fraction of
skin type groups over the whole dataset, we find that there are wider discrepancies when particular
skin conditions are considered. For example, for the allergic contact dermatitis condition, there are
259 images from the lightest skin tones in the training data, 137 images of intermediate skin tones,
and only 24 images of dark skin tones. In the test set, for 23 out of all 24 allergic contact dermatitis
dark-skin images where the model makes a mistake, CCE identifies the dark skin type concept as one
of the 3 concepts with the largest negative score. This collectively reflects bias in the training data.

For fixed eruptions and mucinosis, CCE finds image qualities that would increase the classification
performance. Namely, CCE identified that the blur in 2nd image in Fig. 4 caused the model’s mistake
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(reducing blur would correct the mistake). In the 3rd image, CCE learned that the image is too
zoomed out, and increasing zoom would correct the mistake. For the 4th image, CCE identified that
too much skin hair in the image contributed to the model’s mistake. This is consistent with other
studies which show that presence of skin hair can degrade the model performance (Okur & Turkan,
2018). In all cases, CCE identifies relevant concepts from our expanded concept bank and displays
them to the user. These explanations were validated by a trained dermatologist as plausible reasons
why these images may have been difficult to classify. In Appendix A.4, we describe details of this
experiment and include comments about concepts suggested by CCE that seem irrelevant.

Cardiology - Pneumothorax Classification from Chest X-Ray Images Several studies have
raised concerns about the biases learned by chest X-ray diagnosis models and their deployability in
novel domains (Seyyed-Kalantari et al., 2020; Larrazabal et al., 2020; Wu et al., 2021). We investigate
a cross-site evaluation setting, where models trained on Chest X-Ray images are used to classify the
pneumothorax condition. Specifically, we are taking a binary classification model trained on a dataset
collected from the National Institutes of Health Clinical Center in Bethesda (NIH)(Wang et al., 2017)
and we test the model with images obtained from the Stanford Health Care in Palo Alto (SHC)(Irvin
et al., 2019). In this experiment, we follow the protocol described in (Wu et al., 2021); see Section
A.5 for details. Notably, the NIH dataset consists of images from the frontal (AP/PA) view positions,
whereas in the SHC dataset, there are also images obtained from the Lateral View. This would mean
that the model has not seen any images from the lateral view during training. Several examples of
these images can be seen in Appendix Figure 10. Similar to Sec.4.4, we use 100 pairs of chest X-ray
images to learn clinically relevant concepts: Lateral View & AP View(view positions), Cardiomegaly
& Atelectasis(comorbidities), patient gender, and patient age under 24.

From the SHC dataset, we randomly select 150 images taken from the lateral view where the model
makes a mistake. We run CCE using a concept bank with 120 BRODEN concepts, in addition to our
clinically relevant concepts. In 100% of these 150 test images, the Lateral View concept received the
largest negative score, meaning that CCE finds removing the concept would increase the probability
of correctly classifying these images. This is consistent with cardiologist expectation: a model that
has not seen images from the lateral view may fail to generalize to that category. With the help of
CCE, end-users can identify these shortcomings and help address the biases in the training dataset.

5 CONCLUSION AND FUTURE WORK

We present a simple and intuitive method, CCE, that generates meaningful insights into why machine
learning models make mistakes on test samples. We validated that CCE identifies spurious correlations
learned by the model for both natural images and medical images, where CCE’s explanations are
confirmed by clinicians. In medical applications, CCE was able to inform the end-user about the
image quality conditions and identify biases in the model’s training data. CCE is fast: the concept
bank just needs to be learned once using simple SVMs and each test example takes < 0.3 seconds
on a single CPU. It can be readily applied to any deep network without retraining and provides
explanations of mistakes in human-interpretable terms.

CCE can detect biases in training data that lead to model mistakes without needing the training data.
It requires a small number of labeled examples to learn concepts. For instance, the dermatology
experiments used 50 images to learn each concept. The data used to learn concepts can come from
datasets different from the ones used to train the model. In the dermatology case study, we learned
concepts using the ISIC dataset (for skin hair) and still correctly explained the mistakes of a model
trained on the Fitzpatrick17k data. This makes the CCE method more broadly useful. The quality
of the concept bank is a crucial component for the outcome of the explanations, as demonstrated in
AppendixA.7.1. It is important to seek guidance from the experts of the problems when building
concept libraries to obtain the best results. Incorporating automatic concept learning(Ghorbani et al.,
2019) is a fruitful future direction, as it could further simplify the entire pipeline.

There are several promising areas where CCE can be extended. While we focused in this paper on
image classification tasks, CCE can be applied to other data modalities such as text, audio, and video
data, as well as other tasks such as regression and segmentation. Finally, we seek to do user studies to
understand how human subjects respond to explanations with CCE and how it drives improvements
in model debiasing and robustness.
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A APPENDIX

A.1 LEARNING CONCEPTS

Here we provide implementational details on how we learn the concept activation vectors (CAVs).
Concretely, we pick a bottleneck layer in our model, which is the representation space in which we
will learn our features. Unless otherwise stated, we choose the penultimate layer in ResNet18 for
experiments in this paper. Let m be the dimensionality of the bottleneck layer L, and bL : Rd → Rm
be the “bottom” of the network, which maps samples from the input space to the bottleneck layer,
and tL : Rm → Rk be the “top” of the network, defined analogously. In generating conceptual
explanations, the first step is to define a concept library: a set of human-interpretable concepts
C = {c1, c2, ...} that occur in the dataset. For each concept, we collect positive examples, Pci , that
exhibit the concept, as well as negative examples, Nci , in which the concept is absent. Then, we train
a support vector machine to classify {bL(x) : x ∈ Pci} from {bL(x) : x ∈ Nci}, the same way as
in Kim et al. (2018). Overall pseudocode for the procedure can be found in Figure 5.

Algorithm 2: Learning concept vectors
Inputs :

f # trained network: model
L # bottleneck layer (hyperparameter): int
concepts # set of concepts: set[str]
P # positive examples per concept: dict[str,
list[sample]]
N # negative examples per concept: dict[str,
list[sample]]

Return : svms #Set of SVMs containing concept predictors.

1 b, t = f.layers[:L], f.layers[L:] # Divide network f(·) into a
bottom b (first l layers) and top t (remaining layers) so that
f(·) = t(b(·))

2 for c in concepts: # Per concept, learn an SVM to classify
bottleneck representations of positive and negative examples.

3 svms[c] = svm.train(b(P[c]), b(N[c]))
4 # Filter out concepts that are not learned well (i.e.

validation accuracies below a particular threshold).
5 if svms[c].acc < .7:
6 del svms[c]

Figure 5: Pseudocode for CES in Python-like syntax concept learning procedure. Learning the
concepts (lines 1-6) just needs to be done once and can be carried out offline.

A.2 METADATASET EXPERIMENTS

In Table 2, we provide results over 20 scenarios. In each of the scenarios, we fine-tune only the
classification layer of a ResNet18(He et al., 2016) pretrained on ImageNet, which outputs a probability
distribution over 5 animals(cat, dog, bear, bird, elephant). For instance, in the case of the dog(snow)
experiment, we train the model with images of dogs that are all taken with snow. We replicate this
experiment with 20 different animal & concept combinations and report the results below.

In Table 3, for each scenario, we sample 50 images with and without the concept and we report the
accuracy over those images. We observe a start difference between accuracies, which verifies that
model learns to rely on the correlation.

A.3 VALIDITY EXAMPLES

In Fig. 7, we provide additional examples on where validity improves explanations. In a) we have a
model trained with the dog-snow spurious correlation and in b) we have the dog class associated with
both the horse and bed concepts. For both of these examples, we observe that in the images where
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Experiment CCE-Prec.@3 CCE(Univariate)-Prec.@3 CCE(Control)-Prec.@3
dog(chair) 0.980 0.360 0
cat(cabinet) 1 1 0.180
dog(snow) 1 1 0
dog(car) 1 1 0
dog(horse) 1 1 0.500
bird(water) 0.960 1 0.660
dog(water) 0.980 0.980 0
dog(fence) 1 0.980 0
elephant(building) 1 0.821 0
cat(keyboard) 0.860 0.800 0
dog(sand) 0.760 0.900 0
cat(computer) 0.980 1 0
dog(bed) 1 1 0
cat(bed) 0.980 1 0
cat(book) 0.960 1 0
dog(grass) 0.700 0.780 0
cat(mirror) 0.900 0.900 0
bird(sand) 0.960 1 0
bear(chair) 0.940 0.720 0
cat(grass) 0.940 0.900 0

Table 2: Empirical evaluation for detecting spurious correlations in the training data. We report
results over 20 scenarios, where each class is associated with the concept in parenthesis during the
training phase.

Experiment Accuracy for Images with the Concept Accuracy for Images Without the Concept
dog(chair) 0.74 0.54
cat(cabinet) 0.8 0.62
dog(snow) 0.76 0.12
dog(car) 0.86 0.66
dog(horse) 0.70 0.36
bird(water) 0.78 0.42
dog(water) 0.82 0.4
dog(fence) 0.74 0.52
elephant(building) 0.82 0.72
cat(keyboard) 0.96 0.46
dog(sand) 0.66 0.42
cat(computer) 1.0 0.68
dog(bed) 0.86 0.46
cat(bed) 0.84 0.54
cat(book) 0.9 0.64
dog(grass) 0.96 0.56
cat(mirror) 0.86 0.4
bird(sand) 0.78 0.66
bear(chair) 0.82 0.44
cat(grass) 0.72 0.46

Table 3: Accuracy of the model for images tested with and without the confounding variable.

the proposed concept already exists, validity constraints help prevent the model from explaining the
mistake by adding that particular concept, which results in valid explanations.
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Input to Method 
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Figure 6: Different reasons of model mistakes for the same class..

b) Spurious Correlation: Dog(Horse) & Dog(Bed)
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Method Rank of 
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Figure 7: Validity constraint improves explanations. .

A.4 DERMATOLOGY EXPERIMENT WITH FITZPATRICK17K

We directly follow the experimental protocol in Groh et al. (2021). Fitzpatrick17k (Groh et al., 2021)
is a dermatology dataset that contains 16,577 skin images with 114 different skin conditions. For
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these images, skin type labels are provided using the Fitzpatrick system (Fitzpatrick, 1988). Groh
et al. (2021) decomposes the dataset into three groups: The lightest skin types (1 & 2) with 7,755
images, the middle skin types (3 & 4) with 6,089 images, the darkest skin types (5 & 6) with 2,168
images. We randomly partition the dataset into training(80%) and testing(20%) sets. We use a
ResNet18 (He et al., 2016) backbone pretrained on ImageNet(Deng et al., 2009) and we fine-tune
a classification head to predict one of the 114 skin conditions using Adam(Kingma & Ba, 2014)
optimizer. The classification head consists of 1) a fully-connected layer with 256 hidden units 2) relu
activation 3) dropout layer with a 40% probability of masking activations 4) another fully-connected
layer with the number of predicted categories. We obtain the training script from the repository1 for
the paper Groh et al. (2021).

We are using the imagecorruptions2(Michaelis et al., 2019) library to obtain positive samples of
defocus blur(3), zoom blur(2), brightness(3), motion blur(3), and contrast(2), where we used the
severity levels provided in parenthesis. Examples of positive images for these concepts can be found
in Fig. 8.

We learn the zoom concept by cropping the height and width of images to a fourth of their sizes. We
obtain positive images from the darkest skin types (5&6) and negative images from the lightest skin
types (1&2) to learn the dark skin color concept. For all dermatology concepts except the skin hair
concept, we use 25 positive & negative pairs of images. For the skin hair concept, we use 10 pairs of
images from the ISIC dataset (Rotemberg et al., 2021).

A.4.1 EXPLANATION ARTIFACTS

It is important to note that sometimes concepts such as water or ashcan may be suggested as
explanations by CCE. Concepts are represented as vectors in the embedding space, and there may be
similarities among them. Hence, water or ashcan concepts may be very similar to certain textures
that are relevant to the dermatology task, where it was not possible to obtain the true concept itself.
The practitioner using CCE to explain the mistake can easily discard these artifacts suggested by
CCE, where there is also concepts that are more relevant and obtained larger scores. Secondly, as
the user keeps using concept-based methods, they can understand what type of concepts is needed,
or is relevant to the task. Accordingly, it is possible to update and obtain a more informative bank.
Generally, there are various interesting directions that could be pursued in the human-machine
interface that would improve the real-life performance of explanation algorithms. We are also
interested in further understanding this, and think more about the deployment aspects of CCE in
future work.

A.4.2 TESTING GRADCAM++ IN THE FITZPATRICK SETTING

As we mention in Section 4.4, the allergic contact dermatitis condition has a biased skin color
distribution in the training data. Activation-map-based methods such as GradCAM++(Chattopadhay
et al., 2018) fail to communicate this to the user. However, CCE can correctly identify this as a reason
why the model fails. In Figure 9 we show two examples where CCE is able to identify the bias in
the data that drives the model mistake; however, one of the methods that are very commonly used to
understand model predictions, GradCAM++, fails to identify this reason.

A.5 CARDIOLOGY EXPERIMENT WITH CHEST X-RAYS

We investigate a cross-site evaluation setting, where models trained on Chest X-Ray images are used
to classify the pneumothorax condition which was proposed in (Wu et al., 2021). Using pretrained
models from (Wu et al., 2021), we use a DenseNet-121(Huang et al., 2017) architecture pretrained
on ImageNet(Deng et al., 2009) and then fine-tuned on the NIH dataset(Wang et al., 2017). As it is
reported in their paper, this model achieves 0.779 mean AUC when tested on the (Irvin et al., 2019)
dataset and 0.903 mean AUC when tested on the NIH dataset. We use CCE to explain mistake over a
subset of the SHC dataset. Specifically, we run CCE over the images taken from the lateral view,
which does not exist in the training dataset since NIH only contains images from the frontal (Anterior-
Posterior(AP) or Posterior-Anterior(PA)) view positions. This constitutes a real-life scenario of

1https://github.com/mattgroh/fitzpatrick17k
2https://github.com/bethgelab/imagecorruptions
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Positive Samples for Image Quality Concepts

Figure 8: Learning image quality concepts. Here we have the positive samples for different image
quality concepts. For each corruption type, we provide examples for different levels of severity. The
original image is obtained from the Fitzpatrick dataset.

a distribution shift. Some examples of these images can be seen in Figure 10. We sample 150
images that were taken from the lateral view where the model makes a mistakes. For 150/150 of
those images, CCE identifies the lateral view concept as the concept with the lowest score. Namely,
CCE claims that removing the lateral viewness concept would increase the probability of correctly
classifying the image.

A.6 ADDITIONAL EXAMPLES VALIDATING CCE THROUGH LOW-LEVEL IMAGE
PERTURBATIONS

In Section 4.2, we report a case where CCE reveals low-level artifacts learned by a
SqueezeNet(Iandola et al., 2016) pretrained on ImageNet. Particularly, the ImagetNet dataset on
which SqueezeNet was trained includes a class of green apples known as Granny Smith. These images
were always colored in ImageNet, meaning that the model misclassifies images of these apples in
grayscale. We can use this fact to gradually transform a natural image of a Granny Smith apple,
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Label: Allergic Contact Dermatitis
Pred: Stasis Edema (19%)

a b Label: Allergic Contact Dermatitis
Pred: Necrobiosis Lipoidica (13%)

Concept explanation suggested by CCE: 
Remove Dark skin color

Concept explanation suggested by CCE: 
Remove Dark skin color

Figure 9: CAM based methods fail to communicate model biases. Here we show two examples
where CCE is able to identify the bias in the data that drives the model mistake. However, one of the
methods that are very commonly used to understand model predictions, GradCam++, fails to identify
and communicate the underlying reason.

Lateral View Images Frontal View Images

Figure 10: Chest X-Ray images from different views. Here we provide several lateral view and
frontal view images from the SHC dataset. On the left, we see images from the lateral view and on
the right we have images from the frontal view. NIH dataset does not have any lateral view images in
the dataset, which can explain why a model trained on the NIH dataset performs poorly when tested
on lateral view images.

blending it with its grayscale version. At different levels of the original image vs. its transformed
version, we run it through SqueezeNet to obtain a prediction and then calculate its CCE scores. The
results, shown in Fig. 3(a), show that as the image is grayed, the probability of it being classified as
Granny Smith decreases, while the CCE for greenness increases. We repeat this experiment with 25
images of Granny Smith apples and provide results in Appendix Fig. 11(b). Our results show that
CCE is also effective at explaining a model’s mistakes in terms of low-level visual artifacts.

In Fig. 3, we showed an example in which CCE was successfully able to identify why images that
are being perturbed through low-level image transformations are being misclassified. Here, we show
another pair of examples, with a different concept: redness (Fig. 12). Additionally, in Fig. 11 we
show the aggregated curve over 25 granny smith apple images.
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a) b)

Figure 11: Validating CCE Through Low-Level Image Perturbations: (a) Here, we take an
arbitrary test sample of a Granny Smith apple that is originally correctly classified and perturb the
image by turning it gray until it is eventually misclassified (in this case, as mortar). We compute
the CCE scores at each perturbed input image and observe that the score for greenness increases,
corresponding to the degree to which we remove the green color from the image. (b) We repeat this
for 25 different images of Granny Smith apples (some of which are shown under the plot) and find
that the same trends generally hold true (each image is a gray line). Although a few images do not
follow this trend, the mean CCE score (bolded green line) does.

Figure 12: In an analogous manner to Fig. 3, we take images that were originally correctly classified
as robin and strawberry, and perturb them by removing red colors until they are misclassified by
the model (x-axis). The CCE scores correctly identify the concept of redness as the most important
concept for correcting the model’s mistakes.

A.7 CHALLENGING SCENARIOS FOR CCE

A.7.1 WHEN THE TARGET CONCEPT IS MISSING FROM THE BANK

What happens when the spuriously correlated concept is not in our concept bank? In this section, we
replicate our controlled experiments in Metadataset by omitting the target concept from our concept
bank. For instance, for the dog(snow) experiment, we remove the concept snow from the set of 168
concepts that we have and re-run our analysis.
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Experiment Top5 Concepts
dog(bed) Sofa, Dog, Bedclothes, Muzzle, Headboard
dog(chair) Sofa, Book, Hand, Bedclothes, Dog
cat(cabinet) Inside arm, Microwave, Chest of drawers, Door frame, Oven
dog(snow) Mountain, Car, Dog, Minibike, Headlight
dog(car) Bus, Headlight, Motorbike, Fence, Coach
dog(horse) Cow, Muzzle, Motorbike, Bicycle, Grass
bird(water) Bird, Airplane, Coach, Sand, Mountain
dog(water) Muzzle, Dog, Sand, Airplane, Mountain
dog(fence) Field, Grass, Coach, Muzzle, Dog
elephant(building) Horse, Cow, Pedestal, Car, Bucket
cat(keyboard) Cat, Computer, Inside arm, Paper, Faucet
dog(sand) Water, Airplane, Horse, Blueness, Mountain
cat(computer) Faucet, Keyboard, Cat, Inside arm, Microwave
cat(bed) Cat, Pillow, Inside arm, Headboard, Back pillow
cat(book) Computer, Cat, Bookcase, Oven, Chest of drawers
dog(grass) Horse, Field, Muzzle, Bus, Motorbike
cat(mirror) Inside arm, Headlight, Door frame, Countertop, Bathtub
bird(sand) Water, Airplane, Bird, Mountain, Blind
bear(chair) Food, Candlestick, Plate, Lamp, Fabric
cat(grass) Tree, Mouth, Field, Path, Blind

Table 4: CCE suggestions when the target concept is missing from the concept bank. We average the
ranks for each concept over 50 mistakes in each experiment, and report the Top-5 concepts with the
highest rank.

In Table 4, we provide the Top-5 concepts suggested by CCE. We use 50 mistakes for each scenario,
evaluate the ranks for each concept in our concept bank using CCE, and average the ranks over all
the samples that we have. We report the Top-5 concepts with the highest rank. In almost all of
the scenarios, CCE identifies concepts that are ‘hinting‘ to the target concepts. For example, in the
dog(bed) case, CCE reports Sofa, Dog, Bedclothes, Muzzle, Headboard as the reasons for the mistake,
which are either related to the target class or the spuriously correlated concept. Generally, we see a
similar pattern in all of our experiments. This provides another piece of evidence that highlights the
importance of the richness of the concept bank. If we have a rich-enough bank, then CCE helps us
identify the spuriously correlated concept even if it is not directly in the bank.

A.7.2 WHEN THE CORRELATIONS ARE LESS DRASTIC

What happens when the correlations are less drastic? More concretely, in Section 4.1, we assumed
all images in the training dataset contains the spuriously correlated concept, we call this situation
100% severity in this section. Here, we evaluate when the correlation is less severe. Particularly,
what happens when we have a scenario with 50% severity, i.e. when only 50% of the training images
contain the spuriously correlated concept? In Figure 13a & b, we report the CCE performance as
we vary the severity. The bolded line shows the median performance across 20 scenarios, and the
confidence levels show the first and third quantiles. We observe that starting from relatively low
levels of severity(≈ 20%), CCE is able to identify the spuriously correlated concept in a majority of
the scenarios. Consequently, we see that CCE can perform well even in less-severe, and thus more
realistic scenarios.

A.7.3 BATCH EVALUATION FOR A SET OF MISTAKES

Here we extend CCE to a batch evaluation setting. Namely, instead of explaining an individual
mistake, we aim to explain a batch of mistakes using conceptual counterfactuals. We do so by making
a slight modification to our optimization procedure:
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a) b) c)

Figure 13: (a, b) We report the performance of CCE as we vary the severity level of the correla-
tion.(K% severity means K% of the images in the training dataset has the concept). The bolded line
shows the median performance across 20 scenarios, and the confidence levels show the first and
third quantiles. We observe that starting from relatively low levels of severity(≈ 20%), CCE is able
to identify the spuriously correlated concept in a majority of the scenarios. (c) We evaluate Batch
Mode CCE over controlled experiments with varying severity levels. The y-axis corresponds to the
rank of the target concepts, the x-axis gives the severity of the spurious correlation, the bold line is
the median performance across 20 scenarios and the confidence intervals give the lower and upper
quartiles. We observe that Batch Mode CCE is able to provide an automated analysis of the model
biases using a batch of samples, given that it can identify the spuriously correlated concept as one of
the major causes over all model mistakes for the given class.

min
w

1

N

N∑
i=1

LCE(yi, tL(bL(xi) +wC̃)) + α|w|1 + β|w|2

s.t. wmin ≤ w ≤ wmax

(7)

The optimization problem in Equation 7 outputs a single shared set of concept scores that minimizes
the proposed loss for a batch of mistakes. Furthermore, we let wmin = 1

N

∑N
i=1w

min
i and wmax =

1
N

∑N
i=1w

max
i to make the validity constraints work in the batch-wise setting wherewmax

i andwmin
i

denotes the validity bounds for the sample i.

This formulation results in a more ‘holistic‘ understanding of the model bias compared to the sample-
by-sample analysis. In practice, using all of our mistakes in the test dataset, we could run Batch-CCE
analysis to provide a global interpretation of the model biases. In Figure 13(c), we provide the
performance of Batch Mode CCE over 20 scenarios across different severity levels. The y-axis
corresponds to the rank of the target concepts, the x-axis gives the severity of the spurious correlation,
the bold line is the median performance across 20 scenarios and the confidence intervals give the
lower and upper quartiles. We observe that Batch Mode CCE is able to provide an automated analysis
of the model biases using a batch of samples, given that it can identify the spuriously correlated
concept as one of the major causes over all model mistakes for the given class.

a) b)

Figure 14: (a) We observe how the performance changes with respect to K for the metric Precision@K.
(b) We provide the distribution of the validation accuracies for each concept, as we vary the number
of samples we use to learn the Concept Activation Vectors.
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A.8 DETAILS ON PRECISION@K

In Fig 14(a), we observe how the reported Precision@K metric changes for various values of K.
For K < 3 the performance is relatively lower. Empirically, we observe that this is mostly due to
co-occuring concepts, e.g. for the Dog(Snow) case, sometimes the first two concepts can turn out
to be muzzle or dog. Similarly, for the Dog(Car) case, concepts like Bus or Truck can turn out to be
the Top-2 concepts in the evaluation. We choose K = 3 since it is less noisy due to the explained
reasons, and also more comprehensible in terms of providing the user a small number of concepts
that they can easily work with.

B CONCEPTS

In Table 5, we list the 170 concepts that we considered, along with their validation accuracies. We kept
168 concepts which had a validation accuracy of 0.7 or greater (bolded). We choose the threshold 0.7
since it works well empirically. For a more detailed analysis, in Fig 14(b) we provide the distribution
of validation accuracies for concepts, as we vary the number of samples we use to learn the Concept
Activation Vectors. As we increase the number of samples, the validation accuracies move beyond the
threshold we use (0.7). When we use 100 samples per concept, most of the concepts move beyond
this value.
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loudspeaker(0.86) microwave(0.82) arm(0.86)
exhaust hood(0.92) airplane(0.96) pedestal(0.78)

back(0.72) mouse(0.68) glass(0.84)
polka dots(1.00) mouth(0.80) keyboard(0.81)
inside arm(0.76) bird(0.94) bedclothes(0.82)

paper(0.82) blind(0.86) brick(0.84)
stairs(0.86) countertop(0.92) base(0.81)

person(0.94) blueness(0.84) bathroom s(0.84)
pane(0.96) motorbike(1.00) hair(0.84)
paw(0.84) candlestick(0.88) outside arm(0.92)

ceiling(0.88) light(0.88) street s(0.87)
column(0.82) door frame(0.96) granite(0.90)

cow(0.96) sand(0.94) bottle(0.84)
cup(0.88) plate(0.98) double door(0.92)

pillow(0.78) plant(0.88) doorframe(0.86)
eyebrow(0.88) flower(0.90) horse(0.98)

toilet(0.90) ceramic(0.86) greenness(0.90)
back pillow(0.86) drawer(0.86) coach(0.92)

metal(0.84) lid(0.90) bannister(0.86)
handle bar(0.78) fan(0.79) bush(0.92)

blotchy(0.97) fireplace(0.96) bowl(0.80)
nose(0.80) leg(0.80) door(0.82)

stripes(0.91) apron(0.72) oven(0.80)
pack(0.84) body(0.86) foot(0.80)
frame(0.74) dining room s(0.88) board(0.78)
bridge(0.82) sofa(0.78) bedroom s(0.86)
head(0.92) blurriness(0.95) footboard(0.80)

leather(0.86) hand(0.90) fluorescent(0.83)
tree(0.98) knob(0.89) headlight(0.91)

blackness(0.91) house(0.82) jar(0.94)
mirror(0.94) pipe(0.82) bathtub(0.96)

flag(0.70) refrigerator(0.82) curtain(0.92)
book(0.80) coffee table(0.92) field(0.90)

chandelier(0.94) cap(0.82) hill(0.92)
ashcan(0.88) path(0.94) counter(0.82)

cardboard(0.88) desk(0.84) balcony(0.88)
box(0.72) napkin(0.79) ear(0.94)
food(0.86) manhole(0.82) chest of drawers(0.88)
fence(0.82) building(0.92) figurine(0.77)
lamp(0.96) basket(0.80) eye(0.90)

ground(0.86) car(0.90) cat(1.00)
bookcase(0.94) palm(0.96) water(0.98)

bus(0.96) laminate(0.82) handle(0.78)
painted(0.88) dog(0.98) bumper(0.73)
concrete(0.82) awning(0.66) clock(0.90)
faucet(0.89) headboard(0.90) canopy(0.92)
bucket(0.74) drinking glass(0.72) armchair(0.84)

minibike(0.96) carpet(0.78) cabinet(0.76)
bed(0.77) earth(0.88) neck(0.84)
can(0.89) bicycle(0.96) bag(0.70)

chain wheel(0.89) beak(0.72) mountain(0.94)
redness(0.96) air conditioner(0.85) chair(0.86)
engine(0.90) painting(0.80) grass(0.92)
snow(0.84) pillar(0.84) chimney(0.73)
floor(0.78) fabric(0.74) computer(0.86)

flowerpot(0.78) muzzle(0.94) bench(0.72)
ottoman(0.80) cushion(0.84)

Table 5: List of concepts and validation accuracies for SVMs, for a ResNet18 pretrained on ImageNet.
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