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ABSTRACT

Reinforcement Learning (RL) is a powerful tool for solving complex decision-
making problems. However, existing RL approaches suffer from the curse of
dimensionality when dealing with large or continuous state and action spaces.
This paper introduces a non-parametric online RL algorithm called RKHS-RL
that overcomes these challenges by utilizing reproducing kernels and the RKHS-
embedding assumption. The proposed algorithm can handle both finite and infinite
state and action spaces, as well as nonlinear relationships in transition probabili-
ties. The RKHS-RL algorithm estimates the transition core using ridge regression
and balances exploration and exploitation through infinite-dimensional confidence
balls. The paper provides theoretical guarantees, demonstrating that RKHS-RL
achieves a sublinear regret bound of Õ(H

√
T ), where T denotes the time step

of the algorithm and H represents the horizon of the Markov Decision Process
(MDP), making it an effective approach for RL problems.

1 INTRODUCTION

Reinforcement Learning (RL) is a subfield of machine learning that aims to enable an agent to
learn how to make sequential decisions in an environment to maximize a cumulative reward. RL is
inspired by the concept of trial and error, which is how humans and animals learn from their inter-
actions with the world. The ability of RL to learn from interactions with the environment and make
decisions without explicit supervision has attracted significant attention in diverse domains, includ-
ing game AI (Silver et al., 2016), robotics (Ibarz et al., 2021), healthcare (Esteva et al., 2019) and
autonomous driving (Kiran et al., 2021). Its ability to learn from interactions with the environment
and make decisions without explicit supervision makes RL a powerful tool for solving complex
decision-making problems.

The Markov decision process (MDP) provides a formal framework for studying reinforcement learn-
ing (Van Otterlo & Wiering, 2012; Puterman, 1990; Hu & Yue, 2007). In MDPs, an agent interacts
with the environment in discrete time steps. At each time step, the agent observes the current state
of the environment and selects an action to perform. The environment then transitions to a new state
based on the current state and the action taken by the agent. The agent’s goal is to learn an optimal
policy that maximizes the expected cumulative reward over time, which is represented by the value
function.

Researchers propose several assumptions, such as tabular settings, linear MDPs, and parametric
MDPs, to simplify the RL model and solve the problem. In the tabular setting, where the state and
action spaces (S and A) are small and finite, a nearly sublinear regret algorithm is available that
achieves a regret bound Õ(H

3
2

√
|S||A|T ) (Auer et al., 2008; Azar et al., 2017). Here, T is the time

step of the algorithm, H is the horizon of the MDP, and Õ(·) hides polylog factors of the input. The
algorithm balances exploration and exploitation by defining a reward bonus in each step. However,
it suffers from the curse of dimensionality when S and A are large or infinite.

In the case of infinite and discrete state and action spaces, linear parameterized MDP adds a linear
structure to both the reward and transition probability. In linear MDPs, value functions are a lin-
ear combination of features extracted from the state-action space, which reduces the computational
burden required to learn the optimal policy. Linear methods can be solved analytically, providing
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a more efficient approximation to the optimal value function. For linear MDPs, algorithms exist
that achieve a regret bound of Õ(H

3
2

√
d3T ) (Jiang et al., 2017; Yang & Wang, 2020; Jin et al.,

2020), where d is the dimension of the feature space. However, linear MDPs have limited represen-
tational power and cannot generalize well in high-dimensional spaces. They can only capture linear
relationships between features, which may not be sufficient for modeling complex interactions and
dynamics in continuous spaces.

When the state and action spaces are continuous, there are several approaches to study continu-
ous MDPs. The first is the parametric method, which includes studies on parametric MDPs with
exponential families and algorithms that achieve a regret bound of Õ(dH

√
T ) (Chowdhury et al.,

2021). There are also studies on RL with parameterized actions (Masson et al., 2016). These
approaches allow for generalization across the continuous state space. However, selecting an appro-
priate parametric function and architecture can be challenging, and they still suffer from the curse
of dimensionality in high-dimensional state spaces. The second approach is the kernel method,
which includes studies on kernel-based temporal difference learning (Ormoneit & Sen, 2002) and
kernel-based least-squares policy iteration (Xu et al., 2007). Kernel methods allow for nonlinear
approximation of the value function by implicitly mapping state-action pairs to a high-dimensional
feature space, capturing complex relationships and dependencies. However, kernel methods also
suffer from the curse of dimensionality, particularly when dealing with high-dimensional state and
action spaces. When the number of state-action pairs grows, the kernel matrix can become large,
leading to increased computational requirements and potential overfitting. So we want to use the
reproducing property of RKHS to solve the problem. The reproducing property of RKHS allows
for a natural way to evaluate and compare functions. So it’s meaningful to use RKHS to study
RL. Finally, approaches using neural networks also exist (Mnih et al., 2015). But understanding
the relationship between input features and output predictions in neural networks can be difficult.
Reproducing kernel Hilbert space (RKHS) has advantages over kernels.

Reproducing kernel Hilbert spaces (RKHS) are Hilbert spaces equipped with a reproducing kernel
that have proven useful in regression, classification, and clustering problems (Berlinet & Thomas-
Agnan, 2011; Gu & Gu, 2013; Shawe-Taylor et al., 2004; Wainwright, 2019). RKHS offers addi-
tional properties and advantages over kernels, making it a powerful tool for function approximation
and learning tasks. This framework is versatile and reliable for solving various machine learn-
ing problems, due to its completeness, reproducing property, well-defined inner product, function
approximation capabilities, convergence, and stability. Therefore, studying RL problems in repro-
ducing kernel Hilbert spaces is meaningful.

There is a growing body of studies that combine RKHS and RL. There are lines of work that give an
RKHS version of traditional RL algorithms (Robards et al.; Valko et al., 2013). Robards et al. studies
RKHS temporal difference learning and Valko et al. (2013) kernelizes the linear UCB algorithm.
However, their algorithm relies on the finiteness of the state space S, which is overcome in our
paper. There are some works that propose some general frameworks to study RL with RKHS (Du
et al., 2021; Long & Han, 2021). Du et al. (2021) solved RKHS linear MDPs and RKHS mixture
MDPs by creating the ”Bilinear Classes”. However, “Bilinear Classes” is hard to verify in practice
and our paper only needs the transition probability to be smooth enough. Long & Han (2021)
defines a quantity called perturbational complexity by distribution mismatch and use this quantity
to measure the upper bound of two algorithms (fitted reward and fitted Q-iteration). However, more
algorithms are not given. Chowdhury & Gopalan (2019) gives an algorithm for learning MDPs
with mean transition dynamics and reward structure assumed to belong to appropriate RKHSs. The
algorithm achieves regret bound Õ

(
(γT (R) + γmT (P ))

√
T
)
, where γt(·) roughly represents the

maximum information gain about the unknown dynamics. But this paper assumes value functions
are Lipschitz continuous, which is not assumed in our paper.

This paper aims to address the curse of dimensionality, the strict assumptions on RL models, and
the lack of theoretical guarantees. To overcome these challenges, we propose modeling RL prob-
lems using the RKHS-embedding assumption, which exhibits generalization abilities and can handle
complex environments. Specifically, we utilize the following equation to model RL problems:

P (s̃|s, a) =
〈∫∫

S×A
Φs,a(x, z)M

∗((x, z), ·)dxdz,Ψs̃(·)
〉
H2

,

Here, the reproducing kernel Φs,a(·) = K1(·, (s, a)), Ψs̃(·) = K2(·, s̃) are given as a priori, and
M∗ is the transition core. Instead of naively assuming that the transition probability P belongs to
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an RKHS, we actually assume a more delicate structure of P which is that P has a decomposable
structure. Only on this assumption can we derive an efficient algorithm to conduct RL but still make
the model quite general as long as P is smooth enough. Unlike tabular MDPs, our proposed model
can handle both finite and infinite state and action spaces. Unlike linear MDPs and feature meth-
ods, our model can handle nonlinear relationships in transition probability. In contrast to parametric
approaches, our model does not require selecting an appropriate parametric function. Unlike neural
network methods, our model has a mathematical interpretation. Our non-parametric model utiliz-
ing the RKHS-embedding assumption can capture intricate nonlinear relationships that may not be
easily captured by traditional linear methods, enabling more expressive and flexible modeling of
complex data patterns. Moreover, the reproducing property of RKHS plays an essential role in em-
bedding learning, guaranteeing that the inner product between a learned embedding and a function
in the RKHS evaluates the function at the corresponding data point.

In this paper, we propose a non-parametric online RL algorithm called RKHS-RL to solve the model,
which utilizes reproducing kernels to learn the transition model. To explore the state and action
space, RKHS-RL estimates the transition core via ridge regression and balances exploration and
exploitation by constructing a confidence ball. Previous work by (Yang & Wang, 2020) proposed
a finite-dimensional confidence ball to solve feature-embedding RL problems using mathematical
techniques related to linear algebra. However, the non-parametric and infinite-dimensional nature
of RKHS-embedding RL problems poses significant challenges. To address this issue, we propose
an infinite dimensional confidence ball using mathematical techniques related to functional analysis.
Our confidence ball is essentially a sequence of confidence regions that converge to the transition
core as the time step increases, which helps the agent balance RL exploration and exploitation. Ad-
ditionally, we creatively generalize matrix multiplication into Hilbert space throughout our analysis.

We demonstrate that RKHS-RL achieves the regret bound of Õ(H
√
T ), ensuring that it can learn the

optimal policy when T is sufficiently large. Our regret bound does not rely on the dimension of state
and action spaces, unlike the regret bound Õ(H

3
2

√
|S||A|T ) for tabular MDPs (Auer et al., 2008;

Azar et al., 2017). Nor does it rely on the number of features, unlike the regret bound Õ(H
3
2

√
d3T )

for Linear MDPs and feature methods (Jiang et al., 2017; Yang & Wang, 2020; Jin et al., 2020).
These advantages enable RKHS-RL to avoid the curse of dimensionality. Note that for linear bandit,
a special case of RL, the regret lower bound is Ω̃(d

√
T ) (Dani et al., 2008). Our regret bound

matches the lower bound up to polylog factors in T . To our best knowledge, we provide the first
regret bound that is simultaneously near-optimal in the time T , polynomial in the planning horizon
H and independent of the feature dimension d.

Contributions. We summarize our contributions as follows:

• Model: We formulate online RL problems by RKHS-embedding assumption, which ex-
hibits abilities of generalization and dealing with complex environments.

• Method: Our algorithm, RKHS-RL, provides a non-parametric way to learn the transition
model using given reproducing kernels. It balances exploration and exploitation by con-
structing an infinite dimensional confidence ball.

• Theory: RKHS-RL achieves the regret bound Õ(H
√
T ). It is near-optimal in the time T ,

polynomial in the planning horizon H and independent of the feature dimension d.

1.1 RELATED LITERATURE

There is an extensive body of work on solving MDPs under various assumptions. In the tabular
setting, where both the state space S and action space A are finite, several methods achieve sub-
linear regret for H-horizon episodic RL. For instance, Auer et al. (2008) and Azar et al. (2017)
achieve sublinear regret of Õ(H

3
2

√
|S||A|T ), while Dann et al. (2019) and Jin et al. (2018) achieve

regret asymptotically of O(
√
H|S||A|T ). For linear MDPs, it has been observed that such as-

sumptions can lead to statistically efficient algorithms due to their low Bellman rank (Jiang et al.,
2017). The first algorithm that achieves statistically and computationally efficient learning for linear
MDPs achieves regret bound of O(H2d log T

√
T ) (Yang & Wang, 2020), where d represents the

feature space dimension. A simplified version of this model and algorithm achieves regret bounds of
Õ(H

3
2

√
d3T ) (Jin et al., 2020). For parametric methods in RL problems, there exist algorithms that
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achieve regret bounds of Õ(dH
√
T ) (Chowdhury et al., 2021) in parametric MDPs with exponential

families. Studies have also been conducted on RL with parameterized actions (Masson et al., 2016).
In kernel methods for RL problems, there are studies on kernel-based temporal difference learning
(Ormoneit & Sen, 2002) and kernel-based least-squares policy iteration (Xu et al., 2007).

Reproducing kernel Hilbert spaces have also been widely studied, with studies on the least square
regression model in an RKHS for regression (Rosipal & Trejo, 2001), the hard and soft classifica-
tion model by RKHS for classification (Wahba, 2002), and the clustering algorithm using RKHS
for clustering (Paiva et al., 2009). There is also a line of work on RKHS embedding. For in-
stance (Fukumizu et al., 2009; Sriperumbudur et al., 2010; Balasubramanian et al., 2013). For value
function approximation, there are methods based on RKHS for estimating the value function of an
infinite-horizon discounted Markov reward process (Duan et al., 2021).

For the combination of RKHS and RL, there is also a line of work. Robards et al. studies RKHS
temporal difference learning and Valko et al. (2013) kernelizes the linear UCB algorithm. Du et al.
(2021); Long & Han (2021) propose some general frameworks to study RL with RKHS. Du et al.
(2021) solved RKHS linear MDPs and RKHS mixture MDPs by creating the ”Bilinear Classes”.
Long & Han (2021) defines a quantity called perturbational complexity by distribution mismatch and
use this quantity to measure the upper bound of two algorithms (fitted reward and fitted Q-iteration).
Chowdhury & Gopalan (2019) gives an algorithm for learning MDPs with mean transition dynamics
and reward structure assumed to belong to appropriate RKHSs.

2 BACKGROUND AND PROBLEM SET-UP

In this section, we provide background before formulating the algorithm to be analyzed. Section
2.1 introduces basic concepts in a Markov Decision Process (MDP). Section 2.2 is devoted to back-
ground on reproducing kernel Hilbert space (RKHS).

2.1 PROBLEM FORMULATION

In this paper, we consider a finite-horizon Markov Decision Process (MDP) denoted by a tuple
M = (S,A, P, {rh}, H, s0), where S and A are continuous sets of states and actions, respectively.
At any state s ∈ S , the agent can select an action a ∈ A. The agent receives an immediate reward
rh(s, a) ∈ [0, 1] and transitions to the next state s′ ∈ S with probability P (s′|s, a) after taking
action a at state s. After H steps, the process restarts at an initial state s0. In an MDP, the principal
goal is to find a policy π : S × [H] → A that maximizes the long-term expected reward, starting
from a given state s and stage h ∈ [H]. For a policy π, a state s, and h ∈ [H], we define the value
function V π

h : S → R as

V π
h (s) := E

[
H∑
t=h

rt(st, at)|π, sh = s

]
.

A policy π∗ is optimal if it attains the maximal possible value at every state s and every stage h. We
denote V ∗ as the optimal value function. Also, we denote the optimal action-value function as

Q∗
H(s, a) = rH(s, a),

Q∗
h(s, a) = rh(s, a) + Es′∼P (·|s,a)V

∗
h+1(s

′), ∀h ∈ [H − 1],

In online Reinforcement Learning (RL) settings, the agent interacts with the environment episodi-
cally, where an episode starts at s0 and lasts for H steps. Let n denote the current episode number
and t = (n−1)H+h denote the current step. The performance of a learning algorithm is evaluated
by its regret, which is defined as the difference between the cumulative reward of the optimal policy
and the cumulative reward of the learning algorithm. Here, we adopt the following definition of
regret.
Definition 1. In an MDP M = (S,A,P, {rh}, H, s0), the regret for an algorithm K at step T =
NH is defined as

Regret(T ) = EK

[
N∑

n=1

(
V ∗(s0)−

H∑
h=1

rh(sn,h, an,h)

)]
,

where EK is expectation taken over the random path of states under algorithm K.
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In this paper, we study the problem where the transition function P can be embedded in a given
reproducing kernel Hilbert space. Let 0 < c < C <∞ be positive parameters from case to case.

Remark. In our paper, we need to know the immediate reward rh(s, a) after playing a at s. This
is in fact without loss of generality because learning about the environment P is much harder than
learning about r. In the case if r is unknown and satisfies certain conditions, we can extend our
algorithm by adding a step of optimistic reward estimation like in LinUCB. There are also works
that have the same assumptions on the reward.(Yang & Wang, 2020; Agrawal & Jia, 2017; Azar
et al., 2017)

2.2 MDP MODEL WITH REPRODUCING KERNEL HILBERT SPACE

Reproducing kernel Hilbert space (RKHS) provides a fertile ground for developing non-parametric
estimators. An RKHS is a particular type of Hilbert space of real-valued functions f with domain
X . As a Hilbert space, the RKHS has an inner product ⟨f, g⟩H along with the associated norm
||f ||H. There exists a symmetric kernel function K : X × X → R. For each x ∈ X , the function
z 7→ K(z, x) belongs to the Hilbert space and we have the reproducing property:

⟨K(·, x), f⟩H = f(x), ∀f ∈ H,

To simplify notation, we adopt the shorthand Φx = K(·, x).
In this paper, we need to study functions in the tensor product of two RKHSs. Suppose there exist
two RKHSs. One is for state and action space S×A with inner product ⟨f, g⟩H1 and kernel function
K1 : (S × A) × (S × A) → R, the other is for state space S with inner product ⟨f, g⟩H2 and
kernel function K2 : S × S → R. Then H = H1 ⊗ H2 is an RKHS with reproducing kernel
K = K1 ⊗K2 : (S ×A× S)2 → R (Berlinet & Thomas-Agnan, 2011), where

K(((s1, a1), s̃1), ((s2, a2), s̃2)) = K1((s1, a1), (s2, a2))K2(s̃1, s̃2).

It has the reproducing property:

⟨K(·, ((s, a), s̃)),M⟩H =M((s, a), s̃), ∀M ∈ H.

Furthermore, we equip S×A with measure µ1 and S with measure µ2. In the subsequent analy-
sis, we assume µ1 and µ2 are Lebesgue measures with µ1(S×A) < ∞ and µ2 (S) < ∞. This
assumption is easy to satisfy since the state and action space are always compact sets.
Assumption 1. (RKHS Embedding of Transition Model). For each (s, a) ∈ S × A, s̃ ∈ S, re-
producing kernel Φs,a(·) = K1(·, (s, a)), Ψs̃(·) = K2(·, s̃) are given as a priori. There exists an
unknown function M∗((x, z), y) ∈ H = H1 ⊗H2 such that

P (s̃|s, a) =
〈∫∫

S×A
Φs,a(x, z)M

∗((x, z), ·)dxdz,Ψs̃(·)
〉
H2

.

Here, we call the function M∗ as a transition core.

Remark. When considering the finite-dimensional transition core, Assumption 1 can be reduced
to feature embedding (Yang & Wang, 2020). However, the finite-dimensional transition core is hard
to capture nonlinear relationship. Assumption 1 can be satisfied if the coefficient of basis expansion
for P ((s, a), s̃) decays fast enough. In specific, let {aij} be the coefficient of basis expansion
P ((s, a), s̃) =

∑
i,j aijϕi(s, a)ψj(s̃), where {ϕi} is the orthonormal basis in L2(S ×A) and {ψj}

is the orthonormal basis in L2(S). Let {γi} be the eigenvalues of H1 and {µj} be the eigenvalues
of H2. Then Assumption 1 can be satisfied as long as

∑
i,j a

2
ij/γ

3
i µj < ∞. For example, {γi} and

{µj} are polynomial decay, corresponding to H1 and H2 are sobolev spaces. Then Assumption 1
will be satisfied by most of the smooth functions. Details will be shown in Appendix D.

2.3 GENERALIZATION OF MATRIX MULTIPLICATION

In this paper, we generalize matrix multiplication from linear spaces to Hilbert spaces.
Definition 2. (Generalization of matrix multiplication) J is a Hilbert space with inner product
⟨·, ·⟩J . If f(x, ·) ∈ J and g(·, y) ∈ J , then (f ◦ g)(x, y) is defined as

(f ◦ g)(x, y) = ⟨f(x, ·), g(·, y)⟩J .
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Remark. It is consistent with matrix multiplication. Consider the case when J = Rn with inner
product ⟨a, b⟩2 =

∑n
k=1 akbk. Then for matrix A,B, we have AB(i.j) =

∑n
k=1 aikbkj .

To clarify differences, we use operator ◦ when J = H2 and use operator ◦̃ when J = L2 with
Lebesgue measures.

3 RL EXPLORATION IN RKHS

In this section, we study the way to balance exploration and exploitation given a set of reproducing
kernels. Our goal is to develop an algorithm and give a regret bound.

3.1 ESTIMATING THE TRANSITION CORE

The high-level idea of the algorithm is to approximate the unknown transition core M∗ using the
collected data. Suppose that at time step t = (n, h), we observe the state-action-state transition
triplet (st, at, s̃t), where s̃t := st+1. For simplicity, we denote the associated reproducing kernels
by

Φt := Φ(st,at)(·) = K1(·, (st, at)) and Ψt := Ψs̃t(·) = K2(·, s̃t).
Let K(x, y) =

∫
S Ψs̃(x)Ψs̃(y)ds̃. We can prove that (see details in Appendix B)

E [Ψn,h(v)|sn,h, an,h] =
∫∫

S×A
Φn,h(x, z)(M

∗ ◦K)((x, z), v)dxdz.

Denote our estimator of M∗ as Mn, then Mn is the solution to the following ridge regression prob-
lem:

Mn = argmin
M

∑
n′<n,h≤H

∥∥∥Ψn′,h(v)−
∫∫

S×A
Φn′,h(x, z)(M ◦K)((x, z), v)dxdz

∥∥∥2
2
+ λn∥M∥2H,

where λn > 0 is a user-defined regularization parameter. We solve the ridge regression problem by
Fréchet derivative. After solving the ridge regression problem, we get Mn satisfies the following
equation (see details in Appendix C):∑

n′<n,h≤H

K◦̃
[
Φn′,h ⊗ (K2◦̃(Ψn′,h − Φn′,h◦̃(Mn ◦K)))

]
= λnMn (1)

For simplicity in the subsequent analysis, we define operator An as

An(f) =
1

(n− 1)H

∑
n′<n,h≤H

K◦̃
[
Φn′,h ⊗ (K2◦̃(Φn′,h◦̃(f ◦K)))

]
. (2)

3.2 UPPER CONFIDENCE RL IN RKHS

In online RL, a critical step is to estimate future value of the current state and action use dynamic
programming. To better balance exploitation and exploration, we want to use a confidence ball to
construct an optimistic value function estimator. At episode n:

∀(s, a) ∈ S ×A : Qn,H+1(s, a) = 0 and , (3)

∀h ∈ [H] : Qn,h(s, a) = rh(s, a) + max
M∈Bn

∫
S
PM (s̃|s, a)Vn,h+1(s̃)ds̃, (4)

where
PM (s̃|s, a) =

〈∫∫
S×A

Φs,a(x, z)M((x, z), ·)dxdz,Ψs̃(·)
〉
H2

and
Vn,h(s) = max

a
Qn,h(s, a) ∀s, a, n, h.

Here the confidence ball Bn is constructed as

Bn :=

{
M ∈ H :

∥∥∥An(M −Mn) +
λn

(n− 1)H
(M −Mn)

∥∥∥2
2
≤ βn

}
, (5)

where βn is a parameter to be determined later. In each step, at state sn,h, we play action an,h =
argmaxaQn,h(sn,h, a). The full algorithm is given in Algorithm 1.
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Algorithm 1: Upper Confidence Reinforcement Learning in RKHS (RKHS-RL)
Input: An episodic MDP environment M = (S,A, P, r,H, s0);

Reproducing Kernels K1 : (S ×A)× (S ×A) → R and K2 : S × S → R;
Total number of episodes N ;

1 Initialize: A1 = I ∈ H1 ⊗H1,M1 = 0 ∈ H1 ⊗H2, where

I ((s, a), (s′, a′)) =

{
1, (s, a) = (s′, a′)
0, otherwise .

2 for episode n = 1, 2, · · · , N do
3 Let {Qn,h} be given in (3) and (4) using Mn, βn;
4 for stage h = 1, 2, · · · , H do
5 Let the current stage be sn,h;
6 Play action an,h = argmaxa∈AQn,h(sn,h, a);
7 Record the next state sn,h+1;
8 end
9 Compute An+1 using (2);

10 Compute Mn+1 using (1);
11 end

Remark. We present a practical approach for addressing the maximum problem in equation 4.
Leveraging the representative theorem, we express the objective function M as a linear combination
of kernels. By Lagrange duality, we can reformulate the confidence ball problem into a penalized
version. Substituting the linear combination forM , we can reframe the original infinite-dimensional
problem as a finite-dimensional quadratic counterpart. Consequently, this transformation enables an
efficient solution to the problem.

3.3 REGRET BOUNDS

We first introduce some regularity conditions of the RKHS and the user-defined parameter λn.

Assumption 2. (RKHS regularity) Let RKHSs and transition core satisfy the following conditions:

1. ∥M∥22 ≤ C, ∥K1∥2 ≤ C and ∥K2∥2 ≤ C;

2. ∀(s, a) ∈ S ×A, s̃ ∈ S: 0 < c ≤ ∥Φs,a∥2 ≤ C and ∥Ψs̃∥2 ≤ C;

3. ∀f ∈ H2: 0 < c∥f∥2 ≤ ∥K2◦̃f∥2 ≤ C∥f∥2;

4. ∀g ∈ H: c∥g∥2 ≤ ∥K◦̃g∥2 and c∥g∥2 ≤ ∥g◦̃K2∥2 ≤ C∥g∥2.

Remark. Assumption 2 implies having an upper bound on the transition core M , as well as upper
and lower bounds on reproducing kernels, ensuring that the eigenvalues of the operators are within
a normal range. In the finite-dimensional case, RKHS-regularity reduces to feature regularity, as
considered in (Yang & Wang, 2020).

Assumption 3. (choice of λn) Let λn > 0 satisfies the following condition:

λn ≤ CH
√
n lnn.

With the conditions above we can provide the regret bound.

Theorem 1. Suppose Assumption 1,2 and 3 hold. After T = NH steps, Algorithm 1 achieves regret
bound:

Regret(T ) ≤ Õ(H
√
T ),

if we let βn = Õ(1/(nH)).

Remark. The regret bound implies Regret(T )/N → 0 when N → ∞. Recall Definition 1, we
can prove that the value function V converges to the optimal value function V ∗ as the episode N
increases. It ensures that RHKS-RL can learn the optimal policy for sufficiently large numbers
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of N . The regret bound in Theorem 1 is of the same rate in terms of T and tighter in terms of
H when compared with the regret bound O(H2d log T

√
T ) for feature embedding case (Yang &

Wang, 2020).

Proof sketch. The proof consists of two steps. (a) First, if the transition core M∗ is always inside
the confidence ball Bn, the Q-functions provide optimistic estimates of the optimal values and we
can obtain the regret bound using the sum of confidence bounds on the sample path. (b) Second, we
show that with high probability, the requirement in (a) is satisfied.

3.4 RKHS-RL IN FINITE-DIMENSIONAL CASE

We utilize our model and algorithm to address a case involving a finite number of states and actions,
which represents a straightforward scenario that our algorithm is well-suited to handle. In such cir-
cumstances, the finite-dimensional transition core proves adequate for resolving all conditions. Our
objective is to implement and evaluate our algorithm in practical settings, comparing it with estab-
lished techniques such as Q-Learning and Sarsa, in order to demonstrate its efficacy in achieving a
lower regret.

Establish finite dimensional RKHS H. Denote X = {1, ..., p} whose functional space is Rp

and each point has the same measure. For any α, β ∈ Rp, define ⟨α, β⟩H = α⊤β and Φx =
(0, ...0, 1, 0, ...)⊤, which equals 1 only at index x. Define the kernel as K(x, y) = Φ⊤

x Φy . It
means K(x, y) = 1 if and only if x = y. Now we show that H is an RKHS. First, We have
∀z ∈ X , K(z, ·) = Φz(·) ∈ Rp. Then, we check reproducing property: ⟨K(·, x), f(·)⟩H =∑

yK(y, x)f(y) = f(x). So we can introduce RKHS into the finite-dimensional space with its
inner product the same as the inner product in L2 with Lebesgue measures.

Estimating the transition core. Using the same method in Section 3.1, we can get a finite dimen-
sional version of equation 1:

Mn =
( ∑

n′<n,h≤H

Φn′,hΦ
⊤
n′,h + λnI

)−1( ∑
n′<n,h≤H

Φn′,hΨ
⊤
n′,h

)
, (6)

Closed-form Confidence Bounds In the finite-dimensional case, the maximum in equation 4 can
be expressed in a simpler form. By applying the Kronecker product, vectorization, and certain
maximization methods, we can derive closed-form confidence bounds:

Qn,h(s, a) = rh(s, a) +
√
βn
∥∥Vn,h+1 ⊗ ω−1

n Φs,a

∥∥
2
+Φ⊤

s,aMnVn,h+1,

where
ωn =

1

(n− 1)H

( ∑
n′<n,h≤H

Φn′,hΦ
⊤
n′,h + λnI

)
.

The full algorithm is given in Algorithm 2.

4 SIMULATION
We conduct simulations to assess the performance of finite-dimensional RKHS-RL. The experiment
examines the asymptotic property of the average value (Figure 1a), which indicates that the solution
of our function is stable. Additionally, we evaluate the regret bound proposed in our paper. As shown
in Figure 1b, we observe that Regret(T )/N1/2 is bounded. So the results align with Theorem 1.

Set up of simulation. We conduct an experiment with |S| = 20, |A| = 4, N = 1000, and H = 8.
We set S = {0, 1, · · · , 19} and A = {0, 1, 2, 3}. We randomly generate transition probability P and
reward function r. We calculate the optimal value function V ∗ by using the transition probability
P and reward function r. Then we use Algorithm 2 to calculate V . Regret, denoted as Regret(T ),
is V ∗ − V . Regret over N

1
2 is represented as Regret(T )/N

1
2 . We choose λn =

√
n/160. Figure

1(a) displays the curve of (
∑N

n=1

∑H
h=1 rh(sn,h, an,h))/N as N increases. The curve’s asymptotic

convergence indicates that our algorithm’s returned value is stable as N becomes sufficiently large.
In Figure 1(b), we depict our regret. The cumulative value function under the optimal policy is
represented as cumulative V ∗, while cumulative V denotes the cumulative value function during N
loops under Algorithm 2. Cumulative V over

√
N should be bounded as N tends to infinity based

8
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Algorithm 2: Finite Dimensional RKHS-RL
Input: An episodic MDP environment M = (S,A, P, r,H, s0);

Total number of episodes N ;
1 Initialize: A1 = I ∈ R(|S|×|A|)2 ,M1 = 0 ∈ R(|S|×|A|)×|S| ;
2 for episode n = 1, 2, · · · , N do
3 Let {Qn,h} be defined as follows:

∀(s, a) ∈ S ×A : Qn,H+1(s, a) = 0 and

∀h ∈ [H] : Qn,h(s, a) = rh(s, a) +
√
βn
∥∥Vn,h+1 ⊗ ω−1

n Φs,a

∥∥
2
+Φ⊤

s,aMnVn,h+1.4

where
Vn,h(s) = max

a
Qn,h(s, a) ∀s, a, n, h

and
ωn =

1

(n− 1)H

( ∑
n′<n,h≤H

Φn′,hΦ
⊤
n′,h + λnI

)
for stage h = 1, 2, · · · , H do

5 Let the current stage be sn,h;
6 Play action an,h = argmaxa∈AQn,h(sn,h, a);
7 Record the next state sn,h+1;
8 end
9 Compute Mn+1 using equation 6

10 end

(a) Average value versus N (b) Value and regret versus N (c) Value compared with Q-Learning
and SARSA versus N

Figure 1: Regrets and Value Function Estimation

on our theory. Figure 1(c) displays our cumulative value compared with Q-Learning and SARSA.
Our algorithm is better than these in cumulative value, partly because their general explore policy
is ϵ-greedy exploration (where we choose ϵ = 0.9 in our algorithm). So it could be understood that
these two algorithms at most reaches probably 0.9V ∗.

5 SUMMARY

This paper proposes a model for online RL in the setting of RKHS. The core assumption is the
RKHS-embedding of transition probability, which exhibits exceptional generalization capabilities
and can handle nonlinearity. Based on this model, we provide a non-parametric algorithm, RKHS-
RL, for solving episodic online RL problems. The RKHS-RL algorithm estimates the transition
core using ridge regression and balances exploration and exploitation through infinite-dimensional
confidence balls. We prove that RKHS-RL has the regret bound of Õ(H

√
T ), where T represents

the time step of the algorithm, and H denotes the horizon of the MDP. It’s a regret bound that is
near-optimal in T , polynomial in H and independent of d. We also apply RKHS-RL to the finite-
dimensional case and derive a finite-dimensional version of the algorithm. However, it remains open
that whether the RKHS regularity condition can be relaxed.

9
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