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ABSTRACT

Transformers have become ubiquitous in modern machine learning applications,
yet their training remains a challenging task often requiring extensive trial and
error. Unlike previous architectures, transformers possess unique attention-based
components, which can complicate the training process. The standard optimization
algorithm, Gradient Descent, consistently underperforms in this context, underscor-
ing the need for a deeper understanding of these difficulties: existing theoretical
frameworks fall short and fail to explain this phenomenon. To address this gap,
we analyze a simplified Softmax attention model that captures some of the core
challenges associated with training transformers. Through a local analysis of the
gradient dynamics, we highlight the role of the Softmax function on the local
curvature of the loss and show how it can lead to ill-conditioning of these models,
which in turn can severely hamper the convergence speed. Our experiments confirm
these theoretical findings on the critical impact of Softmax on the dynamics of
Gradient Descent.

1 INTRODUCTION

In recent years, transformer architectures have demonstrated remarkable success in various appli-
cations from natural language processing (Devlin et al., 2019; Achiam et al., 2023) to computer
vision (Dosovitskiy et al., 2020). However, despite their impressive performance, our theoretical
understanding of transformer training remains limited. For example, Stochastic Gradient Descent
(SGD), which has been a staple optimization algorithm for deep learning models, fails to train
transformers effectively (Liu et al., 2020). This has led to the belief that there are unique elements in
the transformer architecture and the associated loss landscape that introduce challenges distinct from
those in other architectures like Convolutional Neural Networks (CNNs).

Recently, several papers have attempted to explain this phenomenon through comparisons of SGD
with adaptive methods. Indeed, empirical observations indicate that while SGD outperforms adaptive
methods on tasks such ImageNet classification with CNNs (Wilson et al., 2017), the opposite is true
for transformer training. Liu et al. (2020) claimed that this failure of SGD is due to vanishing and
imbalanced gradients observed in experiments. Meanwhile, Jiang et al. (2023) introduced a variant
of the condition number and empirically showed that it is larger on the path taken by SGD than the
one taken by Adam for standard transformer architectures. Zhang et al. (2020) hypothesized that
the performance gap might be due to the heavy-tailed and non-Gaussian nature of the stochastic
gradient noise. However, Kunstner et al. (2023) challenged this explanation by showing that even
in the full-batch case, SGD performs poorly compared to adaptive methods. Although these works
highlight interesting features of transformer training that are different for Adam compared with SGD,
their theoretical explanations of the source of these differences remain very limited.

In parallel, there has been a line of work that has focused on theoretically analyzing the dynamics of
gradient descent on transformers and providing global convergence guarantees without explaining
its poor performance. For instance, Tarzanagh et al. (2023b) showed that gradient descent on a
simplified attention model solves a max-margin problem and provided guarantees for global and
local convergence in the binary classification setting. Meanwhile, Abbe et al. (2023) showed that
the incremental learning phenomenon, whereby singular values are learned one-by-one, is present in
transformers. However, these works did not provide any rates of convergence that would shed light
on the slow or lack of convergence of SGD in practice. Others provided rates of convergence but
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were limited to heavily overparameterized settings (Wu et al., 2023) and assumed pretrained weights
Liu et al. (2023).

Clearly, there exists a gap between the current theoretical analysis of Gradient Descent and the
empirical observations demonstrating its difficulty in optimizing transformers. This leads to the
following question:

Why does Gradient Descent perform poorly on attention models?

1.1 PAPER CONTRIBUTIONS

In this paper, we identify a critical aspect of attention models that contributes to the difficulties
gradient descent faces in training them efficiently: the preconditioning effects induced by the
Jacobian of the Softmax function. Our analysis focuses on a simplified one-layer Softmax attention
model, previously introduced by Tarzanagh et al. (2023b); Oymak et al. (2023), which captures
key challenges encountered in training more complex attention architectures. We provide sufficient
conditions for GD to converge linearly in the overparameterized case, but show that this setting,
which has also been the focus of prior works Wu et al. (2023), fails to explain the poor performance
of gradient descent in practice. Motivated by this, we analyze the more realistic underparameterized
case and highlight the preconditioning role of the Jacobian of the softmax. Our analysis of the local
dynamics around stationary points reveals that the ill-conditioning of the Jacobian of the Softmax
function, which occurs when the softmax probabilities are far from uniform, can significantly hinder
the convergence of gradient descent. Specifically, we show that the Softmax parameterization alters
the condition number of the Hessian of the loss by a multiplicative factor equal to the square of the
ratio of the largest to smallest attention probabilities, thus significantly slowing convergence to sparse
attention matrices.

2 RELATED WORK

Dynamics of Attention. Understanding the dynamics of attention has been the focus of many works
in recent years. One line of work was interested in how transformers learn meaningful representations.
For example, Li et al. (2023c) analyzed the optimization dynamics of a single-layer transformer and
showed how it learns ”semantic structure” from text data. Snell et al. (2021) showed that a single
attention head learns to focus on salient words while Jelassi et al. (2022) focused on image data and
showed how a simplified Vision transformer (ViT) can learn spatial structure without any inductive
bias of spatial locality. Another line of work, that is closer to our work, focused on understanding the
optimization dynamics of gradient descent. Tarzanagh et al. (2023a) and Tarzanagh et al. (2023b)
analyzed a similar simplified attention model trained with a decreasing loss and established asymptotic
convergence of gradient descent, showing that the solutions along some regularization paths solve
an SVM problem. Abbe et al. (2023) considered a single-head transformer with diagonal attention
weights and small initialization, and they showed that the model displays the incremental learning
phenomenon in which the learned weights gradually increase in rank. These works did not provide
any rates of convergence and instead focused on the implicit bias/regularization from the gradient
descent algorithm. Liu et al. (2023) considered a shallow transformer trained with the hinge loss using
an initialization from a pretrained model and analyzed its sample complexity. Although they consider
an underparameterized setting in which the width of the model is of order at least log(N) where N is
the number of data samples, their analysis is restricted to a specific data model in which the tokens
can be split into relevant and irrelevant sets. Moreover, their focus is on generalization properties
and the only result that pertains to the optimization dynamics of Gradient Descent is limited to an
analysis of the concentration of attention weights at a sublinear rate during training. Wu et al. (2023)
is the most similar to some of our results, namely Theorem 1. They conduct a similar analysis on a
one-layer self-attention model and provide sufficient conditions for linear convergence under O(N)
overparameterization, but do not address the underparameterized setting. Moreover, their analysis
relies on the final linear output layer to guarantee linear convergence, whereas our analysis yields a
linear rate convergence based solely on the attention weights in the layer inside the Softmax function.

Failure of SGD on transformers. Several works have explored why SGD performs poorly on
transformers. Zhang et al. (2020) hypothesized that it is caused by the heavy-tailed stochastic noise in
language tasks. However, Kunstner et al. (2023) found that the SGD fails even in the full-batch case.
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Moreover, Zhang et al. (2024) showed that Vision transformers trained with SGD on ImageNet suffer
from the same problems. Therefore, the stochasticity of the gradients and the data modality cannot
explain the failure of SGD on transformers. Pan & Li (2023) introduce the notion of directional
sharpness and argue that SGD has a high directional sharpness, which they claim is correlated with
low performance of optimization algorithms. Jiang et al. (2023) propose a new notion of condition
number and show that it is large on the path taken by SGD. Zhang et al. (2024) explain the poor
performance of SGD by computing the spectrum of the Hessian and showing that the spectrum across
blocks varies significantly for transformers, unlike other architectures like CNNs and MLPs. Their
theoretical results are however limited to quadratic models. Finally, Yadav et al. (2023) hypothesize
that the poor performance of SGD is due to the heavy-tailed class imbalance. They empirically show
that other architectures such as CNNs suffer from the same issue under heavy-tailed class imbalance.

3 PRELIMINARIES

Notation. For any integer n ≥ 1, we denote by [n] the set {1, . . . , n}. We use lower-case and
upper-case bold letters to represent vectors and matrices, respectively. The i-th entry of a vector
x is denoted as xi. For a vector valued function of time u(t), we let u̇ = u̇(t) = d

dtu(t). We
denote the Euclidean norm of a vector x by ∥x∥2. We use σmin(A) (resp. σmax(A)) and λmin(A)
(resp. λmax(A)) to denote the minimum (resp. maximum) singular value and the minimum (resp.
maximum) eigenvalue of a matrix A. We use ∆n to denote the n-dimensional probability simplex in
Rn+1 and ∆̊n to denote its interior. T∆n denotes the tangent space of the n-dimensional probability
simplex. ϕ(·) denotes the Softmax transformation. For any vector x ∈ Rn, we use diag(x) to denote
the diagonal n× n matrix whose diagonal entries are x1, . . . ,xn. We use 1n to denote the vector of
ones in Rn. δij denotes the Kronecker delta and is equal to 1 when i = j and 0 otherwise.

Attention. A central component in the transformer architecture is the attention mechanism (Vaswani
et al., 2017). It is designed to capture long-range interactions between three types of input vectors:
queries, keys, and values, that can each be stacked together in matrices Q ∈ Rm×dqk ,K ∈ Rn×dqk ,
and V ∈ Rn×dv respectively. In this work, we focus on the dot-product attention defined as:

Attention(Q,K,V) = ϕ(QK⊤)V (1)

where the Softmax function ϕ : Rn → ∆n−1, ϕ(w)i =
ewi∑n

j=1 ewj acts row-wise on its argument
when it is a matrix.

In transformers, a standard attention layer takes as input two matrices X ∈ Rn×d and Z ∈ Rm×d.
The query, key, and value matrices are obtained via linear transformations of X and Z

Q = ZWQ, K = XWK , V = XWV (2)

where WK ∈ Rd×dqk , WQ ∈ Rd×dqk , and WV ∈ Rd×dv are learnable weight matrices.

Self-Attention is a particular case of attention in which the queries, keys and values are all obtained
from the same input matrix, i.e. X = Z.

Tunable tokens. In practice, some of the query tokens are sometimes also learned. For example,
a [CLS] or prompt token is typically appended to the input features of a model for the purpose of
classification or to adapt the model to new tasks. The latter is referred to as prompt tuning and has
been introduced as a more efficient alternative to fine-tuning the transformer weights (Lester et al.,
2021; Liu et al., 2023). Furthermore, Oymak et al. (2023) identified scenarios in which prompt
attention, which corresponds to freezing the selt-attention weights and tuning the prompt token, is
more expressive than self-attention. Following (Oymak et al. (2023); Tarzanagh et al. (2023b)), we
will therefore consider a simplified attention model with one tunable token p ∈ Rd and a value vector
v ∈ Rd. The key and query weights are combined in one matrix W = WQW

⊤
K . This model outputs

a scalar which can be used for classification or regression:
f(X) = ϕ(XWp)⊤Xv ∈ R (3)

Problem Setting. Given a training dataset (Xi, yi)
N
i=1 where Xi ∈ Rn×d and yi ∈ R for all i ∈ [N ],

we consider the empirical minimization problem

L(W,p,v) :=
1

N

N∑
i=1

ℓ(f(Xi), yi), (4)
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where ℓ : R × R → R is differentiable and convex in the first variable. The model is trained via
Gradient Descent (GD). We make the following assumptions throughout the paper.
Assumption 1. The weights W and v are fixed and only p is trained.

Rationale behind Assumption 1. Following Tarzanagh et al. (2023b), we can simplify our analysis
by freezing one of the parameters, either p or W, which play symmetric roles in the dynamics within
the softmax function. In this work, we choose to freeze W and train p, aligning our approach with
the framework of prompt tuning.

Furthermore, we assume a two-stage optimization process that aligns with empirical observations
showing that the value weights WV in transformers are learned significantly faster than the attention
weights WQ and WK (Li et al., 2023b). One explanation for this phenomenon is that the gradients
of WV involving attention weights sum to one, resulting in larger updates, whereas the gradients for
WQ and WK are proportional to these matrices themselves, which are near zero at initialization and
hence update more slowly.
Assumption 2. The input data satisfies KiK

⊤
j = δijIn for all i, j ∈ [N ].

Remark 1. Assumption 2 requires d ≥ n. This is already true in many applications. For example, in
language tasks, the number of tokens n can be the length of a sentence, which is typically smaller
than the dimensions of tokens (for example d = 512). A similar assumption on the orthogonality of
the data has been made in prior work such as Wu et al. (2023).

In what follows, we will thus write the loss as a function of p only:

L(p) = 1

N

N∑
i=1

ℓ(ϕ(Kip)
⊤Xiv, yi), Ki = XiW. (5)

Jacobian of the Softmax function. For any vector z in Rn, let J(z) be the n by n matrix given by:

J(z) = diag(z)− zz⊤ = diag(z)(In − 1z⊤), (6)

then the Jacobian of the Softmax function ϕ : Rn → ∆n−1 can be written as:

dϕ(w)

dw
= J(ϕ(w)). (7)

The matrix-valued function J will play an important role in our analysis of the gradient dynamics, we
will therefore state some of its useful properties when restricted to ∆̊n−1:

Lemma 1. Let z be a vector in ∆̊n−1. The matrix J(z) satisfies the following:

1. J(z) is a symmetric positive semidefinite matrix.

2. The vector 1n is the eigenvector associated with the eigenvalue 0, i.e. J(z)1n = 0.

3. Let λ1(z) ≤ · · · ≤ λn(z) denote the eigenvalues of J(z) and let z̃ be a vector whose entries
are the entries of z sorted in ascending order z̃i ≤ z̃i+1 for i ∈ [n− 1]. The eigenvalues
satisfy

0 = λ1(z) < z̃1 ≤ λ2(z) ≤ · · · ≤ λn(z) ≤ z̃n < 1. (8)

4 MAIN RESULTS

In this section, we present our central findings on the dynamics of gradient descent when applied to
training softmax attention models through two distinct yet complementary perspectives.

In the first subsection, we examine the behavior of gradient descent within an overparameterized
setting (d ≥ N ). By leveraging classical Polyak-Łojasiewicz (PL) and smoothness assumptions,
we establish a linear convergence rate. This analysis underscores the efficiency of optimization in
scenarios where the model is overparameterized. Although it reveals a degradation in the convergence
rate as attention vectors become sparser, the analysis fails to account for cases that are observed
in practice and does not explicitly capture the mechanism underlying the suboptimal performance
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of gradient descent. To address these limitations, the second subsection explores gradient descent
dynamics without assuming overparameterization. Due to the inherent complexities and the current
lack of robust technical tools for a global analysis in this regime, we focus on a local analysis
around stationary points. This investigation reveals that the softmax mechanism can induce severe
ill-conditioning, particularly when attention becomes sparse. Such ill-conditioning significantly
impedes convergence, resulting in slower optimization progress.

Together, these analyses provide a nuanced understanding of gradient descent dynamics in softmax
attention models, highlighting both the strengths of overparameterized settings and the challenges
faced in more realistic, constrained parameter regimes.

4.1 GLOBAL CONVERGENCE IN THE OVERPARAMETERIZED CASE

Here, we establish the global convergence of gradient descent using a common strategy that relies on
two main ingredients: the Lipschitz continuity of the gradient of the loss, and the Polyak-Lojasiewicz
(PL) inequality (Polyak, 1963). These two conditions only need to hold along the trajectories, as
referenced in Nguyen (2021), and Wu et al. (2023).

Definition 1. Let µ > 0. A differentiable function f : Rp → R+ is said to satisfy the µ-Polyak-
Łojasiewicz (µ-PŁ) inequality over a subset U ⊂ Rp if for all u ∈ U

1

2
∥∇f(u)∥2 ≥ µ

(
f(u)− inf

u′∈U
f(u′)

)
(9)

We consider the training of p via GD while W and v are frozen, which yields the following update
equation

pt+1 = pt −
η

N

N∑
i=1

K⊤
i J(ϕ(Kipt))Xivt∇ℓ(f(Xi), yi). (10)

In this subsection, we assume that ℓ is m-strongly convex and L-smooth, and we introduce the
following useful time-varying matrix

F(pt) =
1

N

 (K⊤
1 J(ϕ(K1pt))X1v)

⊤

...
(K⊤

NJ(ϕ(KNpt))XNv)⊤

 ∈ RN×d (11)

We can thus rewrite the gradient update equation in the following simplified form

pt+1 = pt + ηF(pt)
⊤g(pt), (12)

where g(pt) is the vector of gradients of ℓ with respect to the output of the model, i.e. its i-th
component is gi(pt) = ∇ℓ(f(Xi), yi). The following lemma, which will be used to provide a PŁ
inequality in our convergence proof, now follows straightforwardly from the identity ∇L(p) =
F(p)⊤g(p).

Lemma 2. The loss function L satisfies a pointwise inequality:

1

2
∥∇L(p)∥22 ≥ µ(p)(L(p)− L∗), (13)

where µ(p) = 2mσ2
min(F(p)) for all p ∈ Rd.

The next theorem provides sufficient conditions to guarantee the linear convergence of GD. The
conditions establish a uniform lower bound for µ(p) which depends on the initialization of the weight
vector p. Additionally, they ensure that the solutions remain bounded, thereby guaranteeing the
Lipschitz continuity of the gradients.
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Theorem 1. Suppose d ≥ N , and let c1 and c2 be some positive constants such that c1 < 1 and
c2 < min(2, 1/c1). Define the following quantities:

Cσ = max
1≤i≤N

σmax(Xi), L′ = σ2
max(W )C3

σL∥v∥

(
2Cσ∥v∥+ 3

√
2(L0 − L∗)

m

)
µ =

c1
L′ , η =

c2
L′

Cp =

√
2(L0 − L∗)

mN

σmax(W )C2
σ∥v∥c2L

L′(1−
√
1− c1c2)

, Mp = ∥p0∥+ Cp

γ =
1√
N

(min(2, 3Cσσmax(W)Cp)C
2
σσmax(W)∥v∥2)

If σmin(F(p0)) > γ +
√

µ
2m , then gradient descent on the function L with step size η converges at a

linear rate:
L(t)− L∗ ≤ (1− ηµ)t(L(0)− L∗), for all t ≥ 0. (14)

Moreover, the weights p and v remain bounded throughout the trajectory
∥pt∥2 ≤ Mp, for all t ≥ 0.

Proof sketch: The proof is by induction. At every iteration t, we show that the weights are bounded
by the constants Mp. Next, we establish smoothness of the loss along the trajectories and show that
the smallest singular value of F is bounded away from zero. This shows that the loss satisfies the
PL inequality with constant µ at each iteration. The proof resembles other convergence proofs that
establish a uniform lower bound on the PL constant and Lipschitz smoothness along trajectories
Nguyen (2021); Wu et al. (2023). However, it does not rely on a final linear layer to prove that the PL
condition is satisfied along the trajectories.
Remark 2. Note that F(p0) is an N × d matrix. Therefore, the case d < N would guarantee
σmin(F(p0)) = 0 and the bound becomes vacuous. However, even in the case d ≥ N , the theorem
does not guarantee linear convergence and additional assumptions on the data, the initialization and
the frozen weights are needed to satisfy the conditions stated in the theorem.
Remark 3. Identical proof techniques can be applied to establish linear convergence even when v
is not held constant. However, to focus on how the dynamics of the softmax function influence the
convergence of gradient descent, we present the case with v fixed. This simplification facilitates a
clearer comparison with the results discussed in the subsequent subsection. Moreover, it shows that
linear convergence can be obtained without relying on a trainable final linear layer such as in Wu
et al. (2023).

In order to guarantee linear convergence as stated in the previous theorem, we need the following
assumptions:
Assumption 3. The input data matrices Xi are surjective for all i = 1, . . . N .
Assumption 4. The matrix W has full rank.
Remark 4. In the case of multiple heads, the matrix W has low rank by construction. However,
since we are considering a single head, it is reasonable to assume that W has full rank.

Proposition 1. Suppose that the data samples Xi are drawn from a distribution D. Let v = αu
with ∥u∥2 = 1. There exists A > 0 such that if α > A and assumptions 2, 3, 4 are satisfied, then
PD(σmin(F(p0)) > γ +

√
µ/2m)) = 1.

Limitations of the overparameterized setting. One significant drawback of this style of analysis,
which relies on the PL inequality, is that it requires that the norm of p remain bounded along its
trajectory. However, to learn sparse or approximately sparse attention maps, the norm of the weight
vector p must approach infinity. As the bound Cp increases to allow for that, the convergence rate
described in the theorem worsens and eventually yields a vacuous bound. Moreover, the ability to
analyze gradient descent behavior in contexts where learned attention probabilities are approximately
sparse is critical. The primary objective of the attention mechanism is to focus on the most relevant
parts of the input, resulting in attention probabilities that are typically far from uniform. This has
been confirmed by prior empirical observations (Wu et al., 2023; Li et al., 2023a; Chen et al., 2021),
and can also be clearly observed across layers and heads in the attention weights that we included in
Appendix E for the Vision Transformer model (Dosovitskiy et al., 2020) used in our experiments.
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4.2 LINEAR STABILITY IN THE UNDERPARAMETERIZED CASE

In practice, the number of data points typically exceeds the dimensions of the tokens. For example, in
the original transformer paper (Vaswani et al., 2017), the base model uses tokens of dimension 512, but
is trained on datasets containing millions of samples. More generally, all the layers in the architecture
have widths that do not exceed 4096. As a result, it is crucial to explore the underparameterized
setting where d ≪ N .

The underparameterized setting has been virtually untouched in the deep learning optimization
literature, where overparameterization is invariably an essential component of analysis in enabling
proofs of a local PL inequality and hence linear convergence Allen-Zhu et al. (2019); Du et al. (2019);
Nguyen (2021); Bombari et al. (2022). Without access to these technical tools, we will focus on a
more tractable local analysis around stationary points.

We start by rewriting the gradient descent update equation:

pt+1 = pt −
η

N

N∑
j=1

K⊤
j J(ϕ(Kjpt))∇ℓ̃j(ϕ(Kjpt)). (15)

where we set ℓ̃j(x) := ℓ(x⊤Xjv, yj) for ease of presentation.

And we can write the induced dynamics on the attention vectors for each i = 1, . . . , N :

ϕ(Kipt+1) = ϕ
(
Kipt −

η

N

N∑
j=1

KiK
⊤
j J(ϕ(Kjpt))∇ℓ̃j(ϕ(Kjpt))

)
= ϕ

(
Kipt −

η

N
J(ϕ(Kipt))∇ℓ̃i(ϕ(Kipt))

)
where the last equality follows from Assumption 2. Since the dynamics are identical for all i =
1, . . . N , we drop the subscript i and set zt = ϕ(Kipt). Next, using the Taylor formula with Lagrange
remainder, we know that there exists ct in the segment joining zt to zt+1 such that:

zt+1 = zt −
η

N
J2(zt)∇ℓ̃(zt) +

η2

2N2
D2ϕ(ct)(J(zt)∇ℓ̃(zt),J(zt)∇ℓ̃(zt)), (16)

where the i-th coordinate of D2ϕ(x)(h,h) is:

[D2ϕ(x)(h,h)]i =
∑
j,k

∂2ϕi(x)

∂xj∂xk
hjhk. (17)

The next theorem characterizes the stationary points of the dynamics in equation 16 that are in the
interior of the simplex. In particular, we show that by linearizing the system around these stationary
points, we can obtain a lower bound on the condition number for the local linear dynamics. This
bound grows as we get close to boundaries of the simplex, which characterize the sparse attention
solutions.
Theorem 2. Let z∗ be a stationary point of the dynamics described in equation 16. Suppose that z∗
is in the interior of the simplex, then the following holds:

1. The linearization of the system around z∗ is given by ζt+1 = ζt − η
N J2(z∗)∇2ℓ̃(z∗)ζt.

2. Let µ = λmin(∇2ℓ̃(z∗)) and L = λmax(∇2ℓ̃(z∗)). Suppose that µ > 0 and let κ be the
condition number of J2(z∗)∇2ℓ̃(z∗) when restricted to the tangent space of the simplex
T∆n−1 = {u ∈ Rn : 1⊤u = 0}. Then we have the following lower bound on κ

κ ≥ µmaxi(z
∗
i )

2

Lmini(z∗i )
2
. (18)

Proof Sketch: The first statement is obtained using standard linearization techniques which rely on
only considering the linear part in the Taylor expansion formula applied to the system around z∗. This
yields an equation of the form ζt+1 = ζt − η

NDV(z∗)ζt where V (x) = J(x)f(x) = −J2(x)∇ℓ̃(x)

7
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and the dynamics are restricted to T∆n−1. We first use the elementwise product rule to compute
DV as a function of Df , then Df as a function of ∇2ℓ̃. We use the fact that z∗ is an equilibrium to
obtain DV(z∗)P = −J2(z∗)∇ℓ̃(z∗)P , where P is the orthogonal projection onto the T∆n−1. The
proof of the second statement requires establishing bounds on the largest and smallest eigenvalues of
DV (z∗) restricted to the tangent space of the simplex using some basic linear algebra arguments.
The full proof is provided in Appendix D.

Remark 5. Note that convexity of the loss ℓ̃ is not required for any of the results in Theorem 2 to hold.
Moreover, the Hessians ∇2ℓ̃ and ∇2ℓ are related via the choice of the vector v and the data point X.

Remark 6. A main consequence of the theorem is that the condition number grows as z∗ gets close
to the boundary of the simplex. In fact, if we set ϵ = mini(z

∗
i ), then we have that maxi(z

∗
i ) ≥ 1−ϵ

n−1 .

As a result, the bound in the previous theorem implies that κ ≥ µ(1−ϵ)2

L(n−1)2ϵ2 which goes to infinity as ϵ
approaches 0. This shows that the local convergence rate of the linearized system that is derived in
Theorem 2 gets worse as the attention vectors become sparser. Moreover, we see that this is induced
by the growth of the condition number of the Softmax Jacobian.

5 EXPERIMENTAL RESULTS

In this section, we validate our theoretical findings and interpretations regarding the role of the
softmax and sparse attention through a series of experiments.

5.1 SIMPLIFIED ONE-LAYER SOFTMAX ATTENTION MODEL

First, we consider the training of the model defined in equation 3 using a squared loss which
satisfies the conditions for linear stability in Theorem 2 as well as the strong convexity and Lipschitz
smoothness used in Theorem 1. Both p and v are initialized with a Gaussian distribution N (0, 1/d),
and our data matrices Xi are drawn from a standard Gaussian distribution with n = d. The labels yi
are generated using identical teacher models whose weights are drawn from a Gaussian distribution
with variances σ2

v = 1 and σ2
p = {0.1, 1}. We assume that W = Id and train the models with full

batch gradient descent on p and v on a dataset of N = 100 samples. Figure 1 shows the evolution
of the training loss over 10 runs for four settings with different values of d = {20, 150, 400}. For
each setting, we compute the average ratio across runs and data points of the largest to smallest
attention probabilities at the end of training, which we denote by R. This ratio is equal to 1 when the
probabilities are uniform and grows as the distribution becomes more peaked. Note that a large R
implies a larger condition number around stationary points in Theorem 2. The teacher models are
designed to have different values of R which we tune via the variance σp. Namely, in the four curves
shown in Figure 1, the blue curve in the left plot, which corresponds to the successful training of
GD in the underparameterized setting, was produced by training on labels generated from a teacher
model with Rteacher ≈ 10 corresponding to σp = 0.1. The other three curves were all trained using
teacher models with Rteacher ≈ 1025 corresponding to σp = 1.

Figure 1 shows that in the underparameterized setting, GD performs poorly when R is very large,
i.e. when the stationary points are arbitrarily close to boundaries of the simplex, as predicted by our
theory. However, when R is small, gradient descent successfully optimizes the training loss. In the
overparameterized setting, gradient descent converges linearly to solutions that are bounded away
from the boundary as predicted by Theorem 1. Note that in the overparameterized setting, the models
consistently converged to solutions with R ≪ Rteacher.

5.2 COMPARISON WITH LINEAR ATTENTION MODEL

To isolate the effect of the softmax function, we conduct experiments using a linear attention
mechanism. By removing the softmax nonlinearity, we can assess its influence on the behaviour of
Gradient Descent. The setup is the same as the one used to produce Figure 1. The only difference is
that the model considered here does not contain the Softmax function. More precisely, we use the
same teacher dataset and labels considered previously for the softmax attention model represented
by the different values of the ratio R in the sparse R ≈ 1025 and non sparse R = 10 case. Figure 3
shows that in the absence of the softmax nonlinearity, we no longer observe the slow convergence of
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Figure 1: Visualization of the training loss for the model equation 3 on synthetic data for different
values of d and the average ratio R of largest to smallest attention probability at the end of training;
mean over 10 trials shown with minimum and maximum shaded. In the overparameterized setting
(right), GD does not suffer from poor performance. In the underparameterized setting (left), the
performance of GD depends on the ratio R and is worse when the solutions are closer to the boundary
of the simplex.

the loss under GD when the attention is sparse (orange curve). This validates our conclusions about
the role of the softmax nonlinearity.

Figure 2: Visualization of the training loss under linear attention (no softmax).

5.3 EXPERIMENTS WITH VISION TRANSFORMER (VIT) ON MNIST

Finally, we extend our analysis to more realistic scenarios by training a Vision Transformer (ViT) with
6 layers and 4 heads on the MNIST dataset. We choose a patch size of 4, the embedding dimension
that we consider is 64 and the MLP dimension is 256. The labels are once again generated using
teacher models that enforce different sparsity levels of the attention scores. The ratio R across layers
and heads for the sparse attention setting (orange curve) is R ≈ 107, whereas for the non sparse or
less sparse version (blue curve), the average ratio is R ≈ 20. The model is trained using Stochastic
Gradient Descent (SGD) with a constant step size η = 0.01 that was chosen using a grid search
over the step sizes [0.001, 0.01, 0.1]. The experiment shows that the conclusions obtained from the
theoretical analysis of the simplified model also hold for more practical architectures such as the
Vision Transformer : (S)GD suffers from slow convergence as the attention probabilities become
sparser.
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Figure 3: Training loss progression for the Tiny ViT Model averaged over three runs. The observed
convergence pattern closely aligns with our theoretical predictions derived from the simplified
attention model: the sparsity of the softmax attention leads to slow convergence of GD.

6 CONCLUSION

In this paper, we investigated the optimization challenges associated with training attention-based
models using gradient descent. Because the softmax function is a feature of attention models that
is absent in the core components of other architectures such as CNNs, we focused on the role that
it may play in the training dynamics. We established that in overparameterized settings, gradient
descent can achieve linear convergence under certain conditions by relying on a local PL and
smoothness analysis, since overparameterization implies the existence of non-sparse solutions. We
highlighted the limitations of this setting and showed through a local analysis, in the more realistic
underparameterized setting, how the convergence behavior of gradient descent is affected by the
distribution of attention scores. Specifically, as attention probabilities near the boundary of the
probability simplex, the optimization problem becomes increasingly ill-conditioned, resulting in
slower convergence. Our results highlight the necessity of considering the specific characteristics
of the Softmax function and its influence on the local curvature of the loss landscape in the training
of attention models. Our work sets the stage for developing more effective training algorithms that
can overcome the limitations identified in our analysis. Future work could explore the optimization
dynamics of adaptive methods, which have been more successful in the training of transformers,
and investigate their ability to better handle the challenges identified in our work, especially in
underparameterized regimes.

Finally, we discuss some of the limitations of our work. First, our theoretical results are derived for a
simplified model under certain assumptions, which may not fully capture the complexity of real-word
data and architectures. In the overparameterized setting, our results required some conditions on
the initialization and were limited to strongly convex losses. In the underparameterized setting, our
analysis only captures the local dynamics and does not apply globally. Moreover, our focus on the
dynamics with a fixed value vector v and key-query weight matrix W may not take into account
important interactions between these weights and query vectors. These limitations suggest that further
research is needed to develop technical tools and frameworks that can handle these complexities.
Nonetheless, we believe that our work provides valuable insights and can be a stepping stone towards
a better understanding of more complicated models.
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APPENDIX:

A PROOF OF LEMMA 1

Lemma 1. Let z be a vector in ∆̊n−1. The matrix J(z) satisfies the following:

1. J(z) is a symmetric positive semidefinite matrix.

2. The vector 1n is the eigenvector associated with the eigenvalue 0, i.e. J(z)1n = 0.

3. Let λ1(z) ≤ · · · ≤ λn(z) denote the eigenvalues of J(z) and let z̃ be a vector whose entries
are the entries of z sorted in ascending order z̃i ≤ z̃i+1 for i ∈ [n− 1]. The eigenvalues
satisfy

0 = λ1(z) < z̃1 ≤ λ2(z) ≤ · · · ≤ λn(z) ≤ z̃n < 1. (8)

Proof. Let z ∈ ∆n−1. Recall that J(z) = diag(z)− zz⊤ = diag(z)(In − 1nz
⊤).

1. We have J(z)⊤ = (diag(z) − zz⊤)⊤ = J(z), therefore J(z) is symmetric. Moreover, J(z)
is the product of a diagonal positive semidefinite matrix and a projection, therefore it is positive
semidefinite.

2. J(z)1n = diag(z)z− zz⊤z = 0.

3. To prove the inequality on the eigenvalues, consider Corollary 4.3.5 in Horn & Johnson (1985)
which we restate here:

Corollary 1. Horn & Johnson (1985) Let A,B ∈ Mn be Hermitian. Suppose that B is singular and
rankB = r. Then

λi(A+B) ≤ λi+r(A), i = 1, . . . , n− r (19)

By setting A = J(z) and B = zz⊤, we have that both matrices are symmetric, rank(B) = 1, and
A+B = diag(z). Therefore

λi(diag(z)) ≤ λi+1(J(z)) (20)
Since the eigenvalues of diag(z) are z1, . . . , zn, we just need to order them from smallest to largest
and we get

z̃1 ≤ λ2(z) ≤ · · · ≤ λn(z) ≤ z̃n (21)
Finally, since z is in the interior, we know that z̃1 > 0 and z̃n < 1, which concludes our proof.

B PROOF OF THEOREM 1

Theorem 1. Suppose d ≥ N , and let c1 and c2 be some positive constants such that c1 < 1 and
c2 < min(2, 1/c1). Define the following quantities:

Cσ = max
1≤i≤N

σmax(Xi), L′ = σ2
max(W )C3

σL∥v∥

(
2Cσ∥v∥+ 3

√
2(L0 − L∗)

m

)
µ =

c1
L′ , η =

c2
L′

Cp =

√
2(L0 − L∗)

mN

σmax(W )C2
σ∥v∥c2L

L′(1−
√
1− c1c2)

, Mp = ∥p0∥+ Cp

γ =
1√
N

(min(2, 3Cσσmax(W)Cp)C
2
σσmax(W)∥v∥2)

If σmin(F(p0)) > γ +
√

µ
2m , then gradient descent on the function L with step size η converges at a

linear rate:
L(t)− L∗ ≤ (1− ηµ)t(L(0)− L∗), for all t ≥ 0. (14)

Moreover, the weights p and v remain bounded throughout the trajectory
∥pt∥2 ≤ Mp, for all t ≥ 0.
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Proof. We will show by strong induction that for every iteration t ≥ 0

{
∥pt∥2 ≤ Mp

L(t)− L∗ ≤ (1− ηµ)t(L(0)− L∗), for all t ≥ 0
(22)

We start by deriving an upper bound on the gradient of L:

∥∇pLt∥2 =
1

N
∥

N∑
i=1

K⊤
i J(ϕ(Kipt))Xiv∇ℓ(ϕ(Kipt)

⊤Xiv, yi)∥2

≤ 1

N

N∑
i=1

∥K⊤
i J(ϕ(Kipt))Xivt∇ℓ(ϕ(Kipt)

⊤Xivt, yi)∥2

≤ 1

N

N∑
i=1

|∇ℓ(ϕ(Kipt)
⊤Xiv, yi)|σmax(Xi)σmax(Ki)σmax(J(ϕ(Kipt)))∥v∥2

≤
√

2(Lt − L∗)

mN
LC2

σσmax(W)∥v∥2 (23)

where the second inequality is a result of the triangle inequality and the third inequality uses the
sub-multiplicativity of the spectral norm. To obtain the last inequality, we have used the fact that
σmax(J) ≤ 1 as a consequence of Lemma 1.

Now suppose that the inductive hypothesis holds for all s ∈ [t]. We will use it to bound the deviations
of the weights from their value at initialization:

∥pt+1 − p0∥2 = ∥
t∑

s=0

(ps+1 − ps)∥2

≤
t∑

s=0

∥ps+1 − ps∥2

= η

t∑
s=0

∥∇pLs∥2

≤ η

t∑
s=0

√
2(Ls − L∗)

mN
LC2

σσmax(W)∥v∥2

≤ LηC2
σσmax(W)∥v∥2

√
2

mN

t∑
s=0

√
(1− ηµ)s(L0 − L∗)

≤ LηC2
σσmax(W)∥v∥2

√
2(L0 − L∗)

mN

+∞∑
s=0

√
(1− ηµ)s

=

√
2(L0 − L∗)

mN

LηC2
σσmax(W)∥v∥2
1−

√
1− ηµ

= Cp (24)

Therefore, we have:

∥pt+1∥2 ≤ ∥p0∥2 + Cp = Mp (25)
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Our next step consists in showing local smoothness on the interval [pt,pt+1]. We define pt+τ =
pt + τ(θt+1 − pt), τ ∈ [0, 1]

∥∇pL(pt+τ )−∇pL(pt)∥2 =
1

N

∥∥∥∥∥
N∑
i=1

K⊤
i (J(ϕ(Kipt+τ ))Xivgi(pt+τ )− J(ϕ(Kipt))Xivgi(pt))

∥∥∥∥∥
2

≤ 1

N

N∑
i=1

∥∥K⊤
i (J(ϕ(Kipt+τ ))Xivgi(pt+τ )− J(ϕ(Kipt))Xivgi(pt))

∥∥
2

≤ 1

N

N∑
i=1

∥Ki∥2 ∥J(ϕ(Kipt+τ ))Xivgi(pt+τ )− J(ϕ(Kipt))Xivgi(pt)) ∥2

≤ 1

N
Cσσmax(W)

N∑
i=1

∥J(ϕ(Kipt+τ ))Xivgi(pt+τ )− J(ϕ(Kipt))Xivgi(pt)) ∥2

Next, we bound each term Ai = ∥J(ϕ(Kipt+τ ))Xivgi(pt+τ )− J(ϕ(Kipt))Xivgi(pt)) ∥2 in the
sum as follows:

Ai = ∥(J(ϕ(Kipt+τ ))− J(ϕ(Kipt)))Xivgi(pt+τ ) + J(ϕ(Kipt))Xiv(gi(pt+τ )− gi(pt))) ∥2
≤ ∥(J(ϕ(Kipt+τ ))− J(ϕ(Kipt)))Xivgi(pt+τ )∥2 + ∥J(ϕ(Kipt))Xiv(gi(pt+τ )− gi(pt))) ∥2
≤ Cσ∥v∥2(∥J(ϕ(Kipt+τ ))− J(ϕ(Kipt))∥2∥gi(pt)∥2 + ∥J(ϕ(Kipt+τ ))∥2∥gi(pt+τ )− gi(pt)∥2)

And we have:

∥J(ϕ(Kipt+τ ))− J(ϕ(Kipt))∥2 ≤ 3Cσσmax(W)∥pt+τ − pt∥2, (26)

∥gi(pt)∥2 ≤ L

√
2(ℓ(f i

t+τ )− ℓ∗)

m
, (Strong convexity and smoothness of ℓ) (27)

∥J(ϕ(Kipt+τ ))∥2 ≤ 1, (Lemma 1) (28)

∥gi(pt+τ )− gi(pt)∥2 ≤ L∥f i
t+τ − f i

t∥2, (Lipschitz continuity of the gradient of ℓ)
≤ LCσ∥v∥2∥ϕ(Kipt+τ )− ϕ(Kipt)∥2
≤ 2LC2

σσ(W)∥v∥2∥pt+τ − pt∥2. (29)

We can conclude that

∥∇pL(pt+τ )−∇pL(pt)∥2 ≤ C2
σσ(W)∥v∥2

(
2LC2

σσ(W)∥v∥2 + 3Cσσ(W)L

N∑
i=1

√
2ℓ(f i

t+τ )− ℓ∗

mN2

)
∥pt+τ − pt∥2

≤ C3
σσ

2(W)∥v∥2(2LCσ∥v∥2 + 3L

√
2(L0 − L∗)

m
)∥pt+τ − pt∥2

= L′∥pt+τ − pt∥2 (30)

Finally, we determine a uniform lower bound for σmin(F(pt)) to establish the PL inequality.

We consider the deviation of F(pt) from its initialization:

∥F(pt)− F(p0)∥2F =
1

N2

N∑
i=1

∥K⊤
i J(ϕ(Kipt))Xiv −K⊤

i J(ϕ(Kip0))Xiv∥22

≤ C4
σσ

2
max(W)∥v∥2

N2

N∑
i=1

∥J(ϕ(Kipt))− J(ϕ(Kip0))∥22
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Each term in the sum has the following bound:

∥J(ϕ(Kipt))− J(ϕ(Kip0))∥2 ≤ 3Cσσmax(W)∥pt − p0∥2
≤ min(2, 3Cσσmax(W)Cp)

Let γ = 1√
N
(min(2, 3Cσσmax(W)Cp)C

2
σσmax(W)∥v∥2), we have

∥F(pt)− F(p0)∥F ≤ γ.

Using Weyl’s inequality, we conclude that

σmin(F(pt)) ≥ σmin(F(p0))− γ >
√

µ/2m. (31)

Therefore, since the step size satisfies η < 2
L′ , we have

Lt+1 − L∗ ≤ Lt −
η

2
∥∇θLt∥22 − L∗

≤ (1− ηµ)(Lt − L∗)

≤ (1− ηµ)t+1(L0 − L∗). (32)

which concludes our proof.

C PROOF OF PROPOSITION 1

First, we analyze the bound γ +
√

µ
2m as a function of ∥v∥2 = α.

For very large α, we have L′ = C1α
2+C2α, therefore µ = O(1/α2) and Cp = O(1/α2). Moreover,

when Cp is sufficiently small, we have 3Cσσ(W)Cp ≤ 2 and γ = O(1/α).

Next, we analyze σmin(F(p0)). We start by showing that σmin(F(p0)) > 0, then we show that
σmin(F(p0)) = O(α) to conclude that when α is large enough, the condition is satisfied.

• First, we show that all rows of F(p0) are non zero. From assumptions 4 and 3, W has full
rank and that Xi is surjective for all i = 1, . . . , N . As a result, XT

i is injective for all i and

J(ϕ(Kip0))Xiv ̸= 0 =⇒ K⊤
i J(ϕ(Kip0)Xiv ̸= 0. (33)

Moreover, we know that kerJ(ϕ(Kip0)) = span(1n), therefore for all i = 1, . . . , N , we
need to ensure that Xiv /∈ kerJ(ϕ(Kip0)). However, if we assume that the Xi’s are drawn
from a distribution D, then the preimage of kerJ(ϕ(Kip0)) in Rd has measure 0. Therefore,
any choice of vector v will satisfy the condition with probability 1.

• Assumption 2 guarantees the orthogonality of the rows F(p0), thus ensuring that they are
all linearly independent.

• We can write

F(p0) =
α

N

 (K⊤
1 J(ϕ(K1pt))X1u)

⊤

...
(K⊤

NJ(ϕ(KNpt))XNu)⊤

 (34)

therefore σmin(F(p0)) = O(α), which allows us to conclude that for α large enough, we
have σmin(F(p0)) > γ +

√
µ
2m with probability 1.

D PROOF OF THEOREM 2

Theorem 2. Let z∗ be a stationary point of the dynamics described in equation 16. Suppose that z∗
is in the interior of the simplex, then the following holds:

1. The linearization of the system around z∗ is given by ζt+1 = ζt − η
N J2(z∗)∇2ℓ̃(z∗)ζt.
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2. Let µ = λmin(∇2ℓ̃(z∗)) and L = λmax(∇2ℓ̃(z∗)). Suppose that µ > 0 and let κ be the
condition number of J2(z∗)∇2ℓ̃(z∗) when restricted to the tangent space of the simplex
T∆n−1 = {u ∈ Rn : 1⊤u = 0}. Then we have the following lower bound on κ

κ ≥ µmaxi(z
∗
i )

2

Lmini(z∗i )
2
. (18)

Proof. 1. To linearize the system around z∗, we write the dynamics of ζt = zt − z∗:

ζt+1 = ζt −
η

N
J2(z∗ + ζt)∇ℓ̃(z∗ + ζt) +

η2

2N2
D2ϕ(ct)(J(z

∗ + ζt)∇ℓ̃(z∗ + ζt),J(z
∗ + ζt)∇ℓ̃(z∗ + ζt))

Next we analyze the second and third terms. Let V(x) = J(x)f(x) and f(x) = J(x)∇ℓ̃(x). The
linearization of V(z∗ + ζt) can be expressed as:

V(z∗ + ζt) = V(z∗) +DV (z∗)ζt = DV (z∗)ζt (35)

Where we have used the fact that V(z∗) because z∗ is a stationary point.

To compute DV(x), we use the product rule componentwise. Recall that for two vector-valued
functions H1 : Rn → Rm and H2 : Rn → Rm, the componentwise product is defined as H1 ⊙
H2(x) = diag(H1(x))H2(x) + diag(H1(x))H2(x). And the product rule yields:

D(H1 ⊙H2)(x) = diag(H1(x))DH2(x) + diag(H1(x))DH2(x)

In our case, we have Vi(x) = xif̂i(x) with f̂i(x) = fi(x)− 1f̄(x) and f̄(x) = x⊤f(x)

And we have

Df̂(x) = Df(x)− 1(x⊤Df(x) + f(x)⊤) = (I − 1x⊤)Df(x)− 1f(x)⊤

As a result:

DV(x) = D(diag(x)f̂(x)) (36)

= diag(x)Df̂(x) + diag(f̂(x)) (37)

= diag(x)((I − 1x⊤)Df(x)− 1f(x)⊤) + diag(f̂(x)) (38)

= J(x)Df(x)− xf(x)⊤ + diag(f̂(x)) (39)

Let z∗ ∈ ∆̊n−1 be a stationary point, we have f(z∗) = J(z∗)∇ℓ(z∗) = 0 and f̂(z∗) = 0 , therefore,
we have

DV(z∗) = J(z∗)Df(z∗)

Now we write DV(z∗) as a function of J and ∇2ℓ̃.

Since f(x) = J(x)F (x) with F (x) = −∇ℓ̃(x), then using the same result derived for DV(x), we
obtain

Df(x) = J(x)DF (x)− xF (x)⊤ + diag(F̂ (x)).

Once again, since z∗ is an interior global minimum, we have F̂ (z∗) = 0. Moreover, F (z∗) is a
constant vector. We can thus consider the orthogonal projection onto the tangent space of the simplex
P = I − 1

n11
⊤ as follows

Df(z∗)P = J(z∗)DF (z∗)P = −J(z∗)∇2ℓ̃(z∗)P

Finally, we conclude that DV(z∗)P = −J2(z∗)∇2ℓ̃(z∗)P .

For the third term, we first consider the part J(z∗ + ζt)∇ℓ̃(z∗ + ζt) which we have already analyzed
above. Its linearization is:

J(z∗ + ζt)∇ℓ̃(z∗ + ζt) ≈ J(z∗)∇ℓ̃(z∗) + J(z∗)∇2ℓ̃(z∗)ζt = J(z∗)∇2ℓ̃(z∗)ζt. (40)

where once again the fact that z∗ is an interior stationary point guarantees that J(z∗)∇ℓ̃(z∗).
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Moreover, computing the second order derivatives of the Softmax yields:

∂2ϕi

∂xk∂xj
= ϕi(δij − ϕj)(δik − ϕk)− ϕiϕk(δkj − ϕj) ∈ [−2, 2] (41)

Since all the terms of the second derivative are bounded, the term D2ϕ(ct)(J(z
∗ + ζt)∇ℓ̃(z∗ +

ζt),J(z
∗ + ζt)∇ℓ̃(z∗ + ζt)) is quadratic in ζt. And we can conclude that the linearization of the

gradient descent dynamics on z is given by:

ζt+1 = ζt −
η

N
J2(z∗)∇2ℓ̃(z∗)ζt. (42)

2. Let µ = λmin(∇2ℓ̃(z∗)) and L = λmax(∇2ℓ̃(z∗)). For any u ∈ T∆n−1, we have using the
eigendecomposition of J(z∗) that

λ2(J(z
∗))∥u∥2 ≤ ∥J(z∗)u∥2 ≤ λn(J(z

∗))∥z∥2 (43)

where the equalities are achieved when u is an eigenvector associated with the eigenvalue λ2(J
2(z∗))

or λn(J
2(z∗)).

Therefore, when restricted to the tangent space of the simplex, the eigenvalues of the map J2(z∗)
satisfy:

λmax(J
2(z∗)) ≤ (max

i
(z∗i ))

2, and λmin(J
2(z∗)) ≥ (min

i
(z∗i ))

2 (44)

where we have used the results of Lemma 1.

Moreover, we know that

λmax(J
2(z∗)∇2ℓ̃(z∗)) ≥ λmin(J

2(z∗))λmax(∇2ℓ̃(z∗)) (45)

and

λmin(J
2(z∗)∇2ℓ̃(z∗)) ≤ λmax(J

2(z∗))λmin(∇2ℓ̃(z∗)) (46)

And we can deduce that

λmax(J
2(z∗)∇2ℓ̃(z∗)) ≥ L(min

i
(z∗i ))

2

λmin(J
2(z∗)∇2ℓ̃(z∗)) ≤ µ(max

i
(z∗i ))

2 (47)

We can thus recover the lower bound on the condition number and conclude our proof.

18
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E VISUALIZING ATTENTION MAPS FOR VIT

Figure 4: Attention maps obtained at the end of training of the model with R ≈ 20.

Figure 5: Attention maps obtained at the end of training of the model with R ≈ 107.

F BROADER IMPACT

This work provides valuable insights into the optimization challenges associated with training
attention-based models, which have become ubiquitous in modern machine learning applications.
It could lead to more efficient and effective optimization algorithms for transformers and similar
applications, which would be of high interest to the ML community. We do not expect any negative
societal bias from this work.
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