
BatchGFN: Generative Flow Networks for Batch Active Learning

Shreshth A. Malik 1 Salem Lahlou 2 3 Andrew Jesson 1 Moksh Jain 2 3 Nikolay Malkin 2 3 Tristan Deleu 2 3

Yoshua Bengio 2 3 4 Yarin Gal 1

Abstract
We introduce BatchGFN—a novel approach for
pool-based active learning that uses generative
flow networks to sample sets of data points pro-
portional to a batch reward. With an appropriate
reward function to quantify the utility of acquir-
ing a batch, such as the joint mutual informa-
tion between the batch and the model parameters,
BatchGFN is able to construct highly informative
batches for active learning in a principled way.
We show our approach enables sampling near-
optimal utility batches at inference time with a
single forward pass per point in the batch in toy
regression problems. This alleviates the computa-
tional complexity of batch-aware algorithms and
removes the need for greedy approximations to
find maximizers for the batch reward. We also
present early results for amortizing training across
acquisition steps, which will enable scaling to
real-world tasks.

1. Introduction
Annotating large quantities of data can be prohibitively ex-
pensive, particularly in domains which require expertise.
Active learning (AL) seeks to overcome this labelling bottle-
neck by iteratively selecting the most useful points to label
to improve model performance (Houlsby et al., 2011; Settles,
2009). In the batch setting, we seek to choose a set of points
(the query batch) from an unlabelled pool at each acquisition
step. Approaches based on single-point scores tend to have
redundancy in information in the batch (Gal et al., 2017).
Stochastic schemes (Kirsch et al., 2021) can alleviate some
of this redundancy but do not have guarantees for optimal
batch formation. However, more principled batch-aware
methods are in general computationally expensive and of-
ten resort to greedy approximations to their true objective

1OATML, University of Oxford 2Mila – Québec AI Institute
3Université de Montréal 4CIFAR Fellow. Correspondence to:
Shreshth A. Malik <shreshth@robots.ox.ac.uk>.

Accepted to ICML workshop on Structured Probabilistic Inference
& Generative Modeling. Copyright 2023 by the author(s).

∅

{x1}

{x2}

{x3}

{x1, x2}

{x1, x3}

{x2, x3}

P
F (· | ∅;D

pool ,D
train)

PF (· | {x3};Dpool,Dtrain)

R({x2, x3} | Dtrain)Dpool = {x1, x2, x3}

Figure 1. BatchGFN state space for constructing a batch of size 2
from a pool set of 3 points. Starting with an empty set, the policy
sequentially chooses points to add to batch until a terminal state ,
representing a complete batch, is reached. Notice that a state may
be reachable by more than one trajectory (e.g., the dashed path).

to construct the batch (Ash et al., 2021; 2019; Holzmüller
et al., 2022; Kirsch et al., 2019; Sener & Savarese, 2018).

In this work, we propose to select batches using a parame-
terized sampler trained to sample batches proportional to a
batch reward function. We use a generative flow network
(Bengio et al., 2021a;b) where the state of the network is the
query batch under construction, and actions add pool data
points to the batch. Once trained, we show that our approach
enables sampling highly informative query batches more
efficiently than other batch-aware algorithms, without using
greedy approximations.

2. Background
2.1. Batch Active Learning

The goal of AL is to train models with as little data as
possible. In the pool-based batch AL framework (Lewis,
1995; Settles, 2009), at each data acquisition step, we seek
to choose B points from a pool set Dpool = {xi}Ni=1 to
be labelled by an oracle and added to the training set
Dtrain = {xi, yi}Mi=1, where x ∈ X are the data features

BatchGFN: Generative Flow Networks for Batch Active Learning

and y ∈ Y are the corresponding labels. We can formalize
batch AL strategies by defining an acquisition or reward
function R : XB → R which scores each potential batch.
As the number of batches to score grows exponentially with
|Dpool|, the maximization problem is intractable, so greedy
approximations are often used.

For example, the BALD (Gal et al., 2017; Houlsby et al.,
2011) algorithm takes a Bayesian perspective for a model
with parameters θ and selects points that maximize the
mutual information (MI) between the model predictions
and its parameters, I [y, θ | x,Dtrain] = H[y | x,Dtrain] −
Eθ∼p(θ|Dtrain)[H[y | x, θ]], where H denotes the entropy.
Intuitively, labelling points with high mutual information
will decrease the uncertainty in the model parameters. The
batch reward for BALD is simply the sum of the individual
scores for each data point RBALD =

∑B
i=1 I [yi, θ | xi,D],

so the top B scoring points are greedily selected. BALD
has been shown to be ineffective to acquire batches, given
that the maximizers of MI are usually similar. Injecting
noise into top-B acquisition scores such as BALD can be
used to induce diversity in the batch, and can be viewed
as approximating future acquisition scores (Kirsch et al.,
2021).

Kirsch et al. (2019) explicitly model the interactions be-
tween data points by directly using the joint mutual infor-
mation (JMI),

RBatchBALD = I [y1:B , θ | x1:B ,Dtrain] . (1)

To deal with the intractability of the maximization problem,
the authors propose a greedy approximation that is guaran-
teed to yield a batch for which the JMI is larger than (1− 1

e)
times the optimal JMI, because of sub-modularity of the
JMI set function. Greedy strategies for maximizing JMI in
the regression setting have also been proposed (Holzmüller
et al., 2022; Wang et al., 2021). Related to the JMI (Kirsch
& Gal, 2022), Fisher Information has also been explored
as a batch acquisition objective (Ash et al., 2021). Other
AL strategies such as Coresets (Sener & Savarese, 2018) or
LCMD (Holzmüller et al., 2022), which use distance-based
metrics to ensure diversity in the batch, also use greedy ap-
proximations to find a batch with high reward. In addition to
the approximation, another major drawback of BatchBALD,
and other batch-aware methods such as BADGE (Ash et al.,
2019), is their high computational cost.

2.2. Generative Flow Networks

Generative Flow Networks (GFlowNets; GFNs; Bengio
et al., 2021a;b) are probabilistic models over discrete sample
spaces with a compositional structure. GFNs are stochas-
tic sequential samplers that aim to generate objects from
a target distribution, which is given by its unnormalized
probability mass function R, also referred to as the reward

function.

The sample space, denoted Sf , is the subset of terminal
nodes (i.e. have no outgoing edges) of the vertices S of
a directed acyclic graph (DAG) ={S,A} with a special
parentless state s0 called the source state. S consists of
partially constructed objects, s0 being an empty object, and
A corresponds to actions that can be taken at each of these
states. Complete objects sf ∈ Sf are sampled by following
a complete trajectory τ starting at s0 and terminating at sf .

GFN training objectives allow the learning of a policy
PF (s

′ | s) along the edges of the DAG with the goal of
making the marginal likelihood of sampling sf proportional
to the reward R(sf). The parameters of PF are sequentially
updated using the gradient of one of the losses applied to
trajectories (or parts of trajectories) sampled from the tra-
jectory distribution induced by PF (or some exploratory
distribution, such as a tempered PF). The various GFN
losses in common use make use of a parametric backward
policy PB(s | s′), specifying distributions over parents of
the states in the DAG, and optionally a state flow function
F (s) (Malkin et al., 2022). In this work, we use the Subtra-
jectory Balance objective (Madan et al., 2023, to appear.)
which provides advantages in training stability. We also
leverage the forward-looking parametrization (Pan et al.,
2023, to appear.), which uses the stepwise gain in a proxy
log-reward computed at intermediate states to improve credit
assignment.

The parametric objects learned by GFNs, as well as their re-
wards, can be conditioned on instance-specific information,
in our case a training set and a pool set, enabling general-
ization to conditioning data not seen in training (Jain et al.,
2022b; Zhang et al., 2023).

3. Methods
3.1. BatchGFN: A Sampler for Batches of Data

We propose BatchGFN; a parameterized sampler for batch
AL which uses a GFN trained to sample informative query
batches of data to label. Prior work on GFNs in the context
of active learning does not consider the pool-based setting
and instead leverages the GFNs to sample individual can-
didates that comprise the batch, one at a time (Jain et al.,
2022a).

Instead, we use a GFN to construct a batch (a set) of can-
didates from a pool in a single trajectory. As illustrated in
Figure 1, PF generates a batch of size B through a sequence
of steps, each consisting of adding an element from Dpool
to the partially constructed batch. Note that the GFN is
conditioned on Dtrain. Each sampled batch {x1, . . . , xB} is
scored with a reward function R(·|Dtrain) which quantifies
the utility of acquiring the batch. In this work we use the

BatchGFN: Generative Flow Networks for Batch Active Learning

Figure 2. Density parity plots comparing the true reward density
for query batches against the empirical distribution of batches
sampled from the BatchGFN. Regression lines are also shown. A
perfect fit would have all points lying on y = x. The inlays shows
the current model and labelled/queried data points in blue/orange
respectively, and the Jenson-Shannon divergence between the two
distributions.

JMI (1) to account for overlap in information between points
in the batch. We can however, in principle, use any heuristic
that provides a scalar reward to a given batch.

With sufficient capacity, the BatchGFN converges to the
true reward distribution in the limit of infinite training tra-
jectories (Bengio et al., 2021a). Therefore, once appropri-
ately trained, BatchGFN can be used to sample batches
for AL from the true batch objective (1) efficiently, with-
out resorting to greedy, or stochastic top-B approximations.
BatchGFN has a time complexity of O(B) for sampling a
batch, requiring only B forward passes of PF . This is cheap
compared to, for example, BatchBALD which requires com-
puting joint entropies for all points in the pool which can
be particularly expensive when using Monte-Carlo (MC)
samples (Kirsch et al., 2019).

3.2. Amortizing Training Across Acquisition Steps

The reward distribution over possible query batches changes
after each acquisition as the model is trained on the newly
labelled data. Naı̈vely, the GFN therefore needs to be re-
trained to fit the new distribution at each AL step, which can
be expensive. In theory, we could train models on samples
from a distribution of Dtrain and and use these as examples
to train an amortized PF .

Instead, we draw on ideas from GP “fantasization” literature
(Hennig & Schuler, 2012; Jiang et al., 2020; Maddox et al.,
2021) to “lookahead” to possible future reward distributions
after acquisition. We use samples from the current model
to hallucinate labels for the next chosen query batch, add
these to the training set, retrain the model, and then train the
sampler using the new reward function and training set. This
greatly restricts the space of conditional reward distributions
required to be modelled and thus the computational expense

Figure 3. Joint mutual information of sampled query batches from
BatchGFN compared to baselines for the 1D regression task with
pool size 2000, seed size 10, query size 10, and T = 0.01. Un-
certainty bars show the standard error over 10 sampled runs. The
stochastic-BALD baseline samples from a distribution of single-
point BALD scores. The right plot compares BatchGFN sampling
at different reward temperatures. We note that very low tempera-
tures cause training instabilities. Conditioning the policy on the
temperature may alleviate this behaviour (Zhang et al., 2023).

required for training. See Appendix A.3 for further details
on lookahead training.

3.3. Implementation Details

Batch Reward Function and Active Learning Model In
the experiments shown here we chose to use the JMI (1) as
the measure of utility for the constructed batches. We use
exact inference Gaussian processes (GPs) as the model for
AL. This allows us to use a closed form solution for the JMI
between batch labels y1:B and the model f ,

I (y1:B ; f) = I (y1:B ; f1:B) =
1

2
log

∣∣I + σ−2K1:B

∣∣ (2)

where K1:B = [k (x, x′)]x, x′ ∈ x1:B is the covariance
matrix for the batch, σ2 is the GP observation noise vari-
ance, and I is the identity matrix (Holzmüller et al., 2022;
Srinivas et al., 2010). For AL we would like to preferen-
tially sample batches with high JMI. Thus in practice, we
modify the reward function to R = exp(I (y1:B ; f) /T),
which includes a temperature parameter T that enables sam-
pling from a more peaky reward distribution to focus on the
modes.

Policy Network Architecture and Training Note that our
framework is agnostic to policy parametrization. For exper-
iments presented here we use a simple set-invariant archi-
tecture which is conditioned on the current batch and the
training data (Appendix A.2). We use the Subtrajectory Bal-
ance objective with forward-looking parametrization which
exploits the submodularity of the JMI objective for interme-
diate rewards. During training, we encourage state explo-
ration by sampling from an ϵ-random policy (Bengio et al.,

BatchGFN: Generative Flow Networks for Batch Active Learning

Figure 4. Test loss as function of number of labelled examples for
different active learning strategies. Active learning with BatchGFN
is on par with BatchBALD. Uncertainty bars show the standard
error over 5 runs with different seed sets.

2021a)1.

4. Experiments
First we show through a toy example that the BatchGFN
converges to a policy that samples batches of points propor-
tional to their reward as expected. Then we show that by
tuning the reward temperature, we can efficiently sample
highly informative batches for AL. Finally, we present early
results into amortizing training across acquisition steps.

4.1. Sampling Proportional to the Batch Reward

We consider a toy 1D regression task to verify behaviour.
See Appendix A.1 for details on the dataset. For small pool
and query sizes, it is possible to exhaustively evaluate the
reward for every possible query batch. We compare the true
reward distribution to the empirical distribution of batches
generated by the trained BatchGFN (with T = 1) in Figure
2. We see that the BatchGFN samples batches approxi-
mately proportional to their batch reward as expected.

4.2. Sampling High Joint Mutual Information Batches

In practice, we would like to sample high JMI batches for
applications such as AL. Figure 3 shows the JMI of sampled
batches from the BatchGFN at different reward temperatures
for the 1D regression task. We find that by decreasing the
temperature we are able to sample higher JMI batches with
greater sample efficiency compared to other stochastic ap-
proaches. The batches sampled are on par with BatchBALD
while being less computationally expensive2.

1Our code is available at https://github.com/
s-a-malik/batchgfn

2We note that the speed-up in run-time compared to Batch-
BALD using the exact GP JMI (2) in the current setting is modest
(∼ 10% faster for a single sample from BatchGFN). However,

Figure 5. Training curve plot showing the Jenson-Shannon diver-
gence between the true reward distribution and the empirical
BatchGFN distribution when transferring from one acquisition
step to the next (shown on the right). We train on 10 hallucinated
samples of the query batch to be labelled.

4.3. Active Learning with BatchGFN

We have shown that BatchGFN can sample high JMI batches
effectively. Now we assess how effective these are for AL.
Figure 4 shows the test loss of the model at the toy regression
task using queries sampled from BatchGFN. We sample 20
trajectories from the BatchGFN at inference and choose the
batch with the highest reward. We find that BatchGFN is on
par with BatchBALD and significantly outperforms BALD
and random acquisition. Appendix B.1 contains example
acquisition plots.

4.4. Amortizing Across Acquisition Steps

Retraining the BatchGFN between acquisition steps is im-
practical for real-world usage. As discussed in Section 3.2,
we can amortize training over acquisition steps by condition-
ing the policy on the training data. In Figure 5 we compare
how quickly the BatchGFN adapts to the new conditional re-
ward distribution after an acquisition on a small pool/query
size such that we can compute the true distribution (Sec-
tion 4.1). We find that lookahead training significantly de-
creases the number of training steps required to fit to the new
distribution compared to reinitializing the policy network.
Naı̈vely continuing training from the previous reward distri-
bution also works well but starts at higher divergence as it
is overfit to the previous distribution, making it unsuitable
for zero-shot transfer, and potentially unstable for few-shot
transfer. This shows promise for amortizing BatchGFN
training over multiple acquisition steps and for larger tasks.

BatchBALD is orders of magnitude more expensive when using
MC sampling, whereas BatchGFN inference will be unaffected.

https://github.com/s-a-malik/batchgfn
https://github.com/s-a-malik/batchgfn

BatchGFN: Generative Flow Networks for Batch Active Learning

5. Discussion
Contributions In this work we developed BatchGFN—a
novel method based on GFNs to sample batches of data
points proportional to an arbitrary batch reward function.
We have shown that this method can be used to efficiently
sample high JMI batches for AL tasks in toy regression
problems and has performance on par with more expensive
batch construction methods, without resorting to greedy
approximations.

Further Work In Section 4.4 we showed that it is possible
to amortize training. However for practical usage, we need
to show that this is possible over longer acquisition step
horizons, larger pool sets, and higher dimensional data. To
do this, we can investigate the following: 1) Architecturally,
we can improve the representational ability of the policy net-
work by considering attention between data points (Kossen
et al., 2021). 2) To scale to larger pool sizes, we could incor-
porate perceiver-like bottlenecks (Jaegle et al., 2021). 3) To
enable training on tasks where a cheap JMI estimate is not
available, we should investigate alternative batch heuristics
to train the GFN efficiently.

Acknowledgements
We would like to thank Panagiotis Tigas and Andreas Kirsch
for helpful discussions about the project. SM acknowledges
funding from the EPSRC Centre for Doctoral Training in
Autonomous Intelligent Machines and Systems (Grant No:
EP/S024050/1). YG acknowledges funding from the Turing
Fellowship (Grant No. EP/V030302/1). MJ, NM, TD, and
YB acknowledge financial support from IBM, Samsung,
Microsoft, and Google.

References
Ash, J., Goel, S., Krishnamurthy, A., and Kakade, S. Gone

fishing: Neural active learning with fisher embeddings.
Advances in Neural Information Processing Systems, 34:
8927–8939, 2021.

Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J.,
and Agarwal, A. Deep batch active learning by di-
verse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671, 2019.

Bengio, E., Jain, M., Korablyov, M., Precup, D., and Ben-
gio, Y. Flow network based generative models for non-
iterative diverse candidate generation. In Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
2021a. URL https://openreview.net/forum?
id=Arn2E4IRjEB.

Bengio, Y., Deleu, T., Hu, E. J., Lahlou, S., Tiwari, M., and
Bengio, E. Gflownet foundations, 2021b.

Gal, Y., Islam, R., and Ghahramani, Z. Deep bayesian active
learning with image data. In International Conference on
Machine Learning, pp. 1183–1192. PMLR, 2017.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and
Wilson, A. G. Gpytorch: Blackbox matrix-matrix gaus-
sian process inference with gpu acceleration. Advances
in neural information processing systems, 31, 2018.

Hennig, P. and Schuler, C. J. Entropy search for information-
efficient global optimization. Journal of Machine Learn-
ing Research, 13(6), 2012.

Holzmüller, D., Zaverkin, V., Kästner, J., and Steinwart, I. A
framework and benchmark for deep batch active learning
for regression. arXiv preprint arXiv:2203.09410, 2022.

Houlsby, N., Huszár, F., Ghahramani, Z., and Lengyel, M.
Bayesian active learning for classification and preference
learning. arXiv preprint arXiv: Arxiv-1112.5745, 2011.

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman,
A., and Carreira, J. Perceiver: General perception with it-
erative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021.

Jain, M., Bengio, E., Hernandez-Garcia, A., Rector-Brooks,
J., Dossou, B. F., Ekbote, C. A., Fu, J., Zhang, T., Kil-
gour, M., Zhang, D., et al. Biological sequence design
with gflownets. In International Conference on Machine
Learning, pp. 9786–9801. PMLR, 2022a.

Jain, M., Raparthy, S. C., Hernandez-Garcia, A., Rector-
Brooks, J., Bengio, Y., Miret, S., and Bengio, E. Multi-
objective gflownets. arXiv preprint arXiv:2210.12765,
2022b.

Jiang, S., Jiang, D., Balandat, M., Karrer, B., Gardner, J.,
and Garnett, R. Efficient nonmyopic bayesian optimiza-
tion via one-shot multi-step trees. Advances in Neural
Information Processing Systems, 33:18039–18049, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kirsch, A. and Gal, Y. Unifying approaches in active
learning and active sampling via fisher information and
information-theoretic quantities. Transactions on Ma-
chine Learning Research, 2022.

Kirsch, A., Van Amersfoort, J., and Gal, Y. Batchbald: Ef-
ficient and diverse batch acquisition for deep bayesian
active learning. Advances in neural information process-
ing systems, 32, 2019.

https://openreview.net/forum?id=Arn2E4IRjEB
https://openreview.net/forum?id=Arn2E4IRjEB

BatchGFN: Generative Flow Networks for Batch Active Learning

Kirsch, A., Farquhar, S., Atighehchian, P., Jesson, A.,
Branchaud-Charron, F., and Gal, Y. Stochastic batch
acquisition for deep active learning. arXiv preprint
arXiv:2106.12059, 2021.

Kossen, J., Band, N., Lyle, C., Gomez, A. N., Rainforth,
T., and Gal, Y. Self-attention between datapoints: Going
beyond individual input-output pairs in deep learning.
Advances in Neural Information Processing Systems, 34:
28742–28756, 2021.

Lahlou, S., Viviano, J. D., and Schmidt, V. torchgfn: A py-
torch gflownet library. arXiv preprint arXiv: 2305.14594,
2023.

Lewis, D. D. A sequential algorithm for training text clas-
sifiers: Corrigendum and additional data. In Acm Sigir
Forum, volume 29, pp. 13–19. ACM New York, NY, USA,
1995.

Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E.,
Jain, M., Nica, A., Bosc, T., Bengio, Y., and Malkin, N.
Learning gflownets from partial episodes for improved
convergence and stability. International Conference on
Machine Learning (ICML), 2023, to appear.

Maddox, W. J., Stanton, S., and Wilson, A. G. Conditioning
sparse variational gaussian processes for online decision-
making. Advances in Neural Information Processing
Systems, 34:6365–6379, 2021.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio,
Y. Trajectory balance: Improved credit assignment
in gflownets. Neural Information Processing Systems
(NeurIPS), 2022.

Pan, L., Malkin, N., Zhang, D., and Bengio, Y. Better
training of gflownets with local credit and incomplete tra-
jectories. International Conference on Machine Learning
(ICML), 2023, to appear.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. In International
Conference on Learning Representations, 2018.

Settles, B. Active learning literature survey. 2009.

Srinivas, N., Krause, A., Kakade, S., and Seeger, M. Gaus-
sian process optimization in the bandit setting: no regret
and experimental design. In Proceedings of the 27th In-
ternational Conference on International Conference on
Machine Learning, pp. 1015–1022, 2010.

Wang, C., Sun, S., and Grosse, R. Beyond marginal uncer-
tainty: How accurately can bayesian regression models
estimate posterior predictive correlations? In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 2476–2484. PMLR, 2021.

Zhang, D. W., Rainone, C., Peschl, M., and Bondesan,
R. Robust scheduling with gflownets. arXiv preprint
arXiv:2302.05446, 2023.

BatchGFN: Generative Flow Networks for Batch Active Learning

A. Further Experimental Details
A.1. Data

Toy Regression Task The toy regression task used for experiments in Section 4 is shown in Figure 6. The pool
and test data was generated from the function f(x) = (−0.6667 − 0.6012x − 1.0172x2 − 0.7687x3 + 1.4680x5 −
0.1678x6) sin(πx) exp(−0.5x2) +N(0, 0.1), and x ∼ N(0, 1) where N is the normal distribution. The test set was fixed
at 1000 points and generated from a different random seed. Seed datasets for active learning experiments were chosen
randomly from the pool set.

Figure 6. Toy example 1D regression data.

A.2. Models

The policy network architecture is shown in Figure 7. We use feed-forward neural network (FFN) encoders to encode each
pool point and points in the current state. The embeddings of the points in the current state are summed (for set-invariance),
and concatenated with each embedded pool point as a context vector. The combined embedding is fed through an additional
FFN to output the probability of selecting each pool point. We share all parameters apart from output layers across PF , PB

and the log-state-flow network (Madan et al., 2023, to appear.). For amortization experiments, we concatenate an additional
context vector of summed embeddings of the training set points and their labels.

Hyperparameters for the policy network and the GP used for active learning are given in Table 1. We use the default
GPyTorch (Gardner et al., 2018) settings for implementing the GPs3.

Train
Encoder

FFN Action
Probability

<latexit sha1_base64="yekQDf+rJ25w5vv7jjYW0BI3kOc=">AAACBXicbVBNS8NAEN3Ur1q/oh71sFiEnkoiRT0W9OCxgv2ANoTNdtMu3WzC7kQsIRcv/hUvHhTx6n/w5r8xaXPQ1gcDj/dmmJnnRYJrsKxvo7Syura+Ud6sbG3v7O6Z+wcdHcaKsjYNRah6HtFMcMnawEGwXqQYCTzBut7kKve790xpHso7mEbMCchIcp9TApnkmseDgMCYEpFcp24yAPYACSjCZZriimtWrbo1A14mdkGqqEDLNb8Gw5DGAZNABdG6b1sROAlRwKlgaWUQaxYROiEj1s+oJAHTTjL7IsWnmTLEfqiykoBn6u+JhARaTwMv68xv1oteLv7n9WPwL52EyygGJul8kR8LDCHOI8FDrhgFMc0IoYpnt2I6JopQyILLQ7AXX14mnbO6fV5v3DaqzVoRRxkdoRNUQza6QE10g1qojSh6RM/oFb0ZT8aL8W58zFtLRjFziP7A+PwBFDeY3A==</latexit>Dtrain

<latexit sha1_base64="4C/IjUjuc28d56xii9RofFU6yoE=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoOQU9gVUY8BLx4jmgckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+mfntJ6oNU/LBThIaCjyULGYEWye1evdsKHC/XPFr/hxolQQ5qUCORr/81RsokgoqLeHYmG7gJzbMsLaMcDot9VJDE0zGeEi7jkosqAmz+bVTdOaUAYqVdiUtmqu/JzIsjJmIyHUKbEdm2ZuJ/3nd1MbXYcZkkloqyWJRnHJkFZq9jgZMU2L5xBFMNHO3IjLCGhPrAiq5EILll1dJ67wWXNYu7i4q9WoeRxFO4BSqEMAV1OEWGtAEAo/wDK/w5invxXv3PhatBS+fOYY/8D5/AGZ7jvI=</latexit>

⌃

<latexit sha1_base64="mIN7gSaraS2RIXgteZurVXc+IrY=">AAAB+XicbVBNS8NAEJ34WetX1KOXxSL0ICGRol6EghePFewHNCFsttt26WYTdjfFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvCjlTGnX/bbW1jc2t7ZLO+Xdvf2DQ/vouKWSTBLaJAlPZCfCinImaFMzzWknlRTHEaftaHQ389tjKhVLxKOepDSI8UCwPiNYGym0bYVukZ8/hewCOY7jT0O74jruHGiVeAWpQIFGaH/5vYRkMRWacKxU13NTHeRYakY4nZb9TNEUkxEe0K6hAsdUBfn88ik6N0oP9RNpSmg0V39P5DhWahJHpjPGeqiWvZn4n9fNdP8myJlIM00FWSzqZxzpBM1iQD0mKdF8YggmkplbERliiYk2YZVNCN7yy6ukdel4V07toVapV4s4SnAKZ1AFD66hDvfQgCYQGMMzvMKblVsv1rv1sWhds4qZE/gD6/MHFW6R8A==</latexit>

s = {xi, ...}

<latexit sha1_base64="RqVkjTs4+T3dfMZWawGBrLVIJ08=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AIPZVEinos6MFjBfsBbQib7aZdusmG3YlYQvDiX/HiQRGv/gpv/hs3bQ7a+mDg8d4MM/P8mDMFtv1tlFZW19Y3ypuVre2d3T1z/6CjRCIJbRPBhez5WFHOItoGBpz2Yklx6HPa9SdXud+9p1IxEd3BNKZuiEcRCxjBoCXPPBqEGMYE8/Q689IB0AdIYyF4lnlm1a7bM1jLxClIFRVoeebXYChIEtIICMdK9R07BjfFEhjhNKsMEkVjTCZ4RPuaRjikyk1nL2TWqVaGViCkrgismfp7IsWhUtPQ1535wWrRy8X/vH4CwaWbsihOgEZkvihIuAXCyvOwhkxSAnyqCSaS6VstMsYSE9CpVXQIzuLLy6RzVnfO643bRrVZK+Ioo2N0gmrIQReoiW5QC7URQY/oGb2iN+PJeDHejY95a8koZg7RHxifP6y+mDA=</latexit>Dpool

Batch
Encoder

Pool
Encoder

<latexit sha1_base64="5kQCrpi1R2QpPCD3Crk3L0P+yZ8=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvQU9mVoh4LXjxWsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pG5VqylpUCaW7ITFMcMlallvBuolmJA4F64ST27nfeWLacCUf7DRhQUxGkkecEuukdl8lIjWDcsWreQvgdeLnpAI5moPyV3+oaBozaakgxvR8L7FBRrTlVLBZqZ8alhA6ISPWc1SSmJkgW1w7wxdOGeJIaVfS4oX6eyIjsTHTOHSdMbFjs+rNxf+8XmqjmyDjMkktk3S5KEoFtgrPX8dDrhm1YuoIoZq7WzEdE02odQGVXAj+6svrpH1Z869q9ft6pVHN4yjCGZxDFXy4hgbcQRNaQOERnuEV3pBCL+gdfSxbCyifOYU/QJ8/yxqPNA==</latexit>�

<latexit sha1_base64="4C/IjUjuc28d56xii9RofFU6yoE=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoOQU9gVUY8BLx4jmgckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+mfntJ6oNU/LBThIaCjyULGYEWye1evdsKHC/XPFr/hxolQQ5qUCORr/81RsokgoqLeHYmG7gJzbMsLaMcDot9VJDE0zGeEi7jkosqAmz+bVTdOaUAYqVdiUtmqu/JzIsjJmIyHUKbEdm2ZuJ/3nd1MbXYcZkkloqyWJRnHJkFZq9jgZMU2L5xBFMNHO3IjLCGhPrAiq5EILll1dJ67wWXNYu7i4q9WoeRxFO4BSqEMAV1OEWGtAEAo/wDK/w5invxXv3PhatBS+fOYY/8D5/AGZ7jvI=</latexit>

⌃

Figure 7. Policy network architecture. For non-transfer experiments we do not include the train encoder. The outputs of the policy network
are the probabilities for adding each pool point to the current state, i.e. the query batch being built.

3Our code is available at https://github.com/s-a-malik/batchgfn. It relies on torchgfn (Lahlou et al., 2023) for
implementing the GFlowNets.

https://github.com/s-a-malik/batchgfn

BatchGFN: Generative Flow Networks for Batch Active Learning

Table 1. Hyperparameter configuration for active learning regression experiments.

Hyperparameter Value

BatchGFN Optimization

Loss SubTB (forward-looking) (Madan et al., 2023, to appear.; Malkin et al., 2022)
SubTB λ 0.9
Training exploration ϵ 0.1
Reward Temperature T 0.1
Optimizer Adam (Kingma & Ba, 2014)
Learning Rate 0.001
Batch Size 8
Training Iterations 5000

BatchGFN Architecture

Hidden Layer Dimension 256
Number of Encoder Hidden Layers 2
Number of Batch Samples for Infer-
ence

20

Lookahead Experiments

Lookahead Samples 10
Reward Temperature 0.1
Seed Size 17
Query Size 3
Pool Size 50
Pool sampling for lookahead BatchGFN with training exploration

Active Learning Model

Model Exact Gaussian Process
Hyperparameter Training Epochs 1000
Optimizer Adam (Kingma & Ba, 2014)
Learning Rate 0.1
Kernel Matérn

A.3. Active Learning with BatchGFN

Algorithm 1 shows pseudocode for active learning with BatchGFN, including optional lookahead training where we
hallucinate labels and train on possible future reward distributions. We are able to transfer to the new conditional reward
distribution with fewer BatchGFN training iterations by using lookahead training (Section 4.4).

B. Further Results
B.1. Acquisition Plots

Figure 8 shows example acquisition plots comparing BatchGFN (gfn) acquisition to other baselines. BatchGFN acquires
points that are diverse and uncertain like BatchBALD, whereas BALD acquires similar points.

B.2. Further Amortization Plots

We provide an additional example of transfer between AL steps on a smaller pool set of size 20 in Figure 9. Lookahead
training again allows for faster convergence to the true distribution.

BatchGFN: Generative Flow Networks for Batch Active Learning

Algorithm 1 BatchGFN active learning with optional lookahead training.
Require: Query batch size: B, Seed set size: B0, Pool dataset: Dpool: {x0, . . . , xN}
Require: Active learning model: f , BatchGFN: g, Reward Function: R, Lookahead samples: L

Randomly sample {x∗
0, . . . , x

∗
B0
} from Dpool

Label seed batch, y∗x ← Oracle(x) ∀x ∈ {x∗
0, . . . , x

∗
B0
}

Dtrain ← {(x∗
0, y

∗
0), . . . , (x

∗
B0

, y∗B0
)}

Dpool ← Dpool \ {x∗
0, . . . , x

∗
B0
}

while labelling budget not exhausted do
Train f on Dtrain
Train g using Dtrain, Dpool, f , and R
Sample batches from g
batch← maxR(batches)
if lookahead then

for i = 1 to L do
Sample lookahead batch from g
Hallucinate labels y′x ← f.sample(x′)∀x′ ∈ lookahead batch
D′

train ← Dtrain ∪ {(x′
0, y

′
0), . . . , (x

′
B , y

′
B)}

D′
pool ← Dpool \ {x′

0, . . . , x
′
B}

Train f on D′
train

Train g using D′
train, D′

pool, f , and R
end for

end if
Get true labels y∗x ← Oracle(x) ∀x ∈ batch
Dtrain ← Dtrain ∪ {(x∗

0, y
∗
0), . . . , (x

∗
B , y

∗
B)}

Dpool ← Dpool \ {x∗
0, . . . , x

∗
B}

end while

Figure 8. Acquisition plots for different active learning strategies. Pool size 2000, query size 10, training set size 10. Labelled/queried
data points are shown in blue/orange respectively.

BatchGFN: Generative Flow Networks for Batch Active Learning

Figure 9. Training curve plot showing the Jenson-Shannon divergence between the true reward distribution and the empirical BatchGFN
distribution when transferring from one acquisition step to the next (shown on the right). We use 10 lookahead samples.

