# Synthetic Question Value Estimation for Domain Adaptation of Question Answering

**Anonymous ACL submission** 

#### Abstract

Synthesizing QA pairs with a question generator (QG) on the target domain has become a popular approach for domain adaptation of question answering (QA) models. Since synthetic questions are often noisy in practice, existing work adapts scores from a pretrained QA (or QG) model as criteria to select highquality questions. However, these scores do not directly serve the ultimate goal of improving QA performance on the target domain. In this paper, we introduce a novel idea of training a question value estimator (QVE) that directly estimates the usefulness of synthetic questions for improving the target-domain QA performance. By conducting comprehensive experiments, we show that the synthetic questions selected by QVE can help achieve better target-domain QA performance, in comparison with existing techniques. We additionally show that by using such questions and only around 15% of the human annotations on the target domain, we can achieve comparable performance to the fully-supervised baselines.<sup>1</sup>

### 1 Introduction

012

014

017

037

Question answering (QA) systems based on pretrained language models such as BERT (Devlin et al., 2019) have recently achieved promising performance in machine reading comprehension. However, neural QA systems trained on one domain may not generalize well to another, leaving it challenging to deploy such systems on new domains that lack large-scale QA training data<sup>2</sup>. In this paper, we are interested in *semi-supervised domain adaptation*: we aim to build a target QA model with source-domain data and a small number of target-domain annotated QA pairs.

Due to high annotation costs, existing work (Golub et al., 2017; Dong et al., 2019; Wang et al., 2019; Puri et al., 2020; Chen et al., 2020; Yue et al., 2021) proposes to synthesize target-domain QA pairs via neural question generation (QG) models. The synthetic data are then used to train a QA

#### Existing: Repurposing QA/QG models for selection

| LAIS                  | ting. Reput posing QA/QO models                                                                                                                                                                                                                                     | 101 3            | cicci                                | 1011         |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|--------------|
| 1) Ro                 | undtrip Consistency (RTC) 2) LM Sco                                                                                                                                                                                                                                 | ore Fi           | lterin                               | g            |
|                       |                                                                                                                                                                                                                                                                     | og<br>→<br>ihood | Q1: -(<br>Q2: -(<br>Q3: -(<br>Q4: -2 | ).05<br>).23 |
| ` <b>॑</b> _ <b>Q</b> | VE: learn from feedback on target                                                                                                                                                                                                                                   | anno             | otatio                               | ons          |
| QG<br>Mod             | $\rightarrow$ Value $\rightarrow$ $\vee^{n}$                                                                                                                                                                                                                        | val              | Targ                                 |              |
| Туре                  | Generated Questions                                                                                                                                                                                                                                                 | RTC              | LM                                   | QVE          |
| Simple<br>fact        | Question: Who is the founder of CNN?<br>Context:CNN founder <u>Ted</u> says he is<br>"encouraged" by the results of last week's election                                                                                                                            | $\checkmark$     | $\checkmark$                         | x            |
| Mis-<br>match         |                                                                                                                                                                                                                                                                     | ×                | $\checkmark$                         | x            |
| High-<br>quality      | Question: What was the nickname of the woman<br>who allegedly provided call girls for prostitution?<br>Context:Turbiville called herself the "Heidi Fleiss<br>of Houston," referring ta a woman who was dubbed<br>the "Hollywood Madam" for providing call girls to | x                | x                                    | ~            |
|                       |                                                                                                                                                                                                                                                                     | lected           | Y. fi                                | Itorod       |

Figure 1: Existing work repurposes a pretrained QA (or QG) model to evaluate the quality of the generated questions, which is not directly associated with the target-domain QA performance and may select questions that are semantically-mismatched or ask about a simple fact. In contrast, our Question Value Estimator (QVE) learns to select useful questions with targetdomain QA performance gain as direct feedback.

model on the target domain. In practice, however, the generated questions are often of low quality, such as being semantically mismatched with their paired answers or asking about simple facts (Figure 1). Including all such questions for QA training is less likely to bring substantial improvements. This inspires us to study a crucial problem:

Given a set of target-domain synthetic QA pairs, how to select high-quality ones that are useful to improve target-domain QA training?

To address the problem, Alberti et al. (2019) propose the Roundtrip Consistency (RTC) method, which filters<sup>3</sup> questions that cannot be correctly answered by a pretrained QA model. Other work (Shakeri et al., 2020) considers using the generation log likelihood by the QG model (LM Score) as

<sup>&</sup>lt;sup>1</sup>Our source code will be released upon acceptance.

<sup>&</sup>lt;sup>2</sup>Large-scale training data are typically 60-100K in size.

<sup>&</sup>lt;sup>3</sup>We interchangeably use "filter" (noisy/low-quality questions) and "select" (useful/high-quality questions).

a metric to filter noisy questions (Figure 1, top). Although these filtering techniques have been shown to improve the question quality to some extent (Rennie et al., 2020), they are not directly optimized for *selecting questions that can improve QA performance on the target domain.* For example, some useful but difficult questions (e.g., the last example in Figure 1) may be filtered by the Roundtrip method, since they cannot be answered correctly by the pretrained QA model. However, these questions are often crucial to further improving QA performance when added into training.

059

060

061

065

067

072

073

075

081

087

089

094

100

101

103

105

106

107

108

109

In this paper, we propose a *question value estimator (QVE)* (Figure 1, middle) to select questions that can improve QA performance on the target domain. QVE takes in generated QA examples and outputs real-valued scores (i.e., question values), which are expected to represent the usefulness of generated questions in terms of improving targetdomain QA performance. However, training the QVE model towards this goal is challenging due to the lack of supervision (i.e., true question values).

To solve the problem, we propose to train the QVE with direct QA feedback from the target domain. Intuitively, if a batch of synthetic questions (when used for training) leads to increasing accuracy of the target-domain QA model, QVE should assign high values to them; the more the accuracy increases, the higher the question values should be. Thus, we optimize QVE with the *target-domain QA* performance gain after adding the selected questions into training. More formally, given the discrete and non-differentiable question selection process, we formulate the question selection of QVE as a reinforcement learning (Williams, 1992) problem (Figure 2). The QVE receives a batch of synthetic samples each time and learns to select highquality ones based on their estimated values. The selected samples are then used to train the targetdomain QA model, with the resulting performance gain (on the available target-domain annotations) as the reward. The reward guides the optimization of QVE such that it will eventually make proper question value estimation and selection.

To evaluate the QVE model, we instantiate the QG and the QA model based on the pretrained BART (Lewis et al., 2020) and BERT (Devlin et al., 2019), respectively. By carrying out comprehensive experiments on four commonly-used reading comprehension datasets (Trischler et al., 2017; Joshi et al., 2017; Yang et al., 2018; Kwiatkowski

et al., 2019), we show that: (1) our QVE model trained with the target-domain QA feedback substantially outperforms the question selection techniques trained without direct QA feedback (Alberti et al., 2019; Shakeri et al., 2020). (2) When using our QVE model to select synthetic questions, QA models can achieve comparable performance to fully-supervised baselines while using only 15% of the full target-domain annotations, which indicates that our method can greatly alleviate human annotation effort in practice. (3) To understand why QVE brings superior improvement, we conduct human evaluation and find that QVE can better identify semantically-matched and difficult questions. 110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

## 2 Related Work

Domain Adaptation of Question Answering. In this field, some work (Wiese et al., 2017; Chung et al., 2018; Hazen et al., 2019; Cao et al., 2020) assumes that target-domain annotated questions are available, however, manually creating questions is costly. Therefore, another line of research work (Golub et al., 2017; Wang et al., 2019; Lee et al., 2020; Shakeri et al., 2020) investigates a domain adaptation setting where annotated questions are not available on the target domain. A commonlyadopted approach of this line is to leverage a neural question generation (OG) model (Du et al., 2017; Zhou et al., 2017; Sun et al., 2018; Zhao et al., 2018; Nema et al., 2019; Tuan et al., 2020) to automatically synthesize questions given unlabeled contexts (Du and Cardie, 2018; Zhang and Bansal, 2019; Wang et al., 2019; Liu et al., 2020; Golub et al., 2017; Wang et al., 2019; Lee et al., 2020; Shakeri et al., 2020; Yue et al., 2021); see more discussions in Section 3. However, it is very challenging to achieve satisfying performance without any target annotations. In our work, we study semisupervised domain adaptation of QA, and assume a small number of target annotations are available, which can greatly help models adapt to the target domain while requiring minimal human effort.

Unsupervised and Semi-supervised QA are two other research topics relevant to our work (Fabbri et al., 2020; Li et al., 2020; Lewis et al., 2019; Dhingra et al., 2018). Unlike domain adaptation, these two settings do not assume the existence of the "source domain" and synthesize cloze-style questions via rule-based methods for building QA models. Since rule-based QG methods typically have much worse performance than neural ones

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

254

207

208

209

160 161

162

164

166

167

168

169

170

171

172

173

174

175

176

177

178

179

181

183

184

185

188

189

191

192

195

196

197

198

199

201

206

(pretrained on the source data), we do not compare with these two lines of research in experiments.

## **3** Background

#### 3.1 Domain Adaptation of QA via QG

Semi-supervised Domain Adaptation. We study the semi-supervised domain adaptation of *extractive* question answering, where the source-domain and a small number<sup>4</sup> of target-domain QA annotations are provided. Formally, we denote the sourcedomain QA dataset as  $D^{s} = \{(c_{i}^{s}, q_{i}^{s}, a_{i}^{s})\}_{i=1}^{N}$ , where large-scale tuples of context  $c_{i}^{s}$ , question  $q_{i}^{s}$ , and answer  $a_{i}^{s}$  are available. For the target domain, only a small set of annotated QA pairs  $D^{t} = \{(c_{j}^{t}, q_{j}^{t}, a_{j}^{t})\}_{j=1}^{M}$  are available ( $M \ll N$ ). Since unlabeled contexts are easy to collect, we assume that they are largely available:  $C^{t} = \{c_{l}^{t}\}_{l=1}^{L}$  $(L \gg M)$ . The task is to build a QA model that can accurately answer questions on the target domain, given  $D^{s}$ ,  $D^{t}$ , and  $C^{t}$ .

**Domain Adaptation via Question Generation.** Given the lack of large-scale target-domain annotations, an intuitive approach to domain adaptation is first synthesizing target-domain QA data  $D_{syn}^{t} = \{(c_l^{t}, q_l^{t}, a_l^{t})\}_{l=1}^{L}$  automatically from the unlabeled contexts  $C^{t}$ , and then training a targetdomain QA model on the synthetic  $(D_{syn}^{t})$  and the small-size annotated  $(D^{t})$  target-domain data. In such an approach, a question generator (QG)  $g_{\phi}$ is first pretrained on the source training data and further finetuned on the available target-domain annotated QA pairs. A well-trained QG model then takes target-domain context-answer pairs as input to generate a question:  $q_l^{t} = g_{\phi}(c_l^{t}, a_l^{t})$ .

> Although this approach has been shown promising, in practice, its effectiveness is restricted by the quality of synthetic questions. Thus, learning to select ones that can lead to a better target-domain QA model becomes a crucial problem.

> With respect to how to obtain  $a_l^t$  for QG, in this paper, we assume an answer  $a_l^t$  (i.e., a text span in the context  $c_l^t$ ) is given, following Du et al. (2017). When the answer  $a_l^t$  is not given, it can be extracted from the given context by using an entity recognition tool (Du and Cardie, 2018), a classifier (Puri et al., 2020) or a seq2seq model (Shakeri et al., 2020). Note that noise caused by such answer extraction tools will further lower the overall quality

of the synthesized questions. In this paper, we focus on how to select useful synthetic questions in general (i.e., those questions can be synthesized by any QG process) and assume answers are given for simplicity.

## 3.2 Synthetic Question Selection

Given the synthetic target-domain QA data  $D_{syn}^{t}$ , the task is to select high-quality pairs from  $D_{syn}^{t}$ that are useful to improve target-domain QA training. Such a selection decision is often made based on some scores that can indicate the quality of the pairs. For example, Roundtrip filtering (Alberti et al., 2019) selects questions based on the extracted answer's correctness by a pretrained QA model. Similarly, LM filtering (Shakeri et al., 2020) selects questions with high log-likelihood scores in the generation. However, these scores do not directly serve the goal of improving target-domain QA training. Inspired by recent research on data selection in the machine learning community (Ghorbani and Zou, 2019; Jia et al., 2019; Yoon et al., 2020), we propose a new idea of training a *question* value estimator, which predicts the usefulness of a synthetic question for target-domain QA.

## **4** Question Value Estimator (QVE)

Formally, we design a question value estimator (QVE),  $e_{\gamma}$ , which takes in a synthetic QA example  $(c_l, q_l, a_l)$  (for simplicity, we omit the superscript t) and outputs a score indicating its "value," i.e.,  $v_l = e_{\gamma}(c_l, q_l, a_l)$ . The "value" can imply "the potential for improving the target-domain QA performance when being used as a training sample". With this score, one can select most useful synthetic examples for the target-domain QA training.

We use a BERT model as the backbone of the QVE. Specifically, we concatenate the context, question and answer as input to the QVE, and use BERT to encode the sequence (Devlin et al., 2019).

$$\mathbf{h} = \text{BERT} \left[ \langle \text{CLS} \rangle q \langle \text{ANS} \rangle a \langle \text{SEP} \rangle c \right]$$

where q, a, c represent the question, answer, and context, respectively.  $\mathbf{h} \in \mathbb{R}^{H}$  denotes the hidden representation of the input sequence derived from the "<CLS>" token. <ANS> and <SEP> are two special tokens used as delimiters.

In our preliminary experiments, we find that adding the answer (start index and end index) probabilities  $(p_s, p_e)$  by a pretrained QA model as additional features to the hidden representation **h** can

<sup>&</sup>lt;sup>4</sup>In our experiments, we assume 1,000 target annotations available, which is around 1-1.5% of the original training data.

291

255

256

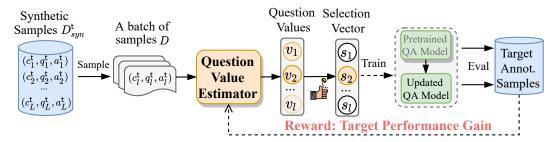


Figure 2: Illustration of QVE training based on the direct feedback from QA. Specifically, in the forward pass, QVE estimates the question values of a batch of synthetic questions and draws a Bernoulli sampling to select questions. The selected questions are then used to finetune a pretrained QA model. The performance gain (before and after the QA finetuning) on the target annotations is calculated as the reward for REINFORCED QVE training.

accelerate the QVE training convergence and lead to better performance. Thus, we add these two features  $(p_s, p_e)$  followed by linear transformations of the original hidden representation, and then build a linear classifier to output the question value.

$$\mathbf{h}' = \sigma(W_2\sigma(W_1\mathbf{h} + b_1) + b_2)$$
$$\mathbf{h}'' = \sigma(W_3(\mathbf{h}' \oplus p_s \oplus p_e) + b_3)$$
$$v_l = W_4\mathbf{h}'' + b_4$$

where  $W_1 \in \mathbb{R}^{H_1 \times H}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{H_3 \times H_2}, W_4 \in \mathbb{R}^{H_3}, b_1 \in \mathbb{R}^{H_1}, b_2 \in \mathbb{R}^{H_2}, b_3 \in \mathbb{R}^{H_3}, b_4 \in \mathbb{R}$  are trainable parameters of linear layers.  $\sigma$  is the activation function tanh.

Learning such a question value estimator is challenging because we do not have direct supervision on the true value or usefulness of a synthetic question. We discuss two straightforward baselines to train QVE in Section 4.1, and a more advanced one based on reinforcement learning in Section 4.2.

### 4.1 QVE Training: Two Baselines

Binary Classifier: One straightforward solution is to treat QVE as a binary classifier and train it based on the human-annotated (positive) and the machine-synthesized (negative) OA pairs. Given the scarcity of target-domain data, we first pretrain the classifier on the source domain and then finetune it on the target domain. More specifically, we train a QG model on 70% of the source training data and generate synthetic questions on the remaining 30% of the source training contexts. The generated questions and the source-domain annotated questions are used to train this binary classifier. The classifier is then finetuned based on the small set of target-domain annotations (positive) and the samples synthesized on the same targetdomain contexts (negative).

However, not all of the generated questions are bad. Simply treating all synthetic samples as negatives may mislead the classifier. Thus, we loose this assumption and introduce a ranking baseline. **Ranking Baseline**: We assume that the quality of human-annotated questions is not inferior than that of machine-synthesized ones. Thus, we train QVE based on a ranking triplet loss defined as follows:

$$L_r = \sum \max(0, m + v_s - v_h)$$
<sup>298</sup>

292

293

294

295

296

297

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

where  $v_s, v_h$  are the estimated question values of the machine-synthesized sample and humanannotated sample. m is set to 0.15 as the margin.

The two baseline methods have two obvious drawbacks: (1) they are trained to differentiate between human-annotated and machine-synthesized samples, which is mismatched with our goal of selecting high-quality samples *among machine-synthesized data*; (2) similar as (Alberti et al., 2019; Shakeri et al., 2020), the two baselines are *not* trained with direct signals that can represent the usefulness of a synthetic question. In the next section, we will introduce a task-specific training method, which directly uses the target-domain QA feedback to optimize QVE.

## 4.2 QVE Training: Direct Feedback from QA

A well-trained QVE is expected to assign high values to synthetic questions that can improve the target-domain QA performance. Therefore, an intuitive way to measure the value of a synthetic question is to consider the downstream QA performance gain (on the available target annotations) before and after this question is included in the training set. However, this "leave-one-out" formulation is computationally expensive and time-consuming, given that it can estimate the value of only one single synthetic question in each forward pass. In light of this challenge, we instead estimate question values in a *batch-wise* fashion. Algorithm 1 and Figure 2 describe the learning process.

351

353

354

9

361

362 363 364

365 366

367 368

369

370

371 372

373

374

376

378

379

381

383

384

386

**Algorithm 1** QVE REINFORCED Training

**Input**: pretrained QA model  $f_{\theta}$ ; target synthetic QA pairs  $D_{syn}^{t}$ ; small target annotations  $D^{t}$ . Hyperparameters: outer iterations  $I_o$ , outer batch size  $B_o$ , inner iterations  $I_n$ , inner batch size  $B_n$ , QVE learning rate  $\alpha_o$ , QA learning rate  $\alpha_n$ . **Output**: QVE  $e_{\gamma}$ .

1: Randomly initialize  $e_{\gamma}$ 

2: Store  $\theta_0 \leftarrow \theta$  (pretrained QA checkpoint) 3: for outer iteration = 1 to  $I_o$  do ▷ ① Sample a batch of synthetic QA pairs: 4: Sample  $\mathcal{D} = \{(c_l, q_l, a_l)\}_{l=1}^{B_o}$  from  $D_{syn}^{t}$ 5:  $\triangleright$  (2) *Estimate question values:* 6:  $\mathcal{V} = e_{\gamma}(\mathcal{D})$ 7: ▷ ③ Sample selection vector: 8:  $\mathcal{S} \sim \text{Bernoulli}(\mathcal{V})$ 9:  $\triangleright$  ④ Update QA on selected samples: 10: for inner iteration = 1 to  $I_n$  do 11: Sample  $\{(c_l, q_l, a_l)\}_{l=1}^{B_n} \sim \mathcal{D}$  $\theta \leftarrow \theta - \frac{\alpha_n}{B_n} \sum_{l=1}^{B_n} s_l \cdot \nabla_{\theta} \mathcal{L}_{qa}$ 12: 13: end for 14: 15:  $\triangleright$  (5) Calculate QA gain as QVE reward:  $r_{qve} = \text{reward}_{f\theta_0}, f_{\theta_0}, D^t)$ 16:  $\triangleright$  (6) Update QVE based on Eq. 1: 17: 18:  $\gamma \leftarrow \gamma - \alpha_o \cdot \nabla_\gamma \mathcal{L}_\gamma$ Reset  $\theta \leftarrow \theta_0$ 19: 20: end for 21: return  $e_{\gamma}$ 

Generally speaking, we frame the QVE model learning as a reinforcement learning problem (Williams, 1992), and stimulate QVE to assign higher values to more useful questions by using performance-driven rewards. Specially, for a batch of synthetic examples  $\mathcal{D} = \{(c_l, q_l, a_l)\}_{l=1}^{B_o}$  in the outer training iteration (Line 4-5), the QVE model selects a subset of examples that are most likely to boost the QA performance on the target domain, based on its judgment on their values.

Mathematically, the decision-making outcome is represented by the selection vector S =  $(s_1, s_2, ..., s_{B_o})$ , where  $s_l \in \{0, 1\}$   $l = 1, ..., B_o$ (Line 6-9). The whole batch-level decision making policy  $\pi_{\gamma}$  is described as follows:

$$v_l = e_{\gamma}(c_l, q_l, a_l)$$

329

331

336

337

341

342

345

347

$$s_l \sim \text{Bernoull}(v_l)$$
$$\pi_{\gamma}(\mathcal{S}|\mathcal{D}) = \prod_{l=1}^{B_o} [v_l^{s_l} \cdot (1 - v_l)^{1 - s_l}],$$

where the selection of a certain example  $(c_l, q_l, a_l)$ 

is formulated as sampling from a Bernoulli distribution of probability  $v_l$  (i.e., its estimated question value). We adopt the Bernoulli sampling based on the estimated value  $v_l$  instead of setting a hard threshold to encourage the policy exploration.

The model is rewarded based on how much performance gain the selected examples could bring when they are used to train the target-domain QA model. To this end, we finetune the QA model  $f_{\theta}$ on the selected batch samples based on  $\mathcal{L}_{qa}$ , which typically is a cross-entropy loss:

$$\mathcal{L}_{qa} = -\sum_{l}^{B_o} \log P(a_l | q_l, c_l; \theta)$$
35

In practice, to stabilize the QVE training, we choose a large outer batch size  $B_o$  in each outer training iteration. For finetuning the QA model, we pick a relatively smaller inner batch size  $B_n$  and repeat the training for  $I_n$  times, such that the QVEselected samples are fully utilized (Line 10-14).

The reward  $r_{qve}$  is defined as the QA performance gain on the target-domain annotations  $D^{t}$ before  $(f_{\theta_0})$  and after  $(f_{\theta})$  finetuning (Line 15-16),

$$r_{qve} = \text{reward}_{f\theta_0}, f_{\theta}, D^{\mathsf{t}})$$

where reward fn is Exact Match (EM) gain<sup>5</sup>.

Given the discrete and non-differentiable question selection process, we update the QVE model using the REINFORCE algorithm (Williams, 1992). Mathematically, we aim to minimize:

$$\mathcal{L}_{\gamma} = - \mathop{\mathbb{E}}_{\mathcal{S} \sim \pi_{\gamma}(\cdot | \mathcal{D})} [r_{qve}].$$
 379

The gradient of the loss function is derived as:

$$\nabla_{\gamma} \mathcal{L}_{\gamma} = - \mathop{\mathbb{E}}_{\mathcal{S} \sim \pi_{\gamma}} [r_{qve} \nabla_{\gamma} \log \pi_{\gamma}(\mathcal{S}|\mathcal{D})]$$
  
$$= - \mathop{\mathbb{E}}_{\mathcal{S} \sim \pi_{\gamma}} [r_{qve} \nabla_{\gamma} \sum_{l=1}^{B_{o}} \log[v_{l}^{s_{l}} (1 - v_{l})^{1 - s_{l}}]].$$
(1) 377

Notably, to mitigate the instability in reinforcement learning, we reset the QA model to its pretrained checkpoint at the end of each outer iteration (Line 19), and keep the pretrained QG model unchanged.

After training QVE, we can use it to calculate the question value for all the synthetic questions on the target domain. Then we can select top K%synthetic QA pairs as the training corpus to train the target-domain QA model.

<sup>&</sup>lt;sup>5</sup>We also tried F1 gain and loss drop as the reward\_fn and the EM gain is slightly better than the other two.

## **5** Experimental Setup

#### 5.1 Datasets

387

389

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

494

425

426

427

428

429

430

431

432

433

We use datasets in the MRQA 2019 Shared Task (Fisch et al., 2019), a popular challenge focusing on generalization in reading comprehension. Specifically, following Shakeri et al. (2020), we use **SQuAD 1.1** (Rajpurkar et al., 2016) as the *sourcedomain* dataset. For the *target-domain* datasets, we consider **NewsQA** (Trischler et al., 2017), **Natural Questions (NQ)** (Kwiatkowski et al., 2019), **HotpotQA** (Yang et al., 2018) and **TriviaQA** (Joshi et al., 2017) as they are commonly used and have sufficient contexts for the QG model to generate synthetic samples. Since there is no test set available for each dataset, we use the original dev set as the test set. Detailed descriptions of each dataset are in Appendix A.

For the target-domain datasets, we assume all the contexts and n annotated QA pairs in the original training sets are available for training. We set n = 1000 (about 1%-1.5% of original training sets) as default and discuss the impact of n in Section 6.2.

#### 5.2 Implementation Details

We implement models using the Hugging Face transformer (Wolf et al., 2020) library. We instantiate the QA model with BERT-base-uncased (Devlin et al., 2019), and the QG model with BART-base (Lewis et al., 2020). For QVE, we use a 4-layer transformer model instead of BERT-base since: (1) a smaller model allows a larger outer batch size  $B_o$  in training (given the GPU memory constraint<sup>6</sup>), which can also lead to more steady and efficient training; (2) we do not observe significant improvement when using BERT-base model in our preliminary study. We set  $H_1 = H_3 = H = 512$  and  $H_2 = 64$  for linear layers of QVE. For QVE training (Algorithm 1), we set  $I_o = 2000, B_o = 120, I_n = 20, B_n = 12$ , and  $\alpha_o = \alpha_n = 3e^{-5}$ . When training (finetuning) QA and QG models (either on source or target domain), we set training epochs as 3 and other hyperparameters as default in the transformer library.

### 5.3 Comparing Baselines

We evaluate the following QA models built on different training data:

(1) **Source Only Baseline**: we train a QA model on the source-domain data.

|          | Different Filtering Methods |        |        |        |  |  |  |  |
|----------|-----------------------------|--------|--------|--------|--|--|--|--|
| Dataset  | NoFilter                    | RTC    | LM     | QVE    |  |  |  |  |
| NewsQA   | 74,160                      | 33,756 | 44,485 | 44,485 |  |  |  |  |
| NQ       | 104,071                     | 62,888 | 62,443 | 62,443 |  |  |  |  |
| HotpotQA | 72,928                      | 46,273 | 43,757 | 43,757 |  |  |  |  |
| TriviaQA | 61,688                      | 26,361 | 37,013 | 37,013 |  |  |  |  |

Table 1: Number of synthetic examples selected by different methods. NoFilter: QG baseline (no filtering); RTC: Roundtrip Filtering; LM: LM Filtering.

(2) Source + Target Annotations Baseline: we further finetune the "(1) Source Only Baseline" on the available target annotated QA pairs.

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

(3) QG Baseline (no filtering): we first pretrain a QG model on the source-domain data and finetune it on the available target annotations. The QG model is then used to generate synthetic QA samples on the target contexts. We finetune a QA model sequentially on all available data with the order of "source $\rightarrow$ target synthetic $\rightarrow$ target annotated"<sup>7</sup>. The same QA finetuning strategy will also be used for (4)-(8).

(4) RoundTrip Filtering (Alberti et al., 2019): we use the "(2) Source + Target Annotation Baseline" to extract answers for target synthetic questions and select the ones, whose extracted answers are correct, as the target synthetic training corpus.

(5) LM Filtering (Shakeri et al., 2020): we use the log likelihood scores of synthetic questions produced by the QG model in (3) as the filtering criterion. We select top K% samples as the target synthetic training corpus.

(6) **QVE** (binary classifier): we train QVE as a binary classifier (Section 4.1) and then use it to select top K% target synthetic samples.

(7) **QVE** (**ranking baseline**): we train QVE based on a ranking function (Section 4.1), and then use it to select top K% synthetic samples.

(8) QVE (RL): we train QVE based on the direct feedback from target annotations using RL (Section 4.2), and then use it to select top K% target synthetic samples.

(9) Fully-supervised Baseline: we train a QA model on the original target training data. Note that we report the fully-supervised performance here only as the reference and (1)-(8) are not directly comparable to this.

The number of the selected synthetic examples of RoundTrip Filtering is determined by the QA model and varies for each dataset. For LM Filter-

<sup>&</sup>lt;sup>6</sup>We train all models on 4 GTX 1080 Ti 11GB GPUs.

 $<sup>^{7}</sup>$ We also try combining all the data into one training file to finetune the QA model but the performance is lower than the current strategy.

| No.  | Methods                                     | NewsQA |      | NQ   |      | HotpotQA |      | TriviaQA |      |
|------|---------------------------------------------|--------|------|------|------|----------|------|----------|------|
| INO. |                                             | EM     | F1   | EM   | F1   | EM       | F1   | EM       | F1   |
| (1)  | Source Only Baseline                        | 40.2   | 56.2 | 45.2 | 59.1 | 43.3     | 60.3 | 49.5     | 59.3 |
| (2)  | Source + Target Annotations Baseline        | 43.7   | 59.8 | 54.2 | 68.2 | 51.7     | 69.2 | 55.7     | 62.0 |
| (3)  | QG Baseline (no filtering)                  | 45.3   | 60.7 | 60.5 | 72.6 | 52.9     | 70.0 | 58.3     | 63.9 |
| (4)  | +RoundTrip Filtering (Alberti et al., 2019) | 45.4   | 60.8 | 58.6 | 71.2 | 53.9     | 70.5 | 58.7     | 64.4 |
| (5)  | +LM Filtering (Shakeri et al., 2020)        | 45.3   | 61.2 | 60.0 | 72.1 | 53.9     | 70.5 | 56.0     | 61.7 |
| (6)  | +QVE (binary classifier)                    | 45.2   | 60.7 | 60.1 | 72.3 | 53.7     | 70.4 | 58.2     | 63.8 |
| (7)  | +QVE (ranking baseline)                     | 45.8   | 61.3 | 60.6 | 72.8 | 53.9     | 70.9 | 58.4     | 63.9 |
| (8)  | +QVE (RL)                                   | 46.9   | 61.9 | 61.3 | 73.2 | 54.9     | 71.8 | 61.3     | 66.9 |
| (9)  | Fully-supervised Baseline                   | 50.0   | 64.6 | 65.8 | 78.1 | 56.8     | 73.9 | 64.6     | 70.3 |

Table 2: Semi-supervised domain adaptation performance of different models where 1,000 target-domain annotations (around 1-1.5% of the original training data) are used.

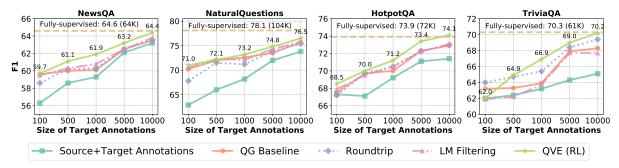


Figure 3: Impact of the number of target annotated QA pairs. We also show the fully-supervised performance (and #train) as the reference. With 10K target annotations (around 15% of the full training set), our method can achieve comparable performance to the supervised ones (as shown at the top of each sub-figure).

ing and QVE, we select top K% (K=60) samples among all synthetic ones and discuss the impact of the synthetic dataset size in Appendix B. We show the statistics of filtered datasets in Table 1.

## 6 Results

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

## 6.1 Overall Results

We first discuss the domain adaptation results on the 4 target-domain QA datasets under semisupervised setting where n = 1,000 target-domain QA examples are available. Table 2 shows the overall results of different methods. We summarize key findings as follows:

(1) Compared with RoundTrip and LM Filtering, our QVE (RL) achieves the best performance. This is because both baselines are not specifically trained to select useful examples for improving QA performance on the target domain. Our QVE, on the contrary, is trained with a signal that directly reflects the QA performance, which can more accurately estimate the question value and select useful pairs for target-domain QA.

495 (2) Two QVE baselines (binary classifier and rank496 ing baseline) can select some useful questions and
497 achieve comparable performance with RoundTrip
498 and LM Filtering. However, due to the lack of di-

rect QA evaluation feedback, they underperform QVE (RL), which demonstrates the usefulness of the QA feedback during training QVE.

## 6.2 How many target QA pairs do we need?

In Table 2, we showed that with n (n=1,000) target annotated QA pairs and the selected high-quality synthetic QA pairs, we can finetune a better QA model on the target domain. In this section, we discuss the influence of n on the target-domain QA performance. The results are shown in Figure 3, and interesting findings include:

(1) In general, the performance of all models improves as more target annotations are used. This is intuitive as more annotated pairs can improve both QA and QG training. With a better QG model, the quality of the synthetic questions is improved, which could also lead to better QA models.

(2) Our QVE model can often outperform the QG baseline and the filtering baselines. With an optimization objective considering the downstream QA performance, QVE can select more useful questions for improving target-domain QA.

(3) The improvement of our QVE compared with baselines is usually larger when more annotated QA pairs are available. This is because our QVE training (with RL) relies on the QA feedback based

| Satura         | Methods         | NQ   |      | HotpotQA                                                                                          |      |  |
|----------------|-----------------|------|------|---------------------------------------------------------------------------------------------------|------|--|
| Setups         | wiethous        | EM   | F1   | EM<br>46.2<br>54.3<br>55.5<br>55.9<br>55.7<br><b>56.3</b><br>43.3<br>51.7<br>53.2<br>54.1<br>54.2 | F1   |  |
|                | Source Only     | 50.7 | 65.0 | 46.2                                                                                              | 64.0 |  |
|                | + Target Annot. | 58.7 | 72.1 | 54.3                                                                                              | 72.2 |  |
| QA:Large Model | + QG Baseline   | 61.6 | 73.4 | 55.5                                                                                              | 72.5 |  |
| QG:Base Model  | + Roundtrip     | 59.8 | 71.9 | 55.9                                                                                              | 72.8 |  |
|                | + LM Filtering  | 60.6 | 72.5 | 55.7                                                                                              | 72.7 |  |
|                | + QVE (RL)      | 62.4 | 74.5 | 56.3                                                                                              | 73.4 |  |
|                | Source Only     | 45.2 | 59.1 | 43.3                                                                                              | 60.3 |  |
|                | + Target Anno.  | 54.2 | 68.2 | 51.7                                                                                              | 69.2 |  |
| QA:Base Model  | + QG Baseline   | 61.0 | 72.8 | 53.2                                                                                              | 70.9 |  |
| QG:Large Model | + Roundtrip     | 59.9 | 71.7 | 54.1                                                                                              | 71.1 |  |
|                | + LM Filtering  | 60.6 | 72.2 | 54.2                                                                                              | 71.2 |  |
|                | + QVE (RL)      | 62.1 | 73.8 | 55.2                                                                                              | 72.0 |  |

Table 3: Results on larger capacity QG and QA models.

on the available annotated pairs. With more annotated pairs, the feedback can be more accurate, thus leading to a better QVE for selecting more useful synthetic questions.

(4) With 10,000 (around 15% of the original training set) target annotations and the synthetic questions selected by OVE, we can achieve comparable performance with the fully-supervised baseline. This indicates that one can save more annotation budgets when building a target-domain QA model based on our QVE in practice.

#### **Experiments with Larger Models** 6.3

The results presented in the previous sections are based on BERT-base and BART-base. In this section, we test whether our QVE can still be effective when working with larger models, and select BERT-Large and BART-Large as QA and QG model respectively. When changing the QA (QG) model to its larger alternative, we keep the other one as the base model to better show the difference. We use NaturalOuestions (NO) and HotpotOA as representative datasets, and show results on them (with 1,000 target annotations). As shown in Table 3, our QVE model can still help improve the performance for larger instantiations of QG/QA.

#### Human Study: Why can QVE help QA? 6.4

In this section, we aim to gain a better understanding of why QVE helps QA and verify that QVE selects more semantically matched and non-trivial questions, thus benefiting downstream QA.

Since automatic metrics cannot often reflect the actual quality of the question selections, we sample 50 generated examples from each target-domain dataset (200 in total), and ask three human annotators to label whether a generated OA pair is semantically matched (i.e., can be selected to train QA) and (if yes) whether it asks about a simple

| Methods      | Sema | ntically | -Matched | Non-trivial |      |      |  |
|--------------|------|----------|----------|-------------|------|------|--|
| Wiethous     | Р    | R        | F1       | Р           | R F1 |      |  |
| RoundTrip    | 88.9 | 60.6     | 72.1     | 82.6        | 47.5 | 60.3 |  |
| LM Filtering | 86.7 | 65.0     | 74.3     | 78.9        | 51.7 | 62.5 |  |
| QVE(RL)      | 88.9 | 70.0     | 78.3     | 83.3        | 59.3 | 69.3 |  |

Table 4: Agreement with question selection by humans.

fact. To lower the annotation bias in determining whether a generated question asks about a simple fact or not, we provide the ground-truth question (the question in the original dataset created by humans) as a reference. If the generated question is simpler than the ground truth, then it would be marked as "trivial"; otherwise, it is a "non-trivial" one. Three annotators work independently and we adopt the majority vote for deciding the final labels of a generated QA pair (if disagreement appears).

We calculate the precision, recall and F1 between predictions<sup>8</sup> by each filtering method and human labels (for both "semantically matched" and "non-trivial"). As shown in Table 4, though three methods obtain a similar precision on all sampled questions, our method has a better recall, especially on the "non-trivial" questions. This means that our method can select more semantically matched and non-trivial questions, which explains why it leads to better QA performance. We also show some real cases in Figure 1 to further illustrate this point. For example, our QVE selects "What was the nickname given to the woman who allegedly provided call girls for prostitution?" while the baselines do not pick this semantically matched and nontrivial question. For another example, "Who is the founder of CNN", both baselines select it while our QVE filters it out since such a simple question would probably not help further improve QA.

#### 7 Conclusion

8

We propose a question value estimator to estimate the usefulness of synthetic questions and select useful ones for improving target-domain QA training. We optimize QVE with the target-domain QA performance gain after adding the selected questions into training. Our comprehensive experiments demonstrate the superiority of QVE compared with other question selection methods. Additionally, using the synthetic questions selected by QVE and only around 15% of the human annotated data on each target domain, we can achieve comparable performance to the fully-supervised baselines.

545

549

550

551

553

554

555

557

558

559

525

526

527

595

596

597

598

599

600

601

602

603

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

582

583

584

585

586

587

<sup>&</sup>lt;sup>8</sup>We treat it as a binary classification problem here: if a question is selected, the prediction is 1; 0 otherwise.

### References

604

605

606

610

611

612

615

616

617

618

619

622

623

624

625

631

634

635

637

641

642

643

647

649

650

- Chris Alberti, Daniel Andor, Emily Pitler, Jacob Devlin, and Michael Collins. 2019. Synthetic QA corpora generation with roundtrip consistency. In *ACL'19*, pages 6168–6173. Association for Computational Linguistics.
  - Yu Cao, Meng Fang, Baosheng Yu, and Joey Tianyi Zhou. 2020. Unsupervised domain adaptation on reading comprehension. In *AAAI'20*.
- Yanda Chen, Md. Arafat Sultan, and Vittorio Castelli. 2020. Improved synthetic training for reading comprehension. *CoRR*, abs/2010.12776.
- Yu-An Chung, Hung-Yi Lee, and James Glass. 2018. Supervised and unsupervised transfer learning for question answering. In *NAACL-HLT'18*, pages 1585–1594.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of deep bidirectional transformers for language understanding. In *NAACL-HLT'19*, pages 4171–4186. Association for Computational Linguistics.
- Bhuwan Dhingra, Danish Danish, and Dheeraj Rajagopal. 2018. Simple and effective semi-supervised question answering. In *NAACL'18*, pages 582–587.
- Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified language model pre-training for natural language understanding and generation. In *NeurIPS'19*, pages 13042– 13054.
- Xinya Du and Claire Cardie. 2018. Harvesting paragraph-level question-answer pairs from wikipedia. In *ACL'18*, pages 1907–1917.
- Xinya Du, Junru Shao, and Claire Cardie. 2017. Learning to ask: Neural question generation for reading comprehension. In *ACL'17*, pages 1342–1352.
- Alexander Richard Fabbri, Patrick Ng, Zhiguo Wang, Ramesh Nallapati, and Bing Xiang. 2020. Templatebased question generation from retrieved sentences for improved unsupervised question answering. In ACL'20, pages 4508–4513.
- Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Danqi Chen. 2019. MRQA 2019 shared task: Evaluating generalization in reading comprehension. In *MRQA@EMNLP'19*, pages 1– 13. Association for Computational Linguistics.
- Amirata Ghorbani and James Y. Zou. 2019. Data shapley: Equitable valuation of data for machine learning. In *ICML'19*, volume 97 of *Proceedings of Machine Learning Research*, pages 2242–2251. PMLR.
- David Golub, Po-Sen Huang, Xiaodong He, and Li Deng. 2017. Two-stage synthesis networks for transfer learning in machine comprehension. In *EMNLP'17*, pages 835–844. Association for Computational Linguistics.

Timothy J Hazen, Shehzaad Dhuliawala, and Daniel Boies. 2019. Towards domain adaptation from limited data for question answering using deep neural networks. *arXiv preprint arXiv:1911.02655*. 659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

707

709

712

- Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang, Dawn Song, and Costas J. Spanos. 2019. Towards efficient data valuation based on the shapley value. In *AISTATS'19*, volume 89 of *Proceedings* of Machine Learning Research, pages 1167–1176. PMLR.
- Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. 2017. Triviaqa: A large scale distantly supervised challenge dataset for reading comprehension. In *ACL'17*, pages 1601–1611. Association for Computational Linguistics.
- Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural questions: a benchmark for question answering research. *Trans. Assoc. Comput. Linguistics*, 7:452–466.
- Dong Bok Lee, Seanie Lee, Woo Tae Jeong, Donghwan Kim, and Sung Ju Hwang. 2020. Generating diverse and consistent QA pairs from contexts with information-maximizing hierarchical conditional vaes. In ACL'20, pages 208–224. Association for Computational Linguistics.
- Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: denoising sequence-to-sequence pretraining for natural language generation, translation, and comprehension. In *ACL'20*, pages 7871–7880. Association for Computational Linguistics.
- Patrick S. H. Lewis, Ludovic Denoyer, and Sebastian Riedel. 2019. Unsupervised question answering by cloze translation. In *ACL'19*, pages 4896–4910. Association for Computational Linguistics.
- Zhongli Li, Wenhui Wang, Li Dong, Furu Wei, and Ke Xu. 2020. Harvesting and refining questionanswer pairs for unsupervised qa. In *ACL'20*, pages 6719–6728.
- Bang Liu, Haojie Wei, Di Niu, Haolan Chen, and Yancheng He. 2020. Asking questions the human way: Scalable question-answer generation from text corpus. In *WWW'20*, pages 2032–2043.
- Preksha Nema, Akash Kumar Mohankumar, Mitesh M Khapra, Balaji Vasan Srinivasan, and Balaraman Ravindran. 2019. Let's ask again: Refine network for automatic question generation. In *EMNLP*-*IJCNLP'19*, pages 3305–3314.

- 714 715 718 719
- 724 725 726 727 728 730 731 732 733 734 735 736 737 738 739 740 741
- 743 744
- 747 748 749 750 751
- 753 754
- 755
- 758
- 759

- 765

- Raul Puri, Ryan Spring, Mohammad Shoeybi, Mostofa Patwary, and Bryan Catanzaro. 2020. Training question answering models from synthetic data. In EMNLP'20, pages 5811-5826. Association for Computational Linguistics.
- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100, 000+ questions for machine comprehension of text. In EMNLP'16, pages 2383-2392. The Association for Computational Linguistics.
- Steven J. Rennie, Etienne Marcheret, Neil Mallinar, David Nahamoo, and Vaibhava Goel. 2020. Unsupervised adaptation of question answering systems via generative self-training. In EMNLP'20, pages 1148-1157. Association for Computational Linguistics.
  - Siamak Shakeri, Cícero Nogueira dos Santos, Henghui Zhu, Patrick Ng, Feng Nan, Zhiguo Wang, Ramesh Nallapati, and Bing Xiang. 2020. End-to-end synthetic data generation for domain adaptation of question answering systems. In EMNLP'20, pages 5445-5460. Association for Computational Linguistics.
  - Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun Ma, and Shi Wang. 2018. Answer-focused and position-aware neural question generation. In EMNLP'18, pages 3930-3939. Association for Computational Linguistics.
- Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman, and Kaheer Suleman. 2017. Newsqa: A machine comprehension dataset. In Rep4NLP@ACL'17, pages 191-200. Association for Computational Linguistics.
- Luu Anh Tuan, Darsh J. Shah, and Regina Barzilay. 2020. Capturing greater context for question generation. In AAAI'20, pages 9065-9072. AAAI Press.
- Huazheng Wang, Zhe Gan, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, and Hongning Wang. 2019. Adversarial domain adaptation for machine reading comprehension. In EMNLP-IJCNLP'19, pages 2510-2520. Association for Computational Linguistics.
- Georg Wiese, Dirk Weissenborn, and Mariana Neves. 2017. Neural domain adaptation for biomedical question answering. In CoNLL'17, pages 281-289.
- Ronald J. Williams. 1992. Simple statistical gradientfollowing algorithms for connectionist reinforcement learning. Mach. Learn., 8:229-256.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art natural language processing. In EMNLP'20, pages 38-45, Online. Association for Computational Linguistics.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. 2018. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. In EMNLP'18, pages 2369-2380. Association for Computational Linguistics.

770

774

776

777

779

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

- Jinsung Yoon, Sercan Arik, and Tomas Pfister. 2020. Data valuation using reinforcement learning. In ICML'20, pages 10842-10851. PMLR.
- Zhenrui Yue, Bernhard Kratzwald, and Stefan Feuerriegel. 2021. Contrastive domain adaptation for question answering using limited text corpora. In EMNLP'21.
- Shiyue Zhang and Mohit Bansal. 2019. Addressing semantic drift in question generation for semi-supervised question answering. In EMNLP-IJCNLP'19, pages 2495-2509. Association for Computational Linguistics.
- Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa Ke. 2018. Paragraph-level neural question generation with maxout pointer and gated self-attention networks. In EMNLP'18, pages 3901-3910. Association for Computational Linguistics.
- Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming Zhou. 2017. Neural question generation from text: A preliminary study. In National CCF Conference on Natural Language Processing and Chinese Computing, pages 662–671. Springer.

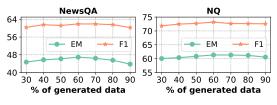


Figure A1: Impact of synthetic dataset size.

#### A Details of Datasets

799

801

803 804

805

817

818

820

821

Specifically, following Shakeri et al. (2020), we use **SQuAD 1.1** (Rajpurkar et al., 2016), a large reading comprehension dataset that consists of 100k questions on more than 500 articles from Wikipedia, as the *source-domain* dataset. For the *target-domain* datasets, we consider the following 4 datasets since they are commonly used and have sufficient contexts to train the models.

NewsQA (Trischler et al., 2017) consists of questions and answers based on a set of over 10k news
articles from CNN News.

Natural Questions (NQ) (Kwiatkowski et al., 2019) contains questions extracted from Google user search queries and passages from Wikipedia.
HotpotQA (Yang et al., 2018) is a multi-hop question answering dataset based on Wikipedia passages.

**TriviaQA** (Joshi et al., 2017) includes QA pairs authored by trivia enthusiasts, as well as evidence documents independently gathered from Web search results and Wikipedia articles.

## **B** Impact of Synthetic Dataset Size

In Figure A1, we show how the synthetic dataset 822 size (i.e., the number of selected QA pairs) impacts the QA performance, based on our QVE (RL) filtering. As we expect, at the beginning, the target QA performance improves when more synthetic data is added to the training set. However, the perfor-827 mance reaches the peak at 60-70% and then goes 828 down. This is reasonable since adding less valuable QA pairs from the noisy synthetic data will 830 hurt the QA model training. We suggest 60%-70% (50K-70K QA pairs) for setting the synthetic data 832 size in practical. 833