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Abstract AutoML has made substantial strides in enabling domain scientists with little or no expertise
in Machine Learning to develop state-of-the-art Data Science solutions. One of the main
remaining challenges is to write the code to do so, especially in nontechnical disciplines
where scientists are unlikely to have programming expertise. Large Language Models are
increasingly adept at generating code for complex tasks. In this paper, we ask the question
to what extent they can solve basic Data Science tasks. We survey a range of commercial
and open-weight models on a basic Data Science task. Our results indicate that while many
LLMs still struggle, acceptable results are achieved by some newer models, including small
open-weight and certain commercial versions.

1 Introduction

Large Language Models (LLMs) have shown great promise in the generation of code to solve
complex tasks and to prototype complex systems (Austin et al., 2021; Chen et al., 2021; Lyu et al,,
2024; OpenAl et al., 2024; Balog et al., 2017). They have reduced the barrier for domain scientists to
produce custom code even without a background in programming (Xu et al., 2024; Tayebi Arasteh
et al., 2024). This raises the question we investigate in this paper: Can LLMs reliably generate
complete, executable ML pipelines for basic Data Science tasks?

Recent advances in LLMs have made it increasingly feasible to generate executable code for
data science workflows, lowering the entry barrier for non-programmers across disciplines (Xu
et al., 2021; Zhang et al., 2024). This has led to a growing interest in evaluating the reliability and
limitations of LLM-generated code, particularly in the context of machine learning pipelines (Abbassi
et al., 2025; Chen et al., 2023). Previous studies have explored model reasoning ability,
hallucination frequency, and task-specific performance, especially within programming-intensive
domains (OpenAl et al., 2024; Chen et al., 2021; DeepSeek-Al et al., 2025; Abdin et al., 2025). Building
on this foundation, our work investigates how effectively a diverse set of LLMs, both commercial
and open weight, can produce usable ML code for standard data science tasks. We evaluated LLMs
on their ability to autonomously generate complete, executable pipeline scripts for real-world data
science tasks, moving beyond fragment-level code (Abbassi et al., 2025; Zhang et al., 2024).

The goal is to benchmark LLM effectiveness in AutoML-like workflows and to understand the
reliability, adaptability, and practical viability of LLMs in data science environments. Although
some models demonstrated robust zero-shot performance (Anthropic, 2025; Gemini Team et al.,
2024), others required iterative correction or failed entirely, highlighting the importance of prompt
design and feedback mechanisms (Chen et al., 2023; Xu et al., 2024; Hu et al., 2021).

2 Experimental Setup

We selected a diverse set of 35 LLMs, including commercial models such as Claude 3.5 Sonnet,
Claude 3.7 Sonnet, Claude 3.7 Sonnet (Thinking), Claude Sonnet 4, Gemini 2.0 Flash, Gemini 2.5
Pro, GPT 4.1, GPT 40, GPT o1, O3 Mini, and O4 Mini, as well as open-weight models including
Codecetral, Codellama 70B, CodeQwen, Cogito 70B, Command R 7B, DeepSeek Coder V2 236B,
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DeepSeek R1 671B, Gemma 3 27B, Gemma 7B, LLaMA 3.3, LLaMA 4 16x17B, LLaMA 4 Maverick,
LLaMA 4 Scout, Mistra Large, Mistral Small 3.1, Phi 4, Phi 4 Reasoning, Qwen 2.5 72B, Qwen
3, Qwen 3 235B, Qwq, and Wizard Coder. Model selection was guided by each model’s stated
or demonstrated ability to perform code generation. Some models were specifically trained for
programming tasks, while others were general-purpose LLMs cited in prior work for their coding
capabilities.

Commercial models were accessed via their official APIs. Open-weight models were executed
locally using the Ollama framework on a machine running Red Hat Enterprise Linux 9.4 (Plow) and
2 AMD EPYC 9454 CPUs (96 cores), 1.2 TB of RAM, and 8 NVIDIA H100 GPUs. The environment
had Python 3.11 on Red Hat Enterprise Linux 9.

Task Definition

All models were prompted to build a complete classification pipeline using the Wine Quality
dataset, including data loading, exploratory analysis, preprocessing, model training (Random Forest,
Decision Tree, and SVM), hyperparameter tuning, evaluation (F1-score, accuracy, confusion matrix),
and visualization of both data characteristics and model performance. The expected output was
a self-contained Python script, which was to assess correctness, completeness, and functionality.
Specifically, each script was required to:

« Load the dataset and provide a descriptive summary, including shape, feature types, basic statistics,
and class distribution.

« Perform exploratory data analysis (e.g., checking missing values, data types, outliers) and basic
preprocessing such as encoding and scaling.

« Train Decision Tree, Random Forest, and SVM classifiers and evaluate them using cross-validation.
« Perform hyperparameter tuning (e.g., Random Search or Bayesian Optimization).
« Evaluate results using accuracy, F1-score, and confusion matrices.

« Visualize model performance using confusion matrices, metric comparisons (e.g., F1-score,
accuracy), and hyperparameter optimization results.

Prompting Framework

All prompts were issued in a controlled environment using Visual Studio Code, with GitHub Copilot
Chat in Ask mode as the interface. Although Copilot facilitated the interaction, all responses were
generated solely by the selected underlying models. Each model received up to three chances to
revise its code. If execution failed, the error message was returned as feedback for the next attempt.
A model was marked as failed if no valid code was produced after three iterations.

Evaluation and Grading Criteria

Each model’s output was graded both for visual output and code quality. Two separate rubrics
were used:

Effective Plot Grade (A-F): Assigned based on the presence, clarity, and usefulness of the
plots. An A indicates clear and well-labeled visualizations that cover both the dataset and model
performance. B reflects mostly complete plots with minor omissions or clarity issues. C corresponds
to basic visualizations with some missing key results. D indicates minimal plotting with limited
interpretability. E reflects poor or irrelevant plots, and F is assigned when no usable plots were
produced, either because the plotting code was missing, not executed, or the code did not run at all.
Full details are provided in Table 2.
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Code Grade (A-F): Assigned based on the completeness, clarity, and correctness of the code.
An A denotes complete, correct, and fully functional code that does not require feedback. B reflects
mostly correct code with minor issues. C indicates partial completeness or flawed implementation.
D represents minimal, underdeveloped code, and E corresponds to fragmentary or poorly structured
code that runs only in part. F is reserved for code that failed to run after all correction attempts.
For models that required feedback to fix errors, the grade was reduced by one level from what the
output would have otherwise earned. See Table 3 for detailed criteria.

Results and Discussion

The evaluation demonstrated that both commercial and open-weight LLMs are capable of generating
executable machine learning pipelines with varying degrees of success. Performance varied not
only by model family but also by parameter count, prompt alignment, and feedback responsiveness.

Among commercial models, Claude Sonnet 4 and GPT-4.1 produced consistently accurate
and well-structured code on the first attempt with minimal or no feedback. Gemini 2.5 Pro also
performed well, generating correct and tuned pipelines with competitive performance.

In the open-weight category, Phi-4, Gemma 3, and Mistral-Large emerged as strong performers.
These models often compiled successfully on the first attempt and delivered competitive metrics.
Their performance suggests that recent open-weight advancements have narrowed the gap with
proprietary systems in specific AutoML contexts.

The effectiveness of model-generated plots varied significantly across models. High-performing
models such as Gemma 2.5 Pro, Claude Sonnet 4 produced visualizations that generally supported
interpretation, although even among these, the quality of visual output was inconsistent.
Interestingly, some models with smaller parameter sizes, such as Phi-4 Reasoning, demonstrated
strong reasoning capabilities and produced reasonably effective plots—ranking better than several
larger models. Furthermore, not all models produced valid outputs or complete plots, as indicated
by the missing entries in the ’Effective Plot’ column. This suggests that neither model size nor
tuning alone guarantees useful visual outputs.

Some large-scale models—such as LLaMA 4 variants and DeepSeek R1—did not consistently
outperform smaller or more optimized alternatives. In several cases, their code was more error-
prone or required more correction attempts, contradicting expectations based on scale alone. This
highlights that model size is not always a reliable predictor of execution robustness in code synthesis
tasks. Other models, such as O3 Mini, CodeLlama 70B, and WizardCoder, failed to generate working
code after three attempts. Gemma 7B evaluated only on the training set.

Key Patterns and Observations

« Large models do not always perform better. Smaller or open-weight models like Phi-4 and
Gemma 3 outperformed larger counterparts like LLaMA 4 in several cases.

+ Error handling was a strong differentiator. Models such as Claude 3.7, Gemini 2.0 Flash, and
GPT 4o successfully incorporated feedback by correcting errors over multiple attempts, showing
greater adaptability.

« Confabulations still happen. Some models fabricated function calls.

Conclusion

This study evaluated the ability of LLMs to generate executable machine learning pipelines for
structured classification tasks. The results showed that both the commercial models Claude Sonnet
4 and Gemini 2.5 Pro, and the open-weight model Phi-4 Reasoning, were able to produce high-
performance code with minimal repeated prompting.



LLM Tuned | F1-Score | Attempt(s) | Feedback | Effective Plot Grade | Code Grade
Claude Sonnet 4 Yes 0.670 1 No A A
Gemini 2.5 Pro Yes 0.667 1 No A A
Phi 4 Reasoning Yes 0.661 1 No B A
Claude 3.7 Sonnet Yes 0.660 3 Yes A B
Claude 3.7 Sonnet (Thinking) Yes 0.675 3 Yes B B
GPT 4.1 Yes 0.664 1 No B B
LLaMA 4 16X17B Yes 0.662 1 No B B
LLaMA 4 Maverick Yes 0.651 2 No B B
Qwen 3 235B Yes 0.709 1 No B C
Gemma 3 27B Yes 0.540 2 No B C
Gemini 2.0 Flash Yes 0.391 3 Yes B C
Qwq Yes 0.640 1 No C C
Phi 4 Yes 0.638 1 No C C
GPT 40 Yes 0.664 3 Yes D C
DeepSeek R1 671B Yes 0.642 3 No D C
GPT ol No 0.644 3 Yes E C
Mistra Large Yes 0.640 1 No C D
DeepSeek Coder V2 236B Yes 0.326 1 No D D
LLaMA 3.3 Yes 0.645 3 Yes D E
Gemma 7B* Yes 1.000* 3 Yes F F
Claude 3.5 Sonnet NA - 3 Yes F F
CodeQwen NA - 3 Yes F F
Cogito 70B NA - 3 Yes F F
Command R 7B NA - 3 Yes F F
LLaMA 4 Scout NA - 3 Yes F F
03 Mini NA - 3 Yes F F
04 Mini NA - 3 Yes F F
Qwen 2.5 72B NA - 3 Yes F F
Qwen 3 NA - 3 Yes F F
Wizard Coder NA - 3 Yes F F
Codecetral NA - 3 No F F
Codellama 70B NA - 3 No F F
Mistral Small 3.1 NA - 3 No F F
Table 1: Best reported run for each LLM (highest F1-score). “-” = No valid code produced. “NA” = Not

applicable. “Yes” = Feedback was used to correct the code. “No” = No feedback was needed.
*Gemma 7B scores are on the training set only. "Effective Plot Grade": Grade assigned based
on the presence, clarity, and usefulness of the plots in supporting model interpretation. For
grading criteria and visual examples, refer to the Appendix.

Although top-tier models often succeeded on the first attempt and required little to no
feedback, others, particularly some large-scale models such as LLaMA 4 and DeepSeek R1, produced
inconsistent or suboptimal results, despite their size. The integration of a feedback loop proved
essential for evaluating model adaptability, highlighting that many models can recover from initial
failures when provided with clear error messages. However, this did not occur in all cases, and
confabulations remain a problem. Overall, our findings indicate that LLMs are approaching practical
usability in automating parts of the data science workflow, especially in generating baseline ML
pipelines.
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A Appendix: Prompts Used for Model Training

I want to build a machine learning model using the dataset at "./dataset.csv".
This is a classification problem. The dataset has features like fixed acidity,
volatile acidity,citric acid,residual sugar,chlorides,free sulfur dioxide
total sulfur dioxide,density,pH,sulphates,alcohol,quality, and the target
column is "quality". Here's a sample of the data:

7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4,5
7.8,0.88,0,2.6,0.098,25,67,0.9968,3.2,0.68,9.8,5
6

4,
8,
7.8,0.76,0.04,2.3,0.092,15,54,0.997,3.26,0.65,9.8,5

Follow these steps using Python code:

Single python script to implement the entire process.

Add comments to explain each step.

Define if this is classification or regression.

Load the dataset and describe it: shape, features, target.

Check for missing values, data types, and outliers.

Visualize feature distributions, correlations, and class balance.
Train these models: Random Forest, Decision Tree, SVM.

Choose hyperparameters and search ranges for each model.

Use Random Search or Bayesian Optimization for tuning.

Use cross-validation during hyperparameter search.

Evaluate models using Fl1-score, accuracy, and confusion matrix.
Compare model performance before and after tuning.

Show plots of evaluation metrics, search results, and best settings.



B Grading Criteria for Generated Plots (A-F)

Grade

Plotting Performance Criteria

A

All required plots are present, clear, and well-labeled. Plots visualize the
data (feature distributions, correlations, class balance) and the modeling results
(e.g., confusion matrix, model comparison, hyperparameter search results, feature
importances). All plots help the user understand the process and outcome.

Most plots included; minor omissions or lack of clarity. All major results are
visualized, but may be missing one of: feature importance, search results, or
before/after comparisons. Plots are generally clear, with minor issues (labels,
redundancy, or polish).

Some major plots missing; model evaluation only partly visualized. Most data
visualizations are present, but at least one critical result plot is missing (e.g., confusion
matrix only printed, or no model comparison). Results are not fully interpretable
from plots alone.

Only basic data plots included, almost all result/model visualizations missing,.
Only the most basic data plots (e.g., a histogram or countplot) are included. Nearly
all model evaluation and result plots are absent, and results are primarily printed.

Minimal plotting; little to no data or result visualization. May include a single
basic plot (e.g., one histogram), or plots are present but unreadable or irrelevant. No
meaningful visualization of model results or evaluation. Most information is printed
as text.

No relevant plots at all, or only code for plotting but nothing executed, or code
did not compile at all. No plots of data or results; everything is printed or missing
entirely. Fails the requirement that plots are used for both data and model results.

Table 2: Grading Rubric for Plotting Quality




C Grading Criteria for Generated Code (A-F)

Grade

Code Performance Criteria

A

Excellent, clean, complete, and error-free code. Full pipeline: data handling,
preprocessing, model training, evaluation, and optional interpretation. Modular,
well-commented, with reproducible results.

Good and mostly complete code with minor issues. Includes all major parts of the
pipeline but may lack refinement (e.g., limited tuning or basic structure). Code is
readable and logical, with few issues.

Partially complete or inconsistent code. Code runs but may omit important steps
(e.g., preprocessing or evaluation). Structure or clarity may be weak. Suboptimal
modeling or redundant code is common.

Minimal viable code with limited usefulness. Includes only basic model training or
evaluation. Major pipeline steps are missing. Code may run but lacks clarity and
completeness.

Non-functional or highly fragmentary code. Code runs only in part or is too
minimal to be useful. Many critical components are missing, with poor structure
and explanation.

Code does not run or is completely missing/incoherent. Contains unrecoverable
errors, undefined variables, or is unrelated to the task. Fails to compile or produce
results.

Table 3: Code Grading Rubric. If the model used feedback, the assigned grade is reduced by one letter.

Only models that failed to run entirely receive a grade of F.
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