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Abstract

Synthesizing QA pairs with a question gener-001
ator (QG) on the target domain has become002
a popular approach for domain adaptation of003
question answering (QA) models. Since syn-004
thetic questions are often noisy in practice, ex-005
isting work adapts scores from a pretrained006
QA (or QG) model as criteria to select high-007
quality questions. However, these scores do008
not directly serve the ultimate goal of improv-009
ing QA performance on the target domain. In010
this paper, we introduce a novel idea of train-011
ing a question value estimator (QVE) that di-012
rectly estimates the usefulness of synthetic013
questions for improving the target-domain QA014
performance. By conducting comprehensive015
experiments, we show that the synthetic ques-016
tions selected by QVE can help achieve bet-017
ter target-domain QA performance, in compar-018
ison with existing techniques. We additionally019
show that by using such questions and only020
around 15% of the human annotations on the021
target domain, we can achieve comparable per-022
formance to the fully-supervised baselines.1023

1 Introduction024

Question answering (QA) systems based on pre-025

trained language models such as BERT (Devlin026

et al., 2019) have recently achieved promising027

performance in machine reading comprehension.028

However, neural QA systems trained on one do-029

main may not generalize well to another, leaving030

it challenging to deploy such systems on new do-031

mains that lack large-scale QA training data2. In032

this paper, we are interested in semi-supervised033

domain adaptation: we aim to build a target QA034

model with source-domain data and a small number035

of target-domain annotated QA pairs.036

Due to high annotation costs, existing work037

(Golub et al., 2017; Dong et al., 2019; Wang et al.,038

2019; Puri et al., 2020; Chen et al., 2020; Yue et al.,039

2021) proposes to synthesize target-domain QA040

pairs via neural question generation (QG) mod-041

els. The synthetic data are then used to train a QA042

1Our source code will be released upon acceptance.
2Large-scale training data are typically 60-100K in size.
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Figure 1: Existing work repurposes a pretrained QA
(or QG) model to evaluate the quality of the gener-
ated questions, which is not directly associated with the
target-domain QA performance and may select ques-
tions that are semantically-mismatched or ask about a
simple fact. In contrast, our Question Value Estima-
tor (QVE) learns to select useful questions with target-
domain QA performance gain as direct feedback.

model on the target domain. In practice, however, 043

the generated questions are often of low quality, 044

such as being semantically mismatched with their 045

paired answers or asking about simple facts (Fig- 046

ure 1). Including all such questions for QA training 047

is less likely to bring substantial improvements. 048

This inspires us to study a crucial problem: 049

Given a set of target-domain synthetic QA pairs, 050

how to select high-quality ones that are useful to 051

improve target-domain QA training? 052

To address the problem, Alberti et al. (2019) 053

propose the Roundtrip Consistency (RTC) method, 054

which filters3 questions that cannot be correctly 055

answered by a pretrained QA model. Other work 056

(Shakeri et al., 2020) considers using the genera- 057

tion log likelihood by the QG model (LM Score) as 058

3We interchangeably use “filter” (noisy/low-quality ques-
tions) and “select” (useful/high-quality questions).
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a metric to filter noisy questions (Figure 1, top). Al-059

though these filtering techniques have been shown060

to improve the question quality to some extent061

(Rennie et al., 2020), they are not directly opti-062

mized for selecting questions that can improve QA063

performance on the target domain. For example,064

some useful but difficult questions (e.g., the last ex-065

ample in Figure 1) may be filtered by the Roundtrip066

method, since they cannot be answered correctly067

by the pretrained QA model. However, these ques-068

tions are often crucial to further improving QA069

performance when added into training.070

In this paper, we propose a question value esti-071

mator (QVE) (Figure 1, middle) to select questions072

that can improve QA performance on the target073

domain. QVE takes in generated QA examples and074

outputs real-valued scores (i.e., question values),075

which are expected to represent the usefulness of076

generated questions in terms of improving target-077

domain QA performance. However, training the078

QVE model towards this goal is challenging due to079

the lack of supervision (i.e., true question values).080

To solve the problem, we propose to train the081

QVE with direct QA feedback from the target do-082

main. Intuitively, if a batch of synthetic questions083

(when used for training) leads to increasing accu-084

racy of the target-domain QA model, QVE should085

assign high values to them; the more the accuracy086

increases, the higher the question values should be.087

Thus, we optimize QVE with the target-domain QA088

performance gain after adding the selected ques-089

tions into training. More formally, given the dis-090

crete and non-differentiable question selection pro-091

cess, we formulate the question selection of QVE092

as a reinforcement learning (Williams, 1992) prob-093

lem (Figure 2). The QVE receives a batch of syn-094

thetic samples each time and learns to select high-095

quality ones based on their estimated values. The096

selected samples are then used to train the target-097

domain QA model, with the resulting performance098

gain (on the available target-domain annotations)099

as the reward. The reward guides the optimization100

of QVE such that it will eventually make proper101

question value estimation and selection.102

To evaluate the QVE model, we instantiate the103

QG and the QA model based on the pretrained104

BART (Lewis et al., 2020) and BERT (Devlin105

et al., 2019), respectively. By carrying out compre-106

hensive experiments on four commonly-used read-107

ing comprehension datasets (Trischler et al., 2017;108

Joshi et al., 2017; Yang et al., 2018; Kwiatkowski109

et al., 2019), we show that: (1) our QVE model 110

trained with the target-domain QA feedback sub- 111

stantially outperforms the question selection tech- 112

niques trained without direct QA feedback (Alberti 113

et al., 2019; Shakeri et al., 2020). (2) When using 114

our QVE model to select synthetic questions, QA 115

models can achieve comparable performance to 116

fully-supervised baselines while using only 15% of 117

the full target-domain annotations, which indicates 118

that our method can greatly alleviate human annota- 119

tion effort in practice. (3) To understand why QVE 120

brings superior improvement, we conduct human 121

evaluation and find that QVE can better identify 122

semantically-matched and difficult questions. 123

2 Related Work 124

Domain Adaptation of Question Answering. In 125

this field, some work (Wiese et al., 2017; Chung 126

et al., 2018; Hazen et al., 2019; Cao et al., 2020) 127

assumes that target-domain annotated questions are 128

available, however, manually creating questions is 129

costly. Therefore, another line of research work 130

(Golub et al., 2017; Wang et al., 2019; Lee et al., 131

2020; Shakeri et al., 2020) investigates a domain 132

adaptation setting where annotated questions are 133

not available on the target domain. A commonly- 134

adopted approach of this line is to leverage a neural 135

question generation (QG) model (Du et al., 2017; 136

Zhou et al., 2017; Sun et al., 2018; Zhao et al., 137

2018; Nema et al., 2019; Tuan et al., 2020) to au- 138

tomatically synthesize questions given unlabeled 139

contexts (Du and Cardie, 2018; Zhang and Bansal, 140

2019; Wang et al., 2019; Liu et al., 2020; Golub 141

et al., 2017; Wang et al., 2019; Lee et al., 2020; 142

Shakeri et al., 2020; Yue et al., 2021); see more 143

discussions in Section 3. However, it is very chal- 144

lenging to achieve satisfying performance without 145

any target annotations. In our work, we study semi- 146

supervised domain adaptation of QA, and assume 147

a small number of target annotations are available, 148

which can greatly help models adapt to the target 149

domain while requiring minimal human effort. 150

Unsupervised and Semi-supervised QA are two 151

other research topics relevant to our work (Fabbri 152

et al., 2020; Li et al., 2020; Lewis et al., 2019; 153

Dhingra et al., 2018). Unlike domain adaptation, 154

these two settings do not assume the existence of 155

the “source domain” and synthesize cloze-style 156

questions via rule-based methods for building QA 157

models. Since rule-based QG methods typically 158

have much worse performance than neural ones 159
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(pretrained on the source data), we do not compare160

with these two lines of research in experiments.161

3 Background162

3.1 Domain Adaptation of QA via QG163

Semi-supervised Domain Adaptation. We study164

the semi-supervised domain adaptation of extrac-165

tive question answering, where the source-domain166

and a small number4 of target-domain QA annota-167

tions are provided. Formally, we denote the source-168

domain QA dataset as Ds = {(csi, qsi , asi)}Ni=1,169

where large-scale tuples of context csi , question170

qsi , and answer asi are available. For the target171

domain, only a small set of annotated QA pairs172

Dt = {(ctj , qtj , atj)}Mj=1 are available (M � N ).173

Since unlabeled contexts are easy to collect, we as-174

sume that they are largely available: Ct = {ctl}Ll=1175

(L�M ). The task is to build a QA model that can176

accurately answer questions on the target domain,177

given Ds, Dt, and Ct.178

Domain Adaptation via Question Generation.179

Given the lack of large-scale target-domain anno-180

tations, an intuitive approach to domain adapta-181

tion is first synthesizing target-domain QA data182

Dt
syn = {(ctl , qtl , atl)}Ll=1 automatically from the183

unlabeled contexts Ct, and then training a target-184

domain QA model on the synthetic (Dt
syn) and the185

small-size annotated (Dt) target-domain data. In186

such an approach, a question generator (QG) gφ187

is first pretrained on the source training data and188

further finetuned on the available target-domain an-189

notated QA pairs. A well-trained QG model then190

takes target-domain context-answer pairs as input191

to generate a question: qtl = gφ(c
t
l , a

t
l).192

Although this approach has been shown promis-193

ing, in practice, its effectiveness is restricted by the194

quality of synthetic questions. Thus, learning to195

select ones that can lead to a better target-domain196

QA model becomes a crucial problem.197

With respect to how to obtain atl for QG, in this198

paper, we assume an answer atl (i.e., a text span in199

the context ctl) is given, following Du et al. (2017).200

When the answer atl is not given, it can be extracted201

from the given context by using an entity recogni-202

tion tool (Du and Cardie, 2018), a classifier (Puri203

et al., 2020) or a seq2seq model (Shakeri et al.,204

2020). Note that noise caused by such answer ex-205

traction tools will further lower the overall quality206

4In our experiments, we assume 1,000 target annotations
available, which is around 1-1.5% of the original training data.

of the synthesized questions. In this paper, we fo- 207

cus on how to select useful synthetic questions in 208

general (i.e., those questions can be synthesized by 209

any QG process) and assume answers are given for 210

simplicity. 211

3.2 Synthetic Question Selection 212

Given the synthetic target-domain QA data Dt
syn, 213

the task is to select high-quality pairs from Dt
syn 214

that are useful to improve target-domain QA train- 215

ing. Such a selection decision is often made based 216

on some scores that can indicate the quality of 217

the pairs. For example, Roundtrip filtering (Al- 218

berti et al., 2019) selects questions based on the 219

extracted answer’s correctness by a pretrained QA 220

model. Similarly, LM filtering (Shakeri et al., 2020) 221

selects questions with high log-likelihood scores 222

in the generation. However, these scores do not 223

directly serve the goal of improving target-domain 224

QA training. Inspired by recent research on data se- 225

lection in the machine learning community (Ghor- 226

bani and Zou, 2019; Jia et al., 2019; Yoon et al., 227

2020), we propose a new idea of training a question 228

value estimator, which predicts the usefulness of a 229

synthetic question for target-domain QA. 230

4 Question Value Estimator (QVE) 231

Formally, we design a question value estimator 232

(QVE), eγ , which takes in a synthetic QA example 233

(cl, ql, al) (for simplicity, we omit the superscript 234

t) and outputs a score indicating its “value,” i.e., 235

vl = eγ(cl, ql, al). The “value” can imply “the 236

potential for improving the target-domain QA per- 237

formance when being used as a training sample”. 238

With this score, one can select most useful synthetic 239

examples for the target-domain QA training. 240

We use a BERT model as the backbone of the 241

QVE. Specifically, we concatenate the context, 242

question and answer as input to the QVE, and use 243

BERT to encode the sequence (Devlin et al., 2019). 244

h = BERT [<CLS> q <ANS> a <SEP> c] 245

where q, a, c represent the question, answer, and 246

context, respectively. h ∈ RH denotes the hidden 247

representation of the input sequence derived from 248

the “<CLS>” token. <ANS> and <SEP> are two 249

special tokens used as delimiters. 250

In our preliminary experiments, we find that 251

adding the answer (start index and end index) prob- 252

abilities (ps, pe) by a pretrained QA model as addi- 253

tional features to the hidden representation h can 254
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accelerate the QVE training convergence and lead255

to better performance. Thus, we add these two fea-256

tures (ps, pe) followed by linear transformations of257

the original hidden representation, and then build a258

linear classifier to output the question value.259

h′ = σ(W2σ(W1h+ b1) + b2)260

h′′ = σ(W3(h
′ ⊕ ps ⊕ pe) + b3)261

vl =W4h
′′ + b4262

where W1 ∈ RH1×H ,W2 ∈ RH2×H1 ,W3 ∈263

RH3×H2 ,W4 ∈ RH3 , b1 ∈ RH1 , b2 ∈ RH2 , b3 ∈264

RH3 , b4 ∈ R are trainable parameters of linear lay-265

ers. σ is the activation function tanh.266

Learning such a question value estimator is chal-267

lenging because we do not have direct supervision268

on the true value or usefulness of a synthetic ques-269

tion. We discuss two straightforward baselines to270

train QVE in Section 4.1, and a more advanced one271

based on reinforcement learning in Section 4.2.272

4.1 QVE Training: Two Baselines273

Binary Classifier: One straightforward solution274

is to treat QVE as a binary classifier and train it275

based on the human-annotated (positive) and the276

machine-synthesized (negative) QA pairs. Given277

the scarcity of target-domain data, we first pretrain278

the classifier on the source domain and then fine-279

tune it on the target domain. More specifically, we280

train a QG model on 70% of the source training281

data and generate synthetic questions on the re-282

maining 30% of the source training contexts. The283

generated questions and the source-domain anno-284

tated questions are used to train this binary classi-285

fier. The classifier is then finetuned based on the286

small set of target-domain annotations (positive)287

and the samples synthesized on the same target-288

domain contexts (negative).289

However, not all of the generated questions are290

bad. Simply treating all synthetic samples as neg-291

atives may mislead the classifier. Thus, we loose 292

this assumption and introduce a ranking baseline. 293

Ranking Baseline: We assume that the quality of 294

human-annotated questions is not inferior than that 295

of machine-synthesized ones. Thus, we train QVE 296

based on a ranking triplet loss defined as follows: 297

Lr =
∑

max(0,m+ vs − vh) 298

where vs, vh are the estimated question values 299

of the machine-synthesized sample and human- 300

annotated sample. m is set to 0.15 as the margin. 301

The two baseline methods have two obvious 302

drawbacks: (1) they are trained to differentiate be- 303

tween human-annotated and machine-synthesized 304

samples, which is mismatched with our goal of 305

selecting high-quality samples among machine- 306

synthesized data; (2) similar as (Alberti et al., 2019; 307

Shakeri et al., 2020), the two baselines are not 308

trained with direct signals that can represent the 309

usefulness of a synthetic question. In the next 310

section, we will introduce a task-specific training 311

method, which directly uses the target-domain QA 312

feedback to optimize QVE. 313

4.2 QVE Training: Direct Feedback from QA 314

A well-trained QVE is expected to assign high val- 315

ues to synthetic questions that can improve the 316

target-domain QA performance. Therefore, an intu- 317

itive way to measure the value of a synthetic ques- 318

tion is to consider the downstream QA performance 319

gain (on the available target annotations) before and 320

after this question is included in the training set. 321

However, this “leave-one-out” formulation is com- 322

putationally expensive and time-consuming, given 323

that it can estimate the value of only one single 324

synthetic question in each forward pass. In light of 325

this challenge, we instead estimate question values 326

in a batch-wise fashion. Algorithm 1 and Figure 2 327

describe the learning process. 328
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Algorithm 1 QVE REINFORCED Training
Input: pretrained QA model fθ; target synthetic
QA pairs Dt

syn; small target annotations Dt.
Hyperparameters: outer iterations Io, outer batch
size Bo, inner iterations In, inner batch size Bn,
QVE learning rate αo, QA learning rate αn.
Output: QVE eγ .

1: Randomly initialize eγ
2: Store θ0 ← θ (pretrained QA checkpoint)
3: for outer iteration = 1 to Io do
4: . 1 Sample a batch of synthetic QA pairs:
5: Sample D = {(cl, ql, al)}Bol=1 from Dt

syn

6: . 2 Estimate question values:
7: V = eγ(D)
8: . 3 Sample selection vector:
9: S ∼ Bernoulli(V)

10: . 4 Update QA on selected samples:
11: for inner iteration = 1 to In do
12: Sample {(cl, ql, al)}Bnl=1 ∼ D
13: θ ← θ − αn

Bn

∑Bn
l=1 sl · ∇θLqa

14: end for
15: . 5 Calculate QA gain as QVE reward:
16: rqve = reward_fn(fθ0 , fθ, D

t)
17: . 6 Update QVE based on Eq. 1:
18: γ ← γ − αo · ∇γLγ
19: Reset θ ← θ0
20: end for
21: return eγ

Generally speaking, we frame the QVE model329

learning as a reinforcement learning problem330

(Williams, 1992), and stimulate QVE to assign331

higher values to more useful questions by using332

performance-driven rewards. Specially, for a batch333

of synthetic examples D = {(cl, ql, al)}Bol=1 in the334

outer training iteration (Line 4-5), the QVE model335

selects a subset of examples that are most likely to336

boost the QA performance on the target domain,337

based on its judgment on their values.338

Mathematically, the decision-making outcome339

is represented by the selection vector S =340

(s1, s2, ..., sBo), where sl ∈ {0, 1} l = 1, ..., Bo341

(Line 6-9). The whole batch-level decision making342

policy πγ is described as follows:343

vl = eγ(cl, ql, al)344

sl ∼ Bernoulli(vl)345

πγ(S|D) =
Bo∏
l=1

[vsll · (1− vl)
1−sl ],346

where the selection of a certain example (cl, ql, al)347

is formulated as sampling from a Bernoulli distri- 348

bution of probability vl (i.e., its estimated question 349

value). We adopt the Bernoulli sampling based 350

on the estimated value vl instead of setting a hard 351

threshold to encourage the policy exploration. 352

The model is rewarded based on how much per- 353

formance gain the selected examples could bring 354

when they are used to train the target-domain QA 355

model. To this end, we finetune the QA model fθ 356

on the selected batch samples based on Lqa, which 357

typically is a cross-entropy loss: 358

Lqa = −
Bo∑
l

logP (al|ql, cl; θ) 359

In practice, to stabilize the QVE training, we 360

choose a large outer batch size Bo in each outer 361

training iteration. For finetuning the QA model, we 362

pick a relatively smaller inner batch size Bn and 363

repeat the training for In times, such that the QVE- 364

selected samples are fully utilized (Line 10-14). 365

The reward rqve is defined as the QA perfor- 366

mance gain on the target-domain annotations Dt 367

before (fθ0) and after (fθ) finetuning (Line 15-16), 368

rqve = reward_fn(fθ0 , fθ, D
t) 369

where reward_fn is Exact Match (EM) gain5. 370

Given the discrete and non-differentiable ques- 371

tion selection process, we update the QVE 372

model using the REINFORCE algorithm (Williams, 373

1992). Mathematically, we aim to minimize: 374

Lγ = − E
S∼πγ(·|D)

[rqve]. 375

The gradient of the loss function is derived as: 376

∇γLγ = − E
S∼πγ

[rqve∇γ log πγ(S|D)]

= − E
S∼πγ

[rqve∇γ
Bo∑
l=1

log[vsll (1− vl)
1−sl ]].

(1) 377

Notably, to mitigate the instability in reinforcement 378

learning, we reset the QA model to its pretrained 379

checkpoint at the end of each outer iteration (Line 380

19), and keep the pretrained QG model unchanged. 381

After training QVE, we can use it to calculate 382

the question value for all the synthetic questions 383

on the target domain. Then we can select top K% 384

synthetic QA pairs as the training corpus to train 385

the target-domain QA model. 386

5We also tried F1 gain and loss drop as the reward_fn
and the EM gain is slightly better than the other two.
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5 Experimental Setup387

5.1 Datasets388

We use datasets in the MRQA 2019 Shared Task389

(Fisch et al., 2019), a popular challenge focus-390

ing on generalization in reading comprehension.391

Specifically, following Shakeri et al. (2020), we use392

SQuAD 1.1 (Rajpurkar et al., 2016) as the source-393

domain dataset. For the target-domain datasets, we394

consider NewsQA (Trischler et al., 2017), Natural395

Questions (NQ) (Kwiatkowski et al., 2019), Hot-396

potQA (Yang et al., 2018) and TriviaQA (Joshi397

et al., 2017) as they are commonly used and have398

sufficient contexts for the QG model to generate399

synthetic samples. Since there is no test set avail-400

able for each dataset, we use the original dev set as401

the test set. Detailed descriptions of each dataset402

are in Appendix A.403

For the target-domain datasets, we assume all the404

contexts and n annotated QA pairs in the original405

training sets are available for training. We set n =406

1000 (about 1%-1.5% of original training sets) as407

default and discuss the impact of n in Section 6.2.408

5.2 Implementation Details409

We implement models using the Hugging Face410

transformer (Wolf et al., 2020) library. We instan-411

tiate the QA model with BERT-base-uncased412

(Devlin et al., 2019), and the QG model with413

BART-base (Lewis et al., 2020). For QVE,414

we use a 4-layer transformer model instead of415

BERT-base since: (1) a smaller model allows416

a larger outer batch size Bo in training (given the417

GPU memory constraint6), which can also lead418

to more steady and efficient training; (2) we do419

not observe significant improvement when using420

BERT-base model in our preliminary study. We421

set H1 = H3 = H = 512 and H2 = 64 for linear422

layers of QVE. For QVE training (Algorithm 1),423

we set Io = 2000, Bo = 120, In = 20, Bn = 12,424

and αo = αn = 3e−5. When training (finetun-425

ing) QA and QG models (either on source or target426

domain), we set training epochs as 3 and other hy-427

perparameters as default in the transformer library.428

5.3 Comparing Baselines429

We evaluate the following QA models built on dif-430

ferent training data:431

(1) Source Only Baseline: we train a QA model432

on the source-domain data.433

6We train all models on 4 GTX 1080 Ti 11GB GPUs.

Different Filtering Methods
Dataset NoFilter RTC LM QVE
NewsQA 74,160 33,756 44,485 44,485
NQ 104,071 62,888 62,443 62,443
HotpotQA 72,928 46,273 43,757 43,757
TriviaQA 61,688 26,361 37,013 37,013

Table 1: Number of synthetic examples selected by dif-
ferent methods. NoFilter: QG baseline (no filtering);
RTC: Roundtrip Filtering; LM: LM Filtering.

(2) Source + Target Annotations Baseline: we 434

further finetune the “(1) Source Only Baseline” on 435

the available target annotated QA pairs. 436

(3) QG Baseline (no filtering): we first pretrain 437

a QG model on the source-domain data and fine- 438

tune it on the available target annotations. The 439

QG model is then used to generate synthetic QA 440

samples on the target contexts. We finetune a QA 441

model sequentially on all available data with the 442

order of “source→target synthetic→target anno- 443

tated”7. The same QA finetuning strategy will also 444

be used for (4)-(8). 445

(4) RoundTrip Filtering (Alberti et al., 2019): we 446

use the “(2) Source + Target Annotation Baseline” 447

to extract answers for target synthetic questions 448

and select the ones, whose extracted answers are 449

correct, as the target synthetic training corpus. 450

(5) LM Filtering (Shakeri et al., 2020): we use 451

the log likelihood scores of synthetic questions 452

produced by the QG model in (3) as the filtering 453

criterion. We select top K% samples as the target 454

synthetic training corpus. 455

(6) QVE (binary classifier): we train QVE as a 456

binary classifier (Section 4.1) and then use it to 457

select top K% target synthetic samples. 458

(7) QVE (ranking baseline): we train QVE based 459

on a ranking function (Section 4.1), and then use it 460

to select top K% synthetic samples. 461

(8) QVE (RL): we train QVE based on the direct 462

feedback from target annotations using RL (Sec- 463

tion 4.2), and then use it to select top K% target 464

synthetic samples. 465

(9) Fully-supervised Baseline: we train a QA 466

model on the original target training data. Note 467

that we report the fully-supervised performance 468

here only as the reference and (1)-(8) are not di- 469

rectly comparable to this. 470

The number of the selected synthetic examples 471

of RoundTrip Filtering is determined by the QA 472

model and varies for each dataset. For LM Filter- 473

7We also try combining all the data into one training file
to finetune the QA model but the performance is lower than
the current strategy.
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No. Methods
NewsQA NQ HotpotQA TriviaQA

EM F1 EM F1 EM F1 EM F1
(1) Source Only Baseline 40.2 56.2 45.2 59.1 43.3 60.3 49.5 59.3
(2) Source + Target Annotations Baseline 43.7 59.8 54.2 68.2 51.7 69.2 55.7 62.0
(3) QG Baseline (no filtering) 45.3 60.7 60.5 72.6 52.9 70.0 58.3 63.9
(4) +RoundTrip Filtering (Alberti et al., 2019) 45.4 60.8 58.6 71.2 53.9 70.5 58.7 64.4
(5) +LM Filtering (Shakeri et al., 2020) 45.3 61.2 60.0 72.1 53.9 70.5 56.0 61.7
(6) +QVE (binary classifier) 45.2 60.7 60.1 72.3 53.7 70.4 58.2 63.8
(7) +QVE (ranking baseline) 45.8 61.3 60.6 72.8 53.9 70.9 58.4 63.9
(8) +QVE (RL) 46.9 61.9 61.3 73.2 54.9 71.8 61.3 66.9
(9) Fully-supervised Baseline 50.0 64.6 65.8 78.1 56.8 73.9 64.6 70.3

Table 2: Semi-supervised domain adaptation performance of different models where 1,000 target-domain annota-
tions (around 1-1.5% of the original training data) are used.
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Figure 3: Impact of the number of target annotated QA pairs. We also show the fully-supervised performance (and
#train) as the reference. With 10K target annotations (around 15% of the full training set), our method can achieve
comparable performance to the supervised ones (as shown at the top of each sub-figure).

ing and QVE, we select top K% (K=60) samples474

among all synthetic ones and discuss the impact of475

the synthetic dataset size in Appendix B. We show476

the statistics of filtered datasets in Table 1.477

6 Results478

6.1 Overall Results479

We first discuss the domain adaptation results480

on the 4 target-domain QA datasets under semi-481

supervised setting where n = 1, 000 target-domain482

QA examples are available. Table 2 shows the over-483

all results of different methods. We summarize key484

findings as follows:485

(1) Compared with RoundTrip and LM Filtering,486

our QVE (RL) achieves the best performance.487

This is because both baselines are not specifically488

trained to select useful examples for improving QA489

performance on the target domain. Our QVE, on490

the contrary, is trained with a signal that directly491

reflects the QA performance, which can more accu-492

rately estimate the question value and select useful493

pairs for target-domain QA.494

(2) Two QVE baselines (binary classifier and rank-495

ing baseline) can select some useful questions and496

achieve comparable performance with RoundTrip497

and LM Filtering. However, due to the lack of di-498

rect QA evaluation feedback, they underperform 499

QVE (RL), which demonstrates the usefulness of 500

the QA feedback during training QVE. 501

6.2 How many target QA pairs do we need? 502

In Table 2, we showed that with n (n=1,000) target 503

annotated QA pairs and the selected high-quality 504

synthetic QA pairs, we can finetune a better QA 505

model on the target domain. In this section, we 506

discuss the influence of n on the target-domain QA 507

performance. The results are shown in Figure 3, 508

and interesting findings include: 509

(1) In general, the performance of all models 510

improves as more target annotations are used. This 511

is intuitive as more annotated pairs can improve 512

both QA and QG training. With a better QG model, 513

the quality of the synthetic questions is improved, 514

which could also lead to better QA models. 515

(2) Our QVE model can often outperform the 516

QG baseline and the filtering baselines. With an 517

optimization objective considering the downstream 518

QA performance, QVE can select more useful ques- 519

tions for improving target-domain QA. 520

(3) The improvement of our QVE compared with 521

baselines is usually larger when more annotated 522

QA pairs are available. This is because our QVE 523

training (with RL) relies on the QA feedback based 524

7



Setups Methods
NQ HotpotQA

EM F1 EM F1

QA:Large Model
QG:Base Model

Source Only 50.7 65.0 46.2 64.0
+ Target Annot. 58.7 72.1 54.3 72.2
+ QG Baseline 61.6 73.4 55.5 72.5
+ Roundtrip 59.8 71.9 55.9 72.8
+ LM Filtering 60.6 72.5 55.7 72.7
+ QVE (RL) 62.4 74.5 56.3 73.4

QA:Base Model
QG:Large Model

Source Only 45.2 59.1 43.3 60.3
+ Target Anno. 54.2 68.2 51.7 69.2
+ QG Baseline 61.0 72.8 53.2 70.9
+ Roundtrip 59.9 71.7 54.1 71.1
+ LM Filtering 60.6 72.2 54.2 71.2
+ QVE (RL) 62.1 73.8 55.2 72.0

Table 3: Results on larger capacity QG and QA models.

on the available annotated pairs. With more anno-525

tated pairs, the feedback can be more accurate, thus526

leading to a better QVE for selecting more useful527

synthetic questions.528

(4) With 10,000 (around 15% of the original529

training set) target annotations and the synthetic530

questions selected by QVE, we can achieve compa-531

rable performance with the fully-supervised base-532

line. This indicates that one can save more anno-533

tation budgets when building a target-domain QA534

model based on our QVE in practice.535

6.3 Experiments with Larger Models536

The results presented in the previous sections are537

based on BERT-base and BART-base. In this538

section, we test whether our QVE can still be effec-539

tive when working with larger models, and select540

BERT-Large and BART-Large as QA and QG541

model respectively. When changing the QA (QG)542

model to its larger alternative, we keep the other543

one as the base model to better show the difference.544

We use NaturalQuestions (NQ) and HotpotQA as545

representative datasets, and show results on them546

(with 1,000 target annotations). As shown in Ta-547

ble 3, our QVE model can still help improve the548

performance for larger instantiations of QG/QA.549

6.4 Human Study: Why can QVE help QA?550

In this section, we aim to gain a better understand-551

ing of why QVE helps QA and verify that QVE552

selects more semantically matched and non-trivial553

questions, thus benefiting downstream QA.554

Since automatic metrics cannot often reflect the555

actual quality of the question selections, we sample556

50 generated examples from each target-domain557

dataset (200 in total), and ask three human anno-558

tators to label whether a generated QA pair is se-559

mantically matched (i.e., can be selected to train560

QA) and (if yes) whether it asks about a simple561

Methods
Semantically-Matched Non-trivial

P R F1 P R F1
RoundTrip 88.9 60.6 72.1 82.6 47.5 60.3
LM Filtering 86.7 65.0 74.3 78.9 51.7 62.5
QVE(RL) 88.9 70.0 78.3 83.3 59.3 69.3

Table 4: Agreement with question selection by humans.

fact. To lower the annotation bias in determining 562

whether a generated question asks about a simple 563

fact or not, we provide the ground-truth question 564

(the question in the original dataset created by hu- 565

mans) as a reference. If the generated question 566

is simpler than the ground truth, then it would be 567

marked as “trivial”; otherwise, it is a “non-trivial” 568

one. Three annotators work independently and we 569

adopt the majority vote for deciding the final labels 570

of a generated QA pair (if disagreement appears). 571

We calculate the precision, recall and F1 be- 572

tween predictions8 by each filtering method and 573

human labels (for both “semantically matched” and 574

“non-trivial”). As shown in Table 4, though three 575

methods obtain a similar precision on all sampled 576

questions, our method has a better recall, especially 577

on the “non-trivial” questions. This means that our 578

method can select more semantically matched and 579

non-trivial questions, which explains why it leads 580

to better QA performance. We also show some 581

real cases in Figure 1 to further illustrate this point. 582

For example, our QVE selects “What was the nick- 583

name given to the woman who allegedly provided 584

call girls for prostitution?” while the baselines 585

do not pick this semantically matched and non- 586

trivial question. For another example, “Who is the 587

founder of CNN”, both baselines select it while 588

our QVE filters it out since such a simple question 589

would probably not help further improve QA. 590

7 Conclusion 591

We propose a question value estimator to estimate 592

the usefulness of synthetic questions and select 593

useful ones for improving target-domain QA train- 594

ing. We optimize QVE with the target-domain QA 595

performance gain after adding the selected ques- 596

tions into training. Our comprehensive experiments 597

demonstrate the superiority of QVE compared with 598

other question selection methods. Additionally, us- 599

ing the synthetic questions selected by QVE and 600

only around 15% of the human annotated data on 601

each target domain, we can achieve comparable 602

performance to the fully-supervised baselines. 603

8We treat it as a binary classification problem here: if a
question is selected, the prediction is 1; 0 otherwise.
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Figure A1: Impact of synthetic dataset size.

A Details of Datasets799

Specifically, following Shakeri et al. (2020), we800

use SQuAD 1.1 (Rajpurkar et al., 2016), a large801

reading comprehension dataset that consists of802

100k questions on more than 500 articles from803

Wikipedia, as the source-domain dataset. For the804

target-domain datasets, we consider the following805

4 datasets since they are commonly used and have806

sufficient contexts to train the models.807

NewsQA (Trischler et al., 2017) consists of ques-808

tions and answers based on a set of over 10k news809

articles from CNN News.810

Natural Questions (NQ) (Kwiatkowski et al.,811

2019) contains questions extracted from Google812

user search queries and passages from Wikipedia.813

HotpotQA (Yang et al., 2018) is a multi-hop ques-814

tion answering dataset based on Wikipedia pas-815

sages.816

TriviaQA (Joshi et al., 2017) includes QA pairs au-817

thored by trivia enthusiasts, as well as evidence doc-818

uments independently gathered from Web search819

results and Wikipedia articles.820

B Impact of Synthetic Dataset Size821

In Figure A1, we show how the synthetic dataset822

size (i.e., the number of selected QA pairs) impacts823

the QA performance, based on our QVE (RL) filter-824

ing. As we expect, at the beginning, the target QA825

performance improves when more synthetic data826

is added to the training set. However, the perfor-827

mance reaches the peak at 60-70% and then goes828

down. This is reasonable since adding less valu-829

able QA pairs from the noisy synthetic data will830

hurt the QA model training. We suggest 60%-70%831

(50K-70K QA pairs) for setting the synthetic data832

size in practical.833
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