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Abstract

In this paper, we explore an important yet previously neglected question: Do
context aggregation patterns across Language Models (LMs) share commonalities?
While some works have investigated context aggregation or attention weights
in LMs, they typically focus on individual models or attention heads, lacking
a systematic analysis across multiple LMs to explore their commonalities. In
contrast, we focus on the commonalities among LMs, which can deepen our
understanding of LMs and even facilitate cross-model knowledge transfer. In this
work, we introduce the Order-Level Attention (OLA) derived from the order-wise
decomposition of Attention Rollout and reveal that the OLA at the same order
across LMs exhibits significant similarities. Furthermore, we discover an implicit
mapping between OLA and syntactic knowledge. Based on these two findings, we
propose the Transferable OLA Adapter (TOA), a training-free cross-LM adapter
transfer method. Specifically, we treat the OLA as a unified syntactic feature
representation and train an adapter that takes OLA as input. Due to the similarities
in OLA across LMs, the adapter generalizes to unseen LMs without requiring
any parameter updates. Extensive experiments demonstrate that TOA’s cross-LM
generalization effectively enhances the performance of unseen LMs. Code is
available at https://github.com/jinglin-liang/OLAS.

1 Introduction

With the rapid development of large language models (LMs), their exceptional capabilities have
profoundly impacted human society [1]. In practical applications, practitioners often fine-tune models
to meet the demands of specific tasks [2, 3]. However, due to the lack of efficient methods for
knowledge transfer between different LMs, results fine-tuned on one model cannot be directly reused
on another, significantly increasing development costs. Research in knowledge distillation [4, 5]
and representation learning [6] suggests that when different models share common representational
spaces, efficient knowledge transfer becomes possible. This inspires us to ponder a question: Do
pretrained LMs possess commonality that could enable cross-model knowledge transfer?

We approach this through the lens of attention mechanisms. Although LMs differ in architecture,
training data, and other factors, mainstream transformer-based LMs rely on attention mechanisms [7]
to aggregate context for prediction [8, 9]. Given the similarity in training objectives and attention
mechanisms, different LMs trained on large corpora may converge to an optimal attention pattern for
the same text, resulting in commonalities in their contextual aggregation behavior.
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Figure 1: Information flow path decomposition. (a) Simplified LM showing only Multi-Head
Attention (MHA) modules (others omitted); (b) Path via residual connections across all layers; (c)
Paths through MHA in one layer, residual connections elsewhere; (d) Path through MHA in all layer.

Although some studies [10, 11, 12] have investigated the context aggregation mechanisms within
individual LMs, their focus has been on attribution analysis, aiming to quantify the contribution of
different tokens to the output [13, 14]. However, focusing solely on attribution analysis of a specific
model may lead to an overemphasis on its unique characteristics, without considering the potential
commonalities across different LMs. To our knowledge, the commonality of contextual aggregation
patterns across different LMs has not yet been explored.

In this work, we unveil this commonality and propose a training-free cross-model knowledge transfer
approach based on it. While attention pattern similarities among LMs seem intuitive, inherent
differences in layer numbers and attention heads endow their attention weights with distinct meanings,
making it challenging to identify attention similarities at the layer or head level. To unify attention
weights across models into comparable representations, we propose Order-Level Attention (OLA).
Specifically, as shown in Figure 1, we decompose information flow into multiple paths, with the
context aggregation effects from paths sharing the same aggregation count being represented as an
OLA of that specific order. For instance, first-order OLA captures aggregation effects from paths
containing one aggregation step, as shown in Figure 1(c). Mathematically, OLA equates to order-wise
decomposition of Attention Rollout [10] (detailed motivations and derivations in §3.1). OLA unifies
the meanings of attention across different models, establishing foundations for analyzing attention
similarities. Extensive experiments on 12 LMs demonstrate significant similarities in the same-order
OLA across different LMs. We refer to this phenomenon as Order-Level Attention Similarity (OLAS).
Furthermore, to investigate the linguistic implications of OLA, we conduct experiments demonstrating
that syntactic dependencies [15] can be predicted solely from OLA representations using an auxiliary
model. This finding suggests that OLA inherently encodes syntactic knowledge of the input text.

Based on these findings, we propose the Transferable OLA Adapter (TOA), enabling cross-LM
adapter transfer without requiring tuning. Training-free cross-LM adapter transfer is a valuable task
with many potential applications (§4), but poses significant challenges. Adapters process features
specific to individual LMs, yet different LMs exhibit divergent feature spaces. Even when training the
same model twice with different initialization parameters, the resulting feature spaces remain distinct
[6], causing adapters to tightly couple with source LMs and limiting transferability. To address this,
we leverage OLA as a unified syntactic representation across LMs and train adapters using OLA for
downstream tasks. Since OLA exhibits similarities across LMs, the trained adapter can be directly
transferred to other LMs without any parameter updates or training data. We evaluate TOA on four
tasks: relation extraction (RE), named entity recognition (NER), dependency parsing (DP), and part-
of-speech tagging (POS). Extensive experiments demonstrate significant performance improvements
when transferring TOA from a source LM to an unseen target LM. For example, transferring TOA
trained on LLaMA3-3B to Qwen2-1.5B elevates Qwen2’s relation prediction accuracy from 7.69%
(zero-shot baseline) to 34.90%.

In summary, our contributions are as follows:

1) We propose OLA (§3.1), which unifies the attention mechanisms of different LMs into
comparable representations.

2) Based on extensive qualitative and quantitative experimental analysis, we propose two key
findings: significant similarities in OLA across different LMs (§3.2 and §3.3), and OLA’s
inherent encoding of syntactic knowledge (§3.4).

3) Building on the above findings, we introduce TOA (§4.1), which enables training-free
cross-LM adapter transfer. Extensive experiments demonstrate that transferring TOA trained
on a source LM to an unseen target LM significantly enhances its performance (§4.2).
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2 Related Work

Although some studies have explored the context aggregation mechanisms of LMs and adapter
transfer for LMs, we are the first to investigate the commonalities in context aggregation across
different LMs and leverage these to achieve cross-LM adapter transfer without requiring tuning.

Context Aggregation Mechanisms in LMs. While deep learning has advanced various fields
in recent years [16, 17], our understanding of deep models remains limited [18, 19]. This has
motivated extensive research on model interpretation, including work on attribution [20, 21] and
feature interactions [22, 23]. Among these, some methods focus specifically on analyzing the
attention patterns of transformer-based models. For instance, early works [24, 25, 26, 27] aimed
to understand the nature of attention by performing intuitive visualizations or statistical analyses
in classic models such as Bert [28] and GPT2 [29]. Subsequently, some studies [13, 14, 30, 31]
explored the explainability of attention by perturbing attention weights and observing changes in
outputs. Additionally, some studies [32, 33] have investigated the identifiability of attention weights.
Unlike the aforementioned works that analyze a specific layer or an individual attention head, the
study [10] conducts a comprehensive analysis of multi-layer attention and residual connections using
matrix multiplication and maximum flow algorithms [34]. Recently, a series of studies based on
norm-based methods [35] investigate the contribution of each input token to the output. Specifically,
they decompose the model’s output into multiple terms, each associated with a particular token, and
then estimate the contribution of the token based on the norm of each term or its deviation from
the output. Some studies [36, 11] primarily consider the attention blocks responsible for context
aggregation, while others [37, 38, 12] further incorporate the feed-forward blocks that map the
features of each token into consideration. While existing studies focus on attention explainability
and its use in model prediction attribution, the commonalities underlying LM context aggregation
mechanisms remain unexplored.

Adapter Transfer Across LMs. Freezing the LM’s parameters and only training adapters is a
common paradigm for applying LMs to specific tasks [39, 3]. These adapters come in various
forms, such as LoRA [2] and soft prompts [40]. To reduce the resource consumption associated with
repetitive learning, some studies explore adapters transfer. Some works [41, 42, 43] investigate the
cross-lingual transfer of adapters, meaning they use adapters trained on a source language in a target
language. The work [44] proposes training a delta LM that assembles outputs with the pretrained
LM to enable cross-model knowledge transfer. However, their method transfers text-input delta LMs,
differing fundamentally from our feature-space adapter transfer approach. The work [45] is the only
study that studies cross-model adapter transfer, applying the representation learning [46, 47] method
proposed in [6] to soft prompts. However, this approach requires training during transfer and suffers
significant performance degradation. To our knowledge, we are the first to achieve training-free
cross-model adapter transfer, which allows adapters trained on the source model to be directly applied
to the target model without any additional training.

3 Order-level Attention

In this section, we first describe the derivation of OLA (§3.1). Then, we present qualitative (§3.2)
and quantitative (§3.3) experimental evidence to reveal the phenomenon of OLAS. Finally, we
demonstrate the implicit mapping between OLA and syntactic knowledge (§3.4).

3.1 Order-Level Decomposition of Attention Rollout

Although different LMs exhibit certain structural variations, typical models such as Bert [28] and
Llama [48] feature layers composed of an attention block followed by a feed-forward block, as
illustrated in Figure 2. Since the feed-forward block and the normalization layers only perform trans-
formations on the features of individual tokens without aggregating information from other tokens, it
is actually the multi-head attention module that facilitates contextual information aggregation at each
layer. Additionally, the attention module is paired with a residual connection, creating a shortcut for
the information to bypass the attention module. As a result, the context aggregation matrix for the
i-th layer can be expressed as (A(i) + I), where A(i) ∈ RL×L is the average attention matrix across
all heads in the i-th layer, L is the token sequence length, and I is the identity matrix representing the
shortcut created by the residual connection. By multiplying the matrices of each layer, we obtain the
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Figure 2: Structure of each layer in typical LMs. (a) Llama and Qwen. (b) Bert, Roberta, and Electra.
(c) Gemma.

attention rollout [10], expressed as:

Â =

N∏
i=1

(A(i) + I), (1)

where Â is the attention rollout, with N as the number of layers in the language model.

However, when we input different texts into LMs and visualize their attention rollout, as shown
in Figure 3(a), we observe that the attention rollout exhibits a consistent pattern across different
texts, with nearly all attention concentrated on a few less important tokens. More visualizations are
presented in §A, showing this phenomenon is prevalent across various LMs. This phenomenon has
been observed before and termed “Attention Sinks” [49]. The reason is that the softmax function
prevents attention scores from being exactly zero, which forces each token to aggregate information
from other tokens. However, when a token has already aggregated sufficient contextual information
and no longer needs to aggregate information from other tokens, it offloads its attention to other less
important tokens, causing Attention Sinks [49]. This may imply that although LMs consist of many
layers, the number of effective aggregation steps may be fewer than the number of layers.

Due to Attention Sinks, the Attention Rollout exhibits similar responses across different texts, lacking
distinctiveness. We posit that Attention Sinks occur because each layer’s attention module in an
LM is paralleled with a residual connection, allowing information to flow both through the attention
module and the residual connection. Consequently, as shown in Figure 1, an N -layer LM creates 2N
potential information pathways. The Attention Rollout represents the contextual aggregation matrix
resulting from all these paths. As previously mentioned, the number of effective aggregations is fewer
than the number of layers, causing some path components to become ineffective due to excessive
aggregation. This results in similar biases and diminishes the distinctiveness of the Attention Rollout.
To address this, we separately analyze the contextual aggregation effects from paths with varying
aggregation counts, illustrated in Figure 1(b)(c)(d). Mathematically, this involves performing an
order-level decomposition of the Attention Rollout, expressed as:

Â = I +
N∑
i=1

A(i) +
∑

1≤i<j≤N

A(j)A(i) + · · ·+A(N)A(N−1) · · ·A(1), (2)

where each term corresponds to the sums of contextual aggregation effects across paths with identical
aggregation steps. For instance, the 0th-order term is the identity matrix I , which means that
information flows through residual connections at all layer, as illustrated in Figure 1(b). The first-
order term sums effects across all paths containing one aggregation step (i.e., one attention module
traversal and N -1 residual connections), with

(
N
1

)
such paths, as shown in Figure 1(c). Similarly, the

k-th order term aggregates effects across
(
N
k

)
paths where aggregation occurs k times.

We normalize each term to obtain the OLA of each order. For example, the first-order OLA is defined
as Â(1) = 1

N

∑N
i=1 A

(i), and the Attention Rollout Â is reformulated as a weighted sum of the OLA:

Â =

N∑
i=0

(
N

i

)
· Â(i), (3)

where Â(i) denotes the i-th order OLA.

In summary, given that different LMs share similar optimization objectives and context aggregation
mechanisms, it is intuitive that their attention mechanisms exhibit commonalities. To verify this, we
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Text1：A full stationary oil tank that is a right circular cylinder has a radius of 100 feet and a height of 25 feet. oil is pumped from the 
stationary tank to an oil truck that has a tank that is a right circular cylinder until the truck' s tank is completely filled.

Text2：Developing emotional intelligence enhances your ability to navigate relationships, communicate effectively, and manage 
emotions in both personal and professional settings, leading to improved problem-solving skills and better decision-making.

Figure 3: Visualization results of the Attention Rollout and first- and second-order OLA obtained
by inputting two texts into Qwen2-1.5b and Llama3.2-3b. (a) Attention Rollout. (b) First-order
OLA. (c) First-order OLA with row-wise maximum values set to zero. (d) Second-order OLA. (e)
Second-order OLA with row-wise maximum values set to zero.

propose OLA, which unifies attention across LMs into comparable representations with equivalent
semantics to enable cross-model comparisons. Below, we analyze OLA’s cross-model similarity
through quantitative and qualitative perspectives, and explore its linguistic implications.

3.2 Qualitative Empirical Evidence of OLAS

To qualitatively analyze OLA similarity across LMs, we input two distinct texts to Qwen2-1.5b and
Llama3.2-3b, visualizing Attention Rollout and first-/second-order OLA in Figure 3 (a), (b), and (d).
Since extreme maximum values obscure distribution patterns, we mask these values (zeroing maxima
for first-/second-order OLA in Figure 3 (c) and (e), and for Attention Rollout in §A), revealing clearer
structural features. From the figures, we can derive the following insights: 1) The same-order OLA
from different LMs for the same text is highly similar. This can be seen by comparing the first and
second, as well as the third and fourth rows in Figures 3 (c) and (e). It is also evident in the third-order
OLA visualizations in §B. We term this phenomenon Order-Level Attention Similarity (OLAS).
2) OLA from different texts show a clear distinction. This can be concluded by comparing the
first and third rows, as well as the second and fourth rows in Figures 3 (c) and (e). This suggests
that OLA could potentially serve as a feature representation for sentences. 3) Attention sinks in
low-order OLA are less pronounced than in higher-order OLA. Attention Rollout (weighted sum
of all-order OLAs) exhibits the most significant attention sinks, with each row’s attention focused on
unimportant tokens, such as the Llama’s ‘<bos>’ token. First-order OLA exhibits the least sinking,
while second-order OLA shows more. This suggests that higher-order OLA may represent ineffective
components with similar biases. Comprehensive visualizations for more LMs are in §A and §B.

3.3 Quantitative Empirical Evidence of OLAS

To comprehensively quantify the similarity of OLA across different LMs, we design two innovative
evaluation methods: the first relies on a visual model to replace human assessment of OLA visual
similarity (§3.3.1), the second adopts an image retrieval framework (§3.3.2).
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Table 1: Results of quantitative evaluation on cross-model similarity for OLA and baselines based on
visual classification model. Entries represent accuracy (unit: %), averaged over three experiments,
reflecting source-target LM similarity (higher = more similar). The terms 1st, 2nd, 3rd denote first-,
second-, and third-order OLA. Best performance is bolded.

(a) CLM Results. Q-1b5, Q-7b, G-2b, G-9b, L-3b,
and L-8b denote Qwen2-1.5b, Qwen2-7b, Gemma2-2b,
Gemma2-9b, Llama3.2-3b, and Llama3.1-8b.

Source L-3b, L-8b,
G-2b, G-9b

L-3b, L-8b,
Q-1b5, Q-7b

Q-1b5, Q-7b,
G-2b, G-9b

Target Q-1b5 Q-7b G-2b G-9b L-3b L-8b

Rollout [10] 27.90 7.70 52.60 26.00 66.10 59.70
IRNL [36] 18.50 11.90 58.10 67.20 77.20 73.60
ALTI [11] 22.60 15.50 69.30 71.80 85.60 79.80

1st 52.60 49.20 93.10 92.40 94.60 94.10
2nd 67.10 49.90 89.30 86.20 90.70 91.90
3rd 76.50 48.90 79.90 78.80 88.60 86.70

(b) MLM Results. B-b, B-l, R-b, R-l, E-b, and E-l
denote Bert-base, Bert-large, Roberta-base, Roberta-
large, Electra-base, and Electra-large, respectively.

Source R-b, R-l,
E-b, E-l

B-b, B-l,
E-b, E-l

B-b, B-l,
R-b, R-l

Target B-b B-l R-b R-l E-b E-l

Rollout 44.30 42.80 13.20 36.60 13.60 9.10
IRNL 60.00 4.10 20.80 15.00 55.20 38.10
ALTI 90.30 80.30 73.80 48.10 86.80 90.30

1st 91.90 92.40 80.40 69.90 95.20 95.80
2nd 88.80 62.70 60.70 28.00 76.30 82.90
3rd 80.40 67.70 38.10 31.90 58.10 68.30

3.3.1 Quantitative Analysis Based on Visual Model

We employed an image classification model as a proxy for human evaluation to objectively assess
the similarity of OLA maps generated by different LMs given identical text inputs. Specifically, we
trained an image classifier (ResNet-18 [50]) using OLA maps generated by source LMs, where all
OLA maps produced by different LMs for the same text were assigned to the same category, with the
optimization objective defined as:

θ∗ = argmin
θ

E(a,i)∼Dtrain

[
LCE(Fθ(a), i)

]
, Dtrain =

{
(a

(j)
i , i)

∣∣ i ∈ [1..M ], j ∈ [1..S]
}

(4)

where M denotes the count of texts, S the number of source LMs, a(j)i the OLA map from the
j-th source LM for the i-th text, Dtrain the training dataset, θ the classifier parameters, LCE the
cross-entropy loss, and Fθ (a) the classifier’s predicted text index for OLA map a. The trained
classifier was evaluated on the dataset Dtest composed of OLA generated by target LMs on the same
set of texts, where Dtest =

{
(ãi, i)

∣∣ i ∈ [1..M ]
}

, with ãi denoting the OLA produced by the target
LM for the i-th text. Higher accuracy indicates stronger alignment between source and target LMs’
OLA, as the classifier more reliably classifies their OLA generated for the same text into the same
category. Experiments were conducted on 12 LMs, including 6 Causal Language Models (CLMs)
and 6 Masked Language Models (MLMs), detailed descriptions of these LMs are provided in §C.
Further implementation details, including dataset construction and preprocessing, are provided in §F.

Baselines. To analyze whether the performance of existing context aggregation analysis methods
exhibits similarities across different LMs, we also validated them within the experimental framework.
The methods include Attention Rollout [10], IRNL [36], and ALTI [11]. Among these, Attention
Rollout is the most similar to our method, while IRNL and ALTI are common norm-based attribution
methods focused on attention block analysis. Additionally, IRNL and ALTI require deriving the
expression between the model’s output and input tokens. However, their derivations were only
conducted for MLMs and cannot be directly applied to CLMs due to structural differences. Therefore,
we derive the expressions for CLMs and present the process in §D.

Main Results. From the Table 1, we can draw the following insights: 1) As concluded in §3.2, the
OLA obtained from the same text across different LMs exhibits significant similarity, while
OLA from different texts shows clear distinctions. In experiments with both MLMs and CLMs, the
first-, second-, and third-order OLA achieved high classification accuracy, particularly the first-order
OLA, which exceeded 90% accuracy under multiple settings. The fact that OLA can be used for
classification indicates that OLA from different texts are distinguishable. Furthermore, the ability of
a classifier trained on the source LMs’ OLA to generalize to the target LM suggests that OLA across
the source and target LMs are highly similar. 2) Existing methods also exhibit similar performance
across different LMs, but not as prominently as the simpler OLA. This may arise because
Attention Rollout incorporates higher-order OLA components with weaker distinguishability. Other
norm-based methods for attribution analysis primarily focus on the relationships between individual
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Table 2: Retrieval-based quantitative evaluation of first-order OLA cross-model similarity. Row
headers denote source LMs. Column headers denote target LMs. Entries indicate evaluation metrics
Hits@1 / Hits@5 (unit: %).

(a) CLM Results.

Src\Tgt Q-1b5 G-2b L-3b

Q-1b5 - 83.60 / 89.40 95.90 / 97.00
G-2b 83.20 / 89.30 - 95.30 / 97.10
L-3b 92.90 / 96.10 94.10 / 96.50 -

(b) MLM Results.

Src\Tgt B-b R-b E-b

B-b - 51.90 / 58.80 91.60 / 94.90
R-b 75.90 / 83.90 - 71.70 / 80.20
E-b 92.40 / 96.00 67.40 / 72.90 -

Table 3: Results of syntactic dependency parsing using OLA predicted by LMs. Entries indicate
UAS/LAS (unit: %). Best performance is bolded.

(a) CLM Results.

LMs Q-1b5 G-2b L-3b

Rollout 50.53/29.79 44.24/22.04 53.77/35.57
1st 63.58/48.24 62.25/45.95 62.98/48.19
2st 60.58/43.90 57.28/38.88 58.93/42.94
3rd 55.19/36.82 51.89/32.25 51.00/33.35

(b) MLM Results.

LMs B-b R-b E-b

Rollout 46.20/30.69 35.77/17.94 50.35/34.02
1st 81.29/72.16 80.00/70.44 81.23/72.63
2st 72.86/61.05 72.68/60.10 77.47/66.78
3rd 66.44/53.17 36.99/18.67 50.72/33.90

tokens in the feature space, which, compared to the contextual aggregation patterns we emphasize,
are more reflective of the model’s individual characteristics. 3) The similarity of OLA varies across
different source-target LMs combinations. This suggests that the similarity between different LMs
is relative and influenced by various factors during training, such as data and architecture. OLA has
the potential to serve as an indicator for evaluating the similarity between LMs.

Controlled Experiments. To verify the reproducibility of our findings across diverse data settings,
we conducted controlled experiments on dataset and preprocessing. The OLAS phenomenon persists
under varying data configurations, demonstrating its robustness (results and analysis in §H). To ensure
our observations reflect inherent properties of LMs (i.e., the commonality of contextual aggregation
patterns learned from large corpora), we perturbed the model parameters and observed that the
OLAS phenomenon disappeared in the perturbed models. This indicates OLAS is intrinsically tied to
pre-trained model parameters, not experimental biases or data artifacts (results and analysis in §I).

3.3.2 Quantitative Analysis Based on Image Similarity Retrieval

We propose an image retrieval-based quantitative evaluation method for OLA similarity. Specifically,
we feed the text from Section 3.3.1 into the source LM and target LM to generate corresponding
OLA maps. Using the target LM’s OLA maps as queries, we compute SSIM [51] (a standard image
similarity metric) between each query and all source LM’s OLA, then rank the results by SSIM scores.
Retrieval correctness is determined by whether the ground-truth candidate appears in the retrieved
results. The ground-truth is defined as the source LM’s OLA whose original text matches the query
OLA’s original text. We evaluate Hits@1 (the probability of the correct source LM OLA ranking first)
and Hits@5 (the probability of the correct OLA appearing in the top five), with first-order results
shown in Table 2 and second- and third-order results shown in the §J (Table 12). From the tables, we
observe remarkably high retrieval success rates. For example, in the first-order CLM results, even the
lowest Hits@5 surpasses 89%, while the highest exceeds 97%. Though MLM performance is weaker
than CLM, it remains substantial. These findings further support the OLAS phenomenon.

3.4 Relation between OLA and Syntactic Knowledge

The OLAS phenomenon suggests a unified attention pattern across different LMs in OLA. To explore
the nature of OLA, we designed an experiment to investigate whether OLA contains syntactic knowl-
edge. Specifically, we utilize the OLA of training texts to train an additional syntactic dependency
parsing network, where the input is the OLA and the target is the corresponding syntactic dependency
annotations. After training, we evaluate the accuracy of this network on the OLA of test texts. If
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the network can successfully predict the original text’s syntactic dependencies using only OLA, it
suggests that OLA encodes syntactic knowledge. More implementation details can be found in §G.

We conducted experiments on first-, second-, and third-order OLA, respectively. Additionally, since
Attention Rollout is equivalent to the weighted sum of OLA across all orders, we included it in our
analysis to investigate whether higher-order OLA encode syntactic knowledge. From the results
presented in Table 3, we derive the following insights: 1) OLA encodes syntactic knowledge.
Using first-, second-, and third-order OLA to predict syntactic dependencies achieves promising
performance. Notably, first-order OLA achieves over 80% Unlabeled Attachment Score (UAS) across
all MLMs and over 60% UAS for CLMs. 2) Lower-order OLA exhibit more prominent syntactic
features than higher-order OLA. Across all LMs, we observe a consistent trend where higher-order
OLA yield lower performance. Furthermore, Attention Rollout (as the aggregation of all-order OLA)
exhibits significantly lower accuracy compared to lower-order OLA, this suggests that its higher-order
components contain less prominent syntactic features.

4 Training-free Cross-LM Adapter Transfer

4.1 Transferable OLA Adapter

Due to the large number of parameters in LMs, directly fine-tuning them is often prohibitively
expensive. As a result, freezing the parameters of the LMs and training an adapter tailored to
downstream tasks has become a common approach for applying LMs to specific tasks [39, 3].
However, adapters are typically tied to the specific LMs they are trained on, which limits their
flexibility and reusability. To address this limitation, we investigate how to transfer adapters across
LMs. This is a valuable question with many potential applications. For example, we could first
train an adapter on a smaller model and then transfer it to a larger model, significantly reducing the
resource cost of tuning the adapter for the larger model. In another example, we could train an adapter
on an open-source model and transfer it to a closed-source model. This enables the closed-source
model to learn knowledge from the data while keeping the model and data isolated, thereby protecting
the privacy of both the model and the data.

Source LM
Training 

Text
Adapter Loss

OLA

Target LM
Testing 

Text
Adapter Predict

OLA

Training Stage

Testing Stage

Direct Transfer

forward backward learnablefrozen

Figure 4: Overview of TOA. In the training
phase, the source LM is frozen and an adapter
is trained for the downstream task using OLA
as input. In the testing phase, the adapter is
directly transferred to the target LM.

However, this is a challenging problem, especially in
the context of training-free transfer. This difficulty
arises because adapters are designed to process the
features of LMs, and different LMs often have signif-
icantly different feature distributions and dimensions.
As a result, the adapter becomes tightly coupled with
the source model, making it difficult to directly trans-
fer it to other models. To the best of our knowledge,
no existing work has achieved training-free cross-LM
adapter transfer.

Inspired by our findings that OLA from different
LMs exhibits similarity and that OLA encodes syn-
tactic knowledge, we propose the Transferable OLA
Adapter (TOA), which enables adapter transfer across
models without requiring training. Specifically, we
treat OLA as a unified syntactic feature representation
across models and train an adapter that takes OLA as
input for downstream tasks. Due to the cross-model
similarity of OLA, the trained adapter can be directly transferred to other LMs without requiring
additional training, as illustrated in Figure 4. In the experiments reported later, we use stacked first-
and second-order OLA as input features for the adapter. However, this is not the only option. Other
configurations, such as using only first-order OLA or combining different orders, can be chosen based
on task requirements.

4.2 Experiments

We evaluated the cross-model transfer capability of TOA on four foundational NLP tasks: Relation
Extraction (RE) [52], Named Entity Recognition (NER), Dependency Parsing (DP), and Part-of-
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Table 4: Cross-Model Transferability of TOA on the RE Task. Column headers indicate source LMs,
row headers indicate target LMs, and entries represent relation prediction accuracy (unit: %). Best
performance is bolded; scores exceeding the zero-shot baseline are underlined.

(a) CLM Results.

Src\Tgt Q-1b5 Q-7b G-2b G-9b L-3b L-8b

Zero-shot

- 7.69 8.58 5.01 18.22 14.65 12.99

TOA (Ours)

Q-1b5 34.90 26.33 30.95 25.98 31.08 29.46
Q-7b 27.58 31.48 25.25 21.60 25.41 25.44
G-2b 21.17 19.92 34.73 23.33 23.49 22.64
G-9b 18.63 17.42 22.12 26.28 20.99 20.73
L-3b 30.49 22.35 33.49 22.19 35.57 33.03
L-8b 28.24 22.28 30.03 25.80 32.03 33.43

(b) MLM Results.

Src\Tgt B-b B-l R-b R-l E-b E-l

Zero-shot

- 2.69 0.48 0.04 7.18 5.78 0.04

TOA (Ours)

B-b 36.19 29.90 23.90 23.60 25.70 28.28
B-l 22.13 32.29 19.33 23.16 18.63 17.45
R-b 25.63 18.70 32.63 21.61 26.40 22.50
R-l 25.59 28.98 25.15 32.73 24.12 25.15
E-b 36.01 26.99 31.96 25.77 41.27 36.97
E-l 31.85 31.89 30.63 24.15 32.99 38.18

Table 5: Cross-Model Transferability of TOA on the NER Task. Entries represent F1 score (unit: %).
Best performance is bolded; scores exceeding the zero-shot baseline are underlined.

(a) CLM Results.

Src\Tgt Q-1b5 Q-7b G-2b G-9b L-3b L-8b

Zero-shot

- 5.35 28.21 1.45 53.82 13.24 22.12

TOA (Ours)

Q-1b5 53.81 30.99 21.08 9.58 29.24 26.94
Q-7b 36.28 54.85 15.56 10.01 26.17 28.30
G-2b 23.12 12.47 54.53 24.31 22.64 15.80
G-9b 12.80 9.94 31.15 55.36 16.65 12.74
L-3b 27.48 21.79 24.79 14.05 54.51 45.24
L-8b 27.93 25.33 20.63 16.34 47.84 51.68

(b) MLM Results.

Src\Tgt B-b B-l R-b R-l E-b E-l

Zero-shot

- 0.00 0.00 0.00 0.00 0.00 0.00

TOA (Ours)

B-b 68.47 46.00 29.74 16.62 39.14 39.74
B-l 36.40 68.74 9.69 14.14 14.54 13.21
R-b 41.66 36.02 60.99 40.60 39.85 42.90
R-l 31.43 36.12 40.31 64.60 20.50 27.35
E-b 36.28 25.53 20.83 12.21 65.14 46.87
E-l 24.62 23.98 17.71 8.38 34.51 67.08

Speech Tagging (POS). Since TOA is directly transferred to the target LM without any training (it is
trained solely on the source LM), we compared its performance against the zero-shot capability of
the target LM to assess the utility of TOA. Specifically, the TOA transfer process involves training an
adapter using the OLA generated by the source LM on the training set and evaluating its performance
on the OLA produced by the target LM on the test set. For zero-shot evaluation, we guided LMs’
predictions using manually designed prompts, with prompt templates and implementation details
provided in §K. The results for RE and NER are presented in Tables 4 and 5, while those for DP
and POS are included in §L (Tables 15 and 16). Detailed implementation for TOA transfer (adapter
architectures, datasets, metrics) are elaborated in §G.

Main Results. From Tables 4, 5, 15, and 16, we derive the following insights: 1) In most settings,
TOA consistently surpasses the zero-shot baseline, demonstrating its practical utility. For
MLMs, TOA surpasses zero-shot performance across all source-target LM pairs on all four tasks. For
CLMs, TOA exceeds zero-shot performance in all source-target LM pairs for RE and DP tasks, but
underperforms zero-shot in a small fraction of NER and POS cases (less than 6% of total scenarios).
These underperforming cases primarily involve larger, high-capacity target LMs (e.g., Gemma2-9B).
This suggests that TOA may not improve performance for large, high-capacity models on some tasks
but delivers significant gains for smaller models like Qwen2-1.5B and Llama3.2-3B. 2) Cross-model
transfer incurs insignificant performance degradation compared to self-transfer. The diagonal
entries in the tables represent self-transfer results, where the source and target models are identical
(i.e., adapters are trained and tested on the same model). These entries serve as an upper-bound
baseline for TOA’s transfer capability. Remarkably, cross-model performance remains close to this
baseline. For example, transferring TOA from BERT-base to BERT-large achieves 29.90% accuracy
on the RE task, reaching 93% of BERT-large’s self-transfer performance (32.29%). This indirectly
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supports the existence of the OLAS phenomenon. 3) TOA achieves stronger performance with
MLMs than CLMs. This may stem from the bidirectional attention in MLMs, which captures richer
contextual information compared to the unidirectional attention in CLMs. 4) TOA performs better
on syntax-dependent tasks (DP, POS) than on semantics-driven tasks (RE, NER). This suggests
that OLA primarily encodes syntactic structures rather than semantic knowledge.

5 Conclusion

In this work, we introduced a novel perspective for analyzing LMs by focusing on the commonalities
in context aggregation patterns. We revealed the significant similarity in OLA across different LMs,
marking a key discovery in understanding the shared mechanisms of LMs. Furthermore, we explored
the linguistic implications of OLA and found that it encodes syntactic knowledge. Building on
these findings, we proposed the TOA, achieving training-free cross-LM adapter transfer. Extensive
experiments demonstrate that TOA trained on other LMs can be transferred to unseen LMs to enhance
their performance, yielding promising results.
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A Visualization of Attention Rollout

We present the visualization results of Attention Rollout on six LMs, including three MLMs and
three CLMs. Specifically, we show the visualizations of Attention Rollout obtained from different
text inputs in Figure 5 (a) and (c), and the results after setting outliers in Attention Rollout to zero in
Figure 5 (b) and (d). Outliers are defined as values greater than the mean of the row plus three times
the standard deviation. The detailed calculation process is provided in §F.

From the figures, we observe that Attention Rollout exhibits a significant attention sink phenomenon,
with attention being highly concentrated on a few unimportant tokens. Additionally, the Attention
Rollout of different sentences lacks distinguishability, indicating that it is challenging to use it as a
feature representation for sentences.

Bert-base-cased Roberta-base

Text1：A full stationary oil tank that is a right circular cylinder has a radius of 100 feet and a height of 25 feet. oil is pumped from the stationary tank to an oil 
truck that has a tank that is a right circular cylinder until the truck' s tank is completely filled.

Text2：Developing emotional intelligence enhances your ability to navigate relationships, communicate effectively, and manage emotions in both personal and 
professional settings, leading to improved problem-solving skills and better decision-making.

Electra-base

(a)

(b)

(c)

(d)

Qwen2 1.5B Gemma2 2B LLaMA3.2 3B

Bert-base-cased Roberta-base Electra-base Qwen2 1.5B Gemma2 2B LLaMA3.2 3B

Figure 5: Visualization results of Attention Rollout obtained from two texts input into Bert-base-
cased, Roberta-base, Electra-base, Qwen2-1.5b, Gemma2-2b, and Llama3.2-3b. (a) Attention Rollout
for Text 1. (b) Attention Rollout for Text 1 with outlier values set to zero. (c) Attention Rollout for
Text 2. (d) Attention Rollout for Text 2 with outlier values set to zero.
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B Visualization of OLA

We visualize the first-, second-, and third-order OLA obtained by inputting two texts into LMs, as
well as the results after setting outlier values in the OLA to zero. The visualizations for CLMs are
presented in Figure 6, and those for MLMs are shown in Figure 7. Outliers are defined as values
greater than the mean of the row plus three times the standard deviation. The detailed calculation
process is provided in §F. The comprehensive visualization results further support our conclusions in
§3.2.

Qwen2
1.5B

Gemma2
2B

Qwen2
1.5B

Gemma2
2B

LLaMA3.2
3B

(a) (b)

LLaMA3.2
3B

(c) (d) (e) (f)

Text1：A full stationary oil tank that is a right circular cylinder has a radius of 100 feet and a height of 25 feet. oil is pumped from the 
stationary tank to an oil truck that has a tank that is a right circular cylinder until the truck' s tank is completely filled.

Text2：Developing emotional intelligence enhances your ability to navigate relationships, communicate effectively, and manage 
emotions in both personal and professional settings, leading to improved problem-solving skills and better decision-making.

Figure 6: Visualization results of first-order, second-order and third-order OLA obtained by inputting
two texts into Qwen2-1.5b, Gemma2-2b and Llama3.2-3b. (a) First-order OLA. (b) First-order OLA
with outlier values set to zero. (c) Second-order OLA. (d) Second-order OLA with outlier values set
to zero. (e) Third-order OLA. (f) Third-order OLA with outlier values set to zero.

16



Bert-base-
cased

Roberta-base

Bert-base-
cased

Roberta-base

Electra-base

(a) (b)

Electra-base

(c) (d) (e) (f)

Text1：A full stationary oil tank that is a right circular cylinder has a radius of 100 feet and a height of 25 feet. oil is pumped from the 
stationary tank to an oil truck that has a tank that is a right circular cylinder until the truck' s tank is completely filled.

Text2：Developing emotional intelligence enhances your ability to navigate relationships, communicate effectively, and manage 
emotions in both personal and professional settings, leading to improved problem-solving skills and better decision-making.

Figure 7: Visualization results of first-order, second-order and third-order OLA obtained by inputting
two texts into Bert-base-cased, Roberta-base and Electra-base. (a) First-order OLA. (b) First-order
OLA with outlier values set to zero. (c) Second-order OLA. (d) Second-order OLA with outlier
values set to zero. (e) Third-order OLA. (f) Third-order OLA with outlier values set to zero.
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C Language Models we used

We conducted experiments on twelve commonly used LMs, including six CLMs: Qwen2-1.5B2,
Qwen2-7B3, Gemma2-2B4, Gemma2-9B5, Llama3.2-3B6, and Llama3.1-8B7, and six MLMs: Bert-
base-cased8, Bert-large-cased9, Roberta-base10, Roberta-large11, Electra-base12, and Electra-large13.
For Electra, which consists of a generator and a discriminator, we use the generator because its training
objective aligns with traditional MLMs such as Bert and Roberta. The architectural hyperparameters,
training data size, and vocabulary size of these models are detailed as Table 6 and Table 7.

Table 6: Details of masked language models.
Models Bert-base-cased Bert-large-cased Roberta-base Roberta-large Electra-base Electra-large

Hidden Size 768 1,024 768 1,024 768 1,024
Layers 12 24 12 24 12 24

Attention Heads 12 16 12 16 4 4
Head Size 64 64 64 64 192 256

Vocabulary Size 28,996 28,996 50,265 50,265 30,522 30,522
Trained Tokens 3.3B 3.3B - - 3.3B 33B

Table 7: Details of causal language models.
Models Qwen2-1.5B Qwen2-7B Gemma2-2B Gemma2-9B Llama3.2-3B Llama3.1-8B

Hidden Size 1,536 3,584 2,304 3,584 3,072 4,096
Layers 28 28 26 42 28 32

Query Heads 12 28 8 16 24 32
Key Value Heads 2 4 4 8 8 8

Head Size 128 128 256 256 128 128
Vocabulary Size 151,936 152,064 256,000 256,000 128,256 128,256
Trained Tokens 7T 7T 2T 8T 9T 15T

2Qwen2-1.5B: https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
3Qwen2-7B: https://huggingface.co/Qwen/Qwen2-7B-Instruct
4Gemma2-2B: https://huggingface.co/google/gemma-2-2b-it
5Gemma2-9B: https://huggingface.co/google/gemma-2-9b-it
6Llama3.2-3B: https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
7Llama3.1-8B: https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
8Bert-base-cased: https://huggingface.co/google-bert/bert-base-cased
9Bert-large-cased: https://huggingface.co/google-bert/bert-large-cased

10Roberta-base: https://huggingface.co/FacebookAI/roberta-base
11Roberta-large: https://huggingface.co/FacebookAI/roberta-large
12Electra-base: https://huggingface.co/google/electra-base-generator
13Electra-large: https://huggingface.co/google/electra-large-generator
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D Derivation of Norm-based Decomposition for CLMs

The norm-based method requires decomposing the features of the language model into terms associ-
ated with each token, and this decomposition process is highly tied to the model’s structure. Since
ALTI and IRNL only derive the decomposition for MLMs, and due to the structural differences
between CLMs and MLMs, the decomposition expression in ALTI and IRNL cannot be directly
applied to CLMs. To adapt ALTI and IRNL to CLMs, we derive the decomposition for CLMs.

D.1 Decomposition for Llama and Qwen

The structures of Llama and Qwen are shown in Figure 2(a). It is important to note that their LN
module is not the standard LayerNorm, but instead Root Mean Square Layer Normalization (RMSLN)
[53], expressed as:

x̄i = RMSLN(xi) =
γ

RMS(xi)
xi, where RMS(xi) =

√√√√1

d

d∑
j=1

x
(j)
i

2
. (5)

Here, xi ∈ R1×d represents the input feature of the i-th token, d is the hidden dimension of the
language model, x̄i represents the output feature of the RMSLN for the i-th token, RMS(xi) denotes
the root mean square of xi, denotes the i-th element of, and γ is a learnable parameter.

Then, we analyze the decomposition of MHA, which is expressed as follows:
x̂i = cat(z1i , z

1
i , ..., z

H
i ) ·Wo, (6)

=

H∑
h

zhi ·Wh
o ,

=

H∑
h

 J∑
j

Ah
ij · x̄j · Ŵh

v

 ·Wh
o ,

=

J∑
j

H∑
h

Ah
ij · x̄j · Ŵh

v ·Wh
o ,

=

J∑
j

(
γ

RMS(xj)

H∑
h

Ah
ij · xj · Ŵh

v ·Wh
o

)
.

Here, x̂i represents the feature of the i-th token in the output of MHA, Ah
ij denotes the i-th row

and j-th column element of the attention matrix for the h-th head, zhi represents the output after
aggregating the values of other tokens for the i-th token in the h-th head. Wv ∈ Rd×(M×E) is the
value projection matrix of MHA, where M is the number of heads for the keys and values, and E

is the dimension of each head. Ŵv ∈ Rd×(H×E) represents the matrix obtained by replicating Wv

of H/M times and then concatenating, and H is the number of heads for the query. Ŵh
v ∈ Rd×E

represents the h-th block of Wv . Wo ∈ R(H×E)×d represents the output projection matrix of MHA,
and Wh

o ∈ RE×d represents the h-th block of Wo.

Since there is a residual connection in parallel with MHA and LN, the output of the attention block
can be expressed as:

yi = x̂i + xi =

J∑
j

(
γ

RMS(xj)

H∑
h

Ah
ij · xj · Ŵh

v ·Wh
o

)
+ xi, (7)

where yi represents the output feature of the i-th token in the attention block.

In summary, the decomposition expressions for Llama and Qwen are as follows:

Ti(xj) =

{
γ

RMS(xj)

∑H
h Ah

ij · xj · Ŵh
v ·Wh

o + xj if i = j
γ

RMS(xj)

∑H
h Ah

ij · xj · Ŵh
v ·Wh

o if i ̸= j,
(8)

where Ti(xj) represents the term associated with xj obtained after decomposing the output feature
of the attention block for the i-th token.
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D.2 Decomposition for Gemma

As shown in Figure 2(c), Gemma2’s differences from Llama and Qwen are mainly in two aspects: 1)
Its LN is also RMSLN, but its learnable parameters differ, as it includes a fixed bias of size 1; 2) Its
attention block has two LNs, one before and one after MHA. Therefore, the expression for the first
LN is:

x̄i = RMSLN(xi) =
1 + γ1

RMS(xi)
xi, where RMS(xi) =

√√√√1

d

d∑
j=1

x
(j)
i

2
. (9)

Here, γ1 represents the learnable parameter of the first LN.

The decomposition of MHA is as follows:

x̂i =

J∑
j

(
1 + γ1

RMS(xj)

H∑
h

Ah
ij · xj · Ŵh

v ·Wh
o

)
. (10)

The output of the attention block can be expressed as:

yi = RMSLN(x̂i) + xi = RMSLN

 J∑
j
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v ·Wh
o

)+ xi (11)
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where γ1 represents the learnable parameter of the second LN.

In summary, the decomposition expressions for Gemma is as follows:

Ti(xj) =

{
(1+γ1)·(1+γ2)

RMS(x̂i)·RMS(xj)

∑H
h Ah

ij · xj · Ŵh
v ·Wh

o + xi if i = j
(1+γ1)·(1+γ2)

RMS(x̂i)·RMS(xj)

∑H
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ij · xj · Ŵh
v ·Wh

o if i ̸= j.
(12)
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E Datasets

This paper employs the following five datasets, which are introduced below.

CoNLL2012 [54]. It is a multilingual, multi-genre, and multi-task dataset. It supports tasks such
as Named Entity Recognition (NER), part-of-speech tagging, coreference resolution, and more. We
utilize the corpus of this dataset in the quantitative analysis experiments of OLAS (§3.3.1) and employ
both the corpus and its NER annotations in the experiments exploring the cross-model transferability
of TOA on the NER task (§4.2). The dataset contains 1,940 documents in the training set and 222
documents in the test set. Each document has an average of 39 sentences.

UD-English-EWT v2.15 [15]. It is a subset of the Universal Dependencies project14, serves as a
key resource for dependency parsing. This corpus primarily consists of English texts sourced from
web-based content, including blogs, reviews, and social media posts. We utilize this dataset in the
experiments investigating the relationship between OLA and syntactic knowledge (§3.4), and the
experiments exploring the cross-model transferability of TOA on the DP task (§4.2). Its training set
contains 12,544 sentences, and the test set contains 2,077 sentences.

SemEval-2010 Task 8 [55]. It is a widely adopted benchmark dataset for relation extraction,
specifically designed for multi-way classification of semantic relations between pre-identified entities.
Each instance in the dataset is annotated with two entities and the semantic relation between them that
requires classification. We use the dataset in the experiments exploring the cross-model transferability
of TOA on the RE task (§4.2). Its training set contains 8,000 sentences, and the test set contains 2,717
sentences.

CoNLL2000 [56]. It serves as a widely adopted benchmark for POS tagging and text chunking tasks.
We use the dataset in the experiments exploring the cross-model transferability of TOA on the POS
task (§4.2). Its training set contains 8,937 sentences, and the test set contains 2,013 sentences.

IMDB [57]. It is a widely used dataset for binary sentiment classification, containing movie reviews
as its corpus. In the controlled experiments of the quantitative analysis for OLAS (§H), we utilized
the corpus from this dataset. Both its training and test sets contain 25,000 sentences each.

F Implementation Details of Quantitative Analysis of OLAS

We sequentially sampled 1000 sentences from the CoNLL-2012 [54] dataset, i.e., M in Equation 4
is 1000. Details about the dataset are in §E. We focus on the case where the source and target LMs
do not belong to the same series, i.e., S in Equation 4 is 4. For example, we use models of different
sizes from the Llama and Qwen series as the source models, and models from the Gemma series as
the target models. In this setup, there are significant differences in the research institutions, training
data, model architectures, and tokenizers of the source and target models. To mitigate the effects of
sentence length bias, we retained only the first 50 words of each sentence, including punctuation
marks. Each sentence was assigned a unique identifier ranging from 1 to 1000, which was used to
train the image classification model. For the image classification model, we utilized ResNet-18 [50]
with the input channels modified to 1 and the output layer dimension set to 1000. Due to a small
number of outliers that deviate noticeably from the overall distribution in both OLA and baseline
results, the overall feature distribution is not clearly visible, as shown in Figure 3 (a), (b), and (d). To
address this, we apply a consistent preprocessing procedure. Specifically, we calculate the mean µ
and standard deviation σ of each row, set outliers greater than µ+ 3σ to zero, and then normalize the
values by dividing by the row sum. Since the number of tokens obtained from sentence tokenization
may not exactly correspond to the number of words in the original sentence, we resize all OLA maps
to a 50 × 50 dimension. Additionally, as the OLA of CLMs is a lower triangular matrix, resizing
introduces non-zero values in the upper triangular area. To avoid leaking tokenized sentence length
information, we multiply the OLA by a lower triangular mask. Moreover, we employed common data
augmentation techniques, including Gaussian noise, temperature scaling perturbations, and random
highlighting. For each experimental setup, we trained with three learning rates: 1e-2, 5e-3, and 3e-3,
and report the best-performing results. All experiments were conducted on a single 40GB NVIDIA
A100 GPU.

14https://universaldependencies.org/
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G Implementation Details of Transferable OLA Adapter

In this section, we present the implementation details of TOA for the four tasks: RE, NER, DP, and
POS (§4.2). Since there are overlaps in the implementation details across these tasks, we consolidate
their common aspects in the subsection below titled “Common Implementation Details”. Additionally,
due to the significant overlap between the experiments investigating the relationship between OLA
and syntactic knowledge (§3.4) and the implementation of TOA on the DP task, these are discussed
within the DP task section.

G.1 Common Implementation Details

OLA Preprocessing. We apply the preprocessing operations described in §F to remove outliers and
normalize both the OLA and baseline outputs. The processed results are then concatenated along the
channel dimension to form the final input tensor. This tensor undergoes data augmentation using the
operations described in §F.

Feature Extractor in the Adapter. Considering that the semantics of attention are distributed across
rows and columns, where the i-th row represents the weights assigned to other tokens when the i-th
token, as a query, aggregates other tokens, and the i-th column represents the weights assigned to the
i-th token as a key when it is aggregated by other tokens, we use an axial transformer [58], which can
extract semantics across rows and columns, to compose the feature extractor in our OLA adapter. The
specific architecture of the feature extractor based on the axial transformer is as follows: the input
map X ∈ RC×L×L is first passed through a convolutional layer with a kernel size of 1×1 to increase
its dimensionality to 768. It is then processed by several layers of axial transformers to produce
the feature map Fm ∈ R768×L×L, where C represents the number of channels and L represents the
number of tokens. The diagonal features of are extracted to form the feature sequence Fl ∈ R768×L.

Hyperparameters. For the CLMs experiments, the axial transformer consists of 5 layers, while
for the MLMs experiments, it consists of 3 layers. The number of epochs is set to 15. For each
experimental setup, we trained with three learning rates: 1e-4, 3e-5, and 1e-5, and report the best-
performing results.

G.2 Task-Specific Implementation Details

RE. This task requires predicting the relationship between two entities in a sentence. Therefore, the
adapter is structured to extract features of entity 1 and entity 2 from the feature extractor’s output
Fl based on their annotated positions, concatenate these features, feed them into a fully connected
layer, and produce the output y ∈ R19, where 19 denotes the number of relationship categories. The
evaluation metric is the relationship classification accuracy.

NER. This task requires identifying entities in a sentence, where we convert the NER task into a
sequence labeling task using BIO tagging [59]. Therefore, the adapter is structured to pass the feature
extractor’s output Fl through a fully connected layer, producing the output y ∈ R37×L, where 37
denotes the number of BIO tag categories. The evaluation metric is the F1 score.

DP. This task requires identifying the head (governor) of each word in a sentence and its corresponding
dependency relation. Therefore, the adapter is structured to pass the feature extractor’s output Fl

through two separate MLP+biaffine modules [60], producing two outputs: y1 ∈ RL×L for predicting
the head of each token, and y2 ∈ R55×L×L for predicting the dependency relation between each
token and its head. Here, 55 denotes the number of dependency relation categories. The evaluation
metrics are UAS (Unlabeled Attachment Score, measuring accuracy of head prediction without
relation labels) and LAS (Labeled Attachment Score, measuring accuracy of both head and relation
prediction).

POS. This task requires identifying the POS for each word in a sentence. Therefore, the adapter is
structured to pass the feature extractor’s output Fl through a fully connected layer, producing the
output y ∈ R45×L, where 45 denotes the number of POS categories. The evaluation metric is the
POS classification accuracy.
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H Experimental Results with Controlled Dataset and Preprocessing

Controlled Dataset Experiment. When validating OLAS in §3.3.1, we sequentially selected the first
1,000 sentences of length 50 from CoNLL-2012. This approach avoids subjective bias through manual
selection and ensures reproducible stability compared to random sampling. To verify whether the data
selection generalizes to broader scenarios, we extended the experiments presented in Table 1 with the
following three settings: (1) Replacing CoNLL-2012 with the IMDB dataset [57], (2) Increasing the
sentence count from 1,000 to 2,000, and (3) Extending the sentence length from 50 to 80 words. As
shown in Table 8, while experimental results vary across different data settings—primarily due to
inherent differences in data similarity between datasets—the consistently high performance under
all configurations further validates the OLAS findings reported in the main text, demonstrating
their reproducibility across diverse data settings.

Data Augmentation Ablation Study. Our data preprocessing pipeline consists of three main steps:
(1) Outlier Removal: Remove data points beyond three standard from row means. As shown in Figure
3, this prevents attention map suppression by extreme values in both OLA and baselines, ensuring
stable training of the visual model. (2) OLA Size Standardization: Unify OLA dimensions across text
sources to eliminate size-related information leakage, forcing the visual model to rely solely on visual
features. (3) Data Augmentation: In our qualitative analysis, OLA generated by different LMs for the
same text are grouped into one class for training the image classifier, resulting in only four samples
per class (equal to the number of source models). Common augmentation are applied to alleviate
overfitting in the visual model. Both outlier removal and OLA size standardization are fair and
necessary operations. To verify whether the optional data augmentation introduces unintended bias,
we conducted an ablation study (Table 9). Comparisons with Table 1 in the main text reveal that while
augmentation moderately reduces overfitting and improves classifier accuracy, removing it does
not alter our core conclusion—OLAs still exhibit the most pronounced similarity patterns.

Table 8: Quantitative OLAS analysis under three
data settings. Rows 4–6: Results of dataset sub-
stitution (CoNLL-2012 → IMDb); Rows 8–10:
Sentence count adjustments (1k → 2k); Rows
12–14: Sentence length extensions (50 → 80
words).

Source L-3b, L-8b,
G-2b, G-9b

L-3b, L-8b,
Q-1b5, Q-7b

Q-1b5, Q-7b,
G-2b, G-9b

Target Q-1b5 Q-7b G-2b G-9b L-3b L-8b

Dataset

1st 80.00 79.50 84.00 84.10 97.00 96.20
2nd 70.60 65.00 77.90 73.00 91.50 92.60
3rd 66.90 57.30 73.10 68.70 89.20 88.30

Data Num

1st 72.80 64.35 86.25 83.05 93.55 94.15
2nd 61.00 45.40 79.40 77.30 88.05 87.25
3rd 63.10 33.85 77.05 74.40 85.50 84.95

Data Len

1st 62.60 60.30 91.20 87.90 90.10 87.20
2nd 58.60 42.20 97.70 96.60 95.00 93.80
3rd 53.80 25.50 85.70 84.90 92.80 92.00

Table 9: OLAS Quantitative Evaluation Results
Without Data Augmentation.

Source L-3b, L-8b,
G-2b, G-9b

L-3b, L-8b,
Q-1b5, Q-7b

Q-1b5, Q-7b,
G-2b, G-9b

Target Q-1b5 Q-7b G-2b G-9b L-3b L-8b

Rollout 20.30 7.10 31.30 16.10 48.20 37.30
IRNL 8.90 5.00 47.10 57.50 70.60 64.80
ALTI 4.60 3.20 55.60 56.90 64.00 68.20

1st 41.00 40.00 86.20 60.20 91.80 89.60
2nd 50.30 40.80 86.50 76.80 85.90 83.90
3rd 59.30 44.20 77.40 75.20 86.20 81.90
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I Experimental Results with Controlled Parameters

To ensure that the results of our quantitative analysis experiments (§3.3.1) reflect the inherent
properties of LMs (i.e., the commonality of contextual aggregation patterns learned from large
corpora) rather than confounds caused by data or other experimental biases, we conducted the
following two controlled experiments:

• Perturbations on Source Model Parameters: We perturbed the parameters of the source
LMs while keeping the target LM unchanged and repeated the OLAS quantitative analysis
experiment (Table 1). The perturbations included two types: Random (randomizing model
parameters) and Disorder (shuffling the order of model layers). As shown in Table 10, nearly
no OLA similarity was observed between perturbed and normal models. This indicates that
the OLAS phenomenon is intrinsically tied to pre-trained model parameters, rather
than arising from other experimental biases.

• Exploring OLAS Across Structurally Identical Models with Varied Parameters: Taking
Qwen2-1.5B as an example, the source models included four perturbed variants: Q-r1, Q-r2
(randomized parameters under different random seeds), and Q-d1, Q-d2 (disordered layers
under different random seeds). The target models included the unperturbed Qwen2-1.5B
and additional perturbed variants (Q-d3 and Q-r3). Under the configuration of the source
and target LMs, we conducted the OLAS quantitative analysis experiments similar to those
presented in Table 1. Because the source and target models share identical architectures, this
stricter experimental setup isolates the impact of parameter variations. We further extended
this analysis to Gemma2-9B and LLaMA3.2-3B. As shown in Table 11, no OLA similarity
was observed between source and target models in any scenario, further supporting the
conclusion that OLAS depends on pre-trained parameters and eliminating confounds
from other experimental setups.

Table 10: Results of Perturbations on Source Model Parameters. Rows 4–6: Random (parameter
randomization); Rows 8–10: Disorder (layer shuffling).

Source L-3b, L-8b,
G-2b, G-9b

L-3b, L-8b,
Q-1b5, Q-7b

Q-1b5, Q-7b,
G-2b, G-9b

Target Q-1b5 Q-7b G-2b G-9b L-3b L-8b

Random

1st 0.90 0.90 0.30 0.20 0.90 0.50
2nd 1.20 1.00 0.90 1.60 0.40 1.30
3rd 1.30 0.90 1.00 1.40 0.90 1.10

Disorder

1st 0.70 0.60 1.20 1.30 1.10 0.80
2nd 1.30 0.60 1.20 1.40 0.90 1.40
3rd 0.80 1.00 0.90 1.50 1.10 1.60

Table 11: Results of exploring OLAS across structurally identical models with varied parameters.

Source Q-r1, Q-r2,
Q-d1, Q-d2

G-r1, G-r2,
G-d1, G-d2

L-r1, L-r2,
L-d1, L-d2

Target Q-1b5 Q-r3 Q-d3 G-2b G-r3 G-d3 L-3b L-r3 L-d3

1st 0.60 1.90 1.30 0.30 1.80 3.80 0.40 1.20 2.50
2nd 1.50 3.10 1.30 1.80 1.40 3.60 0.40 2.50 2.70
3rd 2.70 1.80 2.80 1.20 1.80 3.90 0.10 3.40 3.30
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J Additional Result of Quantitative Analysis Based on Image Similarity
Retrieval

We conducted retrieval-based quantitative evaluations on the cross-model similarity of OLA across
first-, second-, and third-order configurations, with the results presented in Table 12.

Table 12: Retrieval-based quantitative evaluation of first- to third-order OLA cross-model similarity.
Rows denote source LMs, columns represent target LMs, with entries reporting Hits@1 / Hits@5
metrics.

(a) CLM Results.

Src\Tgt Q-1b5 G-2b L-3b

1st

Q-1b5 - 83.60 / 89.40 95.90 / 97.00
G-2b 83.20 / 89.30 - 95.30 / 97.10
L-3b 92.90 / 96.10 94.10 / 96.50 -

2nd

Q-1b5 - 75.20 / 83.60 91.50 / 95.60
G-2b 74.20 / 82.50 - 93.60 / 96.40
L-3b 85.40 / 92.60 91.80 / 95.20 -

3rd

Q-1b5 - 57.10 / 72.00 69.90 / 88.40
G-2b 58.30 / 71.90 - 89.90 / 94.60
L-3b 64.40 / 81.60 86.40 / 92.90 -

(b) MLM Results.

Src\Tgt B-b R-b E-b

1st

B-b - 51.90 / 58.80 91.60 / 94.90
R-b 75.90 / 83.90 - 71.70 / 80.20
E-b 92.40 / 96.00 67.40 / 72.90 -

2nd

B-b - 40.10 / 48.00 92.20 / 95.00
R-b 51.20 / 68.20 - 56.50 / 68.80
E-b 88.10 / 93.50 45.00 / 53.90 -

3rd

B-b - 25.60 / 36.00 85.70 / 93.10
R-b 48.10 / 63.90 - 53.80 / 66.80
E-b 85.70 / 93.00 26.90 / 40.10 -
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K Implementation Details of LLM Zero-Shot Evaluation

We use hand-crafted prompts to guide LMs in generating formatted outputs, then structure these
outputs according to rules to extract their predictions. The prompt templates for RE and NER tasks
are presented in Table 13, while those for DP and POS tasks are shown in Table 14.

Table 13: Prompt templates for RE and NER tasks.
Task Model type Prompt template

RE MLM

Act as a relation extraction tagging tool. Find the relationship
between e1 and e2 in the given
sentence by choosing the correct option number from
{REL_LABELS_STR}.

Sentence: {sentence}.
e1: {e1}
e2: {e2}
Response: The relationship number is {mask_str}.

CLM

Act as a relation extraction tagging tool. Find the relationship
between e1 and e2 in the given
sentence according to these rules:
1. Choose the correct option number from {REL_LABELS_STR}.
2. Do not explain or add extra text. Only provide the option number.

Sentence: {sentence}.
e1: {e1}
e2: {e2}
Response:

NER MLM

Act as a named entity recognition tagging tool. Given the
sentence: "{sentence}", determine whether the span "{span}"
is a named entity.
If not a named entity, respond strictly with "none".
If it is a named entity, select the correct category from
{NER_LABELS_STR1} and respond only with the
corresponding number.

Response: {mask_str}.

CLM

Act as a named entity recognition tagging tool. Find all
entities and their classes in a sentence
according to these rules:
1. Choose the correct named entity class from
{NER_LABELS_STR2}.
2. Do not explain or add extra text.

Sentence: {sentence}.
Response as tuples, and each tuple must have exactly two
elements: first element is the named entity text (as a string),
second element is the named entity class (as a string),
e.g. (<entity1>, <class1>), (<entity2>, <class2>), ...
Response:
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Table 14: Prompt templates for DP and POS tasks.
Task Model type Prompt template

DP MLM

Act as a dependency relation analyzing tool. Find the head and dependency
relation of the given word in a sentence according to these rules:
1. Choose the correct head number from {words_map}.
2. Choose the correct dependency relation from {REL_LABELS_STR}.

Sentence: {" ".join(words)}
Word: {word}
Response: the head number is {mask_str}, the dependency relation is
{mask_str}.

CLM

Act as a dependency relation analyzing tool. Find the head and dependency
relation of the
given word in a sentence according to these rules:
1. Choose the correct head number from {words_map}.
2. Choose the correct dependency relation from {REL_LABELS_STR}.
3. Do not explain or add extra text.

Sentence: {" ".join(words)}
Word: {word}
Response as a tuple which has exactly two elements: first element is the
head number (as a int), second element is the dependency relation (as a str),
e.g. (<head>, <relation>)
Response:

POS MLM

Act as a part-of-speech (POS) tagging tool. Find the POS tag number of the
given word in the given sentence by choosing the correct option number
from {POS_LABELS_STR}.

Sentence: {sentence}.
Word: {word}.
Response: The POS tag number is {mask_str}.

CLM

Act as a part-of-speech (POS) tagging tool. Find the POS tag of the given
word in the given sentence according to these rules:
1. Choose the correct option number from {POS_LABELS_STR}.
2. Do not explain or add extra text. Only provide the option number.

Sentence: {sentence}.
Word: {word}
Response:
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L Additional Experimental Result of TOA

We investigate the cross-model generalization ability of TOA on the DP task and POS task. The
experimental results are presented in Table 15 and Table 16. The comprehensive experimental results
further support our conclusions in §4.2.

Table 15: Cross-Model Transferability of TOA on the DP Task. Entries represent UAS/LAS score
(unit: %). Best performance is bolded; scores exceeding the zero-shot baseline are underlined.

(a) CLM Results.

Src\Tgt Q-1b5 Q-7b G-2b G-9b L-3b L-8b

Zero-shot

- 6.17/0.43 8.66/2.57 7.36/2.41 8.24/2.97 7.38/1.15 8.79/3.38

TOA (Ours)

Q-1b5 65.44/50.48 45.96/27.32 45.32/26.83 38.97/18.77 49.02/31.11 45.24/26.70
Q-7b 52.63/33.69 61.93/47.24 35.94/17.44 31.45/13.74 45.87/24.88 47.95/26.93
G-2b 40.00/21.61 32.47/14.85 62.53/46.13 50.27/31.54 48.77/30.54 43.36/24.62
G-9b 36.93/16.81 30.48/12.61 51.62/32.75 61.05/44.27 44.49/24.78 40.18/20.35
L-3b 48.02/29.54 43.82/23.83 50.22/31.61 40.82/19.83 62.95/47.40 57.46/40.48
L-8b 48.44/30.35 47.03/27.83 46.87/28.05 35.08/16.23 58.53/42.86 60.99/45.77

(b) MLM Results.

Src\Tgt B-b B-l R-b R-l E-b E-l

Zero-shot

- 0.47/0.00 0.60/0.00 0.86/0.00 1.65/0.00 4.33/0.00 3.82/0.00

TOA (Ours)

B-b 81.15/72.07 71.19/57.62 58.02/38.10 58.14/37.98 71.11/55.90 71.02/55.28
B-l 67.38/52.89 80.95/71.15 43.77/20.54 54.31/32.38 59.05/37.95 62.52/41.87
R-b 65.70/51.30 52.50/36.55 78.35/67.51 63.90/45.64 68.49/54.21 69.64/55.15
R-l 64.58/49.80 58.91/43.45 64.11/48.20 78.92/68.23 59.01/42.04 55.65/37.11
E-b 72.15/58.83 62.84/46.78 62.52/45.14 56.66/36.49 80.33/70.93 76.84/65.45
E-l 68.88/55.76 63.26/47.87 64.45/48.27 53.35/33.46 73.92/61.98 80.77/71.24

Table 16: Cross-Model Transferability of TOA on the POS Task. Entries represent accuracy (unit:
%). Best performance is bolded; scores exceeding the zero-shot baseline are underlined.

(a) CLM Results.

Src\Tgt Q-1b5 Q-7b G-2b G-9b L-3b L-8b

Zero-shot

- 3.88 22.76 7.77 59.77 22.05 39.00

TOA (Ours)

Q-1b5 74.30 54.63 50.94 34.83 53.82 52.21
Q-7b 60.13 73.49 42.80 31.62 47.46 50.83
G-2b 53.03 41.79 73.78 57.45 51.52 47.92
G-9b 43.81 39.22 62.90 73.02 48.62 46.64
L-3b 56.96 50.48 57.18 45.09 73.20 68.35
L-8b 54.89 53.42 51.37 41.05 67.85 70.99

(b) MLM Results.

Src\Tgt B-b B-l R-b R-l E-b E-l

Zero-shot

- 0.44 0.66 0.23 0.65 0.67 0.60

TOA (Ours)

B-b 85.29 67.91 57.46 40.70 65.10 68.70
B-l 61.84 83.37 37.86 37.62 49.55 47.16
R-b 58.31 52.13 83.35 60.63 54.16 58.20
R-l 51.40 50.12 66.92 80.31 47.81 51.58
E-b 66.56 53.13 54.36 37.03 84.31 74.53
E-l 62.47 55.61 54.26 38.64 69.65 85.28

To conduct a more comprehensive evaluation of TOA’s performance, we compare it with few-shot
prompting and Cross-Model Control (CMC) [44]. The few-shot templates were constructed by
adding the first five samples from the training set as demonstrations to the zero-shot templates
(§K). CMC trains a delta LM and integrates its output with that of a LLM to enhance the latter’s
performance. Although this delta LM shares the same input-output format as the LLM and does not
process features (thus not qualifying as an adapter), it has demonstrated considerable capability in
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cross-model knowledge transfer. Therefore, we include it in the comparison. For the experimental
setup, we adopt the widely used NER task and CLMs for evaluation. The results are presented in
Table 17.

Table 17: Comparative experimental results on the NER Task. Entries represent F1 score (unit: %).
Best performance is bolded.

Src\Tgt Q-1b5 Q-7b G-2b G-9b L-3b L-8b

Zero-shot

- 5.35 28.21 1.45 53.82 13.24 22.12

Few-shot

- 9.21 29.33 7.10 54.23 15.31 24.71

CMC

Q-1b5 8.99 21.09 15.90 44.78 14.96 19.99
G-2b 1.03 7.19 29.78 39.96 1.71 1.93
L-3b 13.79 22.13 18.42 42.18 18.51 23.51

TOA (Ours)

Q-1b5 53.81 30.99 21.08 9.58 29.24 26.94
G-2b 23.12 12.47 54.53 24.31 22.64 15.80
L-3b 27.48 21.79 24.79 14.05 54.51 45.24

To better analyze the reasons why LLMs underperform on fundamental NLP tasks, we have showcased
several cases below using the NER task as an example. For Case 1, we show the full prompt (including
the template from §K). For other cases, we display only the input sentence and model output; their
prompts were generated by inserting the input after the template’s ’Sentence:’.

Case1 (Q-7b):

Prompt: Act as a named entity recognition tagging tool. Find all entities
and their classes in a sentence according to these rules: 1.Choose the
correct named entity class from [PERSON, NORP, FACILITY, ORGANIZATION,
Geo-Political Entity, LOCATION, PRODUCT, DATE, TIME, PERCENT, MONEY,
QUANTITY, ORDINAL, CARDINAL, EVENT, WORK_OF_ART, LAW, LANGUAGE]. 2.Do
not explain or add extra text. Sentence: Well , I especially want to
know , ha , how the two of you found out the news on the day of the
accident ? Response as tuples, and each tuple must have exactly two
elements: first element is the named entity text (as a string), second
element is the named entity class (as a string), e.g. (<entity1>,
<class1>), (<entity2>, <class2>), ... Response:

Sentence: Well , I especially want to know , ha , how the two of you found
out the news on the day of the accident ?.

Lables: (two, CARDINAL)
Outputs: (I, PERSON), (two of you, GROUP), (the news, PRODUCT), (the day,

DATE), (the accident, EVENT)

Case2 (L-8b):

Sentence: From our perspective as media , I think it was precisely by going
through those breaking - in , trials that we could be so calm in
handling such an emergency today , ah , and give everyone the most
effective announcements and notifications , and instructions .

Lables: (today, DATE)
Outputs: (‘our perspective’, ‘EVENT’) (‘as media’, ‘FACILITY’) (‘I’,

‘PERSON’) (‘it’, ‘PERSON’) (‘those breaking - in , trials’, ‘EVENT’)
(‘today’, ‘DATE’) (‘ah’, ‘PERSON’)

Case3 (Q-7b):
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Sentence: Well , like Professor Zhou , I also received this news , ha ,
through a mobile phone SMS .

Lables: (Zhou, PERSON)
Outputs: (‘Professor Zhou’, PERSON), (‘news’, EVENT), (‘mobile phone SMS’,

PRODUCT)

Case4 (L-8b):

Sentence: I think , in comparison to China , we should say that urbanization
in foreign countries developed earlier and is more widespread .

Lables: (China, Geo-Political Entity)
Outputs: (‘China’, ‘Geo-Political Entity’),(‘urbanization’,

‘EVENT’),(‘foreign countries’, ‘LOCATION’)

Analysis of the zero-shot and few-shot performance. 1) Using NER as an example, LMs may not
fully grasp certain nuances of the task. For instance (Cases 1 & 2), they often incorrectly predict
pronouns like ‘I’ or ‘you’ as named entities. They also exhibit counterintuitive errors, such as labeling
phrases like ‘our perspective’ as an ‘EVENT’. 2) LLMs sometimes generate outputs that seem
reasonable but diverge from dataset labels (Cases 3 & 4). This discrepancy resembles a mismatch
with human labeling preferences. For example, where the dataset annotates ‘Zhou’ as ‘Person’,
LMs prefer the full span ‘Professor Zhou’. Similarly, LMs may classify ‘mobile phone SMS’ as
‘PRODUCT’, while the original labels do not. These represent comprehensible deviations from
dataset conventions, rather than fundamental errors. 3) Few-shot prompting improves modestly over
zero-shot, but gains remain limited. TOA typically outperforms both (Table 17). Smaller models
(Qwen-1.5B, Gemma-2B, LLaMA-3B) benefit more from few-shot examples than larger counterparts
(Qwen-7B, Gemma-9B, LLaMA-8B), likely because the limited information from only five examples
adds negligible value to large models with extensive pre-trained knowledge.

Analysis of CMC Results: 1) CMC enhances an LM’s performance by training a delta LM that
concurrently reasons on the same input text alongside the source LM and integrates their output logits.
Furthermore, this delta LM can be applied to enhance other target LMs, demonstrating promising
results in instruction-following tasks. However, they utilized a delta LM (TinyLlama) and source
LM (LLaMA2-7B) with identical tokenizers, and they only explored scenarios where the delta LM’s
tokenizer differed from the target LM’s (e.g., LLaMA2-70B, Mistral-7B) via token mapping based
on metrics like edit distance. We observed that when the source LM (e.g., Qwen-1.5B) and its delta
LM (e.g., TinyLlama) employ different tokenizers, the knowledge transfer from the delta LM to
target LMs faces challenges, leading to suboptimal performance. This performance gap likely arises
from mismatches in tokenizer mapping between the source/target LMs and the delta LM, which can
cause a distributional discrepancy in the tokens processed by the delta LM during both training and
inference. Since the OLA of two LMs with different tokenizers remain similar, we did not encounter
this problem. 2) We found that incorporating CMC may introduce previously absent formatting
issues, such as nested parentheses, extra spaces, or superfluous commas. These artifacts somewhat
lowered its overall score.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims we make in the abstract and introduction accurately reflect the
contribution and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We analyze the limitations in §4.2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: In §3.2 and §3.3, we formally demonstrate the existence of the OLAS phe-
nomenon, and in §3.4, we provide proofs that OLA encodes syntactic knowledge.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In §F and §G, we provide a comprehensive description of our implementation
details. We will open-source our code to ensure stable and straightforward reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The paper uses publicly available open-source models and datasets, but does
not provide open access to the code used for the experiments. We plan to release code
upon publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In §F and §G, we present comprehensive implementation details including
model architectures, hyperparameters, evaluation metrics, and preprocessing procedures.
The dataset configurations are documented in §E, with §C detailing the LMs deployed in
our framework.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In §3.3, we report averaged results across three independent trials with distinct
random seeds for the quantitative analysis of OLAS.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the computational resources required for the experiments in §F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research conducted in the paper fully conforms to the NeurIPS Code
of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The research explores commonality in LLMs, with no discernible direct effects
on societal contexts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Our paper has no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, the paper properly credits the creators or original owners of assets and
respects the license and terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve humans in our research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are a primary research subject in this paper, with detailed descriptions
of the methodology and implementation provided in §3 and §C.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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