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Abstract—This study infers the unobserved underlying net-
work of homeless services from administrative data collected by
homeless service providers. Both the structure of the inferred
network, and historical observations, are used to identify individ-
uals with similar trajectories so that their next assignments can
be predicted. Experimental evaluation shows that the proposed
approach performs well not only on predicting exit from the
system, or simply guessing high frequency services (as most
baselines), but is also successful in less frequent scenarios.

Index Terms—Complex systems, network inference, similarity

I. INTRODUCTION

Homelessness poses a long–standing problem to the society.
The number of individuals in the U.S. alone experiencing
prolonged homelessness for at least 12 months, or repeated
homelessness over a period of three years (i.e., chronic home-
less [5]) increased by 20% [6] between 2020 and 2021. Nu-
merous methods have been proposed to predict reentry (e.g.,
[8]), as well as the risk of an individual to become chronically
homeless (e.g., [11]). Unlike such methods, this work focuses
on individuals experiencing chronic homelessness, broadly
defined here as individuals entering the homeless system two
or more times. Viewing the history of each individual as a
sequence of services and time of stay within each service,
the goal is to learn a model that can be used to accurately
estimate the next service an individual will be assigned to
within the homeless system in the future. Our proposed
approach represents the homeless system as a network of
interconnected services which individuals traverse over time.
Given the history of an individual, it identifies individuals
with similar histories, and predicts the next service the given
individual will be assigned to based on such histories and the
underlying network structure. Our key contributions can be
summarized as follows:

• We infer the network of homeless services from admin-
istrative data collected by homeless service providers.
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• We define a similarity score between ordered sequences
of services that the homeless are assigned to as they
traverse the network of services.

• We propose a method that, given the history of an
individual, can predict the most likely service she will
be assigned to next.

• For reproducibility, we make our source code available
at https://github.com/IDIASLab/TRACE.

II. RELATED WORK

Unlike prior art for reentry and chronic homelessness pre-
diction (e.g., [7], [9], [11]), this work addresses the more
challenging problem of determining whether an individual will
exit the homeless system, and otherwise, the exact program she
will be assigned to next. The proposed similarity score differs
from existing similarity measures for time–series data [12], in
that our study involves trails of timestamped categorical data
as opposed to numerical data such measures are applicable
to. Compared to prior art on sequence analysis, which is
often used to determine a common subsequence between two
categorical sequences (e.g., [4]) and assumes i.i.d. data points
in a sequence, the approach described here utilizes the network
that generates the observed sequences to compute similarity
between two categorical trajectories. Finally, methods for
network inference from data [2] either assume that diffusion
traces are directed acyclic graphs and that the probability of
transitioning from one node to another is fixed and same for
all edges, or infer interactions for pairs of nodes expected
to be directly connected via an edge. Instead, in this study,
the temporal chain of events is observed (leading to an easier
inference task) while at the same time, observed trajectories
may contain cycles (resulting in a harder inference problem).

III. PROBLEM STATEMENT

Homeless service providers offer services that are or-
ganized in project types (e.g., emergency shelters, transi-
tional housing) [10]. We denote the set of project types
as P = {p1, p2, . . . , pn}, and the set of individuals re-
questing services multiple times as C = {c1, c2, . . . , cm}.
Reentries can be viewed as temporally ordered sequences
of tuples (pi, ti = [si, ei]), where pi ∈ P , and si
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and ei are the times at which individual c ∈ C en-
ters to, and exits from pi, accordingly. Such a trajectory,
Tc = (p1, [s1, e1]), (p2, [s2, e2]), . . . , (pN , [sN , eN ])) for each
individual c ∈ C, where for each two consecutive tu-
ples si+1 ≥ ei, records her transitions from pi to pi+1.
Given a set of trajectories T , and query trajectory Tq =
((q1, [s1, e1]), . . . , (qN , [sN , eN ]) of an individual q ∈ C, up
to time eN , we aim at predicting the project type q̂N+1 ∈ P
that she will be assigned to immediately after qN (or exit if
she is likely to exit the system).

IV. INFERRING THE GRAPH OF HOMELESS SERVICES

The underlying connectivity of homeless services (i.e.,
potential paths an individual can take once she is admitted into
the homeless system) is neither directly observable nor known.
We thus set forth to uncover the aggregate dynamics of the
homeless system from the observed sequences of services that
it generates for each individual.

We begin by modelling the network as a directed graph
G = (P,E), where P is the set of nodes representing services
visited by individuals in C, and E is the set of edges between
nodes, such that a directed edge appears between pi and pj if
at least one trajectory in T exists, in which pj appears after
pi. We determine the weight of each edge (pi, pj) ∈ E based
on the number of steps taken before reaching pj from pi, and
the position where pi appears in the trajectory (i.e., offset).
Specifically, a path from pi to pj in a trajectory T involves
j − i+ 1 steps starting from offset i. Therefore:

wij =

N∑
k=1

M−1∑
l=0

αk−1+lfij,kl, (1)

where N is the maximum number of steps, and M the largest
offset, α ∈ [0, 1] is some attenuation factor, and fij,kl denotes
the number of times a transition from pi to pj appears in any
path across all trajectories in T with k steps at offset l. Finally,
we normalize the weights of outgoing edges at each node to
sum to 1. Edge weights satisfy the following properties: wij >
0,∀pi, pj ∈ P , wij is undefined if no path ∃ from pi to pj ,
wij ≈ 0 if path from pi to pj is long, and

∑
j∈V wij =

1,∀pi ∈ P .
In summary, inference proceeds as follows. First, for each

trajectory, all possible unique paths are extracted. The value
of fij,kl is then computed by counting the frequency of each
path across all trajectories. To avoid double counting, only
unique paths at each number of steps are included in the
computation of fij,kl. Next, edge weights are calculated using
Eq.(1), number of steps, and offset of each path appearing in
the trajectories.

V. TRAJECTORY SIMILARITY

To compare a given individual’s trajectory with historical
trajectories, we wish to measure similarity σ, between a query
trajectory Tq , and a historical trajectory Tc given graph G,
while taking into account the distance between nodes in G
appearing in Tq and Tc respectively, the temporal overlap

between the trajectories, and the time intervals individuals
stayed on each node in the corresponding trajectories.

Let the distance between two nodes qi, pj ∈ P that appear in
Tq and T respectively, be the weighted shortest path distance,
d(qi, pj), between them in G. The distance between qi ∈ Tq

and T within time interval tq can then be computed as:

d(qi, T, tq) =
min(pj ,tj)∈T [tq ] max|tj∩tq| d(qi, pj)

DG
, (2)

where DG is the maximum weighted distance between any
two nodes in G, and T [tq] denotes the sequence of nodes in
T visited during tq . Intuitively, this distance is minimized for
(pj , tj) ∈ T [tq] that can be reached quickly from qi in G,
and for which the interval tj significantly overlaps with tq .
By definition, 0 ≤ d(qi, T, tq) ≤ 1. The similarity between
trajectories Tq and T for time interval t, is therefore:

σ(Tq, T, t) =

∑
(q,tq)∈Tq [t]

|tq ∩ tj | × e−d(q,T,tq)∑
|tq|

, (3)

where |.| denotes the length of a time interval, and tj is
the time interval in T corresponding to the node that min-
imizes d(q, T, tq). By definition, 0 ≤ σ(Tq, T, t) ≤ 1, with
σ(Tq, Tq, t) = 1 for any time interval t, and σ(Tq, T, t) = 0
for any two trajectories Tq and T with no temporal overlap.

VI. TRAJECTORY SIMILARITY ESTIMATION AND
PROBABILISTIC PREDICTION

In this section, we describe TRACE, a novel
approach for Trajectory SimilaRity EstimAtion and
ProbabilistiC PrEdiction. Specifically, given the history
Tq = ((q1, [s1, e1]), . . . , (qN , [sN , eN ]) of an individual, and
time interval t = [sN−γ , eN ], where γ is the number of
prior services received in the past, as well as the set T of
trajectories of other individuals, TRACE begins by calculating
the effective length λ of Tq . Then, TRACE identifies the
most similar trajectory Tc ∈ T to Tq within t, using graphs
Gλ and Gλ+1. The rationale for this design choice is that
the next node may either be a node already visited in the
past (in which case the effective length of Tq will remain
unchanged) or a new node (in which case the effective length
of Tq will increase by 1). The project type q̂N+1 that q is
expected to be assigned to next is therefore estimated to be
the one that maximizes the transition probability from pc, the
last matching project type in trajectory Tc that maximizes
σ(Tq, Tc, t) over either Gλ or Gλ+1. Therefore, q̂N+1 is
obtained by maximizing the following objective:

1(qN ,pi)∈E×1(pc,pi)∈E×P (pi ∈ NB(qN )∩NB(pc)|pc), (4)

where 1 is the indicator function. To ensure the predicted
node is reachable from qN , pi is constrained to be in the out–
neighborhood of both pc and qN . If no such node can be
found within Tc, the search over trajectories continues until
a trajectory is identified that satisfies this constraint, or if no
further trajectories are left to be examined. Furthermore, only
those trajectories temporally overlapping with t are considered.



Algorithm 1 TRACE
Input: H, Tq, γ
Output: Node q̂N+1 individual c is going to visit after qN

1: Identify subset Ht ⊆ H of trajectories temporally over-
lapping t = (sN−γ , eN )

2: Compute effective length, λ, of query trajectory Tq

3: for each Tc ∈ Ht do
4: ∀qi ∈ Tq[t] compute distance to Tc[t] using Eq.(2) on

Gλ (similarly for Gλ+1)
5: Compute similarity between Tq[t] and Tc using Eq.(3)
6: Tmax ← Tc with highest similarity score
7: end for
8: Using Tmax, find q̂N+1 that maximizes Eq. (4)
9: return q̂N+1

VII. EXPERIMENTAL EVALUATION

A. Data

Experiments are performed using an anonymized set of
records for 6, 011 individuals that received homeless services
multiple times by providers in the Capital Region of the state
of New York, between 2012 and 2018. The data was provided
by CARES of NY. A subset of individuals (3, 475) exited
to stable (i.e., rental or owned housing without any housing
subsidy) or fairly stable (these include permanent housing,
rental or owned housing with housing subsidy, and long term
facility) exits [3].

We split the data into Ttrain and Ttest as follows. Trajec-
tories with entry date up to the end of 2016 are included in
training set, Ttrain, whereas trajectories with entry dates from
the beginning of 2017 onward are included in test set, Ttest.
This split ensures that predictive models are trained on data
that does not contain future information, and therefore avoids
data leakage. The test set Ttest is further split into two disjoint
sets, namely historical set,H, and query set, Q. For each query
in Q, the most similar trajectory in H is obtained using Eq.(3).
Graphs Gλ and Gλ+1 are computed over Ttrain.

B. Metrics

• Precision@k: measures how many times the predicted
service is correct using the top k predictions.

• Recall@k: measures how many times each project type
is identified correctly at kth prediction.

We differentiate our analysis between individuals that exit
the system (i.e., exit point) and those that transition to a new
service (i.e, interim point) for a granular assessment of the
predicting capabilities of TRACE and the baselines.

C. Baselines

We consider two variants of TRACE, namely TRACE1, that
uses only Gλ, and TRACE2 that uses both Gλ and Gλ+1.
We also compare TRACE with the baselines described below.
Given the most similar trajectory Tc to query Tq , q̂N+1 is
predicted to be:

• pc −Next: pc+1 (i.e., the service following pc in Tc).

• pc −NB: the highest transition probability out–neighbor
of pc ∈ P . Note that we found no difference in perfor-
mance when requiring the out–neighbor of pc to also be
an out–neighbor of qN (pcqN −NB).

• qN −NB: the out–neighbor of qN ∈ V with the highest
transition probability from qN .

• RN: a random node p ∈ P . We consider two variants,
namely selecting a node (UR) uniformly at random, and
(PA) with a probability that is proportional to a node’s
in–degree (i.e., preferential attachment [1]).

• Sim-attenuate: the node identified using Eqs.(3) and (4),
with the difference that an attenuation factor βk, where
0 ≤ k ≤ K is the number of nodes in T [t], is used in
Eq.(3) to penalize intervals which are further in the past.

Fig. 1. Precision@k plot for TRACE and baselines predicting (a) exit points
and (b) interim points (Precision at x–axis and k at y–axis).

VIII. RESULTS AND ANALYSIS

Fig. 1 shows that while most methods perform well at
predicting exit points, only TRACE1 and TRACE2 excel
at predicting interim points. In fact, qN −NB consistently
predicts the most frequent project type as the next transition
and is therefore meaningless. Similarly, both pc −NB and
Sim-attenuate predict project type 1 with high probability



Fig. 2. Recall (y–axis) achieved by TRACE and the baselines at k = 2 (blue)
and k = 6 (orange) for each project type (x–axis) separately.

(80%) resulting in good performance with respect to exit
prediction, but meaningless prediction of interim points. In-
terestingly, the performance of pc −NB and Sim-attenuate
improves dramatically for k ≥ 5. However, Fig. 2 suggests
that this is an artifact of their high recall for project type 1,
which comprises 50% of the ground truth. pc −Next focuses
on high frequency project types (i.e., 1, 11, 13). Finally,
TRACE1 performs poorly for exit points mainly due to its
low recall. Instead, TRACE2 seems to predict exit at first
(i.e., k = 1), explaining its reduced performance for interim
points. However, TRACE2’s recall improves dramatically as
k increases, as shown in Fig. 2. This result suggests that a
tiered system to predict whether an individual is more likely
to exit or not, followed by a prediction of the next step using
TRACE2 is likely to further improve prediction accuracy.

Next, we experiment with different values of α to determine
its effect on TRACE’s recall, as shown in Fig. 3. When
α = 0.5, the TRACE1’s exit performance improves dramat-
ically, whereas α = 0.8 only slightly improves performance
for interim points. On the other hand, α = 0.2 achieves the
best results for TRACE2 for both exit and interim points, but
the improvement over α = 0.5 is not significant. We therefore
report results for α = 0.5 for both TRACE1 and TRACE2

when comparing their performance against the baselines.
Finally, we explore the effect of hyperparameter γ, and

find that its value becomes critical for lengthy trajectories,
which require more past information to improve the chances
of accurately predicting the next interim point. To demonstrate
this, we focus on queries of length greater than 4. Fig. 4(b)
implies that the higher the value of γ, the higher the precision.
In our comparisons, our results are therefore for γ = 6.

Fig. 3. Recall@k (y−axis) of TRACE with varying α.

Fig. 4. Precision@k for interim points of TRACE1 and TRACE2 with
varying γ = {2, 4, 6}.

IX. CONCLUSION

In this study, we proposed an approach that begins by
inferring the network of services that the homeless visit as they
strive to secure permanent housing. We subsequently defined
a score to assess the similarity of their trajectories. Based on
these two contributions we proposed a method to predict the
most likely service an individual will be assigned to next given
her history. Our experimental evaluation showed the ability of
the proposed approach to better match the observed sequences
as opposed to baselines. Our approach can used as a building
block for more complex applications, such as recommending
service assignment. However, in replicating the observed data,
biases in the service assignment process may be replicated. In
order to avoid this, and to additionally evaluate the potential
ability of “wrong” predictions to lead to better outcomes, we
will explore counterfactual predictions in future work. We
additionally plan to address limitations, such as accounting
for imbalances among project types.
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