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ABSTRACT

Learning conceptual structures requires acquiring knowledge of how members of
a class share a set of semantic properties. The challenge is that some properties
are more efficiently learned by perceptual experience (e.g., an image of a dog that
shows its texture, shape and color) while others benefit from language input (e.g.,
“a dog is a mammal”). Unimodal machine learning systems, as opposed to human
brains, are therefore fundamentally limited in this respect. In contrast, systems in-
tegrating multimodal information should be able to learn a more human-like rep-
resentational space since they can leverage both types of complementary sources
of information. Multimodal neural network models offer a unique opportunity to
test this hypothesis. We evaluate this proposal through a series of experiments
on architecturally diverse vision-and-language networks trained on massive cap-
tion image datasets. We introduce an analytic framework that characterizes the
semantic information behind the discrimination of concepts (i.e., lexicalized cat-
egories) through image-text matching tasks and representational similarity. We
further compare how this discrimination (i.e., the model’s “conceptual behavior”)
differs from that of humans and unimodal networks, and to what extent it depends
on the multimodal encoder mechanism. Our results suggest promising avenues to
align human and machine representational invariants via multimodal inputs.

1 INTRODUCTION

Efficient concept learning in humans requires integrating multimodal information. Human concepts
are lexicalized categories (i.e., “named” representations that share a set of invariances). Lexical-
ization enables the grouping of concept features that are available through different senses under
a single name (Sloutsky & Deng| 2019). For example, the visio-perceptual invariances that hu-
mans learn to associate with a cheetah (e.g. black spots, four legs) can be linked to knowledge
about that concept that is best transmitted through language (e.g. “is a carnivore”). This results
in a more comprehensive and structured semantic knowledge base about the entities in the world
(i.e. commonsense-knowledge), which is essential for higher-level cognitive abilities like reason-
ing, planning or inference (Yee, 2019).

Recently, there has been increasing attention to the development of multimodal neural networks,
with the aim of advancing models that possess such enhanced knowledge capable of generaliz-
ing to a variety of downstream tasks (Du et al.l [2022). Among these are Vision-and-Language
models (V+L), which jointly process images and text. Although there is recent work on the align-
ment performance and cross-modal integration of V+L networks, we still lack an understanding of
whether these networks learn more human-like semantic representations and whether they use these
for downstream tasks that require conceptual knowledge (e.g., image generation, concept detection,
visual question answering, commonsense reasoning). For this, it is important to analyze the concep-
tual behavior (i.e., the ability to discriminate between concepts) of these models. This approach is
especially relevant to the interpretability and understanding of deep learning models, where we care
to explain the invariances that have been learned to perform a certain task.

In this work we set out to investigate these questions. We introduce an evaluation framework based
on image-text matching tasks and representational similarity analysis that: (a) Examines the con-
ceptual behavior and learning of V+L networks and measures their similarity to that of humans; and
(b) Probes the extent to which V+L models are able to recognize the semantic features related to a
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particular concept, and crucially measures whether the recognition of these properties is involved in
the detection of such concept.

2 RELATED WORK

Most studies aiming to understand the inner workings of V+L models have examined if and how
these models combine cross-modal information (Aflalo et al.}[2022; |Cafagna et al.| 2021} |Cao et al.}
2020; [Frank et al.| 2021} [Hessel & Lee, [2020; [Salin et al., [2022; |Shekhar et al., [2017). They found
that V+L models may not integrate multimodal information in an optimal manner (Hessel & Lee,
2020), and their performance seems to rely predominantly on one or the other modality depending
on the task at hand (Cao et al.| 2020} [Frank et al., [2021}; |Salin et al.| 2022)). Although we indirectly
examine multimodal integration via changes in conceptual behavior, the main focus of the present
work is to determine how multimodality affects the encoding of conceptual knowledge and to what
extent the latter is structured in a human-like way.

Another set of studies has focused on measuring the grounding capabilities of V+L regarding lin-
guistic information, such as the recognition of the verb implied by an image (Hendricks & Ne-
matzadeh} 2021), the number of entities shown (Parcalabescu et al.,2021)), the semantic congruence
between the caption and the image (Lindstrom et al.,|2021)), and the influence of negation in under-
standing the scene semantics (Dobreva & Keller, 2021)). Unlike these studies, we are not concerned
with how well V+L models can recognize if the events showcased in an image match a textual de-
scription. Instead, we focus our analyses on quantifying how these models recognize and represent
general semantic knowledge about the properties of concepts depicted in a set of images, beyond
what is observable in a particular instance (e.g. can the network recognize that a photo of a cheetah
shows “something that is fast” even if the animal is in a sitting position?).

Studies in the field of interpretability of large language models share some of our aims, although
they differ markedly due to their lack of multimodality. These set out to investigate how BERT
and RoBERTa encode knowledge about the semantic properties of common concepts (Apidianaki
& Soler;, 2021]; [Weir et al., 2020) and found good overall retrieval but the performance depended
on the type of feature. |Collell Talleda & Moens| (2016)’s work is of particular relevance, since
it investigated how semantic features can be decoded from both linguistic and vision embeddings
separately, and compared the informativeness of these representations for different types of features.
Our work overcomes some of its limitations, as we are able to investigate how multimodal training
changes the representation of semantic features by analyzing joint language-vision embeddings.

Finally, since our study tests models in their ability to recognize semantic properties that are not
commonly described in caption-imaging datasets, it complements existing work on the robustness
and out-of-distribution generalization of V+L models (Li et al.,[2020; Zhou et al.| 2022).

3  EVALUATION FRAMEWORK

3.1 MODELS

We examined three V+L models that are representative of common multimodal architecture choices,
and differ in how early and under which mechanisms vision and language inputs are integrated.
Comparing these models is thus an indirect way of testing if any particular multimodal training
mechanism leads to more human-like conceptual behavior.

CLIP (Radford et al.,2021)). The first examined model consists of a dual encoder architecture that
“superficially” integrates multimodal information by projecting the final embeddings of a visual and
text encoder to the same semantic space via a dot product. Different versions of CLIP exist with
varying types of image encoders, with a fixed choice of a GPT-2 text encoder (Radford et al.|[2019).
To be similar to the other models probed in this work, we chose to examine the version composed of
the visual transformer architecture ViT-B/32. The model was trained using a dataset of 400 million
image-text pairs that is not publicly available.

ViLT (Kim et al.| [2021). In contrast to CLIP, ViLT is a so called “fusion” single-stream model
that integrates cross-modal information from its first stages of processing. It consists of a stack of
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transformer modules that are initialized with the weights of a pre-trained ViT-B/32, and process the
concatenation of independently extracted visual and text embeddings. ViLT was trained with an
image-text matching (ITM) and a masked-language-modeling task, using as inputs approximately 5
million image-caption pairs that are extracted from a combination of public datasets.

ALBEF (Lietal.l|2021). The last examined model combines the dual stream and fusion approach.
ALBEEF first processes image and text separately through a vision and a language encoder and aligns
their final embeddings using a contrastive loss. The visual backbone is initialized with the weights of
a ViT-B/16, while the language encoder is based on the first 6 layers of a BERTbase model (Devlin
et al., 2018). After alignment, a multimodal encoder, initialized with the weights of the last six
layers of BERTbase, fuses the visual and language embeddings of the unimodal streams by means
of crossmodal attention. ALBEEF is trained using the same datasets and tasks as ViLT, with the
additional supervision of a momentum model.

3.2 DATASETS

To probe the conceptual behavior and semantic knowledge of V+L models, we combined a linguistic
and visual dataset by mapping a series of images depicting a concept with a series of captions
describing the semantic properties of said concept.

McRae feature norms. The database of McRae et al.| (2005) contains human-annotated semantic
properties of 541 concepts. Based on previous studies (Devereux et al., 2014), we categorized
these features into those describing: (1) taxonomic information (e.g. ’a dog is an animal”), (2)
visual information (color, parts, or surface properties of the concept; e.g. ”a dog has ears”), (3)
non-visual perceptual information (sound, smell, taste, etc.; e.g. ~a dog barks”), (4) functional
information (related to the functions of the concept; e.g. ’a dog can be used for protection™), (5)
encyclopaedic information (common knowledge about the concept which cannot be included in the
other categories; e.g. ’a dog is domestic”). We avoid sense ambiguity by mapping these concepts to
their corresponding synsets. After filtering the concepts of this database by those that overlap with
the image dataset, the average number of features per concept was 13.83 (min. value of 6; max.
value of 39).

THINGS images. The original dataset of |[Hebart et al| (2019) contains a sub-selection of im-
ages from ImageNet depicting 1854 object concepts. We chose this dataset because: (1) for each
image the object occupies most of the canvas, with very limited and partial information in the back-
ground; and (2) when fed to a CNN, the selected images maximize the intra-class and minimize the
inter-class similarity, while still demonstrating variability in their low-level properties; and (3) the
synsets corresponding to each depicted object are annotated. After computing the overlap between
the THINGS object concepts and those provided by McRae et al.| (2005)), our final image-property
dataset was composed of 342 concepts and 4928 images depicting them (average value of 14.4
images per concept; min. value of 12; max. value of 27).

3.3 DIAGNOSTIC METHODS

Inspired by previous work in cognitive neuroscience (Kriegeskorte et al., [2008) and Al research
(Morcos et al., 2018), our study provides insights on the similarity between V+L models, human
cognition and unimodal networks, by comparing the distances between their concept-related repre-
sentational structure. We specifically set out to answer the following questions:

Is the discriminability of concepts in V+L models different from their unimodal counterparts?
If multimodal learning has changed the semantic invariances learned to identify a concept, the rep-
resentational structure of categories in V+L models should be different from that of unimodal net-
works. To answer this question, we pair the stream of every V+L model M; with its unimodal
counterparts (Uj, ...), P = {(M;, Uj), ...}, and compare their representational space (see Table []in
the appendix for details on how models were paired). For every transformer block [ of every model
m € (M;,U;), we compute the cosine distance:
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where c¢;,c; € R™ are the activation vectors of the ith and jth concepts in C, and n is the num-
ber of neurons in a token of /. We examine the [CLS] or [EOS] tokens that provide an image or
sentence-level representation and serve as the inputs of the I'TM heads or the projection to the con-
trastive embedding space. In the case of the image streams of CLIP and ALBEF, and the unimodal
vision networks ViT-B/16 and ViT-B/32, ¢; = % - vF. That is, c; is obtained by averaging the
activations v; over the p images depicting the ith concept in C. For the text streams of CLIP and
ALBEEF, c; is the activation vector of the word representing the ith concept. To obtain meaningful
categorical representations from BERT and GPT-2, we computed c¢; by averaging the activation vec-
tors of prompt-engineered sentences containing the word that references the ith concept (e.g. for the
concept dog: "What is a dog?”, ”A photo of a dog”, ”This is my dog”).

We thus obtained a vector of distances dﬁn € R"™, where n = (lg‘), for each model m (unimodal
or multimodal) and layer [ . To compare the representation of concepts in each model, we compute

a Spearman’s rank correlation coefficient ri’{l between every pair of layers ({3, ;) for each model
pair (m;, m;) € P, with ¢ # j:

B cov(R(dF), R(dj))

ij o_
k.q

2
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where R is the rank of d and o is standard deviation.

Do V+L models learn to lexicalize categories? If V+L models are able to learn "named” cate-
gories, they should be able to recognize the word humans use to reference the object depicted in
an image. We thus quantified how well each of the 4928 images matched the words associated
with the concepts in C. This procedure gave 4928 x 342 independent scores to analyze per model
m € M = {CLIP, VIiLT, ALBEF}. The matching scores of CLIP were obtained by computing the
dot product between the final image and text embeddings, while the matching scores for ViLT and
ALBEF were computed using the pre-trained ITM heads of the models. Since we are interested in
the match between the images depicting c¢; and the word referring to ¢; for every ith and jth concept
pair in C, we examined pairwise logits.

To what extent is the conceptual behavior of V+L models explained by the invariances learned
by unimodal models? To investigate to what degree the conceptual behavior of V+L models is
accounted for by what can be learned through unimodal systems, we analyzed how similar the
discriminability of concepts in V+L models is to the distances d,,, between categories in the repre-
sentational space of unimodal models (computed in step 1). The discriminability vector s;, € R",
where n = (‘g‘) and h € M = {CLIP, ViLT, ALBEF}, was obtained by computing the match
scores (logits) between the various images depicting ¢; and the word referring to c¢;, averaging over
images, and concatenating these n averages (for every ith and jth concept pair in C). We then com-
puted a Spearman’s rank correlation coefficient (eq. [2) between each s, and every d!,,, where each
m is a unimodal counterpart of h and [ is the layer of model m.

How similar to humans is the conceptual behavior of V+L models? To quantify the similarity
between the conceptual behavior of V+L models and that of humans, we first constructed vectors
representing the conceptual behavior of humans as follows. We format the McRae feature norms as
a matrix where the columns are semantic features and the rows are the concepts; cell ¢, j contains the
number of people who named feature j as belonging to concept ¢. For every semantic feature type ¢
(e.g., taxonomic, visuo-perceptual) we select the corresponding feature set (columns), compute the
cosine distance (eq. [I)) between every pair of concepts (rows), and concatenate them into a vector
u¢. For every pair of different feature sets t,,t; we have t; N ¢t; = (). Finally we computed the
Spearman’s rank correlation coefficient (eq. between sy and u; for every model h € M and
feature type t.

To quantify the extent to which the similarity between the conceptual behavior of V+L models
and humans can be explained by the multimodal training over and above what can be learned by
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unimodal models, we carried out a variance partitioning analysis. More specifically, we computed
the 72 of an Ordinary Least Squares (OLS) regression using unimodal vectors d',, and multimodal
vectors sy, as independent variables, and a semantic vector u,; as the dependent variable, where [
represents the layer in d,,, with the highest correlation to u;. To obtain the unique variance between
s, and wuy, we then subtracted from that result the r2 of an OLS regression using the unimodal
vectors as the only predictors for the dependant variable u;. We repeated this analysis for every
feature type ¢, and model h € M where m is a unimodal counterpart of h.

How human-like is the conceptual learning of V+L models? Studies from the field of cognitive
psychology have shown that lexicalization abilities are impacted by certain psycholinguistic prop-
erties of the concepts being learned (Balota et al.| [2007). To examine if V+L models exhibit the
same pattern, we quantified the similarity between the concept recognition accuracies of the V+L
models, and human-annotated information about the frequency (Gimenes & New, |2016)), familiarity
(Brysbaert et al.| 2019), prevalence (Brysbaert et al., 2019)), average age of acquisition (Kuperman
et al., [2012), concreteness (Brysbaert et al., [2014), imageability (Scott et al., 2019) and perceptual
strength (Lynott et al.,|2020)) of the concepts in our database. We also directly quantified how similar
the lexicalization accuracy of V+L models was with the performance of humans in a lexical decision
task (Balota et al., 2007). More specifically, we correlated (see eq. [2) the vector ¢, € RICI of the
top-1 concept-detection accuracies obtained in the image-text matching task, with a vector o; € RIC!
containing the ratings of the ith psycholinguistic variable, for every model m € M.

Can V+L models recognize the semantic features of concepts in an image? Since the concep-
tual behavior of V+L models can resemble that of humans without representing the same semantic
invariances, we directly examined how V+L models can recognize the semantic properties of a
concept depicted in an image. We computed the match scores (logits) between the various images
depicting ¢; and each of the semantic features of the McRae dataset f € F, for every ith concept in
C, and every model m € M.

Is the recognition of semantic features related to the ability to recognize a concept? To charac-
terize the relationship between the recognition of semantic features and the recognition of concepts,
we carried out three types of analysis:

(a) To examine if concepts that V+L models recognize as sharing more semantic properties are also
recognized as more similar in the lexicalization task, we first constructed vectors representing the
semantic knowledge of V+L networks for every concept ¢; € C by computing the match scores
(logits) between the various images depicting ¢; and every semantic feature f € F, and averaging
over the images and concatenating to obtain a concept-vector a; € RI”1. We then computed the
cosine distances between every concept pair a;,a; € C and concatenated them into a vector w,,
that we then correlated (see eq. [2) with the discrimination vector s, for each model m € M.

(b) To study if the recognition of semantic properties that humans considered related to a concept
are also the most predictive of the matching scores of such concept in the lexicalization task, we
computed the mutual information between every pair of matching distributions ¢;, f; € R™ where
c; is the vector of logits for the ith concept in C, f; is the vector of logits for the jth feature in F,
and n is the number of images in our dataset.

(¢) To visualize how semantic and conceptual recognition abilities are related, we chose the 200
concept-feature pairs c;, f; with the strongest dependence as measured by mutual information, and
created two sets of images: one containing the images where f; was recognized as “present” (i.e.
with logit values higher than zero), and the other containing the images where f; was “absent”. We
then averaged the matching scores of c; separately for each of these sets of images and visualized
the results.

4 EXPERIMENTS

The conceptual representations of V+L models and their unimodal counterparts have a dif-
ferent geometry. As seen in Figure [3]in the appendix, our study found evidence that multimodal
training changes the representation of categorical information. Of the networks studied, the image
streams of CLIP and ALBEF retained more similarity with the conceptual spaces of their unimodal
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counterparts, in comparison with the text streams. Multimodal streams, on the contrary, seem to
share a similar amount of resemblance to the representational spaces of both vision and language
unimodal networks, although of lesser magnitude than the visual streams discussed. In the case of
ALBETF, this similarity sharply decreases for the last layers of the network, which could be inter-
preted as the encoder creating a unique conceptual space more abstracted from its unimodal inputs.
In the case of ViLT (see Figure [T, the bimodal similarity is seen until the last layers of the model,
observing higher correlation values with the middle layers of the unimodal visual encoder and with
the later layers of the unimodal text encoder.

o
w
G

. -0.35
||

vilt multi
vilt multi

0 1 2 3 4 5 6 7 8 9 10 1 0 1 2 3 4 5 6 7 8 9 10 1
vit 32 bert

Figure 1: Representational similarity between the conceptual spaces of VILT and their unimodal
counterparts. See appendix for the comparison between all models.

V+L models are able to lexicalize categories with varying degrees of accuracy. CLIP achieved
the best performance in the lexicalization task (Top-1 accuracy: 83%), followed by ALBEF (Top-
1 accuracy: 81%), and ViLT (Top-1 accuracy: 51%). In more than 80% of the trials, the correct
concept could be found within the top 10 highest-valued logits (Top-10 accuracy of CLIP: 98%;
ViLT: 83%; ALBEF: 96%). This shows that all V+L models are able to represent the concepts in
our database, and enables the characterization of these conceptual spaces carried out by the following
analyses in this study.
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Figure 2: Similarity between the conceptual behavior of V+L models and that of humans and uni-
modal networks. sem: all semantic; tax: taxonomic; vp: visio-perceptual; func: function; enc: en-
cyclopaedic; op: other-perceptual; uvis: unimodal visual model; ulang: unimodal language model.

The conceptual behavior of V+L can be partially explained by the invariances learned by uni-
modal models. It can be seen from Figure [2]that the conceptual behavior of ViLT, and to a lesser
degree of CLIP, is moderately similar to the conceptual representations of vision and language uni-
modal encoders. Both networks show a higher resemblance to the intermediate layers of a visual
system (layer 6 of ViT-B/32), in comparison to the similarity scores with the later layers of a lan-
guage network (most similar for ViLT was layer 11 in BERT, while for CLIP was layer 9 in GPT-2),
which relates to the findings comparing the representational structures of these networks. Surpris-
ingly, ALBEF only showed moderate similarity values with the first layers of a language encoder
(the most similar was layer 1 in BERT). This could be associated with the creation of a unique con-
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ceptual space in the last layers of the multimodal encoder that was observed in the representational
similarity analysis.

ViLT shows the conceptual behavior and learning most similar to humans. As shown in Figure
[] the conceptual behavior of VILT shares the strongest resemblance to the conceptual behavior of
humans, across all semantic feature types. Of these, taxonomic information exhibited the greatest
similarity, closely followed by visio-perceptual information. We also found moderate degrees of
human-like conceptual behavior in CLIP, especially in regards to visio-perceptual properties. On
the contrary, the conceptual decisions of ALBEF showed little resemblance to that of humans. If
anything, the semantic features with the highest similarity scores are those related to information
preferentially transmitted via language, which could be explained by the higher correlation values
between ALBEF and the conceptual spaces of language networks.
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Figure 3: Relationship between the conceptual behavior of V+L models and that of humans, after
variance partitioning analysis.

After conducting the variance partitioning analysis, we found evidence that ViLT creates conceptual
spaces that go beyond the representational capabilities of unimodal networks, potentially the result
of integrating multimodal information. As seen in Figure [3] CLIP also shows promising results for
some types of semantic properties. On the contrary, the already low relationship between ALBEF
and the conceptual behavior of humans was further decreased.

The analysis of conceptual learning gave supporting evidence for the similarity between concept
processing in ViLT and humans. Of all V+L models, VIiLT was the only whose concept-accuracy
scores significantly correlated with those of humans in a lexical decision task, and with the ratings of
concept frequency, prevalence, age of acquisition and perceptual strength (see [T). The imageability
of concepts had a significant correlation with the concept predictions of both ViLT and CLIP, while
concreteness ratings were significantly related to the conceptual decisions of VILT and ALBEF.
Concreteness and imageability are constructs that are predictors of recognition memory performance
(i.e. how well a concept can be remembered) in humans (Khanna & Cortese, |2021)), which has been
linked to an increased capacity for generating and storing a mental image for such concept in the
brain. Future work could explore if these correlations reflect how “strongly” some concepts are
represented in a neural network.

Table 1: Correlation of concept detection accuracy scores with psycholinguistic variables.

CLIP ViLT ALBEF

PL Variable corr | p-val corr | p-val corr | p-val
Lexical Decision Acc | -0.012 | 0.826 | 0.200 | 0.000 | 0.038 | 0.487
Frequency -0.064 | 0.247 | 0.342 | 0.000 | -0.005 | 0.927
Prevalence -0.008 | 0.888 | 0.181 | 0.001 | -0.031 | 0.579
Age of Acquisition -0.033 | 0.550 | -0.317 | 0.000 | -0.030 | 0.583
Concreteness 0.102 | 0.064 | 0.121 | 0.028 | 0.149 | 0.007
Imaginability 0.245 | 0.000 | 0.279 | 0.000 | 0.088 | 0.159
Perceptual Strength 0.091 | 0.099 | 0.180 | 0.001 | 0.088 | 0.113

V+L are able to moderately recognize semantic features, to different extents depending on the
model and the type of semantic feature. Similar to the concept detection task, CLIP achieved the
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best scores in the recognition of semantic features, followed by ALBEF and later ViLT (see Table
[2). CLIP’s advantage was observable across all types of semantic properties. ALBEF and ViLT
have a similar performance in the recognition of taxonomic, visuo-perceptual, and other-perceptual
features. However, ALBEF was significantly better at recognizing functional and encyclopaedic
information. More generally, taxonomic properties are the easiest to learn for all V4L networks,
while other-perceptual ones are the hardest. The reason behind the taxonomic preference could be
explained by the pre-training of the visual backbone of these networks since widely used benchmarks
like ImageNet provide image labels that in some cases reflect taxonomic information. The Coverage
Error scores were high for all models, indicating that these networks struggle with the detection of
some subset of properties.

Table 2: Semantic Feature recognition performance.

Recall CE Tax VP Func Enc opP

CLIP 0.451 | 0.597 | 0.650 | 0.314 | 0.550 | 0.366 | 0.237
VILT 0.232 | 0.650 | 0.454 | 0.255 | 0.206 | 0.196 | 0.155
ALBEF | 0.318 | 0.685 | 0.479 | 0.224 | 0.370 | 0.335 | 0.175

ViLT exhibits the most human-like relationship between semantic-feature recognition and con-
ceptual discrimination. When examining if concepts that V+L models recognize as sharing more
semantic properties are also recognized as more similar in the lexicalization task, ViLT exhibited
the strongest relationship (r = 0.438), followed by CLIP (r = 0.245), and ALBEF displaying the
lowest scores (r = 0.078). ViLT also had the highest mutual dependence scores between the values
of the logits associated with the presence of a semantic feature, and the logits of the concepts that
possess such property as rated by humans (see Table [3| and Figure in apendix). In other words,
the recognition values of the features associated with a concept (e.g. ”is an animal” for "dog”), are
more predictive of how well the concept will be recognized by the model in the lexicalization task, in
comparison with unrelated features. As Table [3|shows, both CLIP and ALBEF exhibited a similar
pattern of results. However, ViLT’s differences in the mutual information scores between semantic
related and unrelated features were higher for all types of properties, except for ~other perceptual”
information for which CLIP exhibited a stronger difference. In all cases, taxonomic properties have
the strongest mutual dependence scores with concept detection, while the order of differences in the
other properties varies across models.

Table 3: Difference in mutual information between concept-related and unrelated semantic features.

All Tax VP Func Enc orP

CLIP 0.080 | 0.184 | 0.062 | 0.090 | 0.064 | 0.076
VIiLT 0.113 | 0.334 | 0.079 | 0.115 | 0.094 | 0.063
ALBEF | 0.028 | 0.076 | 0.016 | 0.036 | 0.030 | 0.020

Taking together, these findings suggest that, especially for ViLT, the semantic invariances learned to
predict features are related to the invariances learned to predict concepts. However, this discovery
doesn’t explain the directionality of the effect. Figure [4]sheds some light on this aspect and shows
how only for ViLT the recognition of a feature can both be useful to recognize the presence or
absence of a concept (note the distribution centered around 0). For example, recognizing that there
”is an animal” in an image showing an object in the sky, decreases the chances that an airplane will
be detected. This behavior seems to be closer to how humans use feature knowledge for recognizing
concepts. However, ViLT appears to still lack the ability to aid the recognition of concepts by the
absence of a feature (e.g. “’this is not an animal” and thus cannot be a bird).

5 CONCLUSIONS

Our work introduced an analytic framework that enabled the analysis of the conceptual and semantic
knowledge encoded by V+L models, and how similar it is to that of humans. We demonstrated that
although multimodal training changes the representation of concepts in deep learning models, this
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Figure 4: The effects of feature detection on concept matching scores.

transformation does not necessarily lead to a conceptual behavior that is more similar to humans
in comparison to unimodal systems. In fact, we critically showed that models exhibiting the most
accurate performance in concept or feature detection tasks are not the most similar to how humans
process these kinds of information. This gives supporting evidence to the idea that artificial neu-
ral networks may be able to perform tasks with a human-like level of accuracy, but achieve such
scores by learning invariances different from those encoded by the brain. We also found that certain
types of semantic information are easier to learn for all models, but the reasons behind this remain
speculative. Our findings thus highlight the need for understanding in depth what V+L models
are learning to represent, and how different kinds of representations may affect the performance of
artificial networks in a variety of cognitive tasks.

In addition, our study suggests that V+L models’ architecture or training objective has a consid-
erable impact on how these networks are able to represent concepts in a human-like manner. In
particular, we found that a system that fuses early information from different modalities, with little
to no unimodal processing, exhibits a conceptual behavior that is the most similar to humans. We
also demonstrated that this type of network can exhibit complex relationships between the repre-
sentations of concepts and semantic properties. Given that it is still debated how brains depend on
the encoding and detection of semantic information for the perceptual and cognitive processing of
concepts (and vice versa), this finding can be of particular importance for work at the intersection of
neuroscience and Al

6 LIMITATIONS

This study is empirical in nature and only probed three V+L models, and thus cannot make general
statements about the inner workings and representational capabilities of multimodal deep neural net-
works. In addition, we cannot make conclusive claims on the reasons behind the differences between
models in their performance or human similarity, since we do not provide a causal analysis. How-
ever, our main aim was to (a) investigate how information is represented in widely-used V+L models
that currently form the basis of numerous applications and fine-tuned models, and (b) provide an an-
alytic framework that can easily be applied to probe any available multimodal model. In addition, by
investigating different types of architectures and training objectives, this study makes suggestions
on which aspects of V+L models may be relevant for the encoding of semantic information in a
human-like manner, which future work could explore in depth.

Our work also lacked an analysis of how the differences in conceptual or semantic representations of
V+L models may impact the networks’ performance on downstream tasks, especially those tackling
higher-level cognitive abilities. We leave for future work this examination.

7 REPRODUCIBILITY STATEMENT

The open-source implementation of our work is publicly available at (anonymous). The repository
contains a digital notebook to easily reproduce the reported results (figures and tables). Every step
of the evaluation framework can be executed by running the source-code in a local environment.
The results obtained at every intermediate step of the analysis (e.g. image-text matching tasks) can
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be accessed here: (anonymous). All models and datasets probed in this study are open-source and
can be freely examined.
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A APPENDIX

A.1 COMPARISON BETWEEN DIFFERENT STREAMS OF V+L MODELS AND THEIR UNIMODAL
COUNTERPARTS

Table 4: V+L and unimodal comparison

Model 1 Model 2
CLIP image stream ViT-B/32
CLIP text stream GPT 2

ViLT multimodal stream ViT-B/32
VILT multimodal stream BERT

ALBETF visual stream ViT-B/16
ALBEEF text stream BERT

ALBEF multimodal stream | ViT-B/16
ALBEF multimodal stream BERT

13
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A.2 REPRESENTATION SIMILARITY OF CONCEPTUAL SPACES IN V+L MODELS AND THEIR
UNIMODAL COUNTERPARTS
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Figure 5: Representational similarity between the conceptual spaces of V+L models and their uni-
modal counterparts
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