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Abstract

Computational social science practitioners of-001
ten rely on human data to train supervised002
classifiers for text annotation. We assess the003
potential for researchers to augment or re-004
place human-generated training data with syn-005
thetic training labels from generative large lan-006
guage models (LLMs). We introduce a rec-007
ommended workflow and test this LLM appli-008
cation by measuring performance by replicat-009
ing 14 classification tasks. We employ a novel010
corpus of English-language text classification011
data sets from recent computational social sci-012
ence articles in high-impact journals. Because013
these data sets are stored in password-protected014
archives, our analyses are less prone to issues015
of contamination. For each task, we compare016
supervised classifiers fine-tuned using GPT-4017
labels against classifiers trained with human018
annotations and against GPT-4 few-shot labels.019
Our findings indicate that supervised classifica-020
tion models trained on LLM-generated labels021
perform comparably to models trained with la-022
bels from human annotators. Training models023
using LLM-generated labels is a fast, efficient024
and cost-effective method of building super-025
vised text classifiers.026

1 Introduction027

Supervised text classification often relies on028

human-labeled text data for training and valida-029

tion. Computational social scientists frequently use030

these types of supervised models to classify large031

quantities of text, ranging from news articles on032

the internet to government documents (Grimmer033

et al., 2022; Lazer et al., 2020). Collecting train-034

ing and validation labels generated by humans for035

these tasks, however, is expensive, slow, and prone036

to a variety of errors (Grimmer and Stewart, 2013;037

Neuendorf, 2016).038

To address these limitations, prior research sug-039

gests utilizing few-shot capabilities of generative040

large language models (LLMs) to annotate text data041

instead of human annotators (Brown et al., 2020; 042

Gilardi et al., 2023; Wang et al., 2021; Ziems et al., 043

2023). Generative LLMs are faster and cheaper 044

than human annotators and do not suffer from com- 045

mon human challenges such as limited attention 046

span or fatigue. Although this approach has its lim- 047

itations (Ollion et al., 2023) and generative LLMs 048

do not excel at all text annotation tasks (Pangakis 049

et al., 2023), past work illustrates that there are 050

numerous circumstances where generative LLMs 051

can produce high quality text-annotation labels. 052

Although past work suggests generative LLM 053

few-shot annotation is highly effective, it may be 054

cost prohibitive in many settings. Computational 055

social science often involves classifying millions 056

of documents or text samples. For example, a re- 057

cent computational social science article studies a 058

data set of 6.2 million tweets labeled on four di- 059

mensions (Hopkins et al., 2024), a task that would 060

have cost over $25,000 if using GPT-4 alone. Us- 061

ing a knowledge distillation approach (Gou et al., 062

2021; Dasgupta et al., 2023), it may be possible to 063

approximate the performance of a larger “teacher” 064

model (e.g., GPT-4, estimated to have over 1.7T pa- 065

rameters (OpenAI, 2023)) with much smaller and 066

cheaper task-specific “student” models (e.g., BERT 067

Base, approximately 110 million parameters). 068

In this paper, we evaluate the feasibility of using 069

generative LLMs to create synthetic labels for train- 070

ing downstream supervised classification models. 071

Our approach involves first using a generative LLM 072

to label a subset of text samples and then training a 073

series of supervised text classifiers with the LLM- 074

generated labels. We introduce a novel strategy to 075

measure noise in LLM few-shot labels and isolate 076

high quality labels for use as training data. Us- 077

ing our outlined approach, we assess performance 078

across ten different models by replicating 14 clas- 079

sification tasks. In addition to a GPT-4 few-shot 080

model, we assess performance between popular 081

supervised classifiers (i.e., BERT, RoBERTa, and 082
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DistilBERT) trained on varying quantities of either083

human-labeled samples or GPT-4-labeled samples.084

A small number of studies have utilized similar085

approaches in related domains. Chen et al. (2023)086

use ChatGPT annotations to train various Graph087

Neural Networks (GNNs) for a fraction of the cost088

of human annotations. Golde et al. (2023) also089

harness ChatGPT to create synthetic text data that090

aligns with a specific valence (i.e., positive and091

negative) and then subsequently fine-tune a super-092

vised classifier using the synthetic text. Most analo-093

gous to our approach here, Wang et al. (2021) train094

RoBERTa (Liu et al., 2019) and PEGASUS (Zhang095

et al., 2020) models on labels generated by GPT-3.096

Despite strong performance across their analyses,097

Wang et al. (2021), as well as the previously men-098

tioned studies, exclusively evaluate closed-source099

models (i.e., GPT-3 and ChatGPT) on popular, pub-100

licly available NLP benchmark tasks (e.g., AG-101

News, DBPedia, etc), which are plausibly included102

in the training data for the generative LLM. As a103

result, these analyses provide an unclear indication104

of performance because their results plausibly suf-105

fer from contamination. Put otherwise, strong per-106

formance may reflect memorization, which casts107

doubt on the generalizability of the findings.108

To compare supervised classifiers trained using109

LLM-generated labels against those trained with110

labels from human annotators, researchers must111

assess performance on tasks and data less likely112

to be affected by contamination. To this end, all113

14 of the classification tasks we replicate are con-114

ducted on data sets stored in password-protected115

archives. Each of the classification tasks in our116

corpus are real applications in computational so-117

cial science and contain human-labeled annotations118

that we consider as ground-truth.1 Because our119

data come from non-public data sets from recently120

published academic journals, our findings are less121

prone to concerns of leakage and contamination.122

Our main contributions are as follows:123

1. Across 14 classifications tasks, supervised124

models trained with GPT-generated labels125

perform comparably to models trained with126

human-labeled data. Specifically, the me-127

dian F1 performance gap between models128

trained using GPT-labels and models trained129

on human-labeled data is only 0.039. While130

supervised classifiers trained with LLM-131

1Table A1 and Table A2 include a full list of the data sets
and classification tasks.

Human Annotator

Generative
LLM

Validate few-shot LLM
on human-labeled data

LLM generates
training labels

Selection strategy
on LLM labels

Train supervised
model

Test model performance
on human-labeled data

Figure 1: Supervised text classification with LLM-
generated training labels.

generated labels perform slightly worse than 132

classifiers trained with human labels, LLM- 133

generated labels are a fast, efficient and cost- 134

effective method to fine-tune supervised text 135

classifiers. 136

2. Supervised models trained on GPT-generated 137

labels perform remarkably close to GPT few- 138

shot models, with a median F1 difference of 139

only 0.006 across the classification tasks. 140

3. GPT few-shot models and supervised mod- 141

els trained on GPT-generated labels perform 142

significantly better than all other models on 143

recall, but noticeably worse on precision. 144

2 Methodology 145

Figure 1 shows our five step workflow. First, we 146

validate LLM few-shot performance against a small 147

subset (n=250) of human-labeled text samples for 148

each task. We provide GPT-4 with detailed in- 149

structions to label the text samples into concep- 150

tual categories outlined in the original study.2 Be- 151

cause LLM few-shot annotation performance varies 152

across tasks and data sets, validation is always nec- 153

essary (Pangakis et al., 2023). We then fine-tune the 154

prompt to optimize performance on this initial sam- 155

ple.3 Using the validated prompt, the second step 156

involves labeling an additional 1,250 text samples 157

per task using the same generative LLM, which 158

will later be used as training data for the supervised 159

classifier. 160

2We selected GPT-4 because it was the highest performing
model at the time of our analyses.

3We include all prompt details in the supplementary ma-
terial. Additional prompt tuning details and analyses are dis-
cussed in Appendix B.
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Figure 2: Box plots of performance on test data across 14 tasks. Thick vertical line denotes median.
.

Third, we implement a novel selection strategy161

to only sample training labels with the highest prob-162

ability of correct classification (see also Bansal and163

Sharma, 2023). For our approach, we exploit the164

generative LLM’s predicted token sampling pro-165

cess to identify higher confidence annotations. By166

inducing randomness in the LLM sampling process167

through the use of the temperature hyperparam-168

eter and by repeating an annotation task on the169

same text sample, we generate an empirical mea-170

sure of uncertainty in the label that we deem a171

“consistency score.”4 Given a vector of classifica-172

tions, C, with length l for a given classification173

task, consistency is measured as the proportion of174

classifications that match the modal classification:175
1
l

∑l
i=1Ci == Cmode.176

For our analyses, we classify every text sample177

five times at a temperature of 0.7 and only keep178

annotations with a consistency score of 1.0. Put179

otherwise, we only retain annotations where GPT-4180

consistently labeled the same category across all181

iterations. Across all analyzed tasks, classifica-182

tions with a consistency of 1.0 show significantly183

4Accessing token log probabilities, once available, will be
an effective way to do the same type of selection approach.

higher accuracy (19.4% increase), true positive rate 184

(16.4% increase), and true negative rate (21.4% 185

increase) compared to classifications with a consis- 186

tency less than 1.0. Roughly 85% of classifications 187

had a consistency of 1.0, which reduced our train- 188

ing set to slightly more than 1000 samples per task. 189

In the fourth and fifth steps, we trained a vari- 190

ety of supervised text classifiers and assessed per- 191

formance against a held-out set of 1000 human- 192

labeled samples. Our supervised text classifica- 193

tion models include BERT (Devlin et al., 2019), 194

RoBERTa (Liu et al., 2019), and DistilBERT (Sanh 195

et al., 2019). We select these models because of 196

their frequent application in computational social 197

science. For each task-specific supervised clas- 198

sifier, we conduct a grid search to optimize per- 199

formance, training 18 models and select the com- 200

bination of hyperparameters that yield the best 201

F1 performance.5 Ultimately, we compare per- 202

formance between text classifiers trained on 1000 203

LLM-generated samples, 250 human-labeled sam- 204

ples, and 1000 human-labeled samples. 205

5We optimize the learning rate, the batch size, and the
number of epochs. We elaborate on this process in Appendix
B.2.
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Model Training data Accuracy F1 Precision Recall

GPT-4 Few shot 0.88 0.59 0.51 0.80

BERT
Human annotation: 250 0.89 0.34 0.59 0.30
Human annotation: 1000 0.92 0.62 0.71 0.54
GPT-4 annotation: 1000 0.87 0.59 0.50 0.74

DistilBERT
Human annotation: 250 0.89 0.36 0.53 0.32
Human annotation: 1000 0.89 0.64 0.66 0.61
GPT-4 annotation: 1000 0.85 0.54 0.43 0.75

RoBERTa
Human annotation: 250 0.88 0.37 0.48 0.32
Human annotation: 1000 0.90 0.55 0.54 0.53
GPT-4 annotation: 1000 0.84 0.42 0.38 0.58

Table 1: Comparison of classification performance on held-out validation data. Median performance across 14 tasks
shown.

3 Results206

Classification results are shown in Table 1. In207

Figure 2, each box plot displays the range of208

evaluation metrics across all 14 tasks for a given209

model/training data combination. The thick ver-210

tical line denotes the median performance metric.211

Across all 14 classification tasks, DistilBERT and212

BERT trained on 1000 human-samples are the high-213

est performing models, with a median F1 score of214

0.641 and 0.624, respectively.6 Not far behind,215

however, is the GPT-4 few-shot model (0.592 me-216

dian F1) and BERT trained on 1000 GPT-labeled217

samples (0.586 median F1). From this we draw218

two conclusions: First, models trained on few-shot219

synthetic labels from a generative LLM perform220

comparably to models trained on human labels. De-221

spite a small performance gap, training supervised222

models on LLM-labeled data may be a quick, effec-223

tive, and budget-friendly approach for constructing224

supervised text classifiers.225

Second, models trained on synthetic labels from226

GPT-4 demonstrate very similar validation perfor-227

mance as few-shot labels with GPT-4. As each228

additional GPT-4 query incurs more expense, re-229

searchers can save resources by avoiding classi-230

fying an entire data set using a generative LLM231

and instead use them to create training labels for a232

supervised model.233

A secondary finding is that GPT few-shot models234

and supervised models trained on GPT-generated235

labels produce remarkably high performance on236

recall. GPT-4 few-shot (0.8 median recall) as well237

6We use F1 as our primary evaluation criteria due to class
imbalance. Full results are shown in Table A3.

as DistilBERT and BERT trained on GPT-labels 238

(both with 0.746 median recall) achieve signifi- 239

cantly better median recall than any model trained 240

with human labels. The opposite is true for pre- 241

cision: BERT trained on human-labels achieved 242

the highest precision of the models tested, which 243

was 0.214 higher than median precision for BERT 244

models trained on GPT-4 labels. Therefore, using 245

sythetic training labels may be better suited for 246

tasks where recall is prioritized over precision. 247

4 Discussion 248

We demonstrate that synthetic labels from genera- 249

tive LLMs offer a viable strategy for training task- 250

specific supervised classifiers. These models can 251

achieve high performance with minimal resources 252

relative to other options. Future work should ex- 253

plore the performance of additional models by in- 254

cluding open-source LLMs (e.g., LLaMa (Touvron 255

et al., 2023)), larger supervised models (e.g., Fal- 256

con7), and fine-tuned generative LLMs.8 257

A few points of caution are worth emphasizing. 258

There are numerous cases where GPT-4 fails to 259

accurately label the underlying text data. While 260

advancements in LLM technology and additional 261

prompt engineering could mitigate these concerns, 262

it is essential that researchers validate and optimize 263

generative LLM performance against ground-truth 264

human-labeled data. Thus, while generative LLMs 265

can improve the entire classification workflow, their 266

application must always remain human-centered. 267

7Documentation here: https://huggingface.co/blog/falcon
8For example, see here: https://openai.com/blog/gpt-3-5-

turbo-fine-tuning-and-api-updates.
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5 Limitations268

Here, we identify three main limitations of our269

analysis. First, as discussed in Section 4 and shown270

in full detail in Table A3, there are various cir-271

cumstances where supervised models trained on272

LLM-generated labels fail to produce satisfactory273

results. This may be due to inaccurate annotations274

from GPT-4, poor performance from the supervised275

classifier, or both. While it is possible that addi-276

tional prompt engineering or hyperparameter tun-277

ing could improve performance, it is essential to278

stress that each of these optimization strategies rely279

on human labels for comparison. As a result, we280

argue that it is essential to center human judge-281

ment as ground truth when optimizing models and282

adjudicating between models.283

A second, related limitation refers to understand-284

ing the errors in the model outputs. Specifically, it285

is possible that errors from a GPT-trained model286

produces correlated but unobservable errors. Build-287

ing a supervised classifier on top of GPT-4 labels288

would magnify, rather than offset, any such biases.289

This, too, underscores the importance of human val-290

idation and error analysis. It is, of course, also es-291

sential to minimize bias by human annotators. For292

instance, recruiting human annotators from vary-293

ing demographic backgrounds when conducting an294

annotation project may diminish the potential for295

correlated errors across annotators.296

Finally, treating human labels as ground truth is297

an additional limitation. Although most data sets298

in our analysis employed multiple human coders,299

it is of course possible that these annotators made300

correlated errors. As a result, some disagreements301

between human ground truth labels and synthetic302

GPT-4 labels may stem from human error. Such303

errors could bias performance metrics downward304

for any of the models assessed. Because our pri-305

mary interest is making comparisons across models,306

however, we are mainly interested in their relative307

performance. Because each model would suffer308

from the same errors in the human labeled data,309

we do not see this as a significant concern for this310

analysis.311

For the analysis in this paper, our reliance on text312

classification tasks and data from peer-reviewed re-313

search in high-impact journals helps to mitigate314

concerns about data annotation quality. The anno-315

tation procedures in each of these tasks received316

IRB approval and was assessed by independent re-317

viewers to be of quality enough for publication in318

a high-impact journal. Still, it is important to ac- 319

knowledge that applied researchers should invest in 320

high-quality human labels, even if only to validate 321

generative LLM annotation performance. 322

6 Ethics Statement 323

Our research complies with the ACL Ethics Policy. 324

Specifically, our research positively contributes to 325

society and human well-being by providing tools 326

that can aid computational social scientists study- 327

ing the social world. Using the methods we intro- 328

duce and test will help scientists better understand 329

a wide range of complicated social problems. Be- 330

cause the techniques proposed and assessed in this 331

article require dramatically less resource expendi- 332

ture than alternatives, our results can help address 333

inequities in resources across researchers. 334

Due to the inherent risks of deploying biased 335

models, we stress the necessity of human valida- 336

tion throughout our paper. Given the ease and ef- 337

ficiency gains of using generative LLMs to train 338

supervised classifiers, we believe it is essential to 339

build rigorous testing and evaluation standards that 340

are human-centered. This is why we took great ef- 341

forts to center our analyses on data sets less prone 342

to contamination risks. 343

Moreover, our research and data analysis does 344

not cause any harm while also respecting privacy 345

and confidentiality concerns. As we discuss in our 346

data collection procedures in Appendix A, we con- 347

formed to each data repository’s usage and repli- 348

cation policies. Each of the original studies re- 349

ceived IRB approval and our analyses conformed 350

to the same safety protocols. All collected data was 351

anonymized by the original authors. Appendix B.3 352

provides additional details on human annotation 353

protocols, which were all conducted by the original 354

studies and received IRB approval. 355
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A Appendix: Data sets490

In this section, we elaborate on the data sets used491

in our analysis. Our corpus includes 14 classifica-492

tion tasks across five data sets representing recent493

applications in computational social science. To494

avoid the potential for contamination, we rely ex-495

clusively on data sets stored in password-protected496

data archives (e.g., Dataverse). We draw from re-497

search published in outlets across a spectrum of498

disciplines ranging from interdisciplinary publica-499

tions (e.g., Proceedings of the National Academy500

of Sciences) to high-impact field journals in social501

science (e.g., American Journal of Political Sci-502

ence). To find these articles, we searched journals503

for articles related to computational social science504

that implemented some type of manual annotation505

procedure. The human-labeled data from the origi-506

nal study is treated as the ground truth. We discuss507

the human annotation procedures in the original508

studies at greater length in Appendix B.3.509

Table A1 and Table A2 contain the full details for510

every task and data set. Overall, our data encom-511

pass diverse degrees of class imbalance: Across512

tasks, the mean positive class frequency is 16.2%,513

the minimum is 0.04%, and the maximum is 61%.514

The sources of labels are representative of common515

approaches to annotation: 42.9% of tasks were516

annotated by crowdsourced workers, 28.6% by ex-517

perts, and 28.6% by research assistants.518

Our repications involve fine-tuning supervised519

classifiers using manually annotated data from the520

replication data sets. For every replication clas-521

sification task, we conformed to each data repos-522

itory’s replication policies. Each of the original523

studies received IRB approval and our analyses524

conformed to the same safety protocols, including 525

full anonymization and agreeing to not publicly 526

post the raw data without permission. As such, our 527

replication of each data set is compatible with its 528

intended usage. 529

Although all of the data sets were anonymized 530

before our replications, we manually reviewed each 531

data set to confirm privacy protections. One of the 532

data sets (Saha et al., 2023) contains hate speech, 533

but this is because it is a central part of the research 534

question from the original study. As a result, we 535

include examples of hate speech in that particular 536

replication. From manual review, no other data set 537

contained offensive material. 538

B Appendix: Additional methodological 539

details 540

B.1 Prompt tuning 541

As discussed in Section 2, for every task, we op- 542

timized each GPT-4 prompt on a subset of 250 543

text samples labeled by humans. To do this, we 544

tested generative LLM performance on the subset 545

of data and then, if relevant, made iterative human- 546

in-the-loop updates to the codebook to optimize the 547

prompt for accurate annotations. To harmonize the 548

diverse range of annotation tasks into a common 549

framework for evaluation, we treat every dimen- 550

sion as a separate binary annotation task. Thus, if 551

an article includes a classification task with three 552

potential labels, we split the annotation process 553

into three discrete binary classification tasks. In 554

the supplementary material, we include each LLM 555

prompt instruction as a .txt file. We also include 556

our code to query the GPT-4 API. 557

Figure A3 shows the distributions of change 558

in performance metrics after updating the LLM 559

prompt and re-annotating the same text sam- 560

ples. This analysis demonstrates whether and how 561

prompt optimization affects LLM annotation, hold- 562

ing constant the data and conceptual categories. 563

In most cases, prompt optimization led to mod- 564

est improvement in accuracy and F1—although 565

recall decreased in more cases than improved af- 566

ter updating the prompts. While the magnitude 567

of improvement was generally small, researchers 568

experiencing subpar LLM annotation performance 569

can use human-in-the-loop prompt optimization to 570

ensure that their instructions are not the cause of 571

poor performance. 572
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Figure A3: Change in LLM annotation performance on training data after one round of prompt optimization

B.2 Hyperparameter tuning, evaluation, and573

compute details574

Our experiment involved varying the training data575

used to fine-tune supervised classifiers (i.e., 250576

human samples, 1000 human samples, and 1000577

GPT-labeled samples). To select each supervised578

classifier, we implemented a grid search over 18579

possible hyperparameter combinations. In partic-580

ular, we optimized learning rate (1e-5, 2e-5, and581

5e-5), batch size (8 and 16), and epochs (2, 4, 6).582

We conducted our search on a subsample of 250583

text samples per task and retained the best hyperpa-584

rameters (in terms of highest F1) across each task.585

We subsequently used the best-performing combi-586

nation of hyperparameters for all applications of a587

specific model (see best-performing hyperparame-588

ter configurations in Table A4). Despite not adopt-589

ing a more exhausting approach to hyperparameter590

tuning approach, we observe strong performance591

across our classification tasks, with a few excep-592

tions. Table A5 displays additional model hyper-593

parameters that remained constant across tasks, as594

well as basic information about each model’s archi-595

tecture. We selected the chosen pretrained models596

(i.e., BERT, RoBERTa, and DistilBERT) because597

of their ease of usage, low cost, and popularity598

among computational social scientists.599

For all 14 tasks, evaluation was conducted on600

a test set of 1000 held-out text samples that had601

previously been labeled by human annotators. As602

is standard in classification evaluation, we report603

accuracy, F1, precision, and recall for every task604

and model. Table A3 displays the full classification605

results across all tasks and models.606

All of our supervised training analyses were im- 607

plemented in Python 3.10.12 with HuggingFace’s 608

Transformers (Wolf et al., 2020) and PyTorch li- 609

braries (Paszke et al., 2019). We conducted all data 610

preprocessing in Python Pandas (McKinney, 2011). 611

Our computing infrastructure was Google Colab, 612

where we used 215 T4 GPU compute units (roughly 613

421.4 GPU hours). As with our model selection, 614

we chose this computing environment due to its low 615

cost and ease of application. Any computational 616

social scientist could conduct the same analyses. In 617

the supplementary material, we include all code to 618

run our supervised training procedures. 619

B.3 Additional details on human annotation 620

procedures 621

We introduce a novel corpus of labeled text data 622

for annotations. To create this data set, we compile 623

labeled data from recent studies, as detailed in A1. 624

As a result, we did not work with annotators to 625

generate any original data. We adopted materials 626

from these original studies instead. While we do 627

not report the instructions given to each study’s 628

human annotators, we do provide the prompt in- 629

structions that were used to query GPT-4 in the sup- 630

plementary material. These instructions were taken 631

directly from the original study’s human annotator 632

instructions. All additional details on the annota- 633

tion procedures (e.g., how they were recruited, pay- 634

ment, consent, and demographic characteristics) 635

can be found in the original studies’ supplementary 636

material. 637

While we do not describe each study’s proce- 638

dures in detail, we manually selected our annota- 639

tion studies due to their high-quality human label- 640
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ing practices. All of the replicated studies were641

approved by an IRB. These studies all deployed ei-642

ther expert coders or numerous non-expert coders643

of varying backgrounds. Because all of the human644

annotation text is part of the peer-review process in645

high-impact journals and due to the strict annota-646

tion guidelines and principles these studies adhered647

to, we conclude that the human annotations are of648

high-quality.649

C Appendix: Miscellaneous additional650

information651

Additional sources:652

• Robot image (used in Figure 1): https:653

//commons.wikimedia.org/wiki/File:654

Grey_cartoon_robot.png655

• Human silhouette image (used in Fig-656

ure 1): https://commons.wikimedia.org/657

wiki/File:SVG_Human_Silhouette.svg658
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Author(s) Title Journal Year

Card et al. Computational analysis of 140 years of US
political speeches reveals more positive but
increasingly polarized framing of immigration

PNAS 2022

Hopkins, Lelkes,
and Wolken

The Rise of and Demand for Identity-Oriented
Media Coverage

American Journal of Polit-
ical Science

2024

Müller The Temporal Focus of Campaign Communi-
cation

Journal of Politics 2021

Peng, Romero, and
Horvat

Dynamics of cross-platform attention to re-
tracted papers

PNAS 2022

Saha et al. On the rise of fear speech in online social me-
dia

PNAS 2022

Table A1: Replication data sources.

Study # of tasks Annotation source Classification tasks

Card et al. (2022) 4 Research
assistants

Classify US congressional speeches to identify
whether the speech discussed immigration or immi-
gration policy, along with an accompanying tone:
pro-immigration, anti-immigration, or neutral.

Hopkins, Lelkes,
and Wolken (2024)

4 Crowd Classify headlines, Tweets, and Facebook share
blurbs to identify references to social groups defined
by a) race/ethnicity; b) gender/sexuality; c) politics;
d) religion.

Müller (2021) 3 Expert Classify sentences from political party manifestos for
temporal direction: past, present, or future.

Peng, Romero, and
Horvat (2022)

1 Expert Classify whether Tweets express criticism of findings
from academic papers.

Saha et al. (2020) 2 Crowd Classify social media posts into fear speech, hate
speech, both, or neither.

Table A2: Descriptions of replication classification tasks.
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Data set Task Model

Training data
Few shot Human: 250 Human: 1000 GPT: 1000

Ac. F1 Pr. Re. Ac. F1 Pr. Re. Ac. F1 Pr. Re. Ac. F1 Pr. Re.

Card et al.

Cat: Neg

GPT-4 0.85 0.65 0.54 0.83
BERT 0.88 0.58 0.74 0.48 0.87 0.56 0.65 0.49 0.81 0.56 0.47 0.72
RoBERTa 0.85 0.51 0.59 0.45 0.84 0.48 0.55 0.42 0.78 0.57 0.43 0.82
DistilBERT 0.86 0.56 0.61 0.51 0.86 0.58 0.61 0.55 0.81 0.58 0.47 0.74

Cat: Imm

GPT-4 0.81 0.81 0.74 0.90
BERT 0.85 0.84 0.79 0.89 0.86 0.86 0.81 0.91 0.84 0.83 0.76 0.91
RoBERTa 0.86 0.85 0.80 0.92 0.85 0.84 0.77 0.92 0.82 0.82 0.74 0.92
DistilBERT 0.85 0.84 0.80 0.88 0.84 0.84 0.79 0.89 0.82 0.82 0.73 0.92

Cat: Neut.

GPT-4 0.83 0.26 0.27 0.25
BERT 0.80 0.35 0.29 0.44 0.85 0.36 0.38 0.35 0.87 0.38 0.44 0.34
RoBERTa 0.88 0.30 0.46 0.23 0.88 0.00 0.00 0.00 0.84 0.33 0.33 0.34
DistilBERT 0.85 0.28 0.32 0.25 0.85 0.36 0.37 0.35 0.86 0.38 0.40 0.36

Cat: Pro

GPT-4 0.88 0.50 0.55 0.46
BERT 0.86 0.33 0.44 0.27 0.84 0.44 0.42 0.46 0.87 0.45 0.51 0.40
RoBERTa 0.87 0.37 0.51 0.30 0.84 0.37 0.41 0.34 0.85 0.41 0.43 0.39
DistilBERT 0.87 0.29 0.55 0.19 0.83 0.38 0.38 0.37 0.84 0.35 0.40 0.31

Hopkins et al.

Political

GPT-4 0.88 0.43 0.30 0.79
BERT 0.95 0.32 0.60 0.22 0.96 0.62 0.71 0.54 0.82 0.34 0.21 0.82
RoBERTa 0.84 0.37 0.23 0.85 0.96 0.62 0.73 0.54 0.84 0.37 0.23 0.85
DistilBERT 0.94 0.29 0.50 0.20 0.96 0.63 0.72 0.56 0.83 0.34 0.22 0.80

Gender

GPT-4 0.95 0.74 0.68 0.82
BERT 0.91 0.20 0.46 0.13 0.96 0.80 0.86 0.74 0.94 0.72 0.62 0.85
RoBERTa 0.91 0.08 0.44 0.04 0.95 0.73 0.78 0.68 0.92 0.67 0.54 0.87
DistilBERT 0.94 0.52 0.83 0.38 0.97 0.81 0.87 0.75 0.93 0.71 0.59 0.88

Race

GPT-4 0.96 0.57 0.41 0.92
BERT 0.97 0.00 0.00 0.00 0.98 0.56 0.71 0.46 0.98 0.64 0.54 0.77
RoBERTa 0.97 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.97 0.59 0.45 0.85
DistilBERT 0.97 0.00 0.00 0.00 0.99 0.71 0.77 0.65 0.97 0.54 0.46 0.65

Religion

GPT-4 0.98 0.61 0.47 0.88
BERT 0.98 0.21 1.00 0.12 0.99 0.73 0.75 0.71 0.98 0.61 0.48 0.82
RoBERTa 0.98 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.98 0.00 0.00 0.00
DistilBERT 0.98 0.00 0.00 0.00 0.99 0.69 0.67 0.71 0.97 0.53 0.37 0.94

Müller

Future

GPT-4 0.82 0.85 0.87 0.83
BERT 0.83 0.85 0.88 0.84 0.82 0.85 0.85 0.85 0.81 0.85 0.84 0.87
RoBERTa 0.84 0.87 0.87 0.88 0.82 0.85 0.86 0.85 0.82 0.86 0.84 0.87
DistilBERT 0.83 0.86 0.85 0.86 0.81 0.84 0.87 0.82 0.82 0.85 0.83 0.88

Past

GPT-4 0.91 0.74 0.66 0.84
BERT 0.94 0.83 0.74 0.93 0.95 0.83 0.80 0.85 0.93 0.79 0.71 0.89
RoBERTa 0.94 0.80 0.81 0.79 0.95 0.85 0.79 0.92 0.85 0.00 0.00 0.00
DistilBERT 0.94 0.79 0.77 0.80 0.94 0.80 0.79 0.82 0.93 0.79 0.68 0.96

Present

GPT-4 0.82 0.62 0.64 0.60
BERT 0.83 0.65 0.66 0.64 0.83 0.65 0.64 0.66 0.81 0.61 0.63 0.58
RoBERTa 0.84 0.66 0.71 0.61 0.84 0.68 0.68 0.67 0.83 0.61 0.68 0.56
DistilBERT 0.83 0.64 0.69 0.59 0.83 0.65 0.66 0.64 0.82 0.59 0.66 0.54

Peng et al. Critical

GPT-4 0.85 0.54 0.48 0.63
BERT 0.87 0.43 0.59 0.34 0.91 0.63 0.76 0.54 0.79 0.43 0.35 0.56
RoBERTa 0.88 0.44 0.61 0.34 0.87 0.62 0.54 0.73 0.78 0.43 0.34 0.59
DistilBERT 0.83 0.43 0.42 0.44 0.86 0.54 0.50 0.58 0.77 0.41 0.33 0.56

Saha et al.

CV

GPT-4 0.97 0.06 0.03 0.25
BERT 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.94 0.03 0.02 0.25
RoBERTa 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.93 0.05 0.03 0.50
DistilBERT 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.94 0.10 0.05 0.75

HD

GPT-4 0.88 0.35 0.28 0.45
BERT 0.91 0.17 0.24 0.13 0.92 0.41 0.45 0.38 0.90 0.21 0.24 0.19
RoBERTa 0.92 0.24 0.35 0.19 0.92 0.47 0.43 0.52 0.91 0.20 0.26 0.16
DistilBERT 0.91 0.26 0.32 0.22 0.91 0.40 0.38 0.42 0.91 0.28 0.33 0.25

Table A3: Complete task-by-task classification performance results. Ac., Pr., and Re. refer to accuracy, precision,
and recall, respectively.
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Study Task Hyperparameters

Card et al.

Classify immigration speeches learning rate (5e-05),
batch size (8), epochs (4)

Classify pro-immigration speeches learning rate (5e-05),
batch size (16), epochs (6)

Classify anti-immigration speeches learning rate (5e-05),
batch size (8), epochs (6)

Classify neutral immigration
speeches

learning rate (5e-05),
batch size (8), epochs (4)

Hopkins et al.

Classify race/ethnicity learning rate (2e-05),
batch size (8), epochs (4)

Classify gender learning rate (5e-05),
batch size (8), epochs (6)

Classify political groups learning rate (5e-05),
batch size (16), epochs (6)

Classify religious groups learning rate (5e-05),
batch size (8), epochs (6)

Müller
Classify past learning rate (5e-05),

batch size (8), epochs (4)

Classify present learning rate (5e-05),
batch size (8), epochs (4)

Classify future learning rate (2e-05),
batch size (8), epochs (6)

Peng et al. Classify criticism learning rate (5e-05),
batch size (8), epochs (6)

Saha et al.
Classify fear speech learning rate (5e-05),

batch size (8), epochs (6)

Classify hate speech learning rate (5e-05),
batch size (8), epochs (4)

Table A4: Hyperparameter settings per task.
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BERT-
base

RoBERTa-
base

DistilBERT

# parameters 110m 125m 66m

# attention heads 12 12 12

Hidden dim. 768 768 768

Feedforward dim. 3072 3072 3072

Activation GELU GELU GELU

Dropout 0.1 0.1 0.1

Optimizer Adam Adam Adam

Weight decay 0.01 0.01 0.01

Table A5: Model architectures and additional hyperparameters.
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