
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS ACTIVE SYNTHETIC DATA GENERATION
FOR FINETUNING LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

A common and effective means for improving language model capabilities
involves finetuning a “student” language model’s parameters on generations from
a more proficient “teacher” model. Termed “synthetic data”, these generations
are often produced before any student finetuning, but some work has considered
generating new synthetic samples as training progresses. This paper studies and
advocates for the latter case, where data are generated in an iterative, closed-loop
fashion that is guided by the current state of the student model. For a fixed
budget of generated samples, or a budget in terms of compute spent querying a
teacher, we show that this curation of finetuning data affords improved student
performance over static generation. Further, while there have been several
LLM-specific methods proposed that operate in this regime, we find that simple,
inexpensive selection criteria from the active learning literature tend to be most
performant. We validate these claims across four mathematical and logical
reasoning datasets using four different small language models.

1 INTRODUCTION

Large Language Models (LLMs) have shown remarkable abilities in a wide variety of reasoning and
factual knowledge tasks (Achiam et al., 2023; Bubeck et al., 2023; Katz et al., 2024), but their large
size makes inference expensive. With the advent of agentic systems that interact with the external
world, LLMs are poised to become even more ubiquitous in science, technology, and society in
general. However, the tremendous inference cost presents a challenge for realizing the full potential
of these agents.

One way to quell the computational expense associated with LLM inference is to use small language
models (SLMs). With orders of magnitude fewer parameters, SLMs are faster, cheaper, and easier
to finetune for specialised skills like tool use or interface alignment, making them natural specialists
within agentic systems (Belcak et al., 2025).

Training language models typically involves three stages: pre-training on large general-purpose
corpora, supervised finetuning (SFT), and reinforcement learning from human feedback (RLHF)
or from verifiable rewards (RLVR) (Ouyang et al., 2022). SFT, the focus of this work, is critical
for adapting a base model to the target distribution before reinforcement learning, and is especially
common when training SLMs to improve their task-specific performance.

However, real-world data for SFT can be hard to obtain, or may lack desirable properties such
as chain-of-thought reasoning (Wei et al., 2022). Consequently, a common and effective strategy
involves synthesizing a corpus of prompts and corresponding responses from a larger, more capable
model (Mitra et al., 2024; Liu et al., 2024). This process typically begins with a small seed dataset
and leverages a teacher LLM to produce supplementary synthetic samples, then finetunes the student
SLM on the resulting sequences in aggregate.

Yet, evidence suggests that generating a large static synthetic dataset is often wasteful, as it can of-
ten be drastically pruned with little to no degradation in trained model capabilities (Chen et al.,
2023; Zhou et al., 2024). As such, this paper explores an iterative, targeted approach to syn-
thetic data generation that is student-aware and improves data efficiency—achieving stronger perfor-
mance under a fixed data generation budget than naive static generation—thereby yielding a superior
performance–training-set-size Pareto frontier (see Section 2 for a formal definition).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

student

synthetic data finetuning

teacher

low score high score

data point scoring data point selection

Figure 1: Overview of the iterative synthetic data
generation (Algorithm 1). The student model guides
synthetic data generation by prioritizing which data are
used as an example for the teacher model to generate
a new synthetic data point (Section 4.2). The student
finetunes on synthetic data generated by the teacher.

To facilitate productive learning, this work
studies how we can effectively cater to the
state of the student model and guide syn-
thetic data generation by a teacher LLM
via prompting (Mitra et al., 2024; Liu
et al., 2024; Luo et al., 2023). This re-
sults in an iterative scheme, where the
updated student can be reused to guide
further teacher-generated samples (Fig-
ure 1). Prior work has considered this
paradigm by prioritizing incorrect stu-
dent answers (Lee et al., 2024) and using
LLM-as-a-judge scoring (Jiang et al.,
2023c), but they do not draw upon the vast
active learning and data selection litera-
ture. Instead, this paper advocates for the
generation of data that is conditioned on
samples that have been prioritized by an active learning algorithm. The resulting dataset enables
more effective and data efficient finetuning of the SLM student model (see Section 5.4 for evidence
supporting this claim).

Our work makes the following contributions:

• We provide a benchmark study for iterative synthetic data generation rooted in prior work
on active learning and data selection. We carefully compare to static dataset generation—
identical to random sampling—to show improvements in data efficiency.

• We compare a range of methods for prioritizing synthetic data generation, including uncer-
tainty sampling, diversity selection, and selection of difficult/easy samples. We conclude
that simple methods rooted in active learning, such as using the loss of the student’s pre-
diction (Settles & Craven, 2008), are the most data efficient to prioritize the creation of
synthetic data and enables strong performance for a fixed training set size. In contrast,
expensive and popular methods based on using an LLM to judge the difficulty and quality
of data, i.e. LLM-as-a-judge (Zheng et al., 2023; Jiang et al., 2023c), underperform
active learning counterparts.

• We obtain state-of-the-art capabilities for SLMs by applying active synthetic data genera-
tion and performing SFT on a fixed training data budget.

2 PRELIMINARIES

Notation. We use i to index a datapoint in a dataset, t to index the iteration of iterative synthetic
data generation, and j to index token position in a sequence. We denote question and answer pairs
z = (x, y), from a dataset of size n drawn from a ground truth distribution P : D0 = {z}ni=1 ∼ P .
We use the terms “question” and “instruction” interchangeably for x, and “answer” and “response”
interchangeably for y. The rationales or chain-of-thought (Wei et al., 2022) are incorporated into
the answers y := [r, y]. For some datasets, there is no chain-of-thought y := [“ ”, y]. A model fθ(·)
with parameters θ generates an answer ŷ given a question x: ŷ = fθ(x). Synthetic questions and
answers are denoted ẑ = (x̂, ŷ). Text is encoded into tokens, we denote V as the vocabulary and
each token is an indicator vector {0, 1}|V |. SFT involves minimizing the next token prediction loss,
the cross-entropy, over answer tokens given a question: L(z,θ) = −1/|y|

∑|y|
j=1 yj log fθ(x, y<j).

The model fθ(·) autoregressively generates the next token ŷj = fθ(x, ŷ<j) in the sequence.

Data Efficiency. At a high level if we can get a better performance with one dataset versus another
then the former is more data efficient. Formally, let P be the true data distribution over our data

z = (x, y). For a selection algorithm ϕ that produces a dataset Sϕ
n = {zi}ni=1

ϕ∼ P then the model
parameters θϕ

n results from minimizing the loss over Sϕ
n . We define the performance, accuracy for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

example, for a single data point as:

perfϕ(z,θ
ϕ
n) = 1

{
y = fθϕ

n
(x)

}
, (1)

and the expected performance is:

perfϕ(n) = Ez∼PESϕ
n∼P

[
perfϕ(z,θn(S

ϕ
n))

]
. (2)

Assuming a monotonic increase in performance with n, for some target performance τ , the sample
complexity is:

Nϕ(τ) = inf
{
n : perfϕ(n) ≥ τ

}
, (3)

which measures the smallest n such that perfϕ(n) ≥ τ . For a fixed architecture f(·), algorithm α

is more data-efficient than algorithm β at level τ only if Nα(τ) < Nβ(τ) or if for a fixed n then
perfα(n) > perfβ(n).

3 RELATED WORK

Distillation. Fitting models on synthetic datasets composed of pairs z = (x, ŷ) of sequences
ŷ produced by a teacher but conditioned on separately available prompts x—often referred to as
distillation (Hinton, 2015)—has been shown to be extremely effective in improving capabilities of
SLM student models (Taori et al., 2023; Peng et al., 2023; Team et al., 2024).

Synthetic question and answer generation. Going one step further, we can generate both ques-
tions and answers: ẑ = (x̂, ŷ). SFT on synthetic question-answer pairs results in improved capabil-
ities without being restricted by potentially small seed dataset sizes (Mukherjee et al., 2023). Much
like in the distillation setting, generating question-answer pairs only requires prompting the teacher
model with a seed data point (Mitra et al., 2024; Liu et al., 2024; Luo et al., 2023; Zeng et al., 2024).

Selective question and answer generation. Synthetic datasets are known to be compressible—
synthetic samples filtered to have high LLM-as-a-judge (Chen et al., 2023) values or low student
loss (Li et al., 2023) can obtain the same performance as finetuning on the entire unpruned corpus.
To remedy this inefficiency, rather than generating a large static synthetic dataset and then filtering,
we can instead carefully select the seed data used to generate the synthetic samples, and hopefully
produce fewer semantically similar sequences. This has been shown by prioritizing incorrect sam-
ples when querying the teacher, which has been shown to be more data efficient than finetuning on
the original corpus D0 (Lee et al., 2024). Also, LLM-as-a-judge selection is more data efficient
than directly finetuning on a public benchmark synthetic datasets (Jiang et al., 2023c). In this work
we study LLM-as-a-judge coring due to its widespread use.

3.1 ASSIGNING A VALUE TO DATA

Active learning. Our work is inspired by ideas from active learning, which seeks to maximise
data efficiency by iteratively identifying and prioritising informative samples for labelling (Settles,
2009; Settles & Craven, 2008). Classic strategies for active learning include model prediction dis-
agreement (Freund et al., 1997; Houlsby et al., 2011), uncertainty (MacKay, 1992; Gal et al., 2017;
Kirsch et al., 2019), and dataset summarization (Sener & Savarese, 2017; Mirzasoleiman et al.,
2020; Coleman et al., 2019). Some popular methods for selecting diverse samples in active learning
include determinantal point processes (Kulesza & Taskar, 2011) and BADGE which uses gradient
embeddings together with the kmeans++ algorithm to trade-off between predictive uncertainty and
sample diversity (Ash et al., 2019). We consider language model-aligned variations of two popular
methods for active learning: uncertainty sampling (Settles & Craven, 2008), a classic approach that
favors predictive uncertainty, and a more contemporary approach, BADGE.

Data selection. Related methods aim to estimate the value of data to guide selection, typically
using labelled dataset (x, y). LLMs have been used to score data points (Zheng et al., 2023) and
for selecting question-answer samples for SFT (Liu et al., 2023; Jiang et al., 2023c; Chen et al.,
2023). Still, it has been shown that LLMs scores exhibit biases that hinder their effectiveness

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Iterative synthetic data generation algorithm for question and answer datasets.

Input: Seed dataset D0, test set Dtest, train set D̂−1 = { }, student fθ(·), selection algorithm ϕ.
1: for t = 0, . . . , T do
2: Generate SLM predictions on Dt: {zi = (xi, ŷi)}ni=1 where xi ∈ D0 and ŷ = fθ(x).
3: Score and select data: D̄t = ϕ(Dt). ▷ See Section 4.1 for details.
4: Generate synthetic dataset: D̂t = Generate(D̄t). ▷ See Section 4.2 for details.
5: SFT on fθ(·) using D̂t := D̂t ∪ D̂t−1 and evaluation on Dtest.
6: end for

in this setting (Xiong et al., 2023; Dorner et al., 2024; Panickssery et al., 2024). Alternative ap-
proaches use training loss or gradient norms with respect to student parameters to estimate learning
progress (Loshchilov & Hutter, 2015; Katharopoulos & Fleuret, 2018; Jiang et al., 2019; Li et al.,
2023; Mindermann et al., 2022; Evans et al., 2024; Dai et al., 2025). However, this has shown lim-
ited data efficiency for language models (Kaddour et al., 2023). Reward models are commonly used
to score and identify data points for SFT (Cao et al., 2023; Dubey et al., 2024). In this work, we
focus on reward selection due to its popularity.

4 ITERATIVE SYNTHETIC DATA GENERATION

The general iterative synthetic data generation process studied in this paper is shown in Algo-
rithm 1 (Jiang et al., 2023c; Lee et al., 2024). We expand the algorithm’s design choices in the
next sections. The selection algorithm ϕ described in Section 2 can be composed into a scoring and
selection functions with the exception of BADGE, described below.

We first obtain a score for each data point {si}ni=1 where n = |D0| which indicates the data’s
importance. Secondly, we select m = |D̄t| points with the highest scores, “argmax” selection
D̄t = argmaxm {si}

n
i=1. Or we select m points by “sampling” according to their scores: D̄t

m∼
softmax({si}ni=1). Alternatively, we can pick the lowest n scoring data points by negating the
scores. In the next section we consider various algorithms for scoring data. By using these together
with argmax selection or sampling we can construct a selection algorithm, ϕ.

4.1 SELECTION ALGORITHMS

Uncertainty sampling. A common method in the active learning literature is uncertainty sam-
pling, which, for non-sequential classification models, prioritize data for which the amount of
probability mass on the most likely class predicted by the model is smallest. In the sequential,
Transformer-based analogue, we can score a data point with the loss of the answer tokens under
the student fθ(·) with parameters θ: as L(zi,θ). When the targets used to produce a loss are the
model’s own generations, this score reflects a sort of uncertainty in the sequence produced. Note that
our setting gives us access to the ground-truth label associated with x as well, and thus allows us to
compute a true loss here in a fashion commensurate with conventional model training. Interestingly,
we find empirically that this is less effective than using the former, uncertainty approach.

Reward scores. Using the student’s own generated sequence ŷ, a common method for scoring data
is to obtain a prediction from a separate reward model r(x, ŷ). Resulting scores can be interpreted
as the quality of the student’s response, and indicative of its competence on questions of this sort
in general. One is not limited to using the student’s predictions but can also obtain a reward for
the ground truth answer y. In this manner, rewards will encapsulate the difficulty of the data and
the informativeness of y. That said, scoring data with r(x, y) removes any dependence on the
student model and thus not desirable. Additionally, we find that this empirically underperforms
using r(x, ŷ). One drawback of this approach is that it requires an external model for scoring,
however we can obtain competitive reward models of the same size as our student and so we do not
treat a call to our reward model as being on the same level as a call to our teacher model.

LLM-as-a-judge scores. We can also leverage the reasoning ability of an LLM teacher model
to score an SLM’s predictions. We can ask the LLM teacher to score the detail, quality and cor-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

rectness of the student answer and reasoning steps with a number between [1, 10]. In particular, we
use pairwise LLM-as-a-judge scoring which has been shown to be most effective (Zheng et al.,
2023). Two separate answers are given for the teacher to decide which it prefers by providing scores
for both: sti, si = LLM(ŷti , ŷi, xi) where ŷti = LLM(xi) is teacher’s answer, sti is the score for the
teachers answer and ŷi the student answer. This is an expensive scoring method since it requires the
teacher to produce an answer in addition to scoring.

BADGE. Batch Active learning by Diverse Gradient Embeddings (BADGE) is a two-stage ac-
tive learning algorithm. It first represents all candidate data using the last-layer gradient of the loss
induced by treating the generated sequence as ground truth,∇θo

L(ŷ = fθ(x), where θo are output-
head parameters. In the second stage, BADGE approximately samples from a k-DPP to identify
gradients that are both high-magnitude and diverse (note that high-magnitude gradients are high-
loss generations, suggesting high predictive uncertainty). Like in uncertainty sampling, our setting
allows us to use ground-truth target sequences—which would make these gradient representations
of the sort that might be used during optimization—but we empirically find it is higher performing
to use generated sequences instead. Because the un-embedding layer of a Transformer is typically
extremely large, we use a sparse random projection to efficiently reduce dimensionality while pre-
serving important relationships (Johnson et al., 1984)

4.2 PROMPT-BASED SYNTHETIC DATA GENERATION

Selected data points x̄i ∈ D̄t are added to a synthetic data generation prompt for the LLM teacher
model to generate a synthetic question x̂i (Xu et al., 2023; Mitra et al., 2024; Jiang et al., 2023c;
Lee et al., 2024). Then the teacher model is prompted to produce chain-of-thought reasoning and a
final answer for x̂i. We generate a synthetic data point ẑi = (x̂i, ŷi) using x̂ = LLM(x̄i) and ŷi :=

[r̂i, ŷi] = LLM(x̂i). So D̂t = Generate(D̄t) = {x̂i = LLM(x̄i), ŷi = LLM(x̂i)}mi=1 where x̄i ∼ D̄t.
For the further details on the implementation for the individual datasets see Appendix E.2.

5 EXPERIMENTS

This section empirically probes the data efficiency of iterative synthetic data generation against
static data generation. We also provide recommendations to practitioners regarding which scoring
and selection design choices seem to improve efficiency; we find that prioritizing high difficulty
data using a high student loss to be the most data efficient. High uncertainty sampling equivalent
to a high loss under the student’s own predictions results in state-of-the-art capabilities on all
datasets when considering comparable SFT methods and in some cases using orders of magnitude
less training data (Section 5.4.3).

At each iteration we value each data point in the seed dataset training split and prioritize 1k samples:
D̄t = ϕ(Dt). The teacher then generate 1k synthetic data points and we append this data set to
synthetic datasets from previous iterations for SFT.

5.1 DATASETS

This section presents results on four distinct reasoning datasets in conjunction with four different
models. GSM8k is a popular mathematics dataset comprised of school level maths problems (Cobbe
et al., 2021), which we use in conjunction with a Mistral-7B-Instruct-v0.3 student (Jiang
et al., 2023a). Similarly, we include the more challenging Math1-3 dataset (Hendrycks et al.,
2021), which is separated into 5 distinct levels of question difficulty—we use the easiest levels, 1 to
3, to finetune a Llama-3-8B-Instruct student (Dubey et al., 2024).

We further experiment with the logical reasoning dataset ProntoQA (Saparov & He, 2022), com-
posed of synthetically generated chain-of-thought style reasoning questions, with a Qwen1.5-7B-
Chat student. Finally we consider the Game of 24 dataset, where a model is required find arith-
metic operations given 4 separate numbers to obtain 24. Here we use a Qwen2.5-7B-Instruct
student (Qwen et al., 2025). More dataset details are provided in Appendix E.1.

For all datasets except for Game of 24 we use simple prompt-based synthetic data generation
with a GPT-4o teacher; see Appendix E.2 for our prompts. For Game of 24 we use backward

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: SFT performance on 1k data points for various datasets and SLMs. We compare the
effect of synthetic answer generation and synthetic question and answer generation to using the seed
dataset, D0 for SFT. 0-shot SLM and teacher performances are included for reference. All datasets
use a GPT-4o teacher, for Game of 24 we use a GPT-o3-mini teacher.
reasoning: if the answer is 13*8-10*8=24, for example, we can construct a new question by
setting two integers to variables a*b-10*8=24 and solving to generate new questions (Jiang et al.,
2023b). We use a GPT-o3-mini teacher for backward reasoning (qualitatively this produces better
questions than GPT-4o), see Appendix E.2.4 for further details.

5.2 FINETUNING SETUP

To enable new instruction-following capabilities we finetune our student on synthetic data D̂t, which
are appended to synthetic data from all previous iterations D̂<t. For efficient training we adapt
LoRA layers (Hu et al., 2022) after each iteration of acquiring data and fitting the model. We avoid
warm starting SFT parameters from their pre-trained values (Ash & Adams, 2020; Springer et al.,
2025). We set the LoRA rank and alpha parameters to the same value and adapt all linear layers.
For optimization we use Adam (Kingma & Ba, 2014), clamp the gradient norm to a maximum
of 2.0, and use a batch size of 24 with 2 gradient accumulation steps. The learning rate decays
linearly with a warm up of period of 15% of epochs. For Game of 24 we use a cosine decay
learning rate schedule down to a minimum of 1e-9 (Ni et al., 2025). During optimization we perform
checkpointing and load the best performing checkpoint at the end of the optimization. For the best
possible results we search for optimal learning rates, LoRA ranks and the number of training epochs
over a grid (Appendix B). We use a single 80Gb A100 or H100 GPU for all experiments.

5.3 ALGORITHMS

We consider a variety of selection algorithms to understand which are most sample efficient. Prior
work has shown that prioritizing “hard” samples accelerates learning (Section 3.1). Indeed we also
find this to be the case for iterative synthetic data generation (Section 5.4.4). Thus we consider high
uncertainty sampling with greedily decoded student predictions, denoted as “loss (high)” throughout
this section. We also consider a low reward selection algorithm using the student’s own prediction.
We use a Skywork-Reward-Llama-3.1-8B-v0.2 reward model which obtained the highest
score 8b model on RewardBench (Lambert et al., 2024) at the time of writing.

We use Lion (Jiang et al., 2023c) as a “score” baseline, which compares the student and teacher
answer LLM-as-a-judge scores to categorize a data point either hard or easy. All seed data are
assigned into either an easy or a hard set before sampling equally from both. We also consider a
baseline that only samples from the hard set, denoted as LLM-as-a-judge (hard) (Jazbec et al.,
2024). We use the same prompts for LLM-as-a-judge scoring as (Jiang et al., 2023c).

We also consider prioritizing data with “incorrect” student answers, si = 1{ŷi ̸= y} as a proxy
for prioritizing hard samples (Lee et al., 2024). Since incorrect selection requires a verifier and
the ground truth answers we do not compare to the other scoring methods which don’t use label
information and we place these results in the appendix for comparison (Appendix C.1).

5.4 RESULTS

We present our main results and show how using synthetic data yields significant gains in student
capabilities compared to using a seed dataset of the same size (Section 5.4.1). We demonstrate

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Iterative synthetic data generation learning curves: student performance for increas-
ing train set sizes or increasing number of iterations. Each consecutive increase in dataset size
corresponds to an iteration of iterative synthetic data generation Algorithm 1. Learning curves are
across various dataset student model pairs.

that iterative synthetic data generation is more data efficient than static generation. Note that
static generation is equivalent to random sampling of prompts for generation in our setting, since
it is not conditioned on the current state of the student (Section 5.4.2). Iterative synthetic data
generation also yields state-of-the-art SLM capabilities using SFT (Section 5.4.3). Finally, we
analyse various choices for scoring and selection (Section 5.4.4). Unless stated otherwise, results
are a mean and standard deviation over 3 independent runs.

5.4.1 TRAINING ON SYNTHETIC DATA IMPROVES PERFORMANCE

SFT on synthetic data results in significantly improved capabilities when compared to using
the original seed dataset. In Figure 2, we compare SFT performance using the seed data and syn-
thetic data of equal size, showing a dramatic increase in performance across all datasets when doing
SFT on synthetic questions-answers pairs. In the same figure, we see large increase in performance
when using synthetic answers zi = (xi, ŷi) over the seed answers y due to better formatting and
high quality chain-of-thought in synthetic answers. In Game of 24 there is a small drop in per-
formance when training on synthetic questions and answers versus only synthetic answers, showing
that the generation of novel questions by the teacher yields some lower quality synthetic questions.
Regardless, next we show how this enables us to scale dataset sizes efficiently.

5.4.2 ITERATIVE GENERATION YIELDS MORE DATA-EFFICIENT RESULTS

Active selection is more data efficient than random sampling for generating pro-
ductive synthetic data, resulting in better performance using fewer samples.

Figure 4: Pairwise winrate over all datasets and
methods. Pij corresponds roughly to the number
of times algorithm i outperforms j. Overall per-
formance is shown in the last row (lower is better).

In Figure 3, we can see that random sampling
underperforms when compared to the active se-
lection methods considered across all datasets.
Among these, we find that simply prioritizing
high-loss data consistently performs well.

To compare algorithms across all datasets we
can aggregate results to construct a pairwise
winrate matrix P . We increment Pij if
1{µ̂i − α · ŝei > µ̂j + α · ŝej}, where µ̂i is the
sample mean and ŝei is the standard error of the
performance of algorithm i for a dataset, for a
particular dataset size, and α is the confidence
level which we set to 1 (making it a 68% confi-
dence interval). By summing the “wins” across
the rows and normalizing we can understand
how often algorithms win on average. As a
result, lower is better to understand which algo-
rithm is more data efficient. We find that using
random sampling is outperformed by nearly
all other methods that use the student model to
guide synthetic data generation (Figure 4).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Dataset Method LLM SFT Dataset Size Performance

GSM8k

Teacher GPT-4o n/a 94.9± 1.1
Orca-Math (Mitra et al., 2024) Mistral-7B-Instruct-v0.3 200k 86.8
Xwin-Math (Li et al., 2024) Mistral-7B-Instruct-v0.3 960k 89.2
OpenMathInstruct (Toshniwal et al., 2024) Mistral-7B-Instruct-v0.3 1.8M 80.2
Iterative Synthetic Data Generation (ours) Mistral-7B-Instruct-v0.3 10k 80.6± 1.2

Math1-3

Teacher GPT-4o n/a 91.8± 0.7
MetaMath (Sun et al., 2024) Llemma-7B 155k 44.1
Multiagent Debate (Subramaniam et al., 2025) Llama-3-8B-Instruct - 57.4± 2.2
Iterative Synthetic Data Generation (ours) Llama-3-8B-Instruct 10k 55.6± 0.4

ProntoQA
Teacher GPT-4o n/a 98.9± 0.4
SFT-NL (Zhou et al., 2025) Qwen2.5-7B-Instruct 3.2k 97.4
Iterative Synthetic Data Generation (ours) Qwen1.5-7B-Chat 8k 96.9± 0.8

Game of 24

Teacher GPT-o3-mini n/a 22.6± 1.8
Tree of Thoughts (Yao et al., 2023) GPT-4 n/a 74.0
UFT (Ni et al., 2025) Qwen2.5-7B-Instruct 13.7k 30.2± 2.1
Iterative Synthetic Data Generation (ours) Qwen2.5-7B-Instruct 6k 77.3± 0.3

Table 1: Iterative synthetic data generation performs better if not comparably to state-of-the-
art SFT methods. We report the results of iterative synthetic data generation using a high loss
selection as this performs the best overall. All SFT methods report the amount of data used for SFT
unless it is not reported, designated with a dash (-) in the table. We report a mean and standard error
over multiple seeds for our work, however some baselines only report a single seed.

We can glean from Figure 4 that the best selection algorithm uses a high loss and then BADGE.
These active learning methods outperform computationally demanding methods that rely on LLM-
as-a-judge. Indeed if we compare the number of input tokens for the teacher as a proxy for the
amount of compute required then Lion and LLM-as-a-judge are indeed far more expensive than
other methods in terms of input token efficiency in Figure 5.

5.4.3 COMPARING TO OTHER SFT METHODS

Iterative synthetic data generation obtains state-of-the-art SFT performance. Table 1 compares
the results of iterative synthetic data generation with high-loss selection to prior works in SFT. For
GSM8k, our work obtains performance comparable to SFT on 1.8M datapoints (Toshniwal et al.,
2024). The best result, Xwin-Math, obtains an accuracy of 89.2 using 100× more data to fit the
same student (Li et al., 2024) model. For Math1-3 our work is on par with state-of-the-art SFT
methods (Subramaniam et al., 2025). This is also the case with the ProntoQA dataset, where
our approach obtains performance on par with bespoke logical reasoning methods that use a more
performant Qwen2.5-7B-Instruct student albeit using less SFT data (Zhou et al., 2025). For
Game of 24 our method outperforms state-of-the-art SFT performance even outperforming test-
time compute Tree-of-Thought which is also compatible with our own work (Yao et al., 2023).

5.4.4 ON THE DESIGN CHOICES FOR ITERATIVE SYNTHETIC DATA GENERATION

107 108

Num. input tokens

0.70

0.75

0.80

Ac
cu

ra
cy

GSM8k Mistral 7B

rand
lion

llm-judge (hard)
loss (high)

rwd (low)
BADGE

Figure 5: Iterative synthetic data gen-
eration learning curves on GSM8k:
student performance versus the num-
ber of teacher input tokens. The num-
ber of input tokens are a proxy for the
amount of compute used by the teacher
for various methods.

Argmax selection, rather than sampling, results in the
best SFT performance. In Figure 6, we compare vari-
ous data prioritization design choices. The performance
for scorers that prioritize data where the student answer
is the most uncertain (high loss) or worse quality (low re-
ward) results in the best performance when compared to
data for which the model is confident (low loss) or is of
better quality (high reward). Furthermore, we compare
whether using the ground truth answer y (denoted “gt”
in Figure 6) or the student’s own prediction ŷ is more data
efficient. We can see worse performance when computing
scores with the ground-truth answer for the loss scorer,
while scoring with the reward model results in equal SFT
performance.

Finally, we compare selection methods: argmax selection
and sampling and can see lower SFT performance when
using sampling (labelled with “sampling” in Figure 6).
This is because sampling from a softmax distribution of
loss or reward scores results in a similar set of selected

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Performance of iterative synthetic data generation on various data scoring and selec-
tion options. We train on 1k data points at each iteration with a Mistral-7B-Instruct-v0.3
student on GSM8k. We compare prioritizing “difficult” or “easy” data points with a high or low loss
or reward. We compare using ground truth answers y to the student’s own predictions ŷ and using
argmax selection against sampling.

data to random sampling. If we select 1k data points from the GSM8k seed dataset and look at the
distribution of loss scores via sampling for the highest and lowest 1k data, then the distributions are
indistinguishable to the naked eye. Argmax selection produces distinct distributions (Figure 7).

6 LIMITATIONS

Iterative synthetic data generation for finetuning. We only consider SFT, we do not consider
efficient synthetic data generation to accelerate training for RLHF, continual pre-training (Yang
et al., 2024) or pre-training (Maini et al., 2025), for instance.

The limits of the teacher. We assume that the teacher is able to generate high quality questions
and answers. For GSM8k, Math1-3 and ProntoQA the teacher performance is high and so we
assume ẑi is correct. For Game of 24 we rely on backward reasoning (specific to arithmetic)
and a verifier to assess the teacher’s synthetic data. We have yet to test the limits of prompt-based
synthetic data generation in settings where teacher capabilities fall short.

Data generation is noisy. We can obtain state-of-the art capabilities using iterative synthetic data
generation. However, synthetic data generation is a noisy process (Appendix C.2); we have no
guarantee of the similarity of the synthetic data to the seed data. It is not obvious how we generate
synthetic data with similar or desirable properties from the seed dataset. To a certain extent this is
performed by our selection algorithms, however the “steerability” of synthetic data generation is an
interesting direction of future work.

7 CONCLUSION AND DISCUSSION

0.00 0.05 0.10 0.15
Loss

Sampling

0.00 0.05 0.10 0.15
Loss

Argmax
loss (high)
loss (low)

Figure 7: Distribution of losses for different
sampling methods. We select 1k according to a
high or low loss sampling (left) and argmax se-
lection (right) for GSM8k and can see almost no
difference when using sampling.

Synthetic data are extremely effective for fine-
tuning SLMs, enabling substantial capability
improvements. In this work, we focus on su-
pervised finetuning with synthetic data. We
demonstrate that iterative synthetic data gen-
eration is the most effective strategy for fine-
tuning SLMs under a fixed training data bud-
get. By adapting teacher generation to the
evolving state of the student model, this ap-
proach creates a natural curriculum that con-
sistently outperforms static synthetic datasets
in both performance and data efficiency. Fur-
thermore, in line with Occam’s razor, we find
that simple data selection methods, such as pri-
oritizing hard samples with high loss, outper-
form complicated and expensive LLM-as-a-
judge based methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

Reproducibility goes to the heart of our study of different selection algorithms for data efficient
synthetic data generation. In our study, all the results are stated as means and standard errors over 3
independent replicates. This has been done in an effort to encapsulate the variance arising from the
datasets we use and our experimental setup, and ensures that the performance differences arise due
to the choice of selection methods rather than random variation. As a result we use uncertainties to
weight our claims resulting a more reproducible study.

We will release source code upon publication.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023. 1

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical
report, Stanford, 2006. 18

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in neural
information processing systems, 33:3884–3894, 2020. 6

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal.
Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671, 2019. 3, 17

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan,
Yingyan Celine Lin, and Pavlo Molchanov. Small language models are the future of agentic
ai. arXiv preprint arXiv:2506.02153, 2025. 1

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023. 1

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. Instruction mining: Instruction data selection
for tuning large language models. arXiv preprint arXiv:2307.06290, 2023. 4

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701, 2023. 1, 3

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021. 5, 18

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
learning. arXiv preprint arXiv:1906.11829, 2019. 3

Yalun Dai, Yangyu Huang, Xin Zhang, Wenshan Wu, Chong Li, Wenhui Lu, Shijie Cao, Li Dong,
and Scarlett Li. Data efficacy for language model training. arXiv preprint arXiv:2506.21545,
2025. 4

Florian E Dorner, Vivian Y Nastl, and Moritz Hardt. Limits to scalable evaluation at the frontier:
Llm as judge won’t beat twice the data. arXiv preprint arXiv:2410.13341, 2024. 4

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024. 4, 5, 18

Talfan Evans, Shreya Pathak, Hamza Merzic, Jonathan Schwarz, Ryutaro Tanno, and Olivier J
Henaff. Bad students make great teachers: Active learning accelerates large-scale visual un-
derstanding. In European Conference on Computer Vision, pp. 264–280. Springer, 2024. 4

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yoav Freund, H Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sampling using the query
by committee algorithm. Machine learning, 28(2):133–168, 1997. 3

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In International conference on machine learning, pp. 1183–1192. PMLR, 2017. 3

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021. 5, 18

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015. 3

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for
classification and preference learning. arXiv preprint arXiv:1112.5745, 2011. 3

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022. 6

Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jor-
dan T Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
mechanism. arXiv preprint arXiv:2412.01951, 2024. 18

Metod Jazbec, Menglin Xia, Ankur Mallick, Daniel Madrigal, Dongge Han, Samuel Kessler, and
Victor Rühle. On efficient distillation from llms to slms. In NeurIPS 2024 Workshop on Fine-
Tuning in Modern Machine Learning: Principles and Scalability, 2024. 6

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023a. 5, 18

Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R
Ganger, Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton, et al. Accelerating
deep learning by focusing on the biggest losers. arXiv preprint arXiv:1910.00762, 2019. 4

Weisen Jiang, Han Shi, Longhui Yu, Zhengying Liu, Yu Zhang, Zhenguo Li, and James T Kwok.
Forward-backward reasoning in large language models for mathematical verification. arXiv
preprint arXiv:2308.07758, 2023b. 6, 18

Yuxin Jiang, Chunkit Chan, Mingyang Chen, and Wei Wang. Lion: Adversarial distillation of
proprietary large language models. arXiv preprint arXiv:2305.12870, 2023c. 2, 3, 4, 5, 6, 18

William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert
space. Contemporary mathematics, 26(189-206):1, 1984. 5

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J Kusner. No train no gain:
Revisiting efficient training algorithms for transformer-based language models. Advances in Neu-
ral Information Processing Systems, 36:25793–25818, 2023. 4

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International conference on machine learning, pp. 2525–2534. PMLR,
2018. 4

Daniel Martin Katz, Michael James Bommarito, Shang Gao, and Pablo Arredondo. Gpt-4 passes
the bar exam. Philosophical Transactions of the Royal Society A, 382(2270):20230254, 2024. 1

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 6

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. Advances in neural information processing systems,
32, 2019. 3

Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determinantal point processes. In Proceedings of
the 28th International Conference on Machine Learning (ICML-11), pp. 1193–1200, 2011. 3

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint arXiv:2403.13787, 2024. 6

Nicholas Lee, Thanakul Wattanawong, Sehoon Kim, Karttikeya Mangalam, Sheng Shen, Gopala
Anumanchipalli, Michael W Mahoney, Kurt Keutzer, and Amir Gholami. Llm2llm: Boosting
llms with novel iterative data enhancement. arXiv preprint arXiv:2403.15042, 2024. 2, 3, 4, 5, 6,
16

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities, 2024.
URL https://arxiv.org/abs/2403.04706. 8

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
selection for instruction tuning. arXiv preprint arXiv:2308.12032, 2023. 3, 4

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013/. 18

Chengyuan Liu, Yangyang Kang, Fubang Zhao, Kun Kuang, Zhuoren Jiang, Changlong Sun, and
Fei Wu. Evolving knowledge distillation with large language models and active learning. arXiv
preprint arXiv:2403.06414, 2024. 1, 2, 3, 18

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for align-
ment? a comprehensive study of automatic data selection in instruction tuning. arXiv preprint
arXiv:2312.15685, 2023. 3

Ilya Loshchilov and Frank Hutter. Online batch selection for faster training of neural networks.
arXiv preprint arXiv:1511.06343, 2015. 4

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.
2, 3

David JC MacKay. Information-based objective functions for active data selection. Neural compu-
tation, 4(4):590–604, 1992. 3

Pratyush Maini, Vineeth Dorna, Parth Doshi, Aldo Carranza, Fan Pan, Jack Urbanek, Paul Burstein,
Alex Fang, Alvin Deng, Amro Abbas, et al. Beyondweb: Lessons from scaling synthetic data for
trillion-scale pretraining. arXiv preprint arXiv:2508.10975, 2025. 9

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Win-
nie Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized
training on points that are learnable, worth learning, and not yet learnt. In International Confer-
ence on Machine Learning, pp. 15630–15649. PMLR, 2022. 4

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pp. 6950–6960.
PMLR, 2020. 3

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking
the potential of slms in grade school math. arXiv preprint arXiv:2402.14830, 2024. 1, 2, 3, 5, 8,
18, 25

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. arXiv
preprint arXiv:2306.02707, 2023. 3

Tianwei Ni, Allen Nie, Sapana Chaudhary, Yao Liu, Huzefa Rangwala, and Rasool Fakoor. Of-
fline learning and forgetting for reasoning with large language models, 2025. URL https:
//arxiv.org/abs/2504.11364. 6, 8, 24

12

https://arxiv.org/abs/2403.04706
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2504.11364
https://arxiv.org/abs/2504.11364

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022. 1

Arjun Panickssery, Samuel Bowman, and Shi Feng. Llm evaluators recognize and favor their own
generations. Advances in Neural Information Processing Systems, 37:68772–68802, 2024. 4

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023. 3

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115. 5, 18

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022. 5, 18, 21

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017. 3

Burr Settles. Active learning literature survey. 2009. 3

Burr Settles and Mark Craven. An analysis of active learning strategies for sequence labeling tasks.
In proceedings of the 2008 conference on empirical methods in natural language processing, pp.
1070–1079, 2008. 2, 3

Jacob Mitchell Springer, Sachin Goyal, Kaiyue Wen, Tanishq Kumar, Xiang Yue, Sadhika Malladi,
Graham Neubig, and Aditi Raghunathan. Overtrained language models are harder to fine-tune.
arXiv preprint arXiv:2503.19206, 2025. 6

Vighnesh Subramaniam, Yilun Du, Joshua B Tenenbaum, Antonio Torralba, Shuang Li, and Igor
Mordatch. Multiagent finetuning: Self improvement with diverse reasoning chains. arXiv preprint
arXiv:2501.05707, 2025. 8

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. Advances in
Neural Information Processing Systems, 37:51118–51168, 2024. 8

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023. 3

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.
3

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Git-
man. Openmathinstruct-1: A 1.8 million math instruction tuning dataset, 2024. URL https:
//arxiv.org/abs/2402.10176. 8

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022. 1, 2

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
express their uncertainty? an empirical evaluation of confidence elicitation in llms. arXiv preprint
arXiv:2306.13063, 2023. 4

13

https://arxiv.org/abs/2412.15115
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2402.10176
https://arxiv.org/abs/2402.10176

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023. 5

Zitong Yang, Neil Band, Shuangping Li, Emmanuel Candes, and Tatsunori Hashimoto. Synthetic
continued pretraining. arXiv preprint arXiv:2409.07431, 2024. 9

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models, 2023. 8

Liang Zeng, Liangjun Zhong, Liang Zhao, Tianwen Wei, Liu Yang, Jujie He, Cheng Cheng, Rui Hu,
Yang Liu, Shuicheng Yan, et al. Skywork-math: Data scaling laws for mathematical reasoning in
large language models–the story goes on. arXiv preprint arXiv:2407.08348, 2024. 3

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023. 2, 3,
5

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024. 1

Yujun Zhou, Jiayi Ye, Zipeng Ling, Yufei Han, Yue Huang, Haomin Zhuang, Zhenwen Liang, Kehan
Guo, Taicheng Guo, Xiangqi Wang, et al. Dissecting logical reasoning in llms: A fine-grained
evaluation and supervision study. arXiv preprint arXiv:2506.04810, 2025. 8

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A The Use of Large Language Models 15

B Additional Experimental Setup Details 15
B.1 LoRA hyper-parameter tuning setup . 15

C Additional results 16
C.1 Prioritizing incorrect samples . 16
C.2 Synthetic data generation preserves properties of the selected data 17

D Baseline further details 17
D.1 BADGE . 17

E Dataset further details 17
E.1 Seed dataset sizes . 19
E.2 Synthetic data generation prompts . 19
E.3 Evaluation prompts . 25

A THE USE OF LARGE LANGUAGE MODELS

We used a coding assistant to help implement and debug our experiments. Regarding paper writing
we used LLMs for finding related work, to assist with grammar queries, and to assist in generating
the figures in the paper.

B ADDITIONAL EXPERIMENTAL SETUP DETAILS

We introduce additional details of our experimental setup detailed in Section 5.3. We outline the
hyperparameter grid search for SFT below.

B.1 LORA HYPER-PARAMETER TUNING SETUP

We sweep through learning rate and LoRA rank hyper-parameters for finetuning using on 1k
question-answer pairs from the original seed dataset and 1k question-answer pairs synthetically gen-
erated by the teacher model to obtain the best hyperparameters for seed datasets D0 and synthetic
datasets D̂t. Refer to Table 2 for optimal hyperparameters.

Model Dataset LoRA Rank Learning Rate Epochs
Mistral-7B-Instruct-v0.3 GSM8k seed 32 1e-4 10
Llama-3-8B-Instruct Math1-3 seed 32 1e-6 13
Qwen1.5-7B-Chat ProntoQA seed 32 1e-5 13
Qwen2.5-7B-Instruct Game of 24 seed 16 1e-5 13
Mistral-7B-Instruct-v0.3 GSM8k synthetic 32 1e-4 10
Llama-3-8B-Instruct Math1-3 synthetic 64 1e-4 13
Qwen1.5-7B-Chat ProntoQA synthetic 32 1e-5 13
Qwen2.5-7B-Instruct Game of 24 synthetic 16 5e-4 30

Table 2: Hyper-parameters for LoRA fine-tuning for all seed and synthetic datasets.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Iterative synthetic data generation learning curves, showing student SFT perfor-
mance after training on synthetic data of increasing size with incorrect data prioritization. We
highlight prioritizing data points with incorrect student answers versus select prioritization methods
for comparison. Each consecutive increase in dataset size corresponds to an iteration of iterative
synthetic data generation (Algorithm 1). Learning curves are across various dataset student base
model pairs.

C ADDITIONAL RESULTS

We introduce additional results that support the main claims in our main paper. In Appendix C.1
we introduce results of prioritizing synthetic data generation using incorrect student predictions.
We do not include these results in the main paper for comparison since they require a verifier and
the ground truth answer y for scoring unlike the other scoring methods considered in our main
experiments (Section 5.4.2). In Appendix C.2 we analyze the workings of synthetic data generation
to show that despite introducing noise it results in a curriculum and consistently high quality SFT
data.

C.1 PRIORITIZING INCORRECT SAMPLES

Figure 9: The pairwise win rate matrix over
all datasets and all methods including incorrect
prioritization. Element Pij corresponds roughly
to the number of times algorithm i outperforms
algorithm j including results of incorrect student
answer prioritization (Lee et al., 2024). Column-
wise averages at the bottom display overall per-
formance (lower is better).

A simple data point scoring mechanism is to
assign a {0, 1} score for an incorrect or cor-
rect answer from the student model. This
scoring mechanism requires a verifier and so
not directly comparable to the other scoring
methods we consider which do not require the
ground truth answer to assign a score to a data
point (Section 5.3). Regardless we show the re-
sults of performing iterative synthetic data gen-
eration by prioritizing incorrect samples in Fig-
ure 8. For GSM8k this method severely under-
performs other prioritization methods and ran-
dom sampling. For Math1-3 The results are
on par with high loss prioritization which per-
forms best. For both ProntoQA and Game
of 24 incorrect answer prioritization obtains
results on par with the best scoring methods if
not the best results for certain n. Considering
a pairwise win-rate (described in Section 5.4.2)
we can see from the row for incorrect prioriti-
zation that it outperforms and therefore is more
data efficient in many instances with a high
number of “wins” versus other methods. How-
ever at the same time looking at the correspond-
ing column it is outperformed by many of the
other methods in particular high loss and low
reward selection so it results in a poor overall
score in the final row Figure 9. Overall it is a

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 10: Synthetic data generation is noisy, however it retains properties of the selected
data. Left: confusion matrix of accuracies from a Mistral-7B-Instruct-v0.3 student on
1k points from GSM8k and corresponding 1k points after synthetic data generation. Middle: the
median loss score over selected D̄t and synthetic D̂t datasets over 10 iterations of synthetic data
generation. Right: the median ground truth reward - a measure of dataset quality - over selected D̄t

and synthetic datasets D̂t over 10 iterations of synthetic data generation.
.

simple method and has the possibility of obtaining strong capabilities and being more data efficient
than random sampling or static dataset generation.

C.2 SYNTHETIC DATA GENERATION PRESERVES PROPERTIES OF THE SELECTED DATA

The prompt-based synthetic data generation methods we use, although widespread are noisy insofar
that the process changes individual data points; points that are previously correctly or incorrectly
answered by the student are then incorrectly or correctly answered by the student. Specifically, we
construct a confusion matrix of accuracies using a Mistral-7B-Instruct-v0.3 student on
D0 and corresponding accuracies on D̂ after random selection. We see many seed and synthetic data
point pairs lie in the in off-diagonals in Figure 10 (left). However if we use a high loss scorer and
track the median of the loss of D̄t and D̂t over the course of iterative synthetic data generation we
can see that first of all there is a curriculum that is formed where the data’s loss increases overall.
Secondly, that the loss of the selected and synthetic datasets are similar at a dataset level, despite
the noisy synthetic data generation process. When we measure the quality of the selected D̄t and
synthetic D̂t data by using the ground truth reward we see that it remains constant over the course
of synthetic data generation, but the quality of the synthetic data increases substantially over the
selected data (Figure 10).

D BASELINE FURTHER DETAILS

In this section we provide further details regarding the baselines described in Section 5.3. In partic-
ular we provide further details on the BADGE data selection method and the kmeans++ algorithm.

D.1 BADGE

BADGE (Ash et al., 2019) uses the gradient with respect to the output layer of a neural network and
uses kmeans++ Algorithm 2 to select diverse gradients in this embedding space to 1. maximize
the diversity of the selected data points and 2. to select points with a large norm of the gradient of
the loss which is equivalent to selecting points with a high uncertainty.

E DATASET FURTHER DETAILS

In this section we provide in depth details on the datasets used in our experiments together with
the dataset sizes used throughout our empirical study of iterative synthetic data generation (Ap-
pendix E.1). Also we provide the prompts used for synthetic data generation (Appendix E.2).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 k-means++ (Arthur & Vassilvitskii, 2006)

Require: Dataset X = {x1, . . . , xn} ⊂ Rd, number of data points to sample from X , k < n, k ∈
N, Euclidean distance d(·, ·).

1: Choose c1 ∼ Uniform(X) and set C ← {c1}
2: For each x ∈ X , set D(x)← d(x, c1) // distance to nearest chosen center
3: for i = 2 to k do
4: Sample x⋆ ∈ X with probability

Pr[x⋆ = x] =
D(x)2∑

z∈X D(z)2
.

5: C ← C ∪ {x⋆}
6: for each x ∈ X do
7: D(x)← min

{
D(x), d(x, x⋆)

}
// update distance to nearest center

8: end for
9: end for

10: return C

We introduce the seed question and answer datasets D0. The validation and test sets are taken from
the original seed datasets as opposed to using synthetic data. The train sets D̂t are synthetically
generated. We summarize the datasets sizes in Appendix E.1. Unless otherwise stated we use
a GPT-4o teacher. We prompt the teacher with few-shot examples from D0 to generate a new
synthetic questions (Liu et al., 2024). For all datasets we throw away similar synthetic questions
if the rouge-score with respect to all previously generated questions is above 0.7 (Lin, 2004; Jiang
et al., 2023c).

GSM8k. We perform SFT on a Mistral-7B-Instruct-v0.3 (Jiang et al., 2023a) student
on school level mathematics questions (Cobbe et al., 2021). We use an external language model
gpt4o-mini to assess whether the student’s answer is equivalent to the ground truth answer (Mitra
et al., 2024), see Appendix E.3 for details. We take 748 question-answer pairs from the test set as a
validation set and 500 question-answer pairs as a test set*.

Math1-3. We finetune a Llama-3-8B-Instruct (Dubey et al., 2024) student on the compe-
tition math dataset (Hendrycks et al., 2021) which consists of more difficult math questions†. The
dataset is classified into 5 levels of question difficulty. We use the easiest levels 1 to 3 and pick 500
question-answer pairs from the test set for validation. We assess the correctness of an answer by
matching the solution to the regular expression \boxed{(\d*)}.

ProntoQA. The questions are synthetically generated logical chain-of-thought style reasoning
questions with boolean answers (Saparov & He, 2022). We perform SFT on a Qwen1.5-7B-
Chat student model. We use an external language model gpt4o-mini to assess whether the
student’s reasoning steps are correct and answer is equivalent to the ground truth answer like for
GSM8k (Mitra et al., 2024), see Appendix E.3 for details. We use 300 question-answer pairs as a
validation set and the remaining 200 as a test set‡.

Game of 24. We use a Qwen2.5-7B-Instruct (Qwen et al., 2025) student on the task of
using basic arithmetic on 4 separate numbers to obtain 24§. Each question can have multiple solu-
tions, we treat each new answer as a separate data point. We use backward reasoning to synthetically
generate new questions (Jiang et al., 2023b) and use GPT-o3-mini as a teacher model (qualita-
tively this produces better questions than GPT-4o). We verify that the backward reasoned final

*https://huggingface.co/datasets/openai/gsm8k
†https://huggingface.co/datasets/hendrycks/competition_math
‡We usehttps://huggingface.co/datasets/renma/ProntoQA for validation and testing,

as a train set we use https://huggingface.co/datasets/longface/prontoqa-train like
in (Huang et al., 2024), questions and answers are distinct between these two ProntoQA datasets.

§https://huggingface.co/datasets/nlile/24-game

18

https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/hendrycks/competition_math
https://huggingface.co/datasets/renma/ProntoQA
https://huggingface.co/datasets/longface/prontoqa-train
https://huggingface.co/datasets/nlile/24-game

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Dataset Seed Size Validation Size Test size
GSM8k 7473 748 500
Math1-3 3504 500 500
ProntoQA 2880 300 200
Game of 24 2217 500 300

Table 3: Summary of the seed dataset sizes, validation and test set sizes. For all datasets we use 1k
data points per iteration for finetuning.

answer evaluates to 24 and uses 4 numbers. We use GPT-4o to then generate reasoning steps. We
assess the correctness of the student’s final answer by matching the regular expression \boxed{},
checking that all numbers in the question are used once and that the matched solution evaluates to
24. Synthetic questions are not checked for rouge-score overlap since the numbers which we can
choose as questions are limited.

E.1 SEED DATASET SIZES

We summarize the seed dataset sizes for all datasets used in our experiments. The seed dataset D0,
is used for scoring and selecting data points to get D̄t to then put forward to prompt-based synthetic
data generation (Section 4.2). We set the validation and test sets to be from the original seed datasets.
We use the resulting synthetic datasets D̂t for training, we generate a fixed sized training dataset to
enable comparison between selection methods (Section 5.1).

E.2 SYNTHETIC DATA GENERATION PROMPTS

We provide the prompts used for prompt-based synthetic data generation (described in Section 4.2)
below for all datasets used in our experiments:

• GSM8k see Appendix E.2.1.

• Math1-3 see Appendix E.2.2.

• ProntoQA see Appendix E.2.3.

• Game of 24 see Appendix E.2.4.

E.2.1 GRADE SCHOOL MATHS

Below is the prompt we use for synthetic question generation using a GPT-4o teacher. In the prompt
below {0} are few-shot examples of questions and answers {zi}ki=1 ∼ D0, we set k = 5 for all our
experiments and {1} is the question from the selected dataset x̄ = z̄[0] where z̄ ∼ D̄t.

The few-shot examples are formatted as follows:

"#Given Instruction#: {} #Answer#: {}" (4)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

GSM synthetic question generation prompt

I want you to act as Instruction Creator.
Your objective is to rewrite a #Given Instruction# into a
more complex version, to make it a bit harder.
The #Rewritten Instruction# must be reasonable and must be
understood and responded to by humans.
Here are some #Examples#:
{0}
I want you to act as Instruction Creator.
Your objective is to rewrite a #Given Instruction# into a
more complex version, to make it a bit harder.
The #Rewritten Instruction# must be reasonable and must be
understood and responded to by humans.
You MUST complicate the #Given Instruction# using the
following method:
1. Change the names of people #Given Instruction#.
2. Change the objects in the #Given Instruction#.
3. Change any quantities and durations in the #Given
Instruction#.
4. Add 1 to 3 more operations in #Rewritten Instruction#.
5. Change the operations, for example: multiplication,
division, subtraction, addition, percentages, fractions and
combinations of these.
6. You should try your best not to make the #Rewritten
Instruction# become verbose, #Rewritten Instruction# can only
add 10 to 20 words into #Given Instruction#.
Use #Examples# to complicate #Given Instruction#.
’#Given Instruction#’, ’#Rewritten Instruction#’, ’given
instruction’ and ’rewritten instruction’ are not allowed to
appear in #Rewritten Instruction#.
#Given Instruction#:
{1}
#Rewritten Instruction#:

We use the following prompt to obtain synthetic answers from our GPT-4o teacher (and from our
student model):

"Question: {} Solve the problem step-by-step. Answer:". (5)

E.2.2 MATH1-3

Below is the prompt we use for synthetic question generation using a GPT-4o teacher, {0} are few
shot examples of questions, answers and the type of problem e.g. Geometry, Algebra etc.In addition
to questions and answers the Math dataset also contains the type of mathematics problem. So for
the Math dataset z = (x, y, t) where t is the type of problem. The number of few show examples
is set to 5 and are of the same type as the seed question. In the prompt below {1} is the type of
mathematics.

The few-shot examples are formatted as follows:

"The type of math problem is {}. #Given Instruction#: {} #Answer#: {}"
(6)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Math1-3 synthetic question generation prompt

I want you to act as an Instruction Creator for {1}
mathematics problems.
Create a new question #Rewritten Instruction# by using #Given
Instruction# as inspiration. The new question should have a
single unique answer.
Ensure that the type of the question you generate #Rewritten
Instruction# matches the type of instruction #Given
Instruction#.
Make #Rewritten Instruction# different from #Given
Instruction#.
The #Rewritten Instruction# must be reasonable, have a
solution and must be understood and responded to by humans.
Here are some #Examples#:
{0}
Use #Examples# as inspiration to make #Rewritten Instruction#
different to #Given Instruction#.
’#Given Instruction#’, ’#Rewritten Instruction#’, ’given
instruction’ and ’rewritten instruction’ are not allowed to
appear in #Rewritten Instruction#.
#Given Instruction# is a {1} math problem.
#Given Instruction#:
{2}
#Rewritten Instruction#:

We use the following prompt for obtaining synthetic answers from our GPT-4o teacher (and for
obtaining answers from our student model):

"Can you solve the following math problem? {0} Provide a bullet
point summary of your reasoning. Your final answer should be
a single answer, in the form \boxed{answer}, at the end of your
response."

E.2.3 PRONTOQA

Below is the prompt we use for synthetic question generation using a GPT-4o teacher for the
ProntoQA dataset (Saparov & He, 2022). A datapoint from the ProntoQA dataset is comprised
of a context, question and answer z = (x = (c, q), y) where x is comprised of the context c and
question q. The answers y are boolean. The few-shot question generation is therefore comprised
of contexts and questions for the teacher to generate new synthetic context and questions x̄. In the
prompt below {0} are few-shot examples of questions and answers from {zi}ki=1 ∼ D0, we set
k = 5 for all our experiments and {1} is the question from the selected dataset x̄ = z̄[0] where
z̄ ∼ D̄t.

The few-shot examples {0} are formatted as follows:

"Context: {} Question: {}". (7)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

ProntoQA synthetic question generation prompt

I want you to act as an Instruction Creator for logical
problems.
Create a new question #Rewritten Instruction# by using #Given
Instruction# as inspiration.
Make #Rewritten Instruction# different from #Given
Instruction# by changing the names, objects and adjectives.
Also vary the number of logical reasoning steps in #Rewritten
Instruction#. Ensure that it is possible to answer the
question with true or false answer.
The #Rewritten Instruction# must be reasonable, have a
solution and must be understood and responded to by humans.
Here are some #Examples#:
{0}
Use #Examples# as inspiration to make #Rewritten Instruction#
different to #Given Instruction#.
’#Given Instruction#’, ’#Rewritten Instruction#’, ’given
instruction’ and ’rewritten instruction’ are not allowed to
appear in #Rewritten Instruction#.
#Given Instruction#:
{1}
#Rewritten Instruction#:

We use the following prompt for obtaining synthetic answers from the GPT-4o teacher (and for
obtaining answers from our student model):

"Context: {} Response: Let’s think step by step.". (8)

E.2.4 GAME OF 24

Below is the prompt we use for synthetic question generation using GPT-o3-mini for the Game
of 24 dataset. A datapoint from the Game of 24 dataset is comprised of a set of four numbers
and the arithmetic one-line solution to obtain 24. In the prompt below {0} are a set of numbers for
instance x̄ = [8, 8, 10, 12] and {1} is the arithmetic answer for instance ȳ = (12 − 10) × 8 + 8
where z̄ = (x̄, ȳ) and z̄ ∼ D̄t. We use backward reasoning to to obtain a new question and answer
to the game of 24 (see the prompt below). We verify that the synthetic answer evaluates to 24 and
that all the numbers from the synthetic question are also present in the synthetic answer. Since
backward reasoning for synthetic data generation produces both the question and the answer, we
then prompt our teacher, GPT-4o in a second step, with both the synthetic question and answer to
get a synthetic reasoning trace ŷ := [r̂, ŷ] without any verification of the reasoning steps to construct
D̂t (in the second prompt below).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Game of 24 synthetic question generation prompt

I want you to act as an instruction creator. I want you to
write a new problem to the game of 24.
The numbers {0} need to be used to obtain the number 24.
Use each number once, even if a number is repeated use it
multiple times, with the arithmetic operations +, -, *, /
to obtain 24. Here is how the above numbers {0} are used to
obtain 24: {1}.

I want you to create a new problem to the game of 24 using
{1}. Let’s use a backward thinking method. Take two of the
distinct numbers in {1}. Call them a and b. Then construct
an equation with two unknowns, a and b. Pick integer values
for the first variable b then solve for a.

For example the numbers 8, 8, 10, 13 can be used to get
24: 13*8-10*8=24. We can construct the following equation
a*b-10*8=24 by substituting a=13 and b=8. Rearranging we get
a=104/b. Let’s pick an integer which divides into 104 for b:
b=4 therefore a=26.
We also could have picked b=2 and so a=62. Therefore one
possible answer to the game of 24 using this backward method
is \boxed{4*26-10*8}. If no answer is possible return
\boxed{null}.

Here is the current solution {1} again. Enclose the new
equation which results in 24 in \boxed{}. Let’s use this
backward thinking method and think step by step.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Game of 24 prompt for synthetic reasoning steps

Use numbers and basic arithmetic operations (+ - * /) to
obtain 24. Each step, you are only allowed to choose two
of the remaining numbers to obtain a new number.
Input: 4 4 6 8
Steps:
4 + 8 = 12 (left: 4 6 12)
6 - 4 = 2 (left: 2 12)
2 * 12 = 24 (left: 24)
Answer: (6 - 4) * (4 + 8) = 24
Input: 2 9 10 12
Steps:
12 * 2 = 24 (left: 9 10 24)
10 - 9 = 1 (left: 1 24)
24 * 1 = 24 (left: 24)
Answer: (12 * 2) * (10 - 9) = 24 Input: 4 9 10 13
Steps:
13 - 10 = 3 (left: 3 4 9)
9 - 3 = 6 (left: 4 6)
4 * 6 = 24 (left: 24)
Answer: 4 * (9 - (13 - 10)) = 24
Input: 1 4 8 8
Steps:
8 / 4 = 2 (left: 1 2 8)
1 + 2 = 3 (left: 3 8)
3 * 8 = 24 (left: 24)
Answer: (1 + 8 / 4) * 8 = 24
Input: 5 5 5 9
Steps:
5 + 5 = 10 (left: 5 9 10)
10 + 5 = 15 (left: 9 15)
15 + 9 = 24 (left: 24)
Answer: ((5 + 5) + 5) + 9 = 24
Input: {question}
Here is the final answer: {answer}
Provide the steps to obtain the final answer which equates
to 24, as if you did not have access to the answer. Put your
final answer within \boxed{answer}. Steps:

We use the following prompt to get answers from the student (Ni et al., 2025):

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Game of 24 student prediction prompt

Use numbers and basic arithmetic operations (+ - * /) to
obtain 24. Each step, you are only allowed to choose two
of the remaining numbers to obtain a new number.
Input: 4 4 6 8
Steps:
4 + 8 = 12 (left: 4 6 12)
6 - 4 = 2 (left: 2 12)
2 * 12 = 24 (left: 24)
Answer: (6 - 4) * (4 + 8) = 24
Input: 2 9 10 12
Steps:
12 * 2 = 24 (left: 9 10 24)
10 - 9 = 1 (left: 1 24)
24 * 1 = 24 (left: 24)
Answer: (12 * 2) * (10 - 9) = 24 Input: 4 9 10 13
Steps:
13 - 10 = 3 (left: 3 4 9)
9 - 3 = 6 (left: 4 6)
4 * 6 = 24 (left: 24)
Answer: 4 * (9 - (13 - 10)) = 24
Input: 1 4 8 8
Steps:
8 / 4 = 2 (left: 1 2 8)
1 + 2 = 3 (left: 3 8)
3 * 8 = 24 (left: 24)
Answer: (1 + 8 / 4) * 8 = 24
Input: 5 5 5 9
Steps:
5 + 5 = 10 (left: 5 9 10)
10 + 5 = 15 (left: 9 15)
15 + 9 = 24 (left: 24)
Answer: ((5 + 5) + 5) + 9 = 24
Input: {question}
Put your final answer within \boxed{answer}. Steps:

E.3 EVALUATION PROMPTS

To assess whether the student’s prediction is equal to the ground-truth answer we use gpt4o-mini
to verify the correctness of the student. We use the following prompt and a system prompt which is
different for each dataset used:

"Question: {} Problem Setter’s answer: {} Student’s answer: {}".
(9)

For GSM8k we use the following system prompt Mitra et al. (2024):

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

GSM8k evaluation system prompt

As an expert Math teacher, your role is to evaluate a
student’s answer to a word problem. The problem is
accompanied by a correct solution provided by the problem
setter. It is important to remember that there may be
various methods to solve a word problem, so the student’s
steps might not always align with those in the problem
setter’s solution. However, the final answer, typically
a number, should be unique and match the problem setter’s
answer. Your task involves analyzing the student’s solution
to identify any mistakes and determine whether the answer
can be modified to correct the error. If the student’s
answer is unfixable, consider creating practice problems
to help improve their understanding. Use the following
format: Error Analysis: In one sentence, extract the final
answer from the problem setter’s solution and compare it
with the student’s answer. Do they match? Final Verdict:
Correct/Incorrect.

For ProntoQA we use the following system prompt:

ProntoQA evaluation system prompt

You are a logical expert. Your role is to evaluate a
student’s answer to a logical reasoning problem. The problem
is accompanied by a correct solution provided by the problem
setter. Your task is to assess whether the problem setter’s
answer and the student’s answer match. Use the following
format: Error Analysis: In one sentence, extract the final
answer from the problem setter’s solution and compare it
with the student’s answer. Do they match? Final Verdict:
Correct/Incorrect.

If the output contains string variations of "Final Verdict: Correct" then the student’s
prediction is correct and wrong otherwise.

For Math1-3 and Game of 24 we use pattern matching to extract the student’s answer and
compare to the ground truth, see Section 5.1 for details.

26

	
	Introduction
	Preliminaries
	Related Work
	Assigning a value to data

	Iterative Synthetic Data Generation
	Selection Algorithms
	Prompt-based synthetic data generation

	Experiments
	Datasets
	Finetuning Setup
	Algorithms
	Results
	Training on synthetic data improves performance
	Iterative Generation Yields More Data-Efficient Results
	Comparing to other SFT methods
	On the design choices for iterative synthetic data generation

	Limitations
	Conclusion and Discussion
	Reproducibility Statement
	Appendix

	 Appendix
	The Use of Large Language Models
	Additional Experimental Setup Details
	LoRA hyper-parameter tuning setup

	Additional results
	Prioritizing incorrect samples
	Synthetic data generation preserves properties of the selected data

	Baseline further details
	BADGE

	Dataset further details
	Seed dataset sizes
	Synthetic data generation prompts
	Grade School Maths
	Math1-3
	ProntoQA
	Game of 24

	Evaluation prompts

