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ABSTRACT

Message Passing Neural Networks (MPNNs) are a class of Graph Neural Net-
works (GNNs) that leverage the graph topology to propagate messages across
increasingly larger neighborhoods. The message-passing scheme leads to two dis-
tinct challenges: over-smoothing and over-squashing. While several algorithms,
e.g. DropEdge and its variants – DropNode, DropAgg and DropGNN – have suc-
cessfully addressed the over-smoothing problem, their impact on over-squashing
remains largely unexplored. This represents a critical gap in the literature as fail-
ure to mitigate over-squashing would make these methods unsuitable for long-
range tasks. In this work, we take the first step towards closing this gap by study-
ing the aforementioned algorithms in the context of over-squashing. We present
novel theoretical results that characterize the negative effects of DropEdge on sen-
sitivity between distant nodes, suggesting its unsuitability for long-range tasks.
Our findings are easily extended to its variants, allowing us to build a comprehen-
sive understanding of how they affect over-squashing. We evaluate these methods
using real-world datasets, demonstrating their detrimental effects. Specifically, we
show that while DropEdge-variants improve test-time performance in short-range
tasks, they deteriorate performance in long-range ones. Our theory explains these
results as follows: random edge-dropping lowers the effective receptive field of
GNNs, which although beneficial for short-range tasks, misaligns the models on
long-range ones. This forces the models to overfit to short-range artefacts in the
training set, resulting in poor generalization. Our conclusions highlight the need
to re-evaluate various methods designed for training deep GNNs, with a renewed
focus on modelling long-range interactions.

1 INTRODUCTION

Graph-structured data is ubiquitous – it is found in social media platforms, online retail platforms,
molecular structures, transportation networks, and even computer systems. Graph neural networks
(GNNs) (Li et al., 2016; Scarselli et al., 2009) are powerful neural models developed for mod-
elling graph-structured data, and have found applications in several real-world scenarios (Gao et al.,
2018; Monti et al., 2017; Wale & Karypis, 2006; Ying et al., 2018; You et al., 2020a;b;c; 2022;
Zheng et al., 2022; Zitnik & Leskovec, 2017). A popular class of GNNs, called message-passing
neural networks (MPNNs) (Gilmer et al., 2017), recursively process neighborhood information us-
ing message-passing layers. These layers are stacked to allow each node to aggregate information
from increasingly larger neighborhoods, akin to how convolutional neural networks (CNNs) learn
hierarchical features for images (LeCun et al., 1989). However, unlike in image-based deep learn-
ing, where ultra-deep CNN architectures have led to performance breakthroughs (He et al., 2016;
Szegedy et al., 2015), shallow GNNs often outperform deeper models on many graph learning tasks
(Zhou et al., 2021b). This is because deep GNNs suffer from unique issues like over-smoothing
(Oono & Suzuki, 2020) and over-squashing (Alon & Yahav, 2021), which makes training them
notoriously difficult.

Over-smoothing refers to the problem of node representations becoming too similar as they are
recursively processed. This is undesirable since it limits the GNN from effectively utilizing the
information in the input features. The problem has garnered significant attention from the research
community, resulting in a suite of algorithms designed to address it (Rusch et al., 2023). Amongst
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these methods are a collection of random edge-dropping algorithms, including DropEdge (Rong
et al., 2020) and its variants – DropNode (Feng et al., 2020), DropAgg (Jiang et al., 2023) and
DropGNN (Papp et al., 2021) – which act as message-passing reducers.

The other issue specific to GNNs is over-squashing. In certain graph structures, neighborhood size
grows exponentially with distance from the source (Chen et al., 2018b), causing information to be
lost as it passes through graph bottlenecks (Alon & Yahav, 2021). This limits MPNNs’ ability to
enable communication between distant nodes, which is crucial for good performance on long-range
tasks. To alleviate over-squashing, several graph-rewiring techniques have been proposed, which
aim to improve graph connectivity by adding edges in a strategic manner1 (Alon & Yahav, 2021;
Black et al., 2023; Deac et al., 2022; Karhadkar et al., 2023; Nguyen et al., 2023). In contrast, the
DropEdge-variants only remove edges, which should, in principle, amplify over-squashing levels.

The empirical evidence in support of methods designed for training deep GNNs has been majorly
collected on short-range tasks. That is, it simply suggests that these methods prevent loss of local
information, but it remains inconclusive if they facilitate capturing long-range interactions (LRIs).
Of course, on long-range tasks, deeper GNNs are useless if they cannot capture LRIs. This is
especially a concern for DropEdge-variants since evidence suggests that alleviating over-smoothing
with graph rewiring could exacerbate over-squashing (Giraldo et al., 2023; Nguyen et al., 2023).

Theoretical Contributions. In this work, we uncover the effects of random edge-dropping algo-
rithms on over-squashing in MPNNs. By explicitly computing the expected sensitivity of the node
representations to the node features (Topping et al., 2022) (inversely related to over-squashing) in a
linear GCN (Kipf & Welling, 2017), we show that these methods provably reduce the effective recep-
tive field of the model. Precisely speaking, the rate at which sensitivity between distant nodes decays
is polynomial w.r.t. the dropping probability. Finally, we extend the existing theoretical results on
sensitivity in nonlinear MPNNs (Black et al., 2023; Di Giovanni et al., 2023; Xu et al., 2018) to the
random edge-dropping setting, again showing that these algorithms exacerbate the over-squashing
problem.

Experimental Results. We evaluate the DropEdge-variants on node classification tasks using GCN
and GAT (Veličković et al., 2018) architectures. Specifically, we assess their performance on ho-
mophilic datasets – Cora (McCallum et al., 2000) and CiteSeer (Giles et al., 1998) – which represent
short-range tasks, and heterophilic datasets – Chameleon, Squirrel, TwitchDE (Rozemberczki et al.,
2021) – which correspond to long-range tasks. Our results indicate an increasing trend in test accu-
racy for homophilic datasets and a declining trend for heterophilic datasets as the dropping proba-
bility increases. Accordingly, we hypothesize that edge-dropping algorithms improve performance
on short-range tasks, as has been reported earlier, by reducing the receptive field of the GNN and
increasing model-dataset alignment, However, for long-range tasks, they decrease the model-dataset
alignment, resulting in poor generalization.

2 BACKGROUND

Consider a directed graph G = (V, E), with V = [N ] := {1, . . . , N} denoting the node set and
E ⊂ V × V the edge set; (j → i) ∈ E if there’s an edge from node j to node i. Let A ∈ {0, 1}N×N

denote its adjacency matrix, such that Aij = 1 if and only if (j → i) ∈ E , and let D := diag (A1N )
denote the in-degree matrix. The geodesic distance, dG (j, i), from node j to node i is the length
of the shortest path starting at node j and ending at node i. Accordingly, the ℓ-hop neighborhood
of a node i can be defined as the set of nodes that can reach it in exactly ℓ ∈ N0 steps, S(ℓ) (i) =
{j ∈ V : dG (j, i) = ℓ}.

2.1 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) operate on inputs of the form (G,X), where G encodes the
graph topology and X ∈ RN×H(0)

collects the node features2. Message-passing neural networks
(MPNNs) (Gilmer et al., 2017) are a special class of GNNs which recursively aggregate information

1Sometimes, along with removal of some edges to preserve statistical properties of the original topology.
2To keep things simple, we will ignore edge features.
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from the 1-hop neighborhood of each node using message-passing layers. An L-layer MPNN is
given as

z
(ℓ)
i = Upd(ℓ)

(
z
(ℓ−1)
i ,Agg(ℓ)

(
z
(ℓ−1)
i ,

{
z
(ℓ−1)
j : j ∈ S(1) (i)

}))
, ∀ℓ ∈ [L]

MPNNθ (G,X) =
{
Out

(
z
(L)
i

)
: i ∈ V

} (2.1)

where Z(0) = X , Agg(ℓ) denotes the aggregation functions, Upd(ℓ) the update functions, and
Out the readout function. Since the final representation of node i is a function of the in-
put features of nodes at most L-hops away from it, its receptive field is given by B(L) (i) :=
{j ∈ V : dG (j, i) ≤ L}.

For example, a GCN (Kipf & Welling, 2017) updates node representations as the weighted sum of
its neighbors’ representations:

Z(ℓ) = σ
(
ÂZ(ℓ−1)W (ℓ)

)
(2.2)

where σ is a point-wise nonlinearity, e.g. ReLU, the propagation matrix, Â, is a graph shift operator,
i.e. Âij ̸= 0 if and only if (j → i) ∈ E or i = j, and W (ℓ) ∈ RH(ℓ−1)×H(ℓ)

is a weight matrix. The
original choice for Â was the symmetrically normalized adjacency matrix Âsym := D̃−1/2ÃD̃−1/2

(Kipf & Welling, 2017), where Ã = A + IN and D̃ = diag(Ã1N ). However, several influential
works have also used the asymmetrically normalized adjacency, Âasym := D̃−1Ã (Hamilton et al.,
2017; Li et al., 2018; Schlichtkrull et al., 2017).

2.2 DROPEDGE

DropEdge is a random data augmentation technique that works by sampling a subgraph of the orig-
inal input graph in each layer, and uses that for message passing (Rong et al., 2020):

M(ℓ) ∼ {Bern (1− q)}N×N

Ã(ℓ) = M(ℓ) ◦A+ IN
(2.3)

Several variants of DropEdge have also been proposed, forming a family of random edge-dropping
algorithms for tackling the over-smoothing problem. For example, DropNode (Feng et al., 2020)
independently samples nodes and sets their representations to 0, followed by rescaling to make the
feature matrix unbiased. This is equivalent to setting the corresponding columns of the propagation
matrix to 0. In a similar vein, DropAgg (Jiang et al., 2023) samples nodes that don’t aggregate mes-
sages from their neighbors. This is equivalent to dropping the corresponding rows of the adjacency
matrix. Combining these two approaches, DropGNN (Papp et al., 2021) samples nodes which nei-
ther propagate nor aggregate messages in a given message-passing step. These algorithms alleviate
over-smoothing by reducing the number of messages being propagated in the graph, thereby slowing
down the convergence of node representations.

2.3 OVER-SQUASHING

Over-squashing refers to the problem of information from exponentially growing neighborhoods
(Chen et al., 2018a) being squashed into finite-sized node representations (Alon & Yahav, 2021).
This results in a loss of information as it is propagated over long distances, disallowing MPNNs
from capturing long-range interactions (LRIs) and limiting their applications to short-range tasks.
Topping et al. (2022) formally characterized over-squashing in terms of the Jacobian of the node-
level representations w.r.t. the input features: ∥∂z(L)

i /∂xj∥1. Accordingly, over-squashing can be
understood as low sensitivity between distant nodes, i.e. small perturbations in a node’s features
don’t effect other distant nodes’ representations.

Several works have linked over-squashing in an MPNN with topological properties like Cheeger’s
constant (Giraldo et al., 2023; Karhadkar et al., 2023), curvature of edges (Liu et al., 2023; Nguyen
et al., 2023; Topping et al., 2022), effective resistance between nodes (Arnaiz-Rodríguez et al., 2022;
Black et al., 2023) and the expected commute time between them (Di Giovanni et al., 2023; Gio-
vanni et al., 2024). These results have inspired the design of several graph rewiring techniques that
strategically add edges to improve the connectivity in the graph, thereby alleviating over-squashing.
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3 SENSITIVITY ANALYSIS

In this section, we perform a theoretical analysis of the expectation – w.r.t. random edge masks –
of sensitivity of node representations. This will allow us to predict how DropEdge-variants affect
communication between nodes at various distances, which is relevant for predicting their suitability
towards learning LRIs.

3.1 LINEAR GCNS

We start our analysis with linear GCNs, and treat more general MPNN architectures in the following
subsection. In this model, the final node representations can be summarised as

Z(L) =

(
L∏

ℓ=1

Â(ℓ)

)
XW ∈ RN×H(L)

(3.1)

where W :=
∏L

ℓ=1 W
(ℓ) ∈ RH(0)×H(L)

. Using the i.i.d. assumption on the distribution of edge
masks in each layer, the expected sensitivity of node i to node j can be shown to be

EM(1),...,M(L)

[∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

]
=

(
E
[
Â
]L)

ij

∥W ∥1 (3.2)

To keep things simple, we will ignore the effect of DropEdge-variants on the optimization trajectory.
Accordingly, it is sufficient to study E[Â] in order to predict their effect on over-squashing. To
maintain analytical tractability, we assume the use of an asymmetrically normalized adjacency
matrix for message-passing, Â = Âasym.

Lemma 3.1. The expected propagation matrix under DropEdge is given as:

Ṗii := EDE

[
Âii

]
=

1− qdi+1

(1− q) (di + 1)

Ṗij := EDE

[
Âij

]
=

1

di

(
1− 1− qdi+1

(1− q) (di + 1)

) (3.3)

where q ∈ [0, 1) is the dropping probability.

See Appendix B.1 for a proof.

Other Variants. We will similarly derive the expected propagation matrix for other random edge-
dropping algorithms. First off, DropNode (Feng et al., 2020) samples nodes and drops corresponding
columns from the aggregation matrix directly, followed by rescaling of its entries:

EDN

[
1

1− q
Â

]
=

1

1− q
× (1− q) Â = Â (3.4)

That is, the expected propagation matrix is the same as in a NoDrop model (q = 0).

Nodes sampled by DropAgg (Jiang et al., 2023) don’t aggregate messages. Therefore, if Â = Âasym,
then the expected propagation matrix is given by

EDA

[
Âii

]
= q +

1− q

di + 1
=

1 + diq

di + 1
> EDE

[
Âii

]
EDA

[
Âij

]
=

1

di

(
1− EDA

[
Âii

])
< EDE

[
Âij

] (3.5)

Finally, DropGNN (Papp et al., 2021) samples nodes which neither propagate nor aggregate mes-
sages. From any node’s perspective, if it is not sampled, then its aggregation weights are computed

4
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Figure 1: Entries of Ṗ 6, averaged over molecular graphs sampled from the Proteins dataset. Left: Sensitivity
between nodes decays at a polynomial rate w.r.t. their distance. Middle: Similarly, it decays at a polynomial
rate w.r.t. the DropEdge probability. Right: It decays more quickly with DropAgg than with DropEdge, and
even more rapidly with DropGNN.

as for DropEdge:

EDG

[
Âii

]
= q + (1− q)EDE

[
Âii

]
= q +

1− qdi+1

di + 1
> EDA

[
Âii

]
EDG

[
Âij

]
=

1

di

(
1− EDG

[
Âii

])
< EDA

[
Âij

] (3.6)

1-Layer Linear GCNs. ∀q ∈ (0, 1) we have

Ṗii =
1

di + 1

di∑
k=0

qk >
1

di + 1

Ṗij =
1

di

(
1− Ṗii

)
<

1

di + 1

(3.7)

where the right-hand sides of the two inequalities are the corresponding entries in the propagation
matrix of a NoDrop model. Equation 3.3 to Equation 3.7 together imply the following result:

Lemma 3.2. In a 1-layer linear GCN with Â = Âasym, using DropEdge, DropAgg or DropGNN

1. increases the sensitivity of a node’s representations to its own input features, and

2. decreases the sensitivity to its neighbors’ features.

In other words, DropEdge-variants prevent a 1-layer GCN from fully utilizing neighborhood infor-
mation when learning node representations. Ignoring the graph topology this way makes the model
resemble an MLP, limiting its expressiveness and hindering its ability to model graph-data.

L-layer Linear GCNs. Unfortunately, we cannot draw similar conclusions in L-layer networks, for
nodes at arbitrary distances. To see this, view Ṗ as the transition matrix of a non-uniform random
walk. This walk has higher self-transition (i = j) probabilities than in a uniform augmented random
walk (P = Âasym, q = 0), but lower inter-node (i ̸= j) transition probabilities. Note that ṖL

and PL store the L-step transition probabilities in the corresponding walks. Then, since the paths
connecting the nodes i ∈ V and j ∈ B(L−1) (i) may involve self-loops, (ṖL)ij may be lower
or higher than (PL)ij . Therefore, we cannot conclude how sensitivity between nodes separated
by at most L − 1 hops changes. For nodes L-hops away, however, we can show that DropEdge
always decreases the corresponding entry in ṖL, reducing the effective reachability of GCNs. Using
Equation 3.5 and Equation 3.6, we can show the same for DropAgg and DropGNN, respectively.

Theorem 3.1. In an L-layer linear GCN with Â = Âasym, using DropEdge, DropAgg or DropGNN
decreases the sensitivity of a node i ∈ V to another node j ∈ S(L) (i), thereby reducing its effective
receptive field. Moreover, the sensitivity monotonically decreases as the dropping probability is
increased.

See Appendix B.2 for a precise quantitative statement and the proof.
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Nodes at Arbitrary Distances. Although no general statement could be made about the change in
sensitivity between nodes up to L−1 hops away, we can analyze such pairs empirically. We sampled
100 molecular graphs from the Proteins dataset (Dobson & Doig, 2003), binned the node-pairs in
each graph by the shortest distance between them, and then plotted the average of the corresponding
entries in ṖL, L = 6.

The results are shown in Figure 1. In the left subfigure, we observe that the sensitivity between
two nodes decays at a polynomial rate with increasing distance between them. Moreover, DropEdge
increases the expected sensitivity between nodes close to each other (0-hop and 1-hop neighbors)
in the original topology, but reduces it between nodes farther off. In the middle subfigure, we
show how the average sensitivity at different distances changes with the DropEdge probability.
Specifically, we observe that the decay in sensitivity to nodes at large distances is polynomial in
the DropEdge probability, which suggests that the algorithm would not be suitable for capturing
LRIs. Similar conclusions can be made with the symmetrically normalized propagation matrix (see
Appendix D.1). Finally, in the right subfigure, we compare the DropEdge-variants by plotting the
sensitivity at dG (i, j) = L = 6. Although the analytical form of all the expected propagation ma-
trices are available to us, we approximate them using Monte-Carlo sampling. As expected from
Equation 3.5, we observe that DropAgg not only decreases the sensitivity of node representations to
distant nodes, but does it to a greater extent than DropEdge. Similarly, Equation 3.6 suggested that
DropGNN could be even more harmful than DropAgg, and this is validated by the empirical results.
In fact, for q > 0.7, nodes 6-hops away are mostly insensitive to each other.

3.2 NONLINEAR MPNNS

While linear networks are useful in simplifying the theoretical analysis, they are often not practical.
In this subsection, we will consider the upper bounds on sensitivity established in previous works,
and extend them to the DropEdge setting.

ReLU GCNs. Xu et al. (2018) considered the case of ReLU nonlinearity, so that the update rule is
Z(ℓ) = ReLU(ÂZ(ℓ−1)W (ℓ)). Additionally, it makes the simplifying assumption that each path in
the computational graph is active with a fixed probability, ρ (Kawaguchi, 2016, Assumption A1p-m).
Accordingly, the sensitivity (in expectation) between any two nodes is given as∥∥∥∥∥EReLU

[
∂z

(L)
i

∂xj

]∥∥∥∥∥
1

=

[
ρ

∥∥∥∥∥
L∏

ℓ=1

W (ℓ)

∥∥∥∥∥
1

](
ÂL
)
ij
= ζ

(L)
1

(
ÂL
)
ij

(3.8)

where ζ
(L)
1 is independent of the choice of nodes i, j ∈ V . Taking an expectation w.r.t. the random

edge masks, we get

EM(1),...,M(L)

[∥∥∥∥∥EReLU

[
∂z

(L)
i

∂xj

]∥∥∥∥∥
1

]
= ζ

(L)
1 EM(1),...,M(L)

( L∏
ℓ=1

Â(ℓ)

)
ij

 (3.9)

= ζ
(L)
1

(
E
[
Â
]L)

ij

(3.10)

Using Theorem 3.1, we conclude that in a ReLU-GCN, DropEdge, DropAgg and DropGNN will
reduce the expected sensitivity between nodes L-hops away. Empirical observations in Figure 1 and
Figure 4 suggest that we may expect an increase in sensitivity to neighboring nodes, but a significant
decrease in sensitivity to those farther away.

Source-only Message Functions. Black et al. (2023, Lemma 3.2) considers MPNNs with aggrega-
tion functions of the form

Agg(ℓ)
(
z
(ℓ−1)
i ,

{
z
(ℓ−1)
j : j ∈ S(1) (i)

})
=

∑
j∈B(1)(i)

ÂijMsg(ℓ)
(
z
(ℓ−1)
j

)
(3.11)

and Upd and Msg functions with bounded gradients. In this case, the sensitivity between two nodes
i, j ∈ V can be bounded as ∥∥∥∥∥∂z(L)

i

∂xj

∥∥∥∥∥
1

≤ ζ
(L)
2

(
L∑

ℓ=0

Âℓ

)
ij

(3.12)
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As before, we can use the independence of edge masks to get an upper bound on the expected
sensitivity:

EM(1),...,M(L)

[∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

]
≤ ζ

(L)
2

(
EM(1),...,M(L)

[
IN +

L∑
ℓ=1

ℓ∏
k=1

Â(k)

])
ij

(3.13)

= ζ
(L)
2

(
L∑

ℓ=0

E
[
Â
]ℓ)

ij

(3.14)

Figure 5 shows the plot of the entries of
∑6

ℓ=0 Ṗ
ℓ (i.e. for DropEdge), as in the upper bound above,

with Â = Âasym. We observe that the sensitivity between nearby nodes marginally increases,
while that between distant nodes notably decreases (similar to Figure 1), suggesting significant over-
squashing. Similar observations can be made with Â = Âsym, and for other DropEdge-variants.

Source-and-Target Message Functions. Topping et al. (2022, Lemma 1) showed that if the aggre-
gation function is instead given by

Agg(ℓ)
(
z
(ℓ−1)
i ,

{
z
(ℓ−1)
j : j ∈ S(1) (i)

})
=

∑
j∈B(1)(i)

ÂijMsg(ℓ)
(
z
(ℓ−1)
i , z

(ℓ−1)
j

)
(3.15)

then the sensitivity between nodes i ∈ V and j ∈ S(L) (i) can be bounded as∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

≤ ζ
(L)
3

(
ÂL
)
ij

(3.16)

With random edge-dropping, this bound can be adapted as follows:

EM(1),...,M(L)

[∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

]
≤ ζ

(L)
3

(
E
[
Â
]L)

ij

(3.17)

which is similar to Equation 3.10, only with a different proportionality constant, that is anyway
independent of the choice of nodes. Here, again, we invoke Theorem 3.1 to conclude that (E[Â]L)ij
decreases monotonically with increasing DropEdge probability q. This implies that, in a non-linear
MPNN with Â = Âasym, DropEdge lowers the sensitivity bound given above. Empirical results in
Figure 4 support the same conclusion for Â = Âsym.

Message of the Section: Studying the expected propagation matrix allows us to predict the
effect of random edge-dropping methods on information propagation in MPNNs. Specifically,
DropEdge, DropAgg and DropGNN increase the sensitivity of nodes to their neighbors, but
decrease it to nodes farther off. This suggests that these methods would be unsuitable for long-
range tasks, where it is imperative to facilitate communication between distant nodes.

4 EXPERIMENTS

Our theoretical analysis indicates that DropEdge may degrade the performance of GNNs on tasks
that depend on capturing LRIs. In this section, we test this hypothesis by evaluating DropEdge
models on both short-range and long-range tasks.

4.1 SETUP

Datasets. Although identifying whether a task requires modeling LRIs can be challenging, under-
standing the structure of the datasets can provide some insight. For example, homophilic datasets
have local consistency in node labels, i.e. nodes closely connected to each other have similar la-
bels. On the other hand, in heterophilic datasets, nearby nodes often have dissimilar labels. Since
DropEdge-variants increase a node’s sensitivity to its immediate neighbors and reduces its sensitivity

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Dataset Nodes Edges Features Classes Homophily
Cora 2,708 10,556 1,433 7 0.766

CiteSeer 3,327 9,104 3,703 6 0.627
Chameleon 2,277 36,051 2,325 5 0.062

Squirrel 5,201 216,933 2,089 5 0.025
TwitchDE 9,498 306,276 128 2 0.142

Table 1: Dataset statistics. Number of edges excludes self-loops. Homophily measures from (Lim et al., 2021).

Dropout GNN Homophilic Heterophilic
Cora CiteSeer Chameleon Squirrel TwitchDE

DropEdge
GCN +0.396 +0.448 −0.723 −0.614 −0.509

GAT +0.547 +0.548 −0.236 −0.655 −0.409

DropNode
GCN −0.320 −0.662 −0.863 −0.790 −0.465

GAT −0.706 −0.735 −0.855 −0.300 −0.502

DropAgg
GCN −0.015 +0.294 −0.334 −0.317 −0.566

GAT −0.019 +0.392 −0.353 −0.398 −0.022

DropGNN
GCN +0.360 +0.468 −0.746 −0.600 −0.671

GAT +0.236 +0.525 −0.507 −0.304 −0.139

Table 2: Spearman correlation between dropping probability and test accuracy. Note the positive correlations
for homophilic datasets and negative correlations for heterophilic datasets. Results suggest that random edge-
dropping, although effective at improving generalization in short-range tasks, is unsuitable for long-range ones.

to distant nodes, we expect it to improve performance on homophilic datasets but harm performance
on heterophilic ones. In this work, we use Cora (McCallum et al., 2000) and CiteSeer (Giles et al.,
1998) as representatives of homophilic datasets (Zhu et al., 2020), and Squirrel, Chameleon and
TwitchDE (Rozemberczki et al., 2021) to represent heterophilic datasets (Lim et al., 2021). The
networks’ statistics are presented in Table 1, where we can note the significantly lower homophily
measures of heterophilic datasets.

Models. We use two MPNN architectures, GCN and GAT, to demonstrate the effect of DropEdge.
GCN satisfies the model assumptions made in all the theoretical results presented in Section 3, while
GAT does not fit into any of them. Therefore, GCN and GAT together provide a broad representation
of different MPNN architectures. For GAT, we use 2 attentions heads in order to keep the compu-
tational load manageable, while at the same time harnessing the expressiveness of the multi-headed
self-attention mechanism. As for the model depth, we vary it as L = 2, 4, 6, 8.

Dropping Probability. For all the methods, the dropping probabilities are varied as q =
0.0, 0.1, . . . , 0.9, so as to reliably capture the trends in model accuracy. We adopt the common
practice of turning the methods off at test-time (q = 0), isolating their effect on optimization and
generalization, which our theory does not address.

Other experimental details are reported in Appendix E. We conduct 5 independent runs for each
dataset−model−dropout−probability configuration and report the average test accuracy (with early-
stopping using the validation set).

4.2 RESULTS

In Table 2, we report the rank correlation between the dropping probability and test accuracy
of different dataset−model−dropout combinations. The statistics are computed over 10 (q =
0.0, 0.1, . . . , 0.9) × 5 (samples) = 50 runs for each L = 2, 4, 6, 8, and then averaged. It is clear
to see that in most combinations with the homophilic datasets Cora and CiteSeer, the correlation
is positive, indicating that DropEdge and its variants improve test-time performance at short-range
tasks. On the other hand, with the heterophilic datasets Chameleon, Squirrel and TwitchDE, the
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(a) Homophilic datasets

(b) Heterophilic datasets

Figure 2: Dropping probability versus test accuracy of DropEdge-GCN. The theory the explains the contrasting
trends as follows: random edge-dropping pushes models to fit to local information during training, which is
suitable for short-range tasks, but harms test-time performance in long-range ones.

correlation values are negative. This suggests that the edge-dropping methods harm generalization
in long-range tasks by forcing the model to overfit to short-range signals.

Figure 2 allows us to visualize these trends for the homophilic and heterophilic datasets. For concise-
ness, we only display the results for DropEdge-GCNs. Clearly, on Cora and CiteSeer, the model’s
test-time performance improves with increasing dropping probability, as has been reported earlier.
However, on Chameleon, Squirrel and TwitchDE, the performance degrades with increasing drop-
ping probability, as was suggested by our theoretical results. This highlights an important gap in
our understanding of dropout methods – while their positive effects on model performance have
been well-studied, making them popular choices for training deep GNNs, their evaluation has been
limited to short-range tasks, leaving their negative impact on capturing LRIs overlooked.

Remark on DropNode. In Equation 3.4, we noted that DropNode does not suffer from loss in sen-
sitivity. However, note that those results were in expectation. Moreover, our analysis did not account
for the effects on the learning trajectory. In practice, a high DropNode probability would make it
hard for information in the node features to reach distant nodes. This would prevent the model from
learning to effectively combine information from large neighborhoods, harming generalization. In
fact, in Table 2, we can see that it is the only dropping method with a negative correlation between
dropping probability and test accuracy for each dataset−model combination, including homophilic
ones. See Figure 6 for a visualization of its negative effects on test accuracy.

4.3 OVER-SQUASHING OR UNDER-FITTING?

The results in the previous subsection suggest that using random edge-dropping to regularize model
training leads to poor test-time performance. We hypothesize that this occurs because the models
struggle to propagate information over long distances, causing overfitting of node representations
to local neighborhoods. However, a confounding factor is at play: DropEdge variants reduce the
generalization gap by preventing overfitting to the training set, which manifests as reduced training
performance. If this regularization is too strong, it could lead to underfitting, which could also ex-
plain the poor test-time performance on heterophilic datasets. This concern is particularly relevant
because the heterophilic networks are much larger than homophilic ones (Table 1), making them

9
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Figure 3: DropEdge probability versus training accuracy of GCNs. The training performance improves with q,
suggesting that the models are not underfitting. Instead, the reason for poor test-time performance (Figure 2a)
is that models are over-fitting to short-range signals during training, resulting in poor generalization.

more prone to underfitting. To investigate this, we plot the training accuracies of deep DropEdge-
GCNs on the heterophilic datasets; Figure 3 shows the results. It is clear that the models do not
underfit as the dropping probability increases. In fact, somewhat unexpectedly, the training met-
rics improve. Together with the results in Figure 2, we conclude that DropEdge-like methods are
detrimental in long-range tasks, as they cause overfitting to short-range artifacts in the training data,
resulting in poor generalization at test-time.

Message of the Section: Random edge-dropping algorithms reduce the receptive field of
MPNNs, forcing them to fit to short-range signals in the training set. While this may make
deep GNNs suitable for homophilic datasets, it results in overfitting on heterophilic datasets,
which leads to poor test-time performance. Therefore, these methods should be used only after
carefully understanding the task at hand.

5 CONCLUSION

Our analysis points out a key assumption in algorithms designed for training deep GNNs: the idea
that if a deep GNN is trainable, it must be able to model LRIs. Our results suggest that this, in fact,
need not be true – we theoretically and empirically show that DropEdge-like algorithms exacerbate
the over-squashing problem in deep GNNs, and degrade their performance on long-range tasks. Our
results highlight a need for a thorough evaluation of methods employed when training deep GNNs,
with regards to their capacity to capture LRIs. This will allow us to reliably deploy them in real-life,
since we can be assured that the models did not simply overfit to short-range signals.

Limitations. While our theoretical analysis successfully predicts how DropEdge-variants affect test
performance on short-range and long-range tasks, it is based on several simplifying assumptions.
These assumptions, although standard in the literature, limit the generalizability of our conclusions
to other architectures. Specifically, our analysis focuses on certain classes of MPNNs, excluding
several GNN architectures specifically designed to enhance long-distance information propagation
(see Singh (2024) for a review).

Practical Considerations. Previous studies have shown that random edge-dropping algorithms
can effectively enhance generalization performance in short-range tasks, and our findings support
this conclusion. However, we have also demonstrated that such algorithms can negatively impact
over-squashing in MPNNs and harm test-time performance in long-range tasks. Therefore, we rec-
ommend exercising caution when using such methods, as careless application can result in models
that generalize poorly, which can be detrimental in critical applications.

Future Directions. This work focuses on node-classification tasks, but it is also important to un-
derstand the effect of random edge-dropping in other practical settings, e.g. link prediction, and
even graph-level tasks. In general, there is a need for a broader investigation into methods de-
signed for training deep GNNs. Specifically, analyzing various strategies designed for mitigating
over-smoothing (see Rusch et al. (2023) for a review), particularly in the context of over-squashing,
could be invaluable for designing deep GNNs for long-range tasks.
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2022 Workshop: New Frontiers in Graph Learning, 2022.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning, pp. 7865–7885. PMLR, 2023.

Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of Molecular Biology, 330(4):771–783, 2003.

Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang Yang. Dropmes-
sage: Unifying random dropping for graph neural networks. Proceedings of the AAAI Conference
on Artificial Intelligence, 37(4):4267–4275, Jun. 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tomas Feder, Adam Guetz, Milena Mihail, and Amin Saberi. A local switch markov chain on given
degree graphs with application in connectivity of peer-to-peer networks. In 2006 47th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 69–76, 2006.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 22092–22103. Curran Associates, Inc., 2020.

Rickard Brüel Gabrielsson, Mikhail Yurochkin, and Justin Solomon. Rewiring with positional en-
codings for graph neural networks. Transactions on Machine Learning Research, 2023.

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with bernoulli approx-
imate variational inference, 2016a.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceed-
ings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pp. 1050–1059, New York, New York, USA, 06 2016b. PMLR.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016c.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1416–1424. ACM, 2018.

George Giakkoupis. Expanders via local edge flips in quasilinear time. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pp. 64–76, New York,
NY, USA, 2022. Association for Computing Machinery.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: an automatic citation indexing
system. In Proceedings of the Third ACM Conference on Digital Libraries, DL ’98, pp. 89–98,
New York, NY, USA, 1998. Association for Computing Machinery.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Doina Precup and Yee Whye Teh (eds.), Proceedings
of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 1263–1272. PMLR, 08 2017.

Francesco Di Giovanni, T. Konstantin Rusch, Michael Bronstein, Andreea Deac, Marc Lackenby,
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A RELATED WORKS

A.1 METHODS FOR ALLEVIATING OVER-SMOOTHING

A popular choice for reducing over-smoothing in GNNs is to regularize the model. Recall that
DropEdge (Rong et al., 2020) implicitly regularizes the model by adding noise to the learning trajec-
tory (Section 2.2). Similarly, Dropout (Srivastava et al., 2014) drops entries from the input features
to each layer, and DropMessage (Fang et al., 2023) drops entries from the message matrix (before
the aggregation step). Graph Drop Connect (GDC) (Hasanzadeh et al., 2020) combines DropEdge
and DropMessage together, resulting in a layer-wise sampling scheme that uses a different sub-
graph for message-aggregation over each feature dimension. These methods successfully addressed
the over-smoothing problem, enabling the training of deep GNNs, and performed competitively on
several benchmarking datasets.

Another powerful form of implicit regularization is feature normalization, which has proven crucial
in enhancing the performance and stability of several types of neural networks (Huang et al., 2020).
Exploiting the inductive bias in graph-structured data, normalization techniques like PairNorm
(Zhao & Akoglu, 2020), Differentiable Group Normalization (DGN) (Zhou et al., 2020) and Node-
Norm (Zhou et al., 2021b) have been proposed to reduce over-smoothing in GNNs. On the other
hand, Energetic Graph Neural Networks (EGNNs) (Zhou et al., 2021a) explicitly regularize the
optimization by constraining the layer-wise Dirichlet energy to a predefined range.

In a different vein, motivated by the success of residual networks (ResNets) (He et al., 2016) in
computer vision, (Li et al., 2019) proposed the use of residual connections to prevent the smoothing
of representations. Residual connections successfully improved the performance of GCN on a range
of graph-learning tasks. (Chen et al., 2020) introduced GCNII, which uses skip connections from
the input to all hidden layers. This layer wise propagation rule has allowed for training of ultra-
deep networks – up to 64 layers. Some other architectures, like the Jumping Knowledge Network
(JKNet) (Xu et al., 2018) and the Deep Adaptive GNN (DAGNN) (Liu et al., 2020), aggregate the
representations from all layers, {z(ℓ)

i }Lℓ=1, before processing them through a readout layer.

A.2 METHODS FOR ALLEVIATING OVER-SQUASHING

In this section, we will review some of the graph rewiring methods proposed to address the problem
of over-squashing. Particularly, we wish to emphasize a commonality among these methods – edge
addition is necessary. As a reminder, graph rewiring refers to modifying the edge set of a graph by
adding and/or removing edges in a systematic manner. In a special case, which includes many of
the rewiring techniques we will discuss, the original topology is completely discarded, and only the
rewired graph is used for message-passing.

Spatial rewiring methods use the topological relationships between the nodes in order to come up
with a rewiring strategy. That is the graph rewiring is guided by the objective of optimizing some
chosen topological properties. For instance, Alon & Yahav (2021) introduced a fully-adjacent (FA)
layer, wherein messages are passed between all nodes. GNNs using a FA layer in the final message-
passing step were shown to outperform the baselines on a variety of long-range tasks, revealing
the importance of information exchange between far-off nodes which standard message-passing
cannot facilitate. Topping et al. (2022) proposed a curvature-based rewiring strategy, called the
Stochastic Discrete Ricci Flow (SDRF), which aims to reduce the “bottleneckedness” of a graph by
adding suitable edges, while simultaneously removing edges in an effort to preserve the statistical
properties of the original topology. Black et al. (2023) proposed the Greedy Total Resistance (GTR)
technique, which optimizes the graph’s total resistance by greedily adding edges to achieve the
greatest improvement. One concern with graph rewiring methods is that unmoderated densification
of the graph, e.g. using a fully connected graph for propagating messages, can result in a loss of
the inductive bias the topology provides, potentially leading to over-fitting. Accordingly, Gutteridge
et al. (2023) propose a Dynamically Rewired (DRew) message-passing framework that gradually
densifies the graph. Specifically, in a given layer ℓ, node i aggregates messages from its entire ℓ-hop
receptive field instead of just the immediate neighbors. This results in an improved communication
over long distances while also retaining the inductive bias of the shortest distance between nodes.
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Spectral methods, on the other hand, use the spectral properties of the matrices encoding the graph
topology, e.g. the adjacency or the Laplacian matrix, to design rewiring algorithms. For example,
Arnaiz-Rodríguez et al. (2022) proposed a differentiable graph rewiring layer based on the Lovász
bound (Lovász, 1993, Corollary 3.3). Similarly, Banerjee et al. (2022) introduced the Random Local
Edge Flip (RLEF) algorithm, which draws inspiration from the “Flip Markov Chain” (Feder et al.,
2006; Mahlmann & Schindelhauer, 2005) – a sequence of such steps can convert a connected graph
into an expander graph – a sparse graph with good connectivity (in terms of Cheeger’s constant) –
with high probability (Allen-Zhu et al., 2016; Cooper et al., 2019; Feder et al., 2006; Giakkoupis,
2022; Mahlmann & Schindelhauer, 2005), thereby enabling effective information propagation across
the graph.

Some other rewiring techniques don’t exactly classify as spatial or spectral methods. For instance,
Probabilistically Rewired MPNN (PR-MPNN) (Qian et al., 2024) learns to probabilistically rewire a
graph, effectively mitigating under-reaching as well as over-squashing. Finally, (Gabrielsson et al.,
2023) proposed connecting all nodes at most r-hops away, for some r ∈ N, and introducing posi-
tional embeddings to allow for distance-aware aggregation of messages.

A.3 TOWARDS A UNIFIED TREATMENT

Several studies have shown that an inevitable trade-off exists between the problems of over-
smoothing and over-squashing, meaning that optimizing for one will compromise the other. For
instance, Nguyen et al. (2023); Topping et al. (2022) showed that negatively curved edges create
bottlenecks in the graph resulting in over-squashing of information. On the other hand, Nguyen
et al. (2023, Proposition 4.3) showed that positively curved edges in a graph contribute towards
the over-smoothing problem. To address this trade-off, they proposed Batch Ollivier-Ricci Flow
(BORF), which adds new edges adjacent to the negatively curved ones, and simultaneously removes
positively curved ones. In a similar vein, Giraldo et al. (2023) demonstrated that the minimum num-
ber of message-passing steps required to reach a given level of over-smoothing is inversely related to
the Cheeger’s constant, hG . This again implies an inverse relationship between over-smoothing and
over-squashing. To effectively alleviate the two issues together, they proposed the Stochastic Jost
and Liu Curvature Rewiring (SJLR) algorithm, which adds edges that result in high improvement in
the curvature of existing edges, while simultaneously removing those that have low curvature.

Despite the well-established trade-off between over-smoothing and over-squashing, some works
have successfully tackled them together despite only adding or removing edges. One such work
is Karhadkar et al. (2023), which proposed a rewiring algorithm that adds edges to the graph but
does not remove any. The First-order Spectral Rewiring (FoSR) algorithm computes, as the name
suggests, a first order approximation to the spectral gap of Lsym, and adds edges with the aim of
maximizing it. Since the spectral gap directly relates to Cheeger’s constant through Cheeger’s in-
equality (Alon & Milman, 1985; Alon, 1986; Sinclair & Jerrum, 1989), this directly decreases the
over-squashing levels. Moreover, Karhadkar et al. (2023, Figure 5) empirically demonstrated that
addition of (up to a small number of) edges selected by FoSR can lower the Dirichlet energy of
the representations. Taking a completely opposite approach, CurvDrop (Liu et al., 2023) adapted
DropEdge to remove negatively curved edges sampled from a distribution proportional to their cur-
vatures. CurvDrop directly reduces over-squashing and, as a side benefit of operating on a sparser
subgraph, also mitigates over-smoothing.

B PROOFS

B.1 EXPECTED PROPAGATION MATRIX UNDER DROPEDGE

Lemma. When using DropEdge, the expected propagation matrix is given as:

EDE

[
Â

(1)
ii

]
=

1− qdi+1

(1− q) (di + 1)

EDE

[
Â

(1)
ij

]
=

1

di

(
1− 1− qdi+1

(1− q) (di + 1)

)
where (j → i) ∈ E; Ṗij = 0 otherwise.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. Recall that under DropEdge, a self-loop is added to the graph after the edges are dropped,
and then the normalization is performed. In other words, the self-loop is never dropped. Therefore,
given the i.i.d. masks, m1, . . . ,mdi

∼ Bern (1− q), on incoming edges to node i, the total number
of messages is given by

1 +

di∑
k=1

mk = 1 +Mi

where Mi ∼ Binom (di, 1− q). Under asymmetric normalization (see Section 2.1), the expected
weight of the message along the self-loop is computed as follows:

EDE

[
Â

(1)
ii

]
= Em1,...,mdi

[
1

1 +
∑di

k=1 mk

]
(B.1)

= EMi

[
1

1 +Mi

]
(B.2)

=

di∑
k=0

(
di
k

)
(1− q)

k
(q)

di−k

(
1

1 + k

)
(B.3)

=
1

(1− q) (di + 1)

di∑
k=0

(
di + 1

k + 1

)
(1− q)

k+1
(q)

di−k (B.4)

=
1

(1− q) (di + 1)

di+1∑
k=1

(
di + 1

k

)
(1− q)

k
(q)

di+1−k (B.5)

=
1− qdi+1

(1− q) (di + 1)
(B.6)

Similarly, if the Bernoulli mask corresponding to j → i is 1, then the total number of incoming
messages to node i is given by

2 +

di−1∑
k=1

mk

including one self-loop, which is never dropped, as noted earlier. On the other hand, the weight of
the edge is simply 0 if the corresponding Bernoulli mask is 0. Using the Law of Total Expectation,
the expected weight of the edge j → i can be computed as follows:

EDE

[
Â

(1)
ij

]
= q · 0 + (1− q)Em1,...,mdi−1

[
1

2 +
∑di−1

k=1 mk

]
(B.7)

= (1− q)

di−1∑
k=0

(
di − 1

k

)
(1− q)

k
(q)

di−1−k

(
1

2 + k

)
(B.8)

=

di−1∑
k=0

(di − 1)!

(k + 2)! (di − 1− k)!
(1− q)

k+1
(q)

di−1−k
(k + 1) (B.9)

=

di+1∑
k=2

(di − 1)!

(k)! (di + 1− k)!
(1− q)

k−1
(q)

di+1−k
(k − 1) (B.10)

=
1

di (di + 1) (1− q)

di+1∑
k=2

(
di + 1

k

)
(1− q)

k
(q)

di+1−k
(k − 1) (B.11)

=
1

di (di + 1) (1− q)

[
(di + 1) (1− q)− 1 + qdi+1

]
(B.12)

=
1

di

(
1− EDE

[
Â

(1)
ii

])
(B.13)
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B.2 SENSITIVITY IN L-LAYER LINEAR GCNS

Theorem. In an L-layer linear GCN with Â = Âasym, using DropEdge, DropAgg or DropGNN
decreases the sensitivity of a node i ∈ V to another node j ∈ S(L) (i), thereby reducing its effective
receptive field.

E...

[(
ÂL
)
ij

]
=

∑
(u0,...,uL)∈Paths(j→i)

L∏
ℓ=1

E...

[
Âuℓuℓ−1

]
< END

[(
ÂL
)
ij

]
(B.14)

where ND refers to a NoDrop model (q = 0), the placeholder · · · can be replaced with one of the
edge-dropping methods DE, DA or DG, and the corresponding entries of E...[Â] can be plugged in
from Equation 3.3, Equation 3.5 and Equation 3.6, respectively. Moreover, the sensitivity monoton-
ically decreases as the dropping probability is increased.

Proof. Recall that Ṗ can be viewed as the transition matrix of a non-uniform random walk, such
that Ṗuv = P (u → v). Intuitively, since there is no self-loop on any given L-length path connecting
nodes i and j (which are assumed to be L-hops away), the probability of each transition on any path
connecting these nodes is reduced. Therefore, so is the total probability of transitioning from i to j
in exactly L hops.

More formally, denote the set of paths connecting the two nodes by

Paths (j → i) = {(u0, . . . , uL) : u0 = j;uL = i; (uℓ−1 → uℓ) ∈ E ,∀ℓ ∈ [L]}

The (i, j)-entry in the propagation matrix is given by(
ṖL
)
ij
=

∑
(u0,...,uL)∈Paths(j→i)

L∏
ℓ=1

Ṗuℓuℓ−1
(B.15)

Since there is no self-loop on any of these paths,(
ṖL
)
ij
=

∑
(u0,...,uL)∈Paths(j→i)

L∏
ℓ=1

1

duℓ

(
1− 1− qduℓ

+1

(1− q) (duℓ
+ 1)

)
(B.16)

<
∑

(u0,...,uL)∈Paths(j→i)

L∏
ℓ=1

(
1

duℓ
+ 1

)
(B.17)

The right hand side of the inequality is the (i, j)-entry in the Lth power of the propagation matrix
of a NoDrop model. From Equation 3.5 and Equation 3.6, we know that Equation B.17 is true for
DropAgg and DropGNN as well. We conclude the first part of the proof using Equation 3.2 – the
sensitivity of node i to node j is proportional to (ṖL)ij .

Next, we recall the geometric series for any q:

1 + q + . . .+ qd =
1− qd+1

1− q
(B.18)

Each of the terms on the right are increasing in q, hence, all the Ṗuℓuℓ−1
factors are decreasing in q.

Using this result with Equation B.15, we conclude the second part of the theorem.

C TEST-TIME MONTE-CARLO AVERAGING

In Section 3, we focused on the expected sensitivity of the stochastic representations in models using
DropEdge-like regularization strategies. This corresponds to their training-time behavior, wherein
the activations are random. At test-time, the standard practice is to turn these methods off by setting
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Figure 4: Entries of P̈ 6, averaged after binning node-pairs by their shortest distance.

q = 0. However, this raises the over-smoothing levels back up (Xuanyuan et al., 2023). Another
way of making predictions is to perform multiple stochastic forward passes, as during training, and
then averaging the model outputs. This is similar to Monte-Carlo Dropout, which is an efficient way
of ensemble averaging in MLPs (Gal & Ghahramani, 2016b), CNNs (Gal & Ghahramani, 2016a)
and RNNs (Gal & Ghahramani, 2016c). In addition to alleviating over-smoothing, this approach
also outperforms the standard implementation (Xuanyuan et al., 2023). We can study the effect of
random edge-dropping in this setting by examining the sensitivity of the expected representations:∥∥∥∥ ∂

∂xj
E
[
z
(L)
i

]∥∥∥∥
1

In linear models, the order of the two operations – expectation and sensitivity computation – is
irrelevant:

E

[∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

]
=
∥∥∥E [Âij

]
W
∥∥∥
1
=

∥∥∥∥∥E
[
∂z

(L)
i

∂xj

]∥∥∥∥∥
1

=

∥∥∥∥ ∂

∂xj
E
[
z
(L)
i

]∥∥∥∥
1

(C.1)

In general, the two quantities can be related using the convexity of norms and Jensen’s inequality:∥∥∥∥ ∂

∂xj
E
[
z
(L)
i

]∥∥∥∥
1

≤ E

[∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

]
(C.2)

Therefore, the discussion in the previous subsections extends to the MC-averaged representations as
well. Although tighter bounds may be derived for this setting, we will leave that for future works.

D ADDITIONAL FIGURES

In this section, we present some additional figures that demonstrate the negative effects of random
edge-dropping, particularly focusing on providing empirical evidence for scenarios not covered by
the theory in Section 3.

D.1 SYMMETRICALLY NORMALIZED PROPAGATION MATRIX

The results in Section 3.1 correspond to the use of Â = Âasym for aggregating messages – in each
message passing step, only the in-degree of node i is used to compute the aggregation weights of the
incoming messages. In practice, however, it is more common to use the symmetrically normalized
propagation matrix, Â = Âsym, which ensures that nodes with high degree do not dominate the
information flow in the graph (Kipf & Welling, 2017). As in Equation 3.2, we are looking for

EM(1),...,M(L)

[
L∏

l=1

Â(ℓ)

]
= P̈L
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Figure 5: Entries of
∑6

l=0 Ṗ
l, averaged after binning node-pairs by their shortest distance.

where P̈ := EDE[Â
sym]. While P̈ is analytically intractable, we can approximate it using Monte-

Carlo sampling. Accordingly, we use 20 samples of M to compute an approximation of P̈ , and
plot out the entries of P̈L, as we did for ṖL in Figure 1. The results are presented in Figure 4,
which shows that while the sensitivity between nearby nodes is affected to a lesser extent compared
to those observed in Figure 1, that between far-off nodes is significantly reduced, same as earlier.

D.2 UPPER BOUND ON EXPECTED SENSITIVITY

Black et al. (2023) showed that the sensitivity between any two nodes in a graph can be bounded
using the sum of the powers of the propagation matrix. In Section 3.2, we extended this bound to
random edge-dropping methods with independent edge masks smapled in each layer:

EM(1),...,M(L)

[∥∥∥∥∥∂z(L)
i

∂xj

∥∥∥∥∥
1

]
= ζ

(L)
3

(
L∑

ℓ=0

E
[
Â
]ℓ)

ij

Although this bound does not have a closed form, we can use real-world graphs to study its entries.
We randomly sample 100 molecular graphs from the Proteins dataset (Dobson & Doig, 2003) and
plot the entries of

∑6
l=0 Ṗ

ℓ (corresponding to DropEdge) against the shortest distance between
node-pairs. The results are presented in Figure 5. We observe a polynomial decline in sensitivity as
the DropEdge probability increases, suggesting that it is unsuitable for capturing LRIs.

D.3 TEST ACCURACY VERSUS DROPNODE PROBABILITY

In Equation 3.4, we noted that the expectation of sensitivity remains unchanged when using DropN-
ode. However, these results were only in expectation. In practice, a high DropNode probability
will result in poor communication between distant nodes, preventing the model from learning to
effectively model LRIs. This is supported by the results in Table 2, where we observed a negative
correlation between the test accuracy and DropNode probability. Moreover, DropNode was the only
algorithm which recorded negative correlations on homophilic datasets. In Figure 6, we visualize
these relationships, noting the stark contrast with Figure 2, particularly in the trends with homophilic
datasets.

E EXPERIMENT DETAILS

In this section, we expand on the details of the experiment in Section 4.

Descriptions of the Datasets. Cora (McCallum et al., 2000) and CiteSeer (Giles et al., 1998) are
citation networks – their nodes represent scientific publications and an edge between two nodes
indicates that one of them has cited the other. The features of each publication are represented by
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(a) Homophilic datasets

(b) Heterophilic datasets

Figure 6: Dropping probability versus test accuracy of DropNode-GCN.

a binary vector, where each index indicates whether a specific word from a dictionary is present
or absent. Several studies have showed that these datasets have high homophily in node labels
(Lim et al., 2021; Zhu et al., 2020) and that they are modelled much better by shallower networks
than by deeper ones (Zhou et al., 2020). Chameleon and Squirrel (Rozemberczki et al., 2021) are
networks of English Wikipedia web pages on the respective topics, and the edges between web pages
indicate links between them. The task is to predict the average-monthly traffic on each of the web
pages. Finally, TwitchDE (Rozemberczki et al., 2021) is a network of Twitch users in Germany,
with the edges between them representing their mutual follower relationships. The node features are
embeddings of the games played by the users. The task is to predict whether the users use explicit
language.

Training Hyperparameters. We standardise most of the hyperparameters across all experiments
in order to isolate the effect of dropping probability. Specifically, we fix the size of the hidden
representations in each layer at 64, and a linear readout layer is used to compute the node-level
logits. The models are trained using the Adam optimizer (Kingma & Ba, 2015), with a learning rate
of 3× 10−3 and a weight decay of 5× 10−4, for a total of 300 epochs. For GCN, we use symmetric
normalization of the adjacency matrix to compute the edge weights (Kipf & Welling, 2017).

GAT Runs. It is quite problematic to train deep GAT models due to vanishing gradients (Dasoulas
et al., 2021). Accordingly, we discard the runs where the model fails to learn, and performs just as
well as a random classifier. Specifically, we compute the class distribution in each of the networks,
and discard the runs where the test performance does not exceed the maximum proportion. This
comes out to be 0.3021, 0.2107, 0.2288, 0.2003 and 0.6045 for Cora, CiteSeer, Chameleon, Squirrel
and TwitchDE, respectively.
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