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Abstract

3D scene understanding has gained significant001
attention due to its wide range of applications.002
However, existing methods for 3D scene un-003
derstanding are limited to specific downstream004
tasks, which hinders their practicality in real-005
world applications. This paper presents Chat-006
3D, which combines the 3D visual perceptual007
ability of pre-trained 3D representations and008
the impressive reasoning and conversation ca-009
pabilities of advanced LLMs to achieve the010
first universal dialogue systems for 3D scenes.011
Specifically, we align 3D representations into012
the feature space of LLMs, thus enabling LLMs013
to perceive the 3D world. Given the scarcity of014
3D scene-text data, we propose a three-stage015
training strategy to efficiently utilize the avail-016
able data for better alignment. To enhance the017
reasoning ability and develop a user-friendly018
interaction scheme, we further construct a high-019
quality object-centric 3D instruction dataset020
and design an associated object-centric prompt.021
With limited data, Chat-3D achieves a 82.2%022
relative score compared with GPT-4 on the023
constructed instruction dataset, and compara-024
ble performance to state-of-the-art LLM-based025
methods.026

1 Introduction027

3D vision is an important way for robots to per-028

ceive the rich semantic and spatial information of029

the real world. 3D scene understanding (Azuma030

et al., 2022; Ma et al., 2022; Chen et al., 2020;031

Achlioptas et al., 2020; Chen et al., 2021) has gar-032

nered increasing attention in recent years, owing033

to its broad range of applications in human-robot034

interaction, metaverse, robotics, and embodied in-035

telligence. However, current methods (Wang et al.,036

2023a,b; Yang et al., 2021; Jiao et al., 2022; Yuan037

et al., 2022; Parelli et al., 2023) are limited in ad-038

dressing specific downstream tasks, such as cap-039

tioning and question answering, while lacking the040

ability to engage in general dialogue regarding a041

3D scene, restricting their practicality in various 042

real-world tasks. A universal dialogue system for 043

3D scenes is an imperative component of high-level 044

intelligent robots. 045

The general dialogue system for 3D scenes re- 046

quires two kinds of abilities: 3D perception and rea- 047

soning. Recently, several studies (Yu et al., 2022; 048

Pang et al., 2022; Wang et al., 2021; Zhang et al., 049

2022; Xue et al., 2023; Liu et al., 2023b) on pre- 050

trained 3D representations shows impressive perfor- 051

mance in 3D perception. However, the reasoning 052

ability for the 3D world remains constrained owing 053

to the scarcity of reasoning and describing data for 054

3D scenes. 055

Large language models (LLMs) (Chiang et al., 056

2023; OpenAI, 2023; Touvron et al., 2023; Chowd- 057

hery et al., 2022), on the other hand, exhibit re- 058

markable prowess in complex reasoning and open- 059

domain conversations. Moreover, recent meth- 060

ods (Li et al., 2023b; Liu et al., 2023a; Zhao et al., 061

2023; Zhang et al., 2023a; Zhu et al., 2023) attempt 062

to extend LLMs to image and video fields. These 063

works typically adopt a two-stage training scheme: 064

Firstly, the visual representations are aligned into 065

the word embedding space of LLMs by leveraging 066

large-scale image-text and video-text datasets (Lin 067

et al., 2014; Sharma et al., 2018; Changpinyo et al., 068

2021; Schuhmann et al., 2021, 2022; Bain et al., 069

2021; Miech et al., 2019; Xu et al., 2016). Sec- 070

ondly, they enhance the reasoning capabilities of 071

LLMs regarding visual concepts by fine-tuning on 072

the instruction datasets. 073

Despite the success of image and video under- 074

standing fields, introducing LLMs to perceive 3D 075

scenes faces two challenges: 1) Compared to the 076

millions or even billions of image-text and video- 077

text data (Sharma et al., 2018; Changpinyo et al., 078

2021; Schuhmann et al., 2021, 2022; Bain et al., 079

2021), the 3D scene-text data (Achlioptas et al., 080

2020; Chen et al., 2020) is limited. Consequently, 081

in the low-resource scenarios, the commonly used 082
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two-stage training scheme in previous multi-modal083

LLMs is less effective in aligning pre-trained 3D084

representations to the feature space of LLMs. 2)085

3D scenes always encompass a greater number of086

objects compared to an image or a video clip. Thus,087

the common questions or instructions in images088

and videos are more susceptible to ambiguity in089

3D scenes. Consider a simple question like "What090

is in front of this chair?" on a 3D scene that con-091

tains multiple chairs. The dialogue model cannot092

understand which specific chair the user is asking093

about, and uniquely describing an object (the chair)094

in question is often difficult and user-unfriendly095

due to the complex object relations.096

In this paper, we propose Chat-3D, the first at-097

tempt to extend the reasoning and conversation098

capabilities of LLMs to 3D scene understanding.099

We employ a three-stage training scheme to more100

efficiently utilize the limited data. Specifically, in101

the first stage, we directly align the features of 3D102

objects with the word embeddings of their class103

names. In the second stage, we learn a 3D object104

relation module via 3D scene-text data to capture105

semantic information about the whole 3D scene. Fi-106

nally, in the third stage, we further tune the model107

with a high-quality instruction dataset. To further108

enhance the reasoning ability of Chat-3D, we con-109

struct the instruction dataset via an object-centric110

scheme, which means all instructions are related111

to a specific object. Combining our object-centric112

prompt, users can effortlessly select the object in113

the scene they want to engage in a dialogue about,114

without the need to uniquely describe the specific115

object in their instructions.116

In summary, our contributions can be summa-117

rized as follows:118

(1) We build the first universal dialogue system119

for 3D scenes, leveraging the advanced visual per-120

ception capabilities of 3D pre-trained models, in121

conjunction with the powerful reasoning and open-122

domain conversational abilities of LLMs.123

(2) We introduce a new three-stage training124

scheme for multi-modal LLM, enabling the model125

to progressively transition from learning individual126

object attributes to capturing complex spatial ob-127

ject relations. This approach effectively improves128

the quality of dialogue with limited available data.129

(3) We construct a high-quality object-centric130

3D instruction dataset including diverse dialogues131

about object attributes, positions, relationships,132

functionalities, placement suggestions, and detailed133

descriptions within 3D scenes. We propose a cor-134

responding object-centric prompt approach to pro- 135

vide a user-friendly interaction method. 136

(4) Our experiments demonstrate that Chat-3D 137

exhibits remarkable capabilities in universal dia- 138

logue and spatial reasoning based on 3D scenes. 139

We also employ quantitative comparison to eval- 140

uate the effectiveness of our three-stage training 141

scheme and instruction dataset. 142

2 Related Work 143

3D Representation Learning 3D point cloud is 144

a fundamental visual modality. Recently, numerous 145

attempts are made to learn discriminative and ro- 146

bust representations for point cloud objects. Point- 147

BERT (Yu et al., 2022), Point-MAE (Pang et al., 148

2022), Transformer-OcCo (Wang et al., 2021), 149

and point-m2ae (Zhang et al., 2022) employ self- 150

supervised learning approaches to extract meaning- 151

ful representations of 3D objects from unlabeled 152

point cloud data. Another series of works aims to 153

extend representation from other modalities to 3D. 154

For instance, ULIP (Xue et al., 2023) and open- 155

shape (Liu et al., 2023b) construct (3D-image-text) 156

triplets to align point clouds within the CLIP (Rad- 157

ford et al., 2021; Cherti et al., 2023) representation 158

space, while I2P-MAE (Zhang et al., 2023b) and 159

ACT (Dong et al., 2023) learn 3D representations 160

from image pre-trained models (Dosovitskiy et al., 161

2020; He et al., 2016). These powerful 3D repre- 162

sentations can effectively capture the detailed in- 163

formation of a 3D object. In Chat-3D, we segment 164

the 3D scene into objects and extract features for 165

each object, which yields a set of object features to 166

represent the 3D scene and serves as a prerequisite 167

for an object-centric interactive approach. 168

3D-Language Tasks The interaction between 3D 169

point clouds and natural language has wild appli- 170

cations and has garnered increasing attention re- 171

cently. 3D captioning (Chen et al., 2021, 2020; 172

Achlioptas et al., 2020) focuses on generating de- 173

scriptions of a specific object in a 3D scene. In 174

3D visual question answering (Azuma et al., 2022), 175

the model is required to answer questions based on 176

the visual content of the 3D scene, while the more 177

complex 3D situated question answering (Ma et al., 178

2022) requires the model to understand agent’s sit- 179

uation (position, orientation, etc.) in a 3D scene 180

as described by text, reason about the surround- 181

ing environment. Different from vision-language 182

tasks (Kazemzadeh et al., 2014; Krishna et al., 183

2017; Goyal et al., 2017; Antol et al., 2015; Lin 184
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et al., 2014; Grauman et al., 2022) and methods (Li185

et al., 2022, 2023a, 2021; Lin et al., 2022) based186

on images and videos, these 3D-language tasks and187

corresponding methods place more emphasis on188

spatial reasoning and the possible interaction be-189

tween agents and scenes. Despite the significant190

progress made in this field, existing methods still191

focus on improving isolated task-specific models,192

without exploring a unified dialogue system.193

Multi-modal Large Language Models Re-194

cently, Large Language Models showcase remark-195

able abilities in complex reasoning and conversa-196

tional communication with humans. To extend the197

knowledge, reasoning, and conversation abilities198

acquired from vast amounts of text data to more199

modalities, some studies (Li et al., 2023b; Liu et al.,200

2023a; Zhao et al., 2023; Zhang et al., 2023a; Zhu201

et al., 2023) attempt to instruction tune LLMs for202

multimodal learning. Specifically, these works first203

use the caption learning objective to learn the align-204

ing of visual features with pre-trained LLMs from205

large-scale vision-language paired data. Then, a206

high-quality instruction dataset is utilized to further207

enhance the LLMs’ comprehension of the visual208

world. However, in the 3D-Language field, 3D209

scene-text pairs are scarce. Thus the indirect align-210

ing method is unreliable and incomplete for 3D211

representations and pre-trained LLMs. To mitigate212

this issue, we propose a more data-efficient three-213

stage tuning scheme that establishes a more direct214

learning stage for alignment, reduces the annota-215

tion requirements, and provides a smooth learning216

curve.217

3 Methods218

3.1 Architecture219

Chat-3D aims to create a universal dialogue sys-220

tem for 3D scenes by aligning 3D representations221

with pre-trained LLM (Touvron et al., 2023). The222

overall architecture is illustrated in Figure 1.223

For the input 3D scene S, we first use a 3D ob-224

ject segmentation model (Jiang et al., 2020; Misra225

et al., 2021; Qi et al., 2019) or ground truth anno-226

tations to segment it into objects. Then, users can227

select the specific object they want to engage in228

dialogue. The selected target object is denoted as229

ot and other objects in the scene are represented230

as Os = [o1, o2, . . . , ons ], where ns is the number231

of other objects in the 3D scene. For each object,232

we use a pre-trained 3D point encoder g(·) to ex-233

tract features, Besides, we further incorporate extra234

Figure 1: The overall architecture of Chat-3D.

object attributes (e.g. color, size, location) into 235

these object features by a projector fe(·) to enrich 236

semantic information. These 3D object features 237

are projected to the word embedding space of pre- 238

trained LLM via a projector fa(·). The process of 239

3D object feature extraction and mapping can be 240

expressed as: 241

zi = fa(g(oi)+ei), with ei = fe([ci; si; li]) (1) 242

where i ∈ [t, 1, 2, . . . , ns], and ci, si, li ∈ R3 re- 243

spectively represent the RGB value, bounding box 244

size, and location for the i-th object. The extracted 245

3D features of target object and other objects are 246

denoted as zt and Zs = [z1, z2, . . . , zns ]. 247

Furthermore, we further introduce a relation 248

module t(·) for capturing complex relations be- 249

tween objects. The features of objects then interact 250

with each other to provide additional object relation 251

information about the scene. 252

[ẑt, ẑ1, ẑ2, . . . , ẑns ] = r([zt, z1, z2, . . . , zns ])
(2) 253

The representations of a 3D scene are provided 254

as ẑt ∈ Rd, [ẑ1, ẑ2, . . . , ẑns ] ∈ Rns×d, and d is 255

the dimension of hidden states in the pre-trained 256

LLMs. 257

Lastly, to facilitate user-friendly interaction be- 258

tween our system and users, we design an object- 259

centric prompt as: ###Human: [target] ẑt [/tar- 260

get], [scene] ẑ1, ẑ2, . . . , ẑns [/scene], [instruction] 261
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###Assistant:. Through this prompt, the LLM can262

comprehend the specific object the user wants to263

discuss and generate responses based on the 3D264

visual information and the given instructions.265

3.2 Three-stage Training266

Previous multi-modal LLMs (Li et al., 2023b; Liu267

et al., 2023a; Zhao et al., 2023; Zhang et al., 2023a;268

Zhu et al., 2023) primarily follow a two-stage train-269

ing scheme. In the first stage, LLMs take inputs270

from visual modality and learn to generate cor-271

responding captions. The large-scale image- and272

video-text datasets allow comprehensive alignment273

between visual representations and the word em-274

bedding space of LLM. In the second stage, the275

model is fine-tuned with a high-quality instruction276

dataset, thereby further enhancing the perceptual277

and reasoning abilities.278

However, in the 3D understanding field, the 3D279

scene-text data is significantly less than image-280

or video-text data. For example, the commonly281

used ScanRefer (Chen et al., 2020) dataset, which282

provides descriptions for ScanNet (Dai et al.,283

2017), only contains 36,655 captions for train-284

ing. In contrast, the datasets used for the first285

stage training in previous multi-modal LLM meth-286

ods are million-level or even billion-level, such as287

CC3M (Sharma et al., 2018), CC12M (Changpinyo288

et al., 2021), LAION-400M (Schuhmann et al.,289

2021), LAION-5B (Schuhmann et al., 2022) and290

WebVid-10M (Bain et al., 2021). Considering the291

scarcity of 3D scene-text data, we propose a more292

data-efficient three-stage training approach, which293

divides the process of aligning 3D features with the294

pre-trained LLM into two progressive stages: 3D295

object alignment and 3D scene alignment.296

Stage 1: 3D Object Alignment The first stage is297

designed to learn the alignment between the repre-298

sentation of individual 3D objects and pre-trained299

LLM. Given a 3D object and its annotated cate-300

gory, the 3D object is encoded into a representation301

z ∈ Rd according to Equation 1. Its category name302

is encoded into a word embedding y ∈ Rd using303

the tokenizer of the pre-trained LLM. By maximiz-304

ing the cosine similarity between the corresponding305

z and y, we can learn projectors fe(·) and fa(·) that306

effectively inject the 3D object representations into307

the word embedding space of LLM.308

The advantage of Stage 1 is three-fold: 1) Com-309

pared to learning alignment through captioning ob-310

jective, maximizing the similarity between repre-311

sentations provides a more direct learning objective 312

for alignment, which can achieve more efficient 313

alignment in low-resource scenarios. 2) Stage 1 314

enables the utilization of 3D point cloud object 315

classification datasets, such as ShapeNet (Chang 316

et al., 2015), ScanObjectNN (Uy et al., 2019), and 317

Objaverse (Deitke et al., 2023), which enhances the 318

model’s generalization performance on diverse real- 319

world objects. 3) The introduction of Stage 1 of- 320

fers a smoother learning curve for comprehending 321

complex 3D scenes. The model progressively tran- 322

sitions from learning individual object attributes to 323

capturing intricate spatial object relations. 324

Stage 2: 3D Scene Alignment After aligning 325

individual 3D object feature with pre-trained LLM, 326

Stage 2 takes a step further by integrating the entire 327

3D scene into LLM. The training data is sourced 328

from the ScanRefer dataset, which provides an- 329

notations for objects in a scene primarily based 330

on their spatial relationships. Considering a 3D 331

scene, which can be segmented into object set 332

[o1, o2, . . . , on], we sequentially select each object 333

as target objects and construct the input for LLM 334

according to the methodology discussed in Sec- 335

tion 3.1. The instruction in prompts requests the 336

model to generate a brief description of the target 337

object within the 3D scene. The learning objec- 338

tive is to generate a description that aligns with the 339

description provided by the ScanRefer dataset for 340

the target object, and only the two projectors fe(·), 341

fa(·) and the relation module r(·) are learnable in 342

this stage. 343

Stage 3: Instruction Tuning For enhancing the 344

reasoning ability about 3D world, we curate a high- 345

quality instruction dataset which comprises rich 346

and detailed instructions. By tuning Chat-3D on 347

this dataset, we further enhance its capability to 348

comprehend diverse instructions, generate imagina- 349

tive and contextually appropriate responses, engage 350

in intricate spatial reasoning, and effectively incor- 351

porate external knowledge into its responses. 352

4 Object-centric Instruction Dataset 353

The complex object relationships and intricate in- 354

teractions between agents and scenes impose ele- 355

vated demands on reasoning capabilities. To en- 356

hance the reasoning ability pertaining to 3D world, 357

we construct a high-quality object-centric instruc- 358

tion dataset based on the annotations in ScanRefer. 359

Specifically, we leverage the remarkable reasoning 360
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Caption of the target object:
Descriptions: ["There is a single white armchair. placed next to the window of the room.", "The
sofa chair is the corner chair. lying parallel to the wall. a small table with the lamp is present beside
the chair.", "This is a white sofa chair. it is under a window.", "This is a white armchair. is next to a
lamp.", "This is the corner sofa chair. a small table with a lamp can be seen near this chair."]
Categories and locations of target object and its 10 neighbors:
Described object: {sofa chair:[-1.31, 3.15, 0.59]}; Neighbor objects: {window:[-1.12, 4.12, 1.59],
table:[0.86, 1.61, 0.38], doorframe:[-2.25, 0.67, 1.27], windowsill:[0.88, 3.97, 0.98], windowsill:[-
1.32, 3.93, 0.91], sofa chair:[0.98, 3.35, 0.71], window:[1.16, 4.18, 1.73], pillow:[1.35, 0.29, 0.46],
table:[-0.15, -2.66, 0.26], tv:[-2.2, -0.55, 1.52]}

Table 1: An example of textualizing an object in a 3D scene

You are an AI 3D visual assistant, and you are seeing an object in a 3D scene. What you see is
provided with several sentences, describing the same object you are looking at, and the position
of surrounding objects in the 3D scene to represent the content of the 3D scene. Based on these
descriptions of this object and the location of surrounding objects in the 3D scene, summary and
describe the placement, function of this object, and how a person can access this object in detail as
if you are in the 3D scene.
Importantly, do not mention any specific spatial coordinate values. The description should be more
than 150 words and less than 200 words.

Table 2: Prompt for descriptive object-centric captions.

and summarizing capabilities of ChatGPT to auto-361

matically generate descriptive and detailed captions362

as well as diverse conversations centered around363

specific objects within 3D scenes.364

Object-centric Descriptive Captions ScanRe-365

fer annotates multiple captions for objects in a 3D366

scene based on their attributes and spatial relation-367

ships. We employ ChatGPT to summarize and368

rewrite these short captions into imaginative para-369

graphs. To facilitate ChatGPT’s comprehension370

of the 3D scene, we also textualize the 3D scene371

as shown in Table 1, providing the categories and372

XYZ coordinates of the target object and its ten373

nearest objects in the scene. Furthermore, we pro-374

pose a prompt to request ChatGPT to focus on375

perceiving and reasoning about the object relations376

and agent interactions as exemplified in Table 2.377

During dataset construction, we initially manually378

annotated several examples and randomly selected379

two of them as in-context examples to guide the380

generation of ChatGPT. One example of the gener-381

ated descriptive object-centric caption is shown in382

Table 7.383

Object-centric Conversations To enhance the 384

capability of handling diverse instructions and gen- 385

eral conversations, we further require ChatGPT to 386

autonomously generate multi-turn dialogues in a 387

self-questioning and self-answering format based 388

on the brief captions of the target object and the 389

textualized 3D scene. 390

5 Experiments 391

5.1 Implementation Details 392

During the training phase, we directly use ground 393

truth annotations (point cloud and extra attributes) 394

of each object in the 3D scene for better train- 395

ing quality. We employ the pre-trained Point- 396

Bind(Guo) model with Point-BERT(Yu et al., 2022) 397

architecture as g(·) to extract features for each ob- 398

ject. Meanwhile, we use a linear layer as fe(·) 399

to incorporate extra attributes (such as color, size, 400

and location) into the extracted features. Then, a 401

two-layer MLP serves as fa(·) to map these 3D 402

object features to the word embedding space of the 403

pre-trained LLM, and the relation module r(·) is 404

implemented using a one-layer vanilla transformer 405

encoder. It is worth mentioning that the relation 406

module is zero-initialized, thereby preserving the 407
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Design a conversation between you and a person asking about this object in the 3D scene. The
answers should be in a tone that a visual AI assistant is in the 3D scene and answering the question.
Ask diverse questions and give corresponding answers.
Include questions asking about the visual content of this object, including the object types, object
shape, object attribute, object functions, object locations, relative positions between objects, etc.
Only include questions that have definite answers:
(1) Questions whose contents can be confidently observed and answered based on the 3D scene.
(2) Questions whose absence from the 3D scene can be confidently determined.

Table 3: Prompt for object-centric conversations.

Training
scheme

Training Data Evaluate Set
Overall

Conversation Detailed Caption Conversation Detailed Caption

Three-Stage 88.2 76.2 82.2
Two-Stage 84.8 65.9 75.4

Three-Stage 85.7 53.9 69.8
Three-Stage 85.1 69.2 77.2
Three-Stage 56.8 55.0 55.9

Table 4: Relative scores on the object-centric dataset (rated by GPT-4).

information learned in Stage 1 when Stage 2 begins.408

The chosen LLM for our experiment is a Vicuna409

7B model(Chiang et al., 2023), which is fine-tuned410

from the LLaMA base model(Touvron et al., 2023).411

5.2 Evaluation on Object-centric Dataset412

Relative Score rated by GPT-4 In order to quan-413

titatively evaluate the universal dialogue ability of414

Chat-3D and analyze the effect of the three-stage415

training scheme and our instruction dataset, we416

adopt GPT-4 (OpenAI, 2023) to measure the qual-417

ity of our Chat-3D’s generated responses following418

LLaVA (Liu et al., 2023a) and miniGPT4 (Zhu419

et al., 2023). Specifically, we randomly select 30420

scenes from the ScanRefer validation set and ran-421

domly choose one object as the target object for422

each scene. We employ the instruction dataset con-423

struction methodology described in Section 4 and424

Chat-3D respectively to generate responses under425

the same scene and instruction inputs. After that,426

we input the textualized scene, instructions, and427

the two kinds of generated responses into GPT-4428

and request GPT-4 to provide an overall score on a429

scale of 1 to 10 for each response based on its help-430

fulness, relevance, accuracy, and level of detail. A431

higher score indicates a higher quality of response.432

In Table 4, we study the effectiveness of the in-433

struction dataset and compare the Chat-3D trained434

via our three-stage training scheme and the two-435

stage training method used in previous methods (Li 436

et al., 2023b; Liu et al., 2023a; Zhao et al., 2023; 437

Zhang et al., 2023a; Zhu et al., 2023). First, our 438

three-stage training scheme significantly outper- 439

forms the previous two-stage method by 6.8 points, 440

demonstrating the data efficiency of our three-stage 441

training method in the low-resource setting. Sec- 442

ond, by comparing different combination settings 443

of the instruction dataset, we observe that incor- 444

porating conversation data leads to a higher im- 445

provement in conversation tests, while integrating 446

detailed caption data enhances performance in de- 447

tailed caption tests. By utilizing all the data to- 448

gether, our model demonstrates proficiency in both 449

conversation and detailed caption tasks, ultimately 450

achieving the highest overall score. 451

Caption Score In Table 5, we evaluate the cap- 452

tion metrics BLEU, METEOR, and ROUGE-L un- 453

der various conditions. This evaluation covers the 454

entire dataset, including all conversations and de- 455

tailed captions, offering a more comprehensive un- 456

derstanding of the significance of different compo- 457

nents. It is clear from the table that excluding either 458

conversation data or detailed caption data leads to a 459

significant decrease in performance. Without stage 460

three, performance deteriorates even more dramati- 461

cally. These results highlight the effectiveness of 462

our proposed three-stage training architecture. 463
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Training
Scheme

Training Data
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

Conv. Detail.

Three-Stage 38.19 22.71 13.80 8.81 19.83 35.41
Two-Stage 36.54 21.31 12.69 7.95 19.59 34.95

Three-Stage 10.63 6.79 4.51 3.12 9.84 34.57
Three-Stage 18.28 10.54 6.00 3.54 18.12 15.92
Three-Stage 1.31 0.76 0.39 0.21 3.89 17.71

Table 5: Caption scores on the object-centric dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

VoteNet+MCAN 28.0 16.7 10.8 6.2 11.4 29.8 54.7
ScanRefer+MCAN 26.9 16.6 11.6 7.9 11.5 30.0 55.4

ScanQA 30.2 20.4 15.1 10.1 13.1 33.3 64.9

LLaVA (zero-shot) 7.1 2.6 0.9 0.3 10.5 12.3 5.7
3D-LLM (flamingo) 30.3 17.8 12.0 7.2 12.2 32.3 59.2

3D-LLM (BLIP2-flant5) 39.3 25.2 18.4 12.0 14.5 35.7 69.4

Chat-3D 29.1 16.3 10.1 6.4 11.9 28.5 53.2

Table 6: Evaluation results on ScanQA validation set.

5.3 Evaluation on ScanQA464

In order to evaluate on the ScanQA dataset, we465

finetune the pretrained Chat-3D to fit the answer466

format of this dataset.467

Baselines We include representative base-468

line models on the benchmark. Specifically,469

ScanQA (Azuma et al., 2022) utilizes VoteNet470

to generate object proposals and then in-471

tegrates them with language embeddings.472

ScanRefer+MCAN (Chen et al., 2020) and473

VoteNet+MCAN (Ding et al., 2019) detect 3D474

objects and incorporate them into a standard475

VQA model known as MCAN (Yu et al., 2019).476

LLaVA (Liu et al., 2023a) proposes the visual477

instruction tuning method, which establishes a478

connection between a vision encoder and LLM479

to enable general-purpose visual and language480

understanding. 3D-LLM (Hong et al., 2023) relies481

on 2D Vision-Language Models (VLMs) as their482

backbone, such as flamingo and BLIP-2. It extracts483

meaningful 3D features from rendered multi-view484

images, which serve as the input for the VLM.485

Analysis Essentially, Chat-3D achieves competi-486

tive results compared to fully supervised methods487

such as ScanQA. The most intriguing aspect is the488

performance gap between 3D-LLM and Chat-3D.489

When changing the backbone from Flamingo to490

BLIP2-flant5, 3D-LLM experiences a significant491

performance boost across all metrics. This sug-492

gests that 3D-LLM heavily relies on the robust 2D 493

VLM, which is pretrained on billion-level data. In 494

contrast, Chat-3D solely utilizes 3D data for pre- 495

training and fine-tuning, which is based on a much 496

smaller data set. Nevertheless, it still manages to 497

achieve competitive results compared to 3D-LLM 498

(Flamingo), highlighting the effectiveness of our 499

training architecture. 500

5.4 Qualitative Comparisons & Analysis 501

In section, we provide visualization examples of 502

conversations about 3D scenes with Chat-3D. From 503

these cases, we mainly study the perception, reason- 504

ing, and dialogue capabilities of Chat-3D. Besides, 505

we further compare Chat-3D with 2D multimodal 506

LLM methods such as MiniGPT-4 (Zhu et al., 507

2023), LLaVA (Liu et al., 2023a), and mPLUG- 508

owl (Ye et al., 2023) to demonstrate the advantages 509

and necessity of developing a specific multi-modal 510

LLM for 3D scenes. 511

Perception, Reasoning and Dialogue We pro- 512

vide several examples of conversations with Chat- 513

3D in Figure 2-7 covering various commonly-seen 514

object types (e.g., table, chair, and bed). In Figure 515

2(a), Chat-3D shows strong perception capabilities 516

by accurately counting objects, recognizing shapes, 517

and precisely localizing them within the 3D space. 518

In Figure 4, Chat-3D demonstrates impressive rea- 519

soning capabilities by deducing the cabinet’s pur- 520

pose and evaluating its practicality based on its 521

7



The objects in the room are arranged in a rectangular shape, 
with chairs and tables positioned along the wall. The position of 
the chair and table near the wall suggests that it is meant for 
sitting, providing an area for individuals to relax or engage in 
conversation. Adjusting the placement of the chairs and tables in 
the room may help optimize the use of space, providing a more 
comfortable and efficient seating arrangement. Additionally, 
placing the tables strategically near the windows can create a 
pleasant and inviting atmosphere, allowing individuals to enjoy 
the view while engaging in conversation or activities.

There are four chairs positioned around the table.

The table is rectangular in shape, specifically a long rectangular 
shape.

Yes, the table is pushed against the wall on the left side.

How many chairs are set around this table?

What is the shape of this table?

Is the table pushed against the wall on one end?

What would you recommend in terms of rearranging the objects 
in the room to create a more functional and pleasing space? The bathroom cabinet is designed for storing items within the 

bathroom, such as towels, hair dryers, or cosmetics. Its location 
between the toilet and sink suggests a convenient location for 
accessing these items while using the bathroom. The inclusion 
of multiple drawers and doors provides ample storage space for 
a variety of bathroom essentials. Placing it to the left of the 
toilet allows for easy access while sitting down to use the toilet. 
The inclusion of a mirror above the sink complements the 
bathroom vanity and provides a convenient place for grooming 
or checking makeup. The cabinets' placement near the vanity, 
sink, toilet, and the bathroom's sink drawer adds functionality to 
the bathroom decor and organization. Overall, the bathroom 
cabinet serves as a practical storage solution for bathroom 
essentials, making the space more organized and efficient. "

What's the purpose of this bathroom cabinet?

The purpose of this bathroom cabinet is to store toiletries and
other items in the bathroom. It could be used to store towels,
toilet paper, soap, shampoo, conditioner, and other items that are
commonly found in a bathroom.

The purpose of this bathroom cabinet is to provide storage space 
for various bathroom items, such as toiletries, towels, and other 
personal belongings. It is designed to fit into the bathroom's 
limited space and make the most of the available storage options.

The purpose of this bathroom cabinet is to store and organize 
various items, such as toiletries, bath accessories, and cleaning 
supplies. The cabinet features a mirror on the top, which allows 
for convenient self-grooming and grooming activities in the bath 
area. 

(a) Example 1 of Chat-3D conversation. (b) Example 1 of comparison between Chat-3D and 2D Multi-modal LLMs.

Figure 2: Qualitative examples of Chat-3D. 1

placement and spatial relationships with surround-522

ing objects. Guided by the object-centric prompt523

outlined in Section 3.1, Chat-3D adeptly directs its524

attention to the specific target object indicated by525

the user. This enables Chat-3D to maintain focus on526

the intended subject without being diverted by other527

similar objects present in the scene. Moreover, the528

conversational exchanges consistently demonstrate529

the high-quality dialogue delivered by Chat-3D.530

Comparisons with 2D Multi-modal LLMs We531

compare Chat-3D with MiniGPT-4 (Zhu et al.,532

2023), LLaVA (Liu et al., 2023a), and mPLUG-533

owl (Ye et al., 2023) in Figure 2, 8, 9 and 10. As534

illustrated in Figure 2(b), Chat-3D demonstrates its535

capability to provide a clear and meticulous analy-536

sis of the given question. In Example 2, depicted in537

Figure 8, we assess the model’s spatial perception538

ability in determining whether both monitors are of539

identical size. Chat-3D showcases accurate identifi-540

cation, while the other 2D models provide incorrect541

answers due to their limitations in grasping depth542

and perspective relationships within the 2D image.543

In Example 3, presented in Figure 9, the constraints544

of 2D models become more apparent as they strug-545

gle to accurately identify the spatial relationships546

between the target object and its surrounding ob-547

jects. Compared to 2D models, Chat-3D’s analyti- 548

cal prowess shines brightly due to its remarkable 549

aptitude for perceiving and comprehending con- 550

cepts within the 3D space. 551

6 Conclusion 552

In this paper, we build the first universal dialogue 553

system for 3D scenes, leveraging the advanced vi- 554

sual perception capabilities of 3D pre-trained mod- 555

els, in conjunction with the powerful reasoning and 556

open-domain conversational abilities of LLMs. To 557

overcome the challenge of limited 3D data avail- 558

ability, we introduce a three-stage training scheme 559

for multi-modal LLMs to progressively transition 560

from learning individual object attributes to cap- 561

turing complex spatial object relations. Further- 562

more, we construct a high-quality object-centric 563

3D instruction dataset and propose a corresponding 564

object-centric prompt approach to facilitate a user- 565

friendly interaction method. Experimental results 566

demonstrate that Chat-3D showcases remarkable 567

capabilities in universal dialogue, spatial reasoning, 568

and the enhancement of external knowledge based 569

on 3D scenes. 570

1More examples can be found in the appendix.
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7 Limitations571

Universal dialogue in 3D scenes is still an emerging572

field, and there is currently a lack of standard and573

diverse test datasets for evaluating 3D universal574

dialogue capabilities. Therefore, Chat-3D can only575

be tested on some academic datasets, which may576

not fully demonstrate the generalized and general577

dialogue reasoning capabilities of Chat-3D. More578

diverse 3D universal evaluation datasets are impor-579

tant and promising research directions.580
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Detailed description: The object is a brown couch with three seats, positioned on the left corner
of the room. It is next to a gold lamp, which serves as a source of lighting and complements
the overall aesthetics of the area. The couch is accompanied by an ottoman placed in front of it,
providing a comfortable footrest and enhancing the seating experience.
The presence of two armchairs nearby indicates that this space is designed for relaxation and
socializing. The grey-colored couch with three cushions exudes a modern and stylish vibe, adding
to the room’s visual appeal. The strategic placement of the couch and ottoman encourages a cozy
and inviting atmosphere, ideal for leisurely activities and gatherings.
This setup creates a comfortable seating arrangement, promoting interaction and conversation
among individuals using the couch and armchairs. The nearby window adds natural light to the area,
enhancing the ambiance. The presence of an end table with a lamp contributes to the functionality
of the space by providing a convenient spot for placing items and lighting.
In summary, the brown couch with its ottoman and neighboring armchairs forms a functional and
aesthetically pleasing seating arrangement. The combination of the couch’s design, the presence of
the ottoman, and the proximity to the end table with a lamp ensures a comfortable and enjoyable
experience for individuals using this part of the room.

Table 7: Example of descriptive object-centric caption.
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The chair is located strategically positioned near the center of 
the room, making it easily accessible for use. It is also close to 
the desk, providing convenience for individuals sitting at the 
desk to easily reach and use the chair. Additionally, its proximity 
to the monitor suggests that it may be used for viewing or 
working purposes. The positioning of the chair also suggests 
that it is positioned at a height for optimal ergonomic comfort 
and ease of use.

Is the chair's location practical and well-thought-out?

The chair is surrounded by a computer desk, computer, wall, 
floor, and office supplies. The chair is placed against the desk 
and is positioned towards the left side. It is next to the computer 
monitor and adjacent to a printer. The object closest to the chair 
is another computer, which is to the left.

What are the surrounding objects around the chair?

What type of chair is this?

This chair is a desk chair. The chair is placed near a desk and in 
front of the monitor. It is gray and rectangular in shape, with an 
armrest and a wheeled base. The presence of another chair next 
to it indicates that it is commonly used in an office or work 
environment.

Figure 3: Example 2 of Chat-3D conversation.
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Yes, the placement of the cabinet at the end of the countertop 
makes it easy to access from multiple angles. The cabinet is 
located in the center of a large room, providing ample room for 
storage and organization of items. Its positioning makes it 
convenient for people using the kitchen counter and nearby 
tables, enabling easy access to various items. The positioning of 
the cabinet suggests that it is a central aspect of the kitchen, 
serving as a focal point for storage and organization. The 
multiple containers and drawers suggest that it is a versatile and 
functional cabinet for storing various kitchen items. Overall, the 
placement of this cabinet is suitable and provides easy access to 
various items in the kitchen area.

This cabinet is positioned near a trash can. It likely serves as a 
storage area or closet for personal items.

It is a brown cabinet.

This cabinet is tall. It is made of a light-colored wood with black 
accents.

What is the target object?

How does this cabinet look like?

What might this cabinet be used for?

Is the placement of this cabinet practical and reasonable?

The cabinet is placed on the right side of the entrance to the 
kitchen, so someone can easily access it by walking straight 
through the doorway.

Can you describe the path a person would take to access this 
cabinet from the entrance of the kitchen?

Figure 4: Example 3 of Chat-3D conversation.
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The monitors are close to the window, which could potentially 
affect the quality of the displayed images, particularly if the 
window is too bright or reflective. This could cause glare on the 
screens or difficulty seeing the content.

Are there any potential risks or challenges associated with 
having the monitors close to the window?

This placement likely maximizes visibility for the users seated 
in the center of the room. They can easily access both monitors 
by looking up at them from their desks. The placement also 
allows for optimal use of the space, with the monitors 
positioned close to the wall to free up floor space for other 
furniture or activities in the room.

Can you explain the reasoning behind placing the two monitors 
in this way?

There are two monitors in the room. One is on the right side of 
the desk, next to the leftmost window, and the other identical 
monitor is at the left edge of the long table.

How many monitors are there in the room, and where are they 
located?

The monitor is rectangular and black.

Can you describe the shape and color of the monitor?

What is the position of the monitor relative to the window?

The monitor is located on the desk on the left side of the window.

Figure 5: Example 4 of Chat-3D conversation.
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The bed and the pillow are located next to the wall, indicating 
that it is part of a functional sleeping space. The placement of 
the bed and pillow under the window suggests that they are 
positioned for maximum comfort and convenience. This 
arrangement likely promotes a relaxing and comfortable 
sleeping experience with minimal disturbance from external 
factors such as light or noise. The room layout appears to be 
organized, with the table, TV, and closet positioned around the 
bed, providing a comfortable and well-defined space for daily 
activities such as watching TV, eating, and dressing. The 
arrangement of objects within the room and the presence of a 
bookshelf suggest that the space is well-organized and offers a 
minimalist, yet cozy environment for relaxation or leisure 
activities. The overall style of the room is likely comfortable 
and functional, with attention to details that promote a peaceful 
and convenient lifestyle.

Can you provide any insights into the overall style or theme of 
the room based on the positioning of the bed and the pillow?

Is there any other pillow in the room?

The pillow is positioned at the head of the bed. It is located 
under the bed pillow.

Can you describe the position of the pillow on the bed?

What is the color of this pillow?

The pillow is blue.

Yes, there are two gray pillow placed on the couch.

Figure 6: Example 5 of Chat-3D conversation.
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Is the location of the bed optimal in terms of natural lighting and 
airflow?

Considering the location of the bed, the nightstand, and the door, 
is it easy for someone to get in and out of bed comfortably?

Yes, the bed is positioned between two nightstands.

Is the placement of the bed between the two nightstands?

The bed faces the middle of the wall and is located at the center 
of the bedroom.

Yes, it is possible to easily get in and out of bed due to the 
location and accessibility of the nightstand and the door. The 
nightstand and door are positioned near the bed, allowing for 
easy access without having to walk too far or struggle with 
reaching the nightstand. The bed is located between the 
nightstand and the door, providing a clear and direct pathway to 
and from the bed. Additionally, the door is close to the bed, 
making it easy to exit and enter the room. Overall, this design 
allows for smooth and easy movement in and out of the bed, 
providing a comfortable and convenient experience for the user.

It is a double bed.

What type of bed is this?

How is the bed positioned in the room?

Yes, the bed is placed in a corner of the room, maximizing its 
accessibility and light exposure. It is also located near the 
window, which allows for natural light and potentially fresh 
airflow. Additionally, the bed is surrounded by minimal 
distractions and obstacles, such as chairs or other furniture, 
indicating that it is situated in a relatively peaceful and 
organized area of the room. The presence of the curtains on the 
windows suggests that privacy may be a concern, but the bed's 
location near the window may also provide some natural light 
during the day. Overall, the placement of the bed is 
advantageous for optimal sleeping conditions.

Figure 7: Example 6 of Chat-3D conversation.
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The image shows a desk with two computer monitors on it. The 
monitors are different sizes, with one being larger than the other. 
The smaller monitor appears to be a MacBook Pro, while the 
larger monitor is a standard desktop computer monitor.

Yes, the two monitors are identical. 

Are the two monitors identical in size, and if not, how do they differ?

The two monitors in the image are not identical in size. One 
monitor is larger than the other, with the larger monitor being 
placed on top of the smaller one.

Yes, the two monitors are different in size. The larger monitor is
positioned on the left side of the image, while the smaller
monitor can be seen on top of it.

Figure 8: Example 2 of comparison between Chat-3D and 2D Multi-modal LLMs.
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The kitchen cabinet is positioned next to the refrigerator and the
dishwasher. The refrigerator is on the left side of the kitchen and
the dishwasher is on the right side of the kitchen.

How is the kitchen cabinet positioned concerning the refrigerator
and the dishwasher?

The kitchen cabinet is positioned between the refrigerator and 
the dishwasher.

The kitchen cabinet is positioned next to the dishwasher and in 
front of the refrigerator.

The kitchen cabinet is positioned to the left of the refrigerator 
and situated beneath the dishwasher.

Figure 9: Example 3 of comparison between Chat-3D and 2D Multi-modal LLMs.
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The faucet, a rectangular white object, is located on the left side 
of the kitchen cabinets. It is connected to the kitchen sink, a sink 
located in the center of the kitchen. The kitchen cabinets are 
made of white material, contributing to a clean and modern 
look. The hanging picture frame is placed on the wall, 
enhancing the overall aesthetic of the room. This setup provides 
a functional and visually pleasing kitchen environment. The 
placement of the faucet, sink, cabinets, and picture frame 
creates a logical flow for using the kitchen. It is easy to access 
the faucet and sink while preparing meals or washing dishes. 
The cabinet, which is in the center of the kitchen, can store 
various kitchen items. The proximity of the picture frame to the 
sink suggests that it may be hung as a decorative element, 
adding a touch of artistic flair to the kitchen. This arrangement 
of objects within the kitchen provides a practical and attractive 
space for daily activities.

How is the faucet related to the kitchen cabinets and the hanging 
picture frame?

The faucet is related to the kitchen cabinets because it is
mounted on the wall next to the sink. The hanging picture frame
is not related to the kitchen cabinets or the faucet.

The faucet is related to the kitchen cabinets and the hanging 
picture frame in the image because it is located in the kitchen, 
and it is part of the sink. The sink is positioned under the 
hanging picture frame, which is mounted on the wall above the 
sink. The kitchen cabinets are also present in the scene, 
providing storage and organization for the kitchen items. The 
faucet is an essential component of the sink, allowing water to 
flow and be used for various tasks in the kitchen.

The faucet is related to the kitchen cabinets and the hanging
picture frame in that it is located in the same room. It is
positioned near the cabinet and hinges from the wall, suggesting
that they are all part of the interior design of a kitchen. The
presence of these elements in close proximity to each other
creates a cohesive and visually appealing space.

Figure 10: Example 4 of comparison between Chat-3D and 2D Multi-modal LLMs.
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