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Abstract

Graph Neural Networks (GNNs) and their message passing framework that leverages both
structural and feature information, have become a standard method for solving graph-based
machine learning problems. However, these approaches still struggle to generalise well be-
yond datasets that exhibit strong homophily, where nodes of the same class tend to connect.
This limitation has led to the development of complex neural architectures that pose chal-
lenges in terms of efficiency and scalability. In response to these limitations, we focus
on simpler and more scalable approaches and introduce Graph-aware Logistic Regression
(GLR), a non-neural model designed for node classification tasks. Unlike traditional graph
algorithms that use only a fraction of the information accessible to GNNs, our proposed
model simultaneously leverages both node features and the relationships between entities.
However instead of relying on message passing, our approach encodes each node’s relation-
ships as an additional feature vector, which is then combined with the node’s self attributes.
Extensive experimental results, conducted within a rigorous evaluation framework, show
that our proposed GLR approach outperforms both foundational and sophisticated state-
of-the-art GNN models in node classification tasks. Going beyond the traditional limited
benchmarks, our experiments indicate that GLR increases generalisation ability while reach-
ing performance gains in computation time up to two orders of magnitude compared to it
best neural competitor.

1 Introduction

The recent interest in Graph Neural Networks (GNNs) has led to the emergence of a huge amount of
novel approaches to tackle different downstream machine learning tasks on relational data, such as node
classification, graph classification, or link prediction (Gasteiger et al., 2019; Xu et al., 2018; Wu et al., 2019;
Chen et al., 2020; Zhu et al., 2020; Wu et al., 2021). Because they can learn complex representations by
leveraging elements from both the graph structure and the node attributes, these approaches have been
widely adopted for real-world network analysis, where information spans across multiple dimensions (Zhou
et al., 2020).

However, recent research has shown that GNNs struggle to generalise well across datasets with diverse
characteristics (Zhu et al., 2020; Li et al., 2021; Maekawa et al., 2022). In particular, extending beyond
networks exhibiting strong homophily, where nodes with similar labels tend to connect, remains challenging
and has led to the design of complex model architectures (Zhu et al., 2020; Du et al., 2022; Ma et al., 2022;
Wang et al., 2023; Wu et al., 2023). These sophisticated neural approaches result in higher computational
complexity and an increased number of hyperparameter choices. Despite efforts to reduce the complexity
of GNNs (Wu et al., 2019; He et al., 2020; Lim et al., 2021a; Mao et al., 2021), neural approaches still
struggle to address both scalability and generalisability challenges simultaneously. In contrast, traditional
graph algorithms, such as diffusion models (Zhu, 2005) and linear classifiers (Zheleva & Getoor, 2009),
offer advantages in terms of simplicity and efficiency. However, their overly simplistic architecture typically
harness only a fraction of the information accessible to GNNs, focusing solely on either the graph topology
or the node attributes, but not both. This limitation prevents them for being strong competitor to neural
approaches, causing researchers to overlook them in recent benchmarks.
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Figure 1: Overview of our Graph-aware Logistic Regression (GLR) method for node classification. We
consider both the topological and attribute information by concatenating (||) the graph adjacency and
feature matrices. We then feed the result into a logistic regression f .

In this work, propose combining the computational efficiency of traditional graph methods with the holistic
capabilities of GNNs to address the node classification task. This requires bridging the gap in the informa-
tion accessible to both approaches. To this end, we introduce Graph-aware Logistic Regression (GLR), a
non-neural model that combines information from various aspects of the graph through a simple yet efficient
learning process for solving node classification problems. Specifically, GLR represents each node’s neighbour-
hood within the original graph as a feature vector, which is then combined with the node’s original attributes
before being fed into a simple non-neural model, as illustrated in Figure 1. Similar to recent GNNs, our
method leverages information from multiple levels of the original graph. However, unlike neural methods,
GLR offers significant benefits in terms of simplicity, computational efficiency, and ease of hyperparameter
tuning.

We mitigate common pitfalls in GNN evaluation (Aleksandar & Günnemann, 2018; Zhu et al., 2020; You
et al., 2020; Platonov et al., 2023), such as limited diversity in benchmark network characteristics and the
absence of non-neural baselines, through careful selection of datasets that vary widely in size, density, and
homophily. Additionally, we explore a range of non-neural baselines to compare against GNNs. Through
extensive experiments conducted under this setting, we show that GLR outperforms both foundational
and sophisticated GNNs while achieving higher generalisation ability. Moreover, our approach reduces
computation time reduction up to two orders of magnitude compared to its best neural competitor.

Finally, we conduct an in-depth analysis of performance by examining the graph homophily property. We
show that the commonly used label homophily, is insufficient for explaining GNN performance. To address
this, we introduce feature homophily, which assesses the similarity of connected nodes based on their at-
tributes. We discuss how this property influences performance and emphasise the limitations of GNNs in
effectively leveraging node attributes when sufficiently informative. Overall, our contributions encompass
the following key aspects:

• We introduce Graph-aware Logistic Regression, a simple non-neural model in which we consider
both the graph topology and the node attributes as features to address node classification tasks.

• We show that, within a rigorous evaluation framework, our proposed approach outperforms GNNs
while achieving better generalisation ability.
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• We illustrate how GLR does not trade performance for computation time. This stands in contrast
to top-performing GNNs, which face scalability issues, limiting their suitability for large-scale graph
analysis.

• We extend our analysis beyond the exclusive consideration of label homophily, and introduce feature
homophily to investigate the reasons of the performance of our approach.

2 Related Work

We briefly review some representative neural and non-neural models to address node classification. Addi-
tionally, we review existing work on the challenges of GNN evaluation.

2.1 Non-neural approaches

Early attempts to consider both the node features and the relational information led to iterative methods,
which involved handcrafting features to capture link patterns, such as node degree or the frequency of
specific labels among connected nodes (Neville & Jensen, 2000; Macskassy & Provost, 2003). However,
the heavy reliance of these approaches on heuristics for feature design limits their generalisation ability.
In contrast, random walk-based methods avoid these heuristics by exploiting spectral properties of matrix
representation of graphs. Approaches like the diffusion model (Zhu, 2005), label propagation (Raghavan
et al., 2007), or PageRank-based classifier (Lin & Cohen, 2010) have proven highly effective while requiring
limited computational resources. Nevertheless, these methods completely disregard feature information,
which is a key component of neural models.

2.2 Graph Neural Networks

Since the introduction of the Graph Convolutional Network (GCN) model (Kipf & Welling, 2017), numer-
ous variants implementing different forms of the message passing scheme have been proposed (Hamilton
et al., 2017; Velickovic et al., 2018; Gasteiger et al., 2019; Xu et al., 2018; Wu et al., 2019; Chen et al.,
2020). The k-hops neighbourhood aggregation mechanism common to these models is often considered as a
smoothing operation over node signals (Li et al., 2018; Liu et al., 2021), which explains GNN performance
gains over fully connected networks; since smoothing makes the features similar, connected nodes end up
with similar representations. Consequently, the inherent assumption in this kind of model is that of strong
label homophily. Therefore, recent works show how homophilous datasets favour GNN designs, such as the
ones frequently used in benchmarks, and that performance is dropping as soon as networks are showing
heterophily (Zhu et al., 2020; Lim et al., 2021b). To tackle this challenge and produce GNN architectures ca-
pable of generalising across diverse datasets, specialised GNN models have been introduced (Zhu et al., 2020;
Du et al., 2022; Ma et al., 2022; Wang et al., 2023; Guo et al., 2023; Wu et al., 2023). However, the pursuit
of a combination of performance and generalisation has led to increased complexity and computational cost
for these neural models.

In contrast with this line of work, some efforts have been made to design simpler neural architectures
to reduce training costs and improve scalability. For instance, Wu et al. (2019) developed SGC, showing
that removing all but the last non-linearity in GNNs still achieves competitive results. However, the SGC
evaluation does not address generalisation issues that may arise with diverse homophily settings. Huang
et al. (2020) showed that combining shallow neural models with traditional label propagation (LP) algorithms
can matches state-of-the-art GNN performance. Zhong et al. (2022) further modify LP algorithm to address
graph machine learning tasks under heterophily settings. LINKX Lim et al. (2021a) relies a series of Multi-
Layer Perceptrons to separately represent the graph and feature matrices. Nevertheless, their study focuses
solely on heterophilous datasets, leaving questions about generalisation ability.

2.3 Evaluation frameworks

Design choices for evaluation frameworks can influence the assessment of model performance. For example,
different choices of train-test splits for the same datasets can result in important shifts in the overall rankings
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of GNN models (Aleksandar & Günnemann, 2018). Limited diversity in dataset characteristics can result
in model overspecialisation, such as the overfitting of GNNs to homophilous graphs, making it difficult to
accurately evaluate progress (Hu et al., 2020; Palowitch et al., 2022). Attempts to avoid such pitfalls consist
in using synthetic graph generator in evaluation procedures (Maekawa et al., 2022). However, Liu et al.
(2022) have emphasised how such synthetic graphs can not mimic the full complexity of real-world ones.

In this work, we go beyond the limitations in current evaluation frameworks and propose to assess model
performance on a broad spectrum of real-world networks with diverse characteristics considering size, density,
and homophily.

3 Preliminaries

3.1 Problem definition

We consider an attributed graph as a tuple G = (V,E,X), where V is a set of vertices, E ⊆ V × V is a
set of edges and X |V |×L an attribute matrix assigning L numerical attributes to each node in the graph.
We denote with n = |V | the total number of nodes and with m = |E| the total number of edges. The
neighbourhood of node u, denoted N (u) = {v : (u, v) ∈ E} is the set of nodes connected to u in G. Each
node is associated with a class label, and we denote with y ∈ {0, · · · , C}|V | the vector of node labels given
C classes.

We consider the task of transductive semi-supervised node classification in a graph (Yang et al., 2016). The
goal of such problem is to predict the labels of unlabeled nodes, having knowledge of all node relations
and features, but knowing only a subset of the node labels. More formally, we try to learn a mapping
f : V → {0, · · · , C}, given a set of labeled nodes {(u1, y1), (u2, y2), · · · (un, yn)} as training data.

3.2 Graph Neural Networks and message passing

GNNs aim to learn low-dimensional space representations hu ∈ Rw, with w ≪ L for each node u in a
graph. By encoding the similarities between the nodes, these representations should support the use of
downstream machine learning tasks, e.g., node classification, graph classification or link prediction. One of
the main advantages of GNNs is the use of both the graph structure and the feature matrix to compute
these representations; at each layer l, a node representation hl

u is computed via a message passing scheme,
which aggregates feature information from the direct neighbourhood of the node. Most of the recent GNN
models are thus derived from the following node update rule:

hl
N (u) = ϕ({hl−1

v ,∀v ∈ N (u)}) (1)

hl
u = ψ

(
hl−1

u , hl
N (u)

)
(2)

where N (u) denotes node u’s neighbourhood, ϕ is an aggregation function (e.g., average) and ψ is an update
function (e.g., sum).

3.3 Homophily in graphs

Homophily in graphs refers to the tendency for nodes to be connected if they share similar characteristics.
This graph property has recently been studied in the context of GNN performance. Several works emphasise
how GNN’s message passing scheme is inherently built upon a strong homophily assumption, hence the great
performance of these models on networks with such characteristics (Zhu et al., 2020; Maekawa et al., 2022;
Palowitch et al., 2022).

In recent GNNs literature, the term ‘homophily’ consistently refers to what we call label homophily, i.e.,
the tendency for each node in a graph to share its label with its neighbourhood. Formally, label homophily
Hl(u) of a node u is the proportion of its neighbourhood sharing its label (Du et al., 2022): Hl(u) =
1

du

∑
v∈N (u) 1(yu = yv), where du is the degree of node u. The label homophily of a graph is the average

label homophily over all nodes, Hl(G) = 1
|V |

∑
u∈V Hl(u).
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4 Graph-aware Logistic Regression: a Simple Non-Neural Model

In this section, we introduce Graph-aware Logistic Regression (GLR), our proposed non-neural approach
for node classification tasks. GLR builds upon a logistic regression model that leverages the entire set
of information available in attributed graphs; the topology of the graph as well as the node features, as
illustrated in Figure 1. By balancing weights between graph structure and feature information, GLR is
able to adapt to several kinds of graphs. Thanks to its simple architecture, it does not require extensive
hyperparameter optimisation and achieves high scalability compared to GNN-based approaches.

4.1 Naive logistic regression models for node classification

A naive approach to apply logistic regression to node classification is to disregard the graph topology and
only consider the node features. Under this setting, the class probability ŷu of a node u is computed using
its corresponding feature vector Xu:

ŷu = softmax(βTXu + β0) (3)

where β0 and β are learnable parameters. This approach treats the nodes as independent from each other,
resulting in a significant loss of information. In particular, in the case of label homophilous graphs, this
overlooked information is valuable and may greatly improve prediction accuracy.

An alternative approach involves fitting a logistic regression models directly on the topology of the graph.
For instance, one of the logistic regression-based LINK model (Zheleva & Getoor, 2009) computes the class
probability of a node u using its corresponding row in the adjacency matrix Au, in other words a binary
vector representing its neighbourhood:

ŷu = softmax(βTAu + β0) (4)

However, this simple baseline fails to leverage node features when they are sufficiently informative. In
particular, we show in Section 7 that, unlike commonly used datasets in the current GNN literature, such
as Cora, Pubmed and Citeseer, other networks may exhibit a strong correlation between node feature
similarity and node connectivity. In such cases, overlooking the node features represents a major loss of
information, potentially negatively affecting overall performance and generalisation ability.

4.2 Graph-aware logistic regression

We build GLR upon the combination of the two previous principles, and develop a logistic regression model
relying on both the graph topology and the node attributes. For this purpose, we compute the initial vector
representation hu of each node u by concatenating its neighbourhood representation from the adjacency
matrix Au, with its initial feature vector Xu. Then, we feed node u’s concatenated representation to a
logistic regression model. More formally, GLR predicts the class probability ŷu using a mapping in the form:

hu = CONCAT(Au, Xu)
ŷu = softmax(βThu + β0)

(5)

where CONCAT denotes a concatenation operation.

The intuition behind GLR is straightforward; the model learns to classify a node leveraging information
from both its connectivity within the graph and the features it holds, therefore, taking advantage of all the
information available in the graph, in a similar way to GNNs. However, unlike the message passing scheme,
the proposed architecture does not involves signal aggregation from direct neighbourhood. While such signal
aggregation can be desirable in homophilous graphs, it may introduce uninformative and noisy representa-
tions in heterophilous settings. We argue that augmenting a node’s feature vector with its neighbourhood
representation allows for more flexible adjustment during the learning process: in the presence of strong
homophily, our model may gives more importance to the neighbourhood structure, and conversely, more
emphasis will be placed on the node’s features in the presence of strong heterophily.
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Additionally, our approach has benefits considering computational cost. With GLR, the training time
complexity is in O(n(n + L)), where n + L corresponds to the number of parameters to learn. In GNNs,
one training pass of a single-layer network induces an O(mL + nLd) cost, with d the size of the hidden
dimension; m+L induced by the feature aggregation and nLd induced by the weight matrix multiplication.
Therefore, our approach becomes highly efficient for real-world networks where nodes hold large feature
vectors containing, for instance, bag-of-words representations of textual content (as for Wikipedia-based
networks).

Relationship to SGC. Our logistic regression based approach is closely related to the SGC model (Wu
et al., 2019). SGC implements a GNN where the non-linearities have been removed. Therefore, the class
prediction Ŷ for n nodes is obtained through a l-layer GNN in the form:

ŶSGC = softmax(S · · ·SSXΘ(1)Θ(2) · · · Θ(l)) (6)
⇔ ŶSGC = softmax(SlXΘ) (7)

where S denotes the normalized adjacency matrix of the graph, and Θ = Θ(1)Θ(2) · · · Θ(l) is the
reparametrised weight matrix. Consequently, the SGC model is a logistic regression model in which the
input matrix SlX is obtained through a preprocessing step corresponding to signal aggregation. In con-
strast, GLR does not rely on the homophily assumption implied by the signal aggregation mechanism, and
uses each node’s neighbourhood representation concatenated to its features as input to the logistic regression
model. This allows our model to leverage raw feature signal under heterophilous settings.

5 Limits of the Current Evaluation Procedures

In this section, we identify the practice patterns emerging from the rapid expansion of the GNN field, and
that could potentially mislead the readers in how they measure progress.

5.1 Consistency of evaluation framework

Training GNN models involves various choices for the experimental framework, such as the number of nodes in
the train-test splits, the selection of these nodes, the features used, hyperparameter values, the distribution
of labels per class, etc. Even though authors make efforts to adhere to previous recommendations for
these parameters, it is common that small variations occur from one framework to the next. This can
make it challenging to distinguish the progress achieved by a specific model architecture from changes in
the experimental setup. To illustrate this, authors in (Aleksandar & Günnemann, 2018) emphasis how
modifications in the choice of training and test splits could lead to drastic changes in model rankings.

5.2 Restricted number of datasets

Numerous works mention the limited number of datasets used to assess GNN performance (Hu et al.,
2020; Palowitch et al., 2022). Since the introduction of foundational models like GCN (Kipf & Welling,
2017), evaluation has predominantly relied on three well-known citation networks, namely Cora, Pubmed
and Citeseer (Yang et al., 2016). This practice is justified regarding the challenges and time investment
associated with creating new datasets. Moreover, maintaining continuity in the evaluation process requires
consistent dataset choices for fair comparisons between older and recent approaches.

However, over time, this practice reveals drawbacks, particularly the risk of overfitting to datasets (Palowitch
et al., 2022), especially when the same subset of nodes is re-used for training. Moreover, the lack of graph
diversity can overshadow the limitations of the evaluated models in terms of generalisation to more diverse
networks (Lipton & Steinhardt, 2019; Ferrari Dacrema et al., 2019). This trend has been observed with the
aforementioned citation networks (Zhu et al., 2020; Lim et al., 2021b); there is a strong assumption that
GNNs are highly effective on these datasets since their aggregation scheme design perfectly fits the high
degree of label homophily these networks exhibit (Zhu et al., 2020; Maekawa et al., 2022; Palowitch et al.,
2022).
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5.3 Lack of non-neural models in benchmarks

The early success of GNNs in outperforming non-neural baselines established them as new benchmarks (Kipf
& Welling, 2017; Velickovic et al., 2018). This phenomenon may explain why current GNN evaluation frame-
works seldom encompass comparisons with models beyond other GNN architectures or Multi-Layer Percep-
trons (MLPs). Moreover, when considered, non-neural baselines are often developed in their traditional form;
topological heuristics, such as diffusion models, do not leverage node features and feature-based approaches,
such as logistic regression models, completely discard graph topology.

We argue that these characteristics hinder non-neural models from emerging as strong competitors against
GNN approaches.

6 Experimental Design

In this section, we detail our proposition to overcome current GNN evaluation framework limitations, and
give information about both neural and non-neural models included in our benchmark. Detailed information
about datasets, models, and experimental settings are available in Appendices A, B, and C respectively.

6.1 A Fairer Evaluation Framework

To address one of the main pitfalls of GNN evaluation, i.e. the change of evaluation protocols over time,
we build a unified framework in which we test all models. In order to avoid the influence of train-test split
choice on model performance (Aleksandar & Günnemann, 2018), we apply k-fold cross validation, i.e. we
use k different training-test splits to estimate the performance of a model. We build each fold in a stratified
custom, ensuring that class proportions are maintained. Our procedure results in a total of k training and
testing experiments for each model and dataset. Moreover, to mitigate the potential impact of random
initialisation, which can occur with GNN models, we conduct each fold experiment three times and use the
average result. Then, we average test performance across all repetitions and folds to determine the model
performance. Finally, we ensure fair comparison between approaches by relying on fixed seeds to define the
k folds for all models.

To evaluate model generalisation ability, we go beyond the commonly used set of networks exhibiting high
label homophily, and include networks with larger variety of characteristics considering homophily, density,
or size.

6.2 Baseline models

We use the following GNNs and non-neural models as baselines to benchmark the proposed approach.

GNNs. We have chosen some of the most representative and popular GNN models as neural baselines.
These models cover both foundational and specialised GNNs. They include: GCN (Kipf & Welling, 2017),
GraphSage (Hamilton et al., 2017), GAT (Velickovic et al., 2018), SGC (Wu et al., 2019), GCNII (Chen
et al., 2020), APPNP (Gasteiger et al., 2019), Jumping Knowledge (JK) (Xu et al., 2018), and H2GCN (Zhu
et al., 2020).

Non-neural models. We consider the Diffusion model (Zhu, 2005), the K-nearest neighbours (KNN)
model, and the logistic regression model (Zheleva & Getoor, 2009). In their original forms, Diffusion and
KNN use the graph adjacency matrix as input, while logistic regression relies on the feature matrix. We also
examine the effects of switching inputs: using the feature matrix for Diffusion and KNN, and the adjacency
matrix for logistic regression (notice that in the later case, the obtained model corresponds to LINK (Zheleva
& Getoor, 2009)). We denote the use of adjacency matrix with the suffix -A and the feature matrix with
the suffix -X.
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7 Results

In this section, we first assess how well traditional non-neural models, in their original form, compete with
GNNs within the proposed evaluation framework. Then, we evaluate the proposed non-neural GLR approach
in terms of accuracy, scalability, and generalisability. Finally, we conduct an in-depth analysis of the graph
homophily property to gain further insights. For reproducibility purposes, the source code is made available
at https://github.com/graph-lr/graph-aware-logistic-regression.

7.1 Traditional non-neural model performance

We performed a preliminary study to question the practice of excluding non-neural models from GNN
evaluations. Using the evaluation framework proposed in Section 6, we compared GNNs against traditional
non-neural methods implemented in their original form, i.e., using the graph topology only for the KNN and
diffusion methods, and node attributes only for the logistic regression. For each dataset, we show in Figure 2
the average accuracy (along with the standard deviation) achieved on the test set by the top-performing
GNN and traditional model.
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Figure 2: Test average accuracy (and standard deviation) for the best GNN and non-neural baselines.

The advantages of GNN-based approaches are noticeable across the majority of datasets (9 cases out of 13).
However, for a few specific graphs (Actor, Cornell, Wisconsin and Wikivitals+), even simple implemen-
tations of non-neural methods outperform recent GNNs. Additionally, on several networks (CS, Photo,
Wikivitals, Wikivitals-fr and Wikischools), the improvement achieved by GNNs remains relatively
limited given their additional complexity.

These preliminary results, in line with previous works (Lipton & Steinhardt, 2019; Ferrari Dacrema et al.,
2019), emphasise the importance of including non-neural baselines in benchmarks to accurately assess the
true progress of recent neural approaches.

7.2 GLR results

We display in Table 1 the average accuracy and standard deviation, along with the average ranking of each
model across all datasets (last column), for a node classification task. In cases where settings ran out of
the 5-hour time limit for training, we assigned the corresponding models the same rank, which corresponds
to the lowest possible rank. This decision is made to avoid introducing bias in favour of computationally
expensive methods, aligning with our belief that scalability considerations should be weighted equally with
performance in our evaluation. Finally, we emphasise that, given the use of k-fold cross validation in our
evaluation framework, any previous literature results obtained on fixed splits versions of datasets are not
comparable with the ones presented here (see Section 5).
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Table 1: Comparison of average accuracy (%) on the test set (and standard deviation) between GNNs and
proposed approaches. Best and second best scores are highlighted. – denotes setting that ran out of the
5-hour time limit. The last column shows the average rank on all datasets.

Model Cora Pubmed* Citeseer Actor CS Photo Cornell

GCN 88.20 ± 1.2 86.16 ± 0.5 73.94 ± 1.4 27.53 ± 0.5 93.84 ± 0.4 89.78 ± 5.4 42.86 ± 7.2
GraphSage 88.20 ± 0.7 87.67 ± 0.4 75.27 ± 1.2 31.24 ± 1.7 91.50 ± 0.6 87.54 ± 4.2 70.73 ± 6.6
GAT 87.18 ± 1.1 86.13 ± 0.3 73.73 ± 1.5 28.68 ± 1.2 93.71 ± 0.4 93.40 ± 0.7 54.60 ± 7.9
SGC 87.46 ± 1.1 66.35 ± 0.6 77.32 ± 1.6 29.23 ± 0.9 92.81 ± 0.4 92.67 ± 0.6 47.80 ± 6.7
GCNII 89.67 ± 1.1 85.31 ± 0.4 77.68 ± 1.3 29.15 ± 0.7 94.16 ± 0.4 91.25 ± 1.1 60.89 ± 9.8
APPNP 88.95 ± 1.0 85.05 ± 0.4 76.30 ± 1.1 35.16 ± 1.5 93.73 ± 0.4 93.72 ± 0.7 62.82 ± 5.9
JK 87.21 ± 1.3 88.27 ± 0.3 73.10 ± 1.2 27.96 ± 1.0 94.10 ± 0.3 93.22 ± 0.8 51.88 ± 5.6
H2GCN 87.83 ± 1.0 89.67 ± 0.3 75.38 ± 1.1 35.51 ± 1.0 95.71 ± 0.3 93.86 ± 1.7 76.74 ± 5.7

KNN w/ sp.-A 79.69 ± 1.2 81.22 ± 0.6 56.78 ± 1.3 20.57 ± 1.0 85.22 ± 0.1 90.18 ± 0.9 43.18 ± 6.5
KNN w/ sp.-X 70.92 ± 1.7 80.22 ± 0.3 67.35 ± 2.1 29.72 ± 0.8 92.58 ± 0.2 90.72 ± 0.5 63.07 ± 6.6
Diffusion-A 85.51 ± 1.2 81.98 ± 0.4 70.02 ± 1.5 19.97 ± 1.0 91.55 ± 0.3 91.65 ± 0.7 16.13 ± 2.7
Diffusion-X 76.09 ± 1.9 76.10 ± 0.6 74.56 ± 1.5 32.09 ± 0.7 88.47 ± 0.3 22.05 ± 0.1 75.11 ± 5.4
Logistic Reg.-A 74.54 ± 1.9 80.56 ± 0.5 60.49 ± 1.4 22.66 ± 0.3 83.19 ± 0.7 90.31 ± 0.6 51.36 ± 3.1
Logistic Reg.-X 76.50 ± 2.2 84.70 ± 0.5 71.54 ± 1.2 36.45 ± 0.6 94.10 ± 0.4 90.48 ± 0.5 78.68 ± 3.3
GLR (ours) 81.41 ± 1.5 86.35 ± 0.4 72.50 ± 1.1 34.27 ± 0.9 94.68 ± 0.3 93.99 ± 0.5 78.66 ± 4.3

Model Wisconsin Wikivitals Wikivitals-fr Wikischools Wikivitals+ Ogbn-arxiv Rank

GCN 41.47 ± 5.6 79.42 ± 1.4 72.96 ± 2.7 71.58 ± 0.6 81.59 ± 0.7 61.21 ± 0.6 8.62
GraphSage 71.90 ± 4.1 – – 72.37 ± 2.0 – 58.05 ± 0.6 8.69
GAT 44.48 ± 7.9 67.89 ± 4.2 71.61 ± 1.7 73.58 ± 0.9 77.52 ± 1.3 66.70 ± 0.2 7.92
SGC 43.53 ± 8.8 – – 60.87 ± 3.8 – 38.57 ± 0.1 10.85
GCNII 66.37 ± 7.4 89.15 ± 1.3 79.24 ± 1.7 75.86 ± 1.8 – 29.17 ± 0.7 6.85
APPNP 61.17 ± 4.9 84.26 ± 0.4 82.09 ± 0.9 79.14 ± 1.0 81.16 ± 0.2 50.56 ± 0.2 5.62
JK 50.05 ± 6.6 83.02 ± 0.5 77.54 ± 1.1 73.33 ± 0.9 83.76 ± 0.9 53.37 ± 0.5 7.46
H2GCN 86.45 ± 2.6 91.34 ± 0.5 89.30 ± 0.6 85.07 ± 0.7 – 62.52 ± 0.2 3.38

KNN w/ sp.-A 56.38 ± 5.2 78.44 ± 1.2 71.42 ± 0.9 70.14 ± 1.7 77.37 ± 0.6 66.05 ± 0.2 11.31
KNN w/ sp.-X 72.28 ± 4.2 83.49 ± 0.6 81.58 ± 0.5 79.47 ± 1.0 84.41 ± 0.4 8.05 ± 0.7 8.54
Diffusion-A 14.98 ± 4.3 70.93 ± 0.5 61.86 ± 0.6 55.85 ± 0.7 64.83 ± 0.4 71.87 ± 0.2 11.92
Diffusion-X 81.46 ± 3.7 80.89 ± 0.9 78.08 ± 0.8 81.59 ± 1.4 80.65 ± 0.6 12.03 ± 1.5 11.23
Logistic Reg.-A 55.63 ± 5.2 85.46 ± 0.8 80.48 ± 1.0 71.79 ± 0.9 87.60 ± 0.3 66.45 ± 0.4 9.77
Logistic Reg.-X 87.05 ± 2.2 89.47 ± 0.6 86.85 ± 0.7 82.61 ± 1.0 91.47 ± 0.2 54.58 ± 0.2 5.23

GLR (ours) 86.64 ± 2.5 91.95 ± 0.4 89.39 ± 0.7 84.25 ± 0.9 93.95 ± 0.3 67.74 ± 0.3 3.23

Our experiments reveal the strong performance achieved by the proposed GLR approach against both GNNs
and traditional baselines; overall, GLR ranks first across the 13 datasets. Specifically, GLR ranks in first or
second position in 9 out of 13 cases, demonstrating the generalisation ability of our approach.

Interestingly, Cora, Pubmed and Citeseer, three highly label homophilous networks commonly used in
GNN benchmarks, are among the four cases where neural approaches outperform GLR. As discussed in
Section 5, these results align well with previous assumptions about GNNs overfitting these specific network
characteristics. However, this explanation does not hold for CS, Photo and Ogbn-arxiv, three other label
homophilous networks where GLR achieves similar or superior performance compared to neural approaches.
Further insights are provided in Section 7.4.

Table 1 also reveals that sophisticated GNNs specifically designed to address both label homophilous and
heterophilous networks, such as H2GCN, achieve similar generalisation ability than GLR. However, unlike
our proposed approach, this neural approach requires a tradeoff between accuracy and scalability, which we
illustrate in section 7.3.

Ablation study. Comparing our proposed GLR approach with a simple logistic regression model using
either the adjacency (Logistic Reg.-A) of feature matrix (Logistic Reg.-X) as input provides valuable
insights. Table 1 shows that combining the graph topology with the node attributes allows for almost
systematical performance gains compared to traditional implementations.

9
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Overall, the simple concatenation mechanism within GLR enables efficient learning by balancing graph
topology and feature information. Moreover, in contrast with GNN’s message passing scheme, GLR prevents
the learning from being overwhelmed by neighbours’ signal when they are not sufficiently informative, thereby
improving generalisation.

7.3 Scalability

In Figure 3, we display the tradeoff between accuracy and scalability involved in each of the evaluated mod-
els. We highlight the significant advantages of GLR against GNN-based models. In particular, the proposed
model achieves similar performance compared to GNNs while requiring significantly less computation time,
with a substantial difference of two orders of magnitude at best. It is worth noting that some top-ranked
GNN models in terms of accuracy, namely GCNII and H2GCN, make important trade-offs between compu-
tation time and accuracy: these models are already intractable on a graph like Wikivitals+ (see Table 1).
Therefore, scalability emerges as a major limitation when considering the applicability of such methods to
larger real-world networks.
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Figure 3: Tradeoff between accuracy and computation time. Notice the log scale for the y-axis.

7.4 Beyond label homophily: Feature homophily

GLR’s competitive results on some highly homophilous networks, such as CS, Photo or Ogbn-arixv (see
Table 1) question the assumption of GNNs necessarily performing well under such characteristics. Therefore,
we hypothesise that label homophily alone is not not sufficient to explain model performance.

To further explore this question, we consider an additional form of homophily in graph: feature homophily.
We define feature homophily as the similarity between features for connected nodes. Intuitively, in fea-
ture homophilous graphs, connected nodes may have a different label, but should exhibit relatively similar
features. To the best of our knowledge, this aspect of homophily has not been studied in the literature.
Formally, we define the feature homophily of a node u, Hf (u) as:

Hf (u) = 1
du

∑
v∈N (u)

sim(Xu, Xv) (8)

where sim(·) is a similarity function (e.g., cosine similarity). Additionally, we define the feature homophily
of a graph as the average feature homophily of its nodes: Hf (G) = 1

|V |
∑

u∈V Hf (u).

We report the label and feature homophily of the evaluated networks in Figure 4. Relating these results to
the accuracy performance in Table 1, we observe that networks with high label homophily and low feature
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homophily (Cora, Pubmed*, and Citeseer) favour GNNs. In contrast, GLR performs competitively against
neural models in networks with high label homophily and medium to high feature homophily (CS, Photo,
and Ogbn-arxiv), suggesting that GLR better leverages node features when they are sufficiently informative.
Furthermore, we show that even sophisticated GNN models designed to tackle heterophily challenges, such as
H2GCN, are outperformed by GLR on networks with high label heterophily and medium feature homophily,
such as for Cornell and Wisconsin.

Additionally, we show how the Wikipedia-based networks present a valuable alternative to common liter-
ature networks in terms of homophily characteristics. Their node neighbourhoods are varied considering
the node labels, and they showcase either strong (Wikivitals, Wikivitals-fr and Wikivitals+) or low
(Wikischools) feature homophily. In this sense, they align well with the call for dataset diversity advocated
by previous works (Ferrari Dacrema et al., 2019; Hu et al., 2020; Palowitch et al., 2022). For these net-
works, GLR achieves the highest performance, except for Wikischools. We hypothesise that the low feature
homophily in this network limits the effectiveness of our approach. We also emphasise how a combination
of low label and feature homophily, such as for the Actor network, seems to explain the poor prediction
performance achieved by models (36% of accuracy at best).

Overall, these results suggest that, compared to GLR, existing GNNs struggle to harness node features, hence
losing efficiency when these attributes contain substantial information. Furthermore, GLR’s competitive
results across various homophilous and heterophilous settings indicate its robust generalisation capabilities
compared to state-of-the-art GNNs.

7.5 Feature homophily influence on accuracy

We assess the ability of the different models to capture relevant classification information from features by
comparing performance under the high feature homophily setting. We denote with Mf the median feature
homophily over all graphs and rank all models for datasets where Hf (G) ≥ Mf . We display results in
Figure 2 and show how GLR achieves a notably larger lead over the second-ranked model (H2GCN). This
suggests that while GNNs are expected to effectively leverage feature information, they often fail to do so.
In contrast, the GLR model successfully uses feature information when available.

8 Conclusions and Future Work

We have proposed a simple, scalable non-neural model, GLR, that leverages both the graph structure and
node features for node classification tasks. Extended experiments conducted within a rigorous evaluation
framework have shown that GLR outperforms both traditional graph algorithms and GNNs on most of
the evaluated datasets. Additionally, GLR have demonstrated high generalisation ability across diverse
graph characteristics, including homophily, and achieved superior results without sacrificing performance for
computation time, offering a two-order-of-magnitude improvement over the best GNNs.
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Table 2: Average rank under high feature homophily. Best and second best scores are highlighted.

Model Rank Model Rank

GCN 7.4 KNN w/ sp.-A 10.4
GraphSage 11.4 KNN w/ sp.-X 9.0
GAT 7.1 Diffusion-A 10.6
SGC 12.3 Diffusion-X 13.3
GCNII 8.1 Log. Reg.-A 8.0
APPNP 6.4 Log. Reg.-X 5.6
JK 6.0 GLR (ours) 1.7
H2GCN 3.7

We have gained insights into our results by investigating graph homophily at both label and feature levels.
We have highlighted that, in contrast to our proposed GLR approach, most of the recent GNN architectures
struggled to leverage feature information when it was sufficiently available.

Overall, our work shows that a non-neural approach leveraging sufficient information, despite its simplicity,
can achieve comparable or higher performance than state-of-the-art GNNs.

There are however a number of limitations to this work. Despite great results, GLR still has room for
improvements, as performance gains against GNNs remain minor in some cases. Furthermore, our analy-
ses are limited to node classification task as well as some of the most commonly used GNN architectures
and datasets. Future work includes extension of this study to other graph-related tasks, such as graph
classification and link prediction.
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A Dataset Characteristics

A.1 Dataset Statistics

We report dataset statistics in Table 3. We denote the graph density with δA.

Table 3: Dataset statistics

Dataset #nodes #edges #features #labels δA

Cora 2708 10556 1433 7 2.88 × 10−3

Pubmed* 19717 88651 500 3 4.56 × 10−4

Citeseer 3327 9104 3703 6 1.65 × 10−3

Actor 7600 30019 932 5 1.04 × 10−3

CS 18333 163788 6805 15 9.75 × 10−4

Photo 7650 238162 745 8 8.14 × 10−3

Cornell 183 298 1703 5 1.79 × 10−2

Wisconsin 251 515 1703 5 1.64 × 10−2

Wikivitals 10011 824999 37845 11 8.23 × 10−3

Wikivitals-fr 9945 558427 28198 11 5.65 × 10−3

Wikischools 4403 112834 20527 16 5.82 × 10−3

Wikivitals+ 45149 3946850 85512 11 1.93 × 10−3

Ogbn-arxiv 169343 1166246 128 40 8.14 × 10−5

Cora, Pubmed and Citeseer (Yang et al., 2016) are citation networks, where nodes represent articles and
edges represent citation links. We notice differences in the feature matrix between pre-computed online
versions of the Pubmed graph and the graph we have built from sources, denoted with Pubmed*. It appears
that these differences come from the ordering of the rows of the feature matrix. In this paper, we rely on
the Pubmed* version of the graph, provided in the repository of this project1.

Actor dataset is the actor-induced subgraph from (Pei et al., 2020). In this graph, each node corresponds
to an actor and edges are connecting actors whose names co-occur on the same Wikipedia page. The node
features are generated from the bag-of-words representation of keywords in these Web pages.

1https://github.com/graph-lr/graph-aware-logistic-regression
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The Photo (McAuley et al., 2015) dataset is an Amazon co-purchase network, where a node represents a good
and an edge denotes a frequent co-purchase between these items on the platform. Features are constructed
from the bag-of-words extracted from product reviews.

The CS (Aleksandar & Günnemann, 2018) dataset is a co-authorship graph originating from the KDD Cup
2016 Challenge. Nodes represent authors, and edges denote co-authorship relations between these authors.
The features are bag-of-words of the scientific paper keywords.

Cornell and Wisconsin2 are universities web pages graphs, where each page is manually classified into a
category (e.g., student, faculty, etc). Features correspond to bag-of-words from page texts, after removing
words with highest Mutual Information with the category variable.

We consider 4 Wikipedia-based real-world networks3. The Wikivitals and Wikivitals+ datasets focus on
Wikipedia’s so-called “vital articles”, a community-made selection of Wikipedia pages. They are extracted
from respectively levels 4 and 5 from WikiData. Wikivitals-fr contains the “vital articles” written in
French, and Wikischools contains articles related to material taught in schools. For all these datasets, an
edge exist between two articles if they are referencing each other in Wikipedia, and node features correspond
to the bag-of-words representations of the articles.

Finally, Ogbn-arxiv (Hu et al., 2020) is a citation network between Computer Science papers. Each paper
comes with a 128-dimensional vector of features built according to the embedding of the words contained in
its abstract and title.

A.2 Node Degree Distributions

We provide the cumulative node degree distributions for all evaluated datasets in Figure 5. These real-world
networks showcase heavy-tailed node degree distributions. Nevertheless, the Wikipedia-based networks show
a particularly larger average node degree (Figure 5b) compared to the literature networks (Figure 5a).
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Figure 5: Cumulative node degree distributions.

B Models

B.1 GNNs

In our study, we consider both foundational and specialised GNN models to benchmark our approach.

2https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
3To protect the anonimity of the authors, the link to the data source is temporarily hidden.
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These neural models include the following: Graph Convolutional Network (GCN) (Kipf & Welling, 2017),
a standard and one of the earlier graph convolutional models. GraphSage (Hamilton et al., 2017), which
samples a fixed number of neighbours for each node during the training process. Graph Attention Network
(GAT) (Velickovic et al., 2018), using an attention mechanism for weighted aggregation of information. Sim-
ple Graph Convolution (SGC) (Wu et al., 2019), which simplifies the GCN model by removing nonlinearity
between layers. GCNII (Chen et al., 2020), extending the GCN model with initial residuals and identity map-
ping. Approximation of Personalised Propagation of Neural Predictions (APPNP) (Gasteiger et al., 2019),
using an improved propagation scheme based on personalised PageRank. Jumping Knowledge (JK) (Xu
et al., 2018), incorporating a layer-aggregation mechanism to select the best node representation. Finally,
H2GCN (Zhu et al., 2020), specifically designed to perform well on both homophilous and heterophilous
graphs. For each of these models, we have adopted the architecture design (number of layers, embedding di-
mension, regularisation) and hyperparameter values (learning rate or model-specific parameters) as proposed
by the authors in their original papers.

B.2 Non-neural models

We consider the following non-neural models. The Diffusion (Zhu, 2005) model, which treats the graph as a
thermodynamic system and simulates heat exchanges through the edges. The K-nearest neighbours model,
which predicts the class of a node based on the classes of its K closest neighbours. In practice, we apply
K-nearest neighbours on the spectral embedding of the adjacency matrix. The logistic regression model,
which predicts node class using a linear combination of the inputs.

C Detailed Experimental Parameters

For all experiments, we rely on train-test splits containing respectively 75%-25% of the initial nodes.

All Experiments are executed on Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz with 251GB of RAM.

We detail GNN-based hyperparameters in Table 4. For each models we rely on the hyperparameters originally
proposed by authors in the corresponding paper. C denotes the number of labels to predict.

Table 4: GNN hyperparameters for node classification.

Model Architecture # epochs learning rate Optimizer
GCN 2-layers GCN(16, C) 200 1 × 10−2 Adam
GraphSage 2-layers GraphSage(256, C) 10 1 × 10−2 Adam
GAT 2-layers GAT(8, C) (heads=8) 100 5 × 10−2 Adam
SGC 1-layer GAT(K = 2) 100 2 × 10−1 Adam
GCNII 64-layers GCNII(64, α = 0.1, λ = 0.5) 100 1 × 10−2 Adam
APPNP 3-layers Linear(64) + APPNP(k = 10, α = 0.1) 200 1 × 10−2 Adam
JK 2-layers GCN(32, C) 100 1 × 10−2 Adam
H2GCN H2GCN(32, k = 2) 500 1 × 10−2 Adam

D Impact of Train-Test Split Size

We illustrate the consistency of GLR performance across varying test set sizes. We show in Figure 6 the
trend in average accuracy on the test set for Wikischools as we increase the size of the test set. Our findings
confirm that, although the accuracy decreases as the test set size increases, GLR model remains competitive.
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Figure 6: Average accuracy on the test set for Wikischools, according to the proportion of nodes in the test
set.

18


	Introduction
	Related Work
	Non-neural approaches
	Graph Neural Networks
	Evaluation frameworks

	Preliminaries
	Problem definition
	Graph Neural Networks and message passing
	Homophily in graphs

	Graph-aware Logistic Regression: a Simple Non-Neural Model
	Naive logistic regression models for node classification
	Graph-aware logistic regression

	Limits of the Current Evaluation Procedures
	Consistency of evaluation framework
	Restricted number of datasets
	Lack of non-neural models in benchmarks

	Experimental Design
	A Fairer Evaluation Framework
	Baseline models

	Results
	Traditional non-neural model performance
	GLR results
	Scalability
	Beyond label homophily: Feature homophily
	Feature homophily influence on accuracy

	Conclusions and Future Work
	Dataset Characteristics
	Dataset Statistics
	Node Degree Distributions

	Models
	GNNs
	Non-neural models

	Detailed Experimental Parameters
	Impact of Train-Test Split Size

