
ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

Myungsik Cho 1 Jongeui Park 1 Jeonghye Kim 1 Youngchul Sung 1

Abstract
Multi-task reinforcement learning (RL) encoun-
ters significant challenges due to varying task
complexities and their reward distributions from
the environment. To address these issues, in
this paper, we propose Adaptive Reward Scal-
ing (ARS), a novel framework that dynamically
adjusts reward magnitudes and leverages a peri-
odic network reset mechanism. ARS introduces
a history-based reward scaling strategy that en-
sures balanced reward distributions across tasks,
enabling stable and efficient training. The reset
mechanism complements this approach by mit-
igating overfitting and ensuring robust conver-
gence. Empirical evaluations on the Meta-World
benchmark demonstrate that ARS significantly
outperforms baseline methods, achieving supe-
rior performance on challenging tasks while main-
taining overall learning efficiency. These results
validate ARS’s effectiveness in tackling diverse
multi-task RL problems, paving the way for scal-
able solutions in complex real-world applications.

1. Introduction
In recent years, the field of deep reinforcement learning (RL)
has achieved remarkable success in addressing complex con-
trol problems, such as mastering Atari games (Hafner et al.,
2021; Kapturowski et al., 2023; Schwarzer et al., 2023)
and advancing locomotion control (Haarnoja et al., 2018b;
Fujimoto et al., 2018; Cetin et al., 2022). Despite these
achievements, the field remains limited by a task-specific
paradigm that demands substantial data and computational
resources to train separate policies for each task. General-
izing a single policy to perform effectively across multiple
tasks poses a significant challenge, particularly in domains
such as robotic control (Kaufmann et al., 2023; Tang et al.,
2024), where mastering diverse skills is essential.

1School of Electrical Engineering, Korea Advanced Institute
of Science and Technology, Daejeon, Korea. Correspondence to:
Youngchul Sung <ycsung@kaist.ac.kr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Multi-task reinforcement learning (multi-task RL) (Wilson
et al., 2007; Zeng et al., 2018; Yang et al., 2020; Sun et al.,
2022; Hendawy et al., 2024; Cho et al., 2024) enables a sin-
gle policy network to handle multiple tasks with shared pa-
rameters (Caruana, 1997), improving data efficiency. How-
ever, it faces the challenge of negative transfer, where learn-
ing one task disrupts others, destabilizing training and limit-
ing scalability (Sun et al., 2020).

In addition to negative transfer, this paper introduces an-
other critical issue in multi-task RL: the significant variation
in reward scales across tasks, which can adversely affect
overall performance. To explore this issue, we focus on the
impact of reward scaling approach in multi-task scenarios,
studied in single-task settings (Henderson et al., 2018; Wu
et al., 2018), which involves applying a constant scaling fac-
tor to rewards. We observed that the varying magnitudes of
rewards across tasks cause biases during training, resulting
in overfitting on tasks with highly amplified rewards and a
decline in average performance across all tasks.

To address these challenges, we propose Adaptive Reward
Scaling (ARS), a novel framework that dynamically adjusts
reward scaling factors, ensuring balanced reward magni-
tudes across diverse tasks. ARS is built upon two core
components: (1) adaptive reward scaling that adjusts scaling
factors by analyzing the distribution of rewards within each
task’s experience replay buffer (Mnih et al., 2015), and (2)
periodic resetting of network parameters to prevent over-
fitting and improve convergence. This approach ensures
that challenging tasks receive adequate emphasis on their
rewards, preventing overfitting to simpler tasks with higher
rewards and enhancing overall performance. Experiments
conducted on the Meta-World benchmark (Yu et al., 2019),
which includes 50 robotic manipulation tasks, demonstrate
that ARS significantly outperforms baseline methods. Addi-
tionally, ARS integrates seamlessly into existing off-policy
algorithms with minimal modifications, making it a practical
and effective solution for real-world applications.

The primary contributions of this work are:

• The introduction of reward scale variation of a chal-
lenge in multi-task RL, demonstrating how fixed re-
ward scaling can lead to biased training, overfitting,
and overall performance degradation

1

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

• A novel framework, adaptive reward scaling mech-
anism with reset strategies, which robustly handles
varying reward distributions and enhances the learning
process for challenging tasks.

• Empirical validation on the Meta-World benchmark
Empirical, demonstrating superior performance and
providing detailed insights into the mechanisms driving
ARS’s effectiveness.

2. Preliminaries
2.1. Multi-Task Reinforcement Learning

A RL problem is typically represented as a Markov decision
process (MDP), defined as M = (S,A,P, r, ρ, γ). Here,
S represents the state space, A is the action space, P : S ×
A× S → R+ is the transition probability, r : S ×A → R
is the reward function, ρ : S → R+ is the distribution
over initial states, and γ ∈ [0, 1) is the discount factor. At
each time step t, the agent receives an observation of the
state st ∈ S and selects an action at ∈ A according to the
policy π(at | st). The environment returns a reward rt =
r(st, at) and transitions to the next state st+1 according to
the transition probability distribution P(st+1 | st, at). In
single-task RL, the goal is to maximize the expected sum of
discounted rewards:

J(π) = Eτ∼ρπ

[
H∑
t=1

γt−1rt

]
. (1)

In multi-task RL, the focus shifts to optimizing a policy
that achieves high performance across a broad range of
tasks. Specifically, multi-task RL contains a set of tasks
C = {Ti}Ni=1 and a distribution p(T) over these tasks,
where each task Ti is represented by an MDP Mi =
(S,A,Pi, ri, ρi, γ,H). The tasks share common state and
action spaces but differ in reward functions, transition dy-
namics, and initial state distributions. Assuming p(T) is uni-
form, the goal is to learn a shared policy π that maximizes
the average return over all tasks. Formally, the objective is:

max
π

ET ∼p(T)[J(π, T)], (2)

where J(π, T) denotes the expected sum of discounted re-
wards for task T under policy π.

In this work, we use a shared policy πθ(a|s, z), which in-
corporates a task representation z alongside the state s. We
represent each task using a one-hot encoding. To train the
policy, we adopt Soft Actor-Critic (SAC) (Haarnoja et al.,
2018b) as the underlying algorithm.

2.2. Replay Buffer

In off-policy RL, the replay buffer (Mnih et al., 2015) im-
proves sample efficiency and training stability. Denoted

as D, it stores transitions (st, at, rt, st+1) collected from
the agent’s interactions, which are reused during training to
stabilize updates to the policy or value function.

To extend this concept to multi-task RL, each task Ti in
the task set C is assigned a distinct replay buffer Di. This
design isolates experiences for each task, enabling the agent
to adapt effectively to the unique dynamics and reward
structures of individual tasks.

2.3. Reward Scaling

Reward scaling (Henderson et al., 2018; Wu et al., 2018) is a
common preprocessing technique in RL that adjusts reward
magnitudes to enhance learning stability and convergence.
In single-task RL, the reward signal rt is transformed using
a scaling factor crew, helping to mitigate the impact of incon-
sistent reward magnitudes and enabling more stable updates
to the value function or policy.

When applied to multi-task RL, the need for reward scal-
ing becomes even more pronounced due to the variation in
reward distributions across tasks. To address these differ-
ences, task-specific reward scaling is implemented, where
each task’s rewards are adjusted using unique scaling fac-
tors {crew

i }Ni=1. This approach ensures consistency in reward
magnitudes across tasks, supporting stable learning.

2.4. Parameter Resetting

In single-task deep RL, early learning often leads to overfit-
ting to initial experiences, a phenomenon known as primacy
bias, as highlighted by Nikishin et al. (2022). To mitigate
this, Nikishin et al. (2022) proposed a method that periodi-
cally resets the parameters of the RL agent while preserving
the replay buffer. This method leverages the replay buffer’s
stored experiences to enable the agent to recover quickly
from the reset, bypassing the primacy bias. Although resets
temporarily reduce performance, the agent rapidly regains
its capabilities by focusing on high-quality trajectories ac-
quired later in the learning process, resulting in significant
improvements across various environments.

In multi-task deep RL, resetting deep networks offers addi-
tional benefits. Beyond counteracting primacy bias, it also
addresses biases toward tasks learned early in training. By
redistributing focus across tasks, the reset mechanism pro-
motes more balanced learning and enhances performance
across the entire task set (Cho et al., 2024).

3. Motivation: Reward Scaling in Deep RL
This section introduces a motivating example highlighting
the limitations of conventional deep multi-task RL, which
assigns an equal reward scale {crew

i = 1.0}Ni=1 to all target
tasks. The challenge becomes particularly evident when the

2

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
io

SAC
SAC (rs X100)

(a) push

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
io

SAC
SAC (rs X100)

(b) pick-place

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
io

SAC
SAC (rs X100)

(c) shelf-place

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
io

SAC
SAC (rs X100)

(d) basketball

Figure 1. Learning curves of four tasks: ‘push,’ ‘pick-place’, ‘shelf-
place’ and ‘basketball’. With a reward scaling factor of 100, all
tasks succeed, whereas without reward scaling, all tasks fail.

target tasks have significantly different reward distributions.

3.1. Reward Scaling in Single-Task RL

Previous works (Henderson et al., 2018; Wu et al., 2018)
demonstrate the effectiveness of reward scaling in single-
task RL. To investigate its impact within the Meta-World
benchmark (Yu et al., 2019), a widely used environment
for evaluating multi-task RL, we conducted independent ex-
periments on four challenging tasks—‘push,’ ‘pick-place’,
‘shelf-place’ and ‘basketball’. These experiments utilized
the Soft Actor-Critic (SAC) algorithm (Haarnoja et al.,
2018b), comparing performance across two reward scal-
ing factors—{1.0, 100.0}, where a reward scaling factor of
1.0 represents the naive SAC method.

As shown in Figure 1, reward scaling method outperforms
the non-scaling approach and ensures successful task com-
pletion, demonstrating its effectiveness in single-task RL.

3.2. Challenges of Reward Scale in Multi-Task RL

In the previous subsection, we observed that the reward scal-
ing approach effectively supports the training of successful
policies in Meta-World. Here, we examine the impact of the
reward scaling method on a multi-task RL agent.

3.2.1. FAILURES IN CHALLENGING TASKS WITHOUT
THE REWARD SCALING APPROACH

We considered the MT10 benchmark, consisting of 10 ma-
nipulation tasks in Meta-World, and trained the agent with
the SAC-MT algorithm, using one-hot encoding for task

0 1 2 3 4 5 6 7 8 9 All
Task ID

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
io

SAC-MT
SAC-MT (rs x100 All)
SAC-MT (rs x100 Challening Task)

Figure 2. Comparison of the final success rate per task in the MT10
benchmark among SAC-MT, SAC-MT with reward scaling applied
to all tasks, and SAC-MT with reward scaling applied only to the
challenging tasks: ‘push,’ ‘pick-place,’ and ‘peg-insert-side.’

identification. Figure 2 (blue) shows the final success ratio
per task with SAC-MT. Notably, tasks with IDs 1, 2, and 7
(‘push,’ ‘pick-place,’ and ‘peg-insert-side’) failed to train
successfully.

In order to investigate the failure in these challenging tasks
with the SAC-MT algorithm, we focused on the magnitude
of the initial reward for each task in the MT10 benchmark.
We observed that the reward scale for certain challenging
tasks is substantially lower compared to others, differing by
a factor of 10 ∼ 100. This imbalance negatively affected
the training of the Q-network for these tasks, as shown in
Figure 3. Specifically, the Q-values for these tasks were neg-
ative, even though the rewards from Meta-World are always
positive. This highlights the challenges of training the Q-
network when reward scales are not sufficiently high. More
learning curves of Q-value are provided in Appendix D.1

3.2.2. FIXED REWARD SCALING IN MULTI-TASK RL

To further investigate the effects of reward scaling in multi-
task RL, we conducted additional two experiments with
SAC-MT. In the first, a reward scaling factor of 100 was
applied uniformly across all tasks, while in the second,
the scaling was selectively applied only to the challenging
tasks—‘push,’ ‘pick-place,’ and ‘peg-insert-side’—leaving
the other tasks unscaled. Figure 2 shows the final success
ratios achieved with SAC-MT when incorporating reward
scaling. Orange represents the scenario where scaling was
applied to all tasks, and green denotes the selective scaling
approach. In the uniform scaling experiment, Task ID 1
showed progress, but Task IDs 2 and 7 remained unresolved.
In contrast, with selective scaling applied only to challeng-
ing tasks, Task IDs 1, 2, and 7 were successfully trained.

3

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

40

30

20

10

0

10

20

30

40

Q
 v

al
ue

s

(a) push

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

40

30

20

10

0

10

20

30

40

Q
 v

al
ue

s

(b) pick-place

Figure 3. Learning curves of Q-values for two tasks: ‘push,’ and
‘pick-place’.

However, this approach caused many other tasks to fail
during training, reducing the overall average performance.

This observation highlights a key challenge in multi-task RL:
careful reward scaling is essential for handling tasks with
diverse reward distributions. Improper scaling can result in
overfitting on tasks with highly amplified rewards, failure to
learn others, and overall performance decline. To address
this challenge, the remainder of this paper introduces a novel
approach to effectively adjust reward scaling in multi-task
RL, aiming to achieve better overall performance.

4. Adaptive Reward Scaling for Multi-Task
Reinforcement Learning

To address the issue raised in the previous section regarding
the effective handling of varying reward distributions in
multi-task RL, we propose the Adaptive Reward Scaling
(ARS) algorithm. This approach is specifically designed to
address imbalances in reward scales across tasks in multi-
task RL, thereby improving overall learning efficiency. The
ARS framework comprises two key components: a reset
mechanism and a dynamic reward scaling strategy, which
work together to optimize training performance.

• History-Based Reward Scaling Strategy: At the core
of ARS is a reward scaling strategy that adjusts re-
ward scales for tasks with lower reward magnitudes,
ensuring uniform reward scaling across tasks. This ap-
proach leverages a metric derived from the distribution
of rewards within each task’s experience replay buffer,
enabling real-time and adaptive reward scaling.

• Reset Mechanism: ARS integrates a reset mechanism
to mitigate biases toward the tasks with highly ampli-
fied rewards. hrough periodic reinitialization of net-
work parameters while maintaining the replay buffer,
this approach enhances adaptability and promotes im-
proved performance across diverse tasks.

The overall structure of the proposed ARS framework is
presented in Appendix F. ARS employs two networks: a

Algorithm 1 Adaptive Reward Scaling (ARS)

1: Initialize policy network πθ, Q-value network Qψ
2: Initialize replay buffer Di for each task Ti ∈ C
3: for t = 1, 2, . . . , Tinit do
4: for all Ti ∈ C do
5: Interact with the environment of Ti with a random

policy and store data in Di
6: end for
7: end for
8: Initialize the reward scaling factors {crewi }Ni=1 using (6)
9: for t = Tinit + 1, Tinit + 2, . . . , do

10: for all Ti ∈ C do
11: Interact with the environment of Ti with πθ and

store data in Di
12: end for
13: Update θ and ψ, using the data in {Di}Ni=1 and the

scaling factors {crewi }Ni=1

14: if t% Treset == 0 then
15: Update {crewi }Ni=1 using (6)
16: Randomly reinitialize θ and ψ
17: end if
18: end for

policy distribution πθ and a state-action value function Qψ .
Each task Ti in the task set C is assigned a separate buffer Di,
maintained independently to store task-specific interactions.
The goal is to maximize the sum of each task’s objective,
i.e.,

∑
T i∈C J(πθ, Ti). The key components of ARS are

further detailed in the following subsections.

4.1. History-Based Reward Scaling Strategy

From the observations in the previous section, assigning
higher reward scaling factors to complex tasks is necessary.
However, using a fixed reward scaling approach is inade-
quate as shown in Figure 2, as the reward magnitude for
tasks with a high scaling factor progressively increases dur-
ing training, leading to biases toward those tasks. To address
this, the reward for each task Ti should be adaptively scaled.

This raises the question: ”How should the scaling factor for
each task Ti be determined in real-time?” To address this, we
examine the training objective in standard off-policy multi-
task RL implementations. Given a task set C = {Ti}Ni=1 and
the corresponding experience replay buffers {Di}Ni=1, the
agent is trained using the following objectives:

ℓπ(θ) =
1

|C|
∑
Ti∈C

Es∼Di
[ℓπ(θ; s)] , (3)

ℓQ(ψ) =
1

|C|
∑
Ti∈C

E(s,a)∼Di

[
ℓQ(ψ; s, a, r, s′)

]
, (4)

where ℓπ(θ; s) and ℓQ(ψ; s, a, r, s′) are the per-sample actor
and critic loss functions, respectively.

4

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

In this objective, the reward scaling factor only influences
critic training. For the SAC algorithm, the per-sample critic
loss for (s, a, r, s′) ∈ Di is expressed as

ℓQ(ψ; s, a, r, s′) =[(
r + γ(Qψ̂(s

′, πθ(s
′))− α log πθ(s

′)
)
−Qψ(s, a)

]2
(5)

Critic training, therefore, can be viewed as a regression
problem, where the targets vary, and the mean reward in the
experience replay buffer Di plays a crucial role in determin-
ing the magnitude of the critic values.

Building on these observations, we define the reward scaling
factor crew

i for each task Ti as the following equalizer rule:

crew
i =

max
(
{r̄1, . . . , r̄N}

)
r̄i

(6)

where r̄i is the mean reward for task Ti within its replay
buffer Di for i = 1, · · · , N . This formulation ensures
consistent reward magnitudes across tasks, enabling sta-
ble critic learning without bias towards easy tasks. Using
this adaptive reward scaling factor crew

i , the critic loss for
(s, a, r, s′) ∈ Di is modified as follows:

ℓQ(ψ; s, a, r, s′) =[(
crew
i r + γ(Qψ̂(s

′, πθ(s
′))− α log πθ(s

′)
)
−Qψ(s, a)

]2
(7)

4.2. Reset Mechanism

A key issue with the naive adaptive reward scaling approach
is that the rewards stored in the experience replay buffer fluc-
tuate throughout training due to the changing reward scaling
factor. This variability can destabilize critic training, as the
regression target in Equation (7) changes frequently. Addi-
tionally, it may introduce biases toward tasks with highly
amplified reward scaling factors, ultimately leading to sub-
optimal performance.

To address this issue, we adopt the reset mechanism pro-
posed by Nikishin et al. (2022), which involves resetting
the policy parameters θ and Q-value function parameters ψ
while preserving the experience replay buffers. Furthermore,
we adjust the reward scaling factor crew

i only prior to resets,
ensuring stable critic training throughout the process.

To conclude, our ’History-Based Reward Scaling’ strategy
adaptively scales rewards across tasks of varying complex-
ities, preventing bias toward simpler tasks with larger raw
magnitude of rewards. However, dynamically changing
reward scales can destabilize training critic network. To
address this, we employ a Reset Mechanism, which resets
the policy and critic networks whenever the reward scales

are updated, while retaining all historical data in the re-
play buffers. This approach maintains stable critic learn-
ing throughout training, effectively balancing performance
across a diverse set of tasks. The main contribution of our
work is the novel reward scaling framework, thus any type
of multi-task RL method can be used for practical imple-
mentation. The overall process of the proposed method is
summarized in Algorithm 1.

4.3. Enhancements

Our ARS framework builds upon the SAC-MT algorithm,
a simplest baseline for multi-task RL. In the main results,
we refer to this combination as ARS. Beyond the default
ARS setup, we apply layer normalization (Ba et al., 2016),
a well-known technique for stabilizing learning in deep RL
(Ball et al., 2023), to both the input and hidden layers of the
critic network, and denote this variant as ARS-LN. Building
on ARS-LN, we further incorporate Low-Rank Adaptation
(LoRA) (Hu et al., 2022) to introduce task-specific param-
eterization during the later stages of training—specifically,
after 75% and 83.3% of the total training steps for MT10 and
MT50, respectively. We denote this variant as ARS-LoRA.
For efficient adaptation, we use a rank of r = 8 for MT10
and r = 16 for MT50. Further implementation details re-
garding the integration of LoRA into ARS are provided in
Appendix B.

5. Experiments
Benchmarks. To evaluate the effectiveness of the pro-
posed method on various tasks, we conducted experiments
using the Meta-World benchmark (Yu et al., 2019), which
includes 50 distinct robotic control tasks involving a Sawyer
arm in the MuJoCo environment (Todorov et al., 2012). Our
experiments used two setups: MT10 and MT50, which con-
sist of 10 and 50 manipulation tasks, respectively. A detailed
description of the benchmarks are provided in Appendix A.

Baselines. We compared the proposed method against
the following baseline approaches: 1) SAC with Multi-Task
(SAC-MT): A shared policy that uses a one-hot task iden-
tification encoding along with the current state as input.
2) SAC with Multi-Task Multi-Head (SAC-MT-MH) (Yu
et al., 2019): Similar to SAC-MT but incorporates an inde-
pendent final layer (multi-head) in the policy network for
each task. 3) SAC with Soft Modularization (SAC-Soft-
Modular) (Yang et al., 2020): A policy architecture utilizing
multiple modules with a soft modularization technique that
determines a routing strategy for each task. 4) Gradient
Surgery for Multi-Task Learning (PCGrad) (Yu et al., 2020):
This method addresses conflicting gradients in multi-task
learning by projecting gradients onto a shared subspace. 5)
Parameter-Compositional Multi-Task Reinforcement Learn-
ing (PaCo)(Sun et al., 2022): A multi-task RL approach

5

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

Table 1. Comparison of average and per-task success rates (%) on the Meta-World MT10 benchmark. Refer to Appendix A for task names
corresponding to each task ID.

Task ID

Algorithm 0 1 2 3 4 5 6 7 8 9 Average

SAC-MT 98±2.4 0±0.0 0±0.0 100±0.0 100±0.0 100±0.0 96±2.0 0±0.0 100±0.0 100±0.0 69.4 ± 0.8
SAC-MT-MH 100±0.0 28±21.8 0±0.0 100±0.0 98±2.5 100±0.0 100±0.0 46±21.8 100±0.0 100±0.0 77.2 ± 11.9
Soft Modular 100±0.0 32±14.9 0±0.0 100±0.0 100±0.0 100±0.0 100±0.0 12±14.9 100±0.0 100±0.0 74.4 ± 10.5
PCGrad 94±3.7 0±0.0 0±0.0 100±0.0 100±0.0 100±0.0 100±0.0 54± 39.9 100±0.0 100±0.0 74.8 ± 13.7
PaCo 100±0.0 44±25.2 0±0.0 100±0.0 100±0.0 100±0.0 100±0.0 80 ± 40 100±0.0 100±0.0 82.4 ± 14.2
MOORE 100±0.0 92.5 ± 7.1 0±0.0 100±0.0 100±0.0 100±0.0 100±0.0 67.5 ± 46.5 100±0.0 100±0.0 86.0 ± 4.8
SMT 96±3.7 62±17.9 34±13.8 100±0.0 100±0.0 100±0.0 100±0.0 76±31.9 100±0.0 100±0.0 86.8 ± 8.6

ARS (Ours) 92.5±11.7 98.8±3.5 86.3±15.1 98.8±3.5 100±0.0 100±0.0 100±0.0 96.3±7.4 100±0.0 100±0.0 97.3 ± 2.1
ARS-LN (Ours) 93.8±7.4 98.8±3.5 93.8±9.2 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 98.6 ± 1.5
ARS-LoRA (Ours) 100±0.0 97.5±7.1 98.8±3.5 100±0.0 100±0.0 100±0.0 100±0.0 98.8±3.5 100±0.0 100±0.0 99.5 ± 0.8

that utilizes parameter compositionality by constructing
task-specific parameters from a common pool of shared
base parameters. 6) Multi-Task Reinforcement Learning
with Mixture of Orthogonal Experts (MOORE) (Hendawy
et al., 2024): Neural network architecture utilizing mixture-
of-experts with gram-schmidt process 7) Scheduled Multi-
Task Training for Multi-Task RL (SMT) (Cho et al., 2024):
A framework designed to mitigate simplicity bias using a
”Hard Tasks First” scheduling scheme combined with a reset
mechanism.

Training settings. All methods are trained using 20 million
samples in the MT10 benchmark and 100 million samples
in the MT50 benchmark. Policy evaluation is based on the
success ratio across all tasks, where the success ratio for
a specific task is determined by averaging its success rate
over 10 episodes with different sampled goals. We report
the mean performance along with the standard deviations of
policies trained across 8 different random seeds, as summa-
rized in Tables 1 and 2. Details of the hyperparameters used
in the experiments can be found in Appendix C.

5.1. Results on Meta-World

The results for two benchmarks, MT10 and MT50, are pre-
sented in Table 1 and Table 2, respectively. These findings
highlight the effectiveness of the ARS algorithm’s inno-
vative strategy for multi-task RL, especially its adaptive
reward scaling and reset mechanism. Together, these com-
ponents drive notable performance improvements across a
wide range of tasks in the Meta-World benchmark.

Results on MT10. As shown in the MT10 results in
Table 1, our ARS framework with three variants achieves
outstanding performance, attaining average success rates
of 97.3%, 98.6%, and 99.5%, respectively, which are the
highest among all compared methods. Furthermore, ARS-
LoRA achieves the best overall performance with a 99.5%

Table 2. Comparison of average bottom-k success rates on the
Meta-World MT50 benchmark.

Average Bottom-k Success Ratio (%)

Algorithm k = 10 k = 20 k = 30 k = 40 k = 50

SAC-MT 0.0 ± 0.0 0.0 ± 0.0 14.1 ± 3.1 34.5 ± 2.5 47.6 ± 2.0
SAC-MT-MH 0.0 ± 0.0 0.0 ± 0.0 14.1 ± 1.7 34.0 ± 2.0 47.2 ± 1.7
Soft Modular 0.0 ± 0.0 1.8 ± 3.7 23.7 ± 12.3 42.6 ± 9.5 54.1 ± 7.6
PCGrad 0.0 ± 0.0 0.0 ± 0.0 21.0 ± 12.9 39.9 ± 10.7 51.9 ± 8.5
PaCo 0.0 ± 0.0 4.6 ± 8.2 26.1 ± 15.0 44.6 ± 11.2 55.6 ± 9.1
MOORE 0.0 ± 0.0 15.9 ± 7.0 41.2 ± 5.0 55.3 ± 3.9 64.2 ± 3.1
SMT 0.0 ± 0.0 8.0 ± 8.9 26.8 ± 13.1 45.0 ± 9.9 56.0 ± 8.0

ARS (Ours) 9.1 ± 6.6 26.3 ± 6.1 45.3 ± 4.7 57.5 ± 3.6 65.9 ± 2.9
ARS-LN (Ours) 21.0 ± 11.4 49.1 ± 6.5 64.3 ± 6.2 72.9 ± 4.7 78.3 ± 3.7
ARS-LoRA (Ours) 29.3 ± 7.7 58.4 ± 4.5 72.0 ± 3.0 79.0 ± 2.2 83.2 ± 1.8

success rate, successfully solving all tasks with at least 97%
accuracy. This marks a significant advancement over exist-
ing methods and a major breakthrough as the first to solve
the MT10 benchmark using scratch multi-task RL train-
ing. Notably, ARS framework performs exceptionally well
on challenging tasks, such as task ID 1 (‘push’), 2 (‘pick-
place’), and 7 (‘peg-insert-side’). These results highlight the
effectiveness of ARS’s adaptive reward scaling combined
with the reset mechanism, which emphasizes addressing dif-
ficult tasks and accelerating progress during the early stages
of training.

Results on MT50. The MT50 results in Table 2 high-
light the consistent effectiveness of ARS, which outper-
forms other methods, particularly in the average bottom-k
success ratios, as suggested by Cho et al. (2024). In partic-
ular, in the most challenging subset of tasks (bottom-10),
where all baseline methods fail, ARS variants achieve av-
erage success rates of 9.1%, 21.0%, and 29.3%, respec-
tively—demonstrating a clear advantage on difficult tasks.
Moreover, the use of Layer Normalization and LoRA fine-
tuning remarkably improves performance from 65.9% to

6

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

Table 3. Results of incorporating the ARS framework into existing
multi-task RL methods.

Multi-Task Algorithm

Benchmark ARS SAC-MT PCGrad Soft Modular MOORE

MT10 w/ ARS 97.3±2.1 95.9±2.6 98.8±1.3 98.0±0.4
w/o ARS 69.4±0.8 74.8±13.7 74.4±10.5 86.0±4.8

MT50 w/ ARS 65.9±2.9 72.4±2.6 75.5±3.6 84.6±1.6
w/o ARS 47.6±2.0 51.9±8.5 54.1±7.6 64.2±3.1

78.3% and 83.2%, respectively, in terms of average success
rate across all tasks. This marks a significant advancement
over existing methods and represents a major milestone as
the first instance of successfully solving diverse tasks in the
MT50 benchmark through scratch multi-task RL training.
Note that while the performance of MOORE (Hendawy
et al., 2024) appears competitive with our basic ARS’s per-
formance, this is not a fair comparison, as the MOORE
method uses approximately 4× more parameters than ours.
To examine the effects of network capacity, we conducted an
ablation study on the number of parameters in Section 5.4.
With a bigger network, ARS-LN achieves 88.9% average
success rate for the MT50 benchmark. Notably, ARS-LN
successfully solves all tasks with a success rate of at least
45%, except for two tasks: assembly and disassemble, re-
sulting in an average success rate of 92.3% across 48 tasks.

To further investigate the advantages of mastering diverse
tasks, we analyze the Effective Solvable Task Ratio (ESTR)
on the MT50 benchmark. The ESTR is defined as:

ESTR =

∣∣{Ti ∈ C | EvalFinalSR(Ti) ≥ δ}
∣∣

N
(8)

where δ is the success ratio threshold, and EvalFinalSR(Ti)
represents the final average success ratio for a task Ti. A
higher ESTR indicates that the agent successfully solves
more tasks. We compute the ESTR for threshold values δ ∈
{0.1, 0.3, 0.5, 0.7}. The threshold δ specifies the criteria
for a task to be considered solvable, with tasks achieving
an average success ratio equal to or above δ classified as
solvable. As δ increases, the criteria become stricter, causing
the ESTR metric to decrease accordingly.

As shown in the ESTR results in Figure 4, our ARS
framework demonstrates exceptional performance across
all threshold values δ ∈ {0.1, 0.3, 0.5, 0.7}, indicating that
ARS successfully solves more tasks than other baselines.
Notably, ARS significantly outperforms competing methods
as δ decreases, highlighting its ability to address a broader
range of tasks, including those with lower success ratios. In
contrast, the baseline methods tend to focus on only a subset
of tasks, failing to tackle more challenging ones effectively.

0.1 0.3 0.5 0.7
Threshold ()

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
So

lv
ab

le
 Ta

sk
 R

at
io

 (E
ST

R) SAC-MT
Soft Modular
PCGrad
PaCo
MOORE
SMT
ARS
ARS-LN
ARS-LoRA

Figure 4. Comparison of the Effective Solvable Task Ratio (ESTR)
with respect to the threshold δ in the MT50 benchmark.

5.2. Analysis of the Reward Scaling Approach

In this section, we assess the effectiveness of the proposed
reward scaling method by analyzing changes in the reward
scaling factor crew

i for each task Ti. Figure 5 shows the
learning curve of the reward scale factors {crew

i } on a loga-
rithmic scale for the MT10 benchmark. Initially, the agent
assigns higher scaling factors to three difficult tasks includ-
ing ‘push,’ ‘pick-place,’ and ‘peg-insert-side’ due to their
low initial reward magnitudes. Over time, these factors
gradually become more uniform, as shown in Figure 5. This
indicates that as tasks with high scaling factors are suc-
cessfully learned, their mean rewards increase, leading to a
reduction in the scaling factor.

5.3. Integration of the ARS Framework with Off-Policy
Multi-Task RL Methods

The proposed ARS framework is a universal solution that
can be applied to any off-policy multi-task reinforcement
learning (RL) method. To evaluate its applicability, we
incorporated the dynamic reward scaling and reset mecha-
nisms of ARS into various off-policy multi-task approaches,
including PCGrad, Soft Modular, and MOORE.

Table 3 presents the performance of these algorithms com-
bined with the ARS framework (training curves are provided
in Appendix D.3). The results demonstrate that the ARS
framework consistently improves all evaluated multi-task
RL algorithms on both the MT10 and MT50 benchmarks,
highlighting its broad compatibility and effectiveness. In
particular, the integration of ARS boosts the average success
rate by at least 20% across all off-policy MTRL methods
on MT50. Notably, MOORE (Hendawy et al., 2024) inte-
grated with ARS achieves the highest average success rate
of 84.6% on MT50 benchmark, a performance level never

7

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time_step 1e7

0.0

0.5

1.0

1.5

2.0

Re
wa

rd
 S

ca
le

 Fa
ct

or
 (l

og
) reach

push
pick-place
door-open
drawer-open
drawer-close
button-press-topdown
peg-insert-side
window-open
window-close

Figure 5. Learning curve of the reward scale factor crew
i on a loga-

rithmic scale for each task Ti within the MT10 benchmark. Com-
plex tasks such as ‘pick-place,‘ ‘push,‘ and ‘peg-insert-side‘ have
larger reward scaling factors compared to others.

before reached by other multi-task RL approaches.

5.4. Ablation Studies

First, We conducted ablation studies to evaluate the key com-
ponents of ARS: (1) the adaptive reward scaling scheme and
(2) the reset mechanism. To assess their contributions, we
performed experiments where each component was omitted
individually, denoted using the notation ”w/o.” Specifically,
the ’ARS w/o reward scaling’ corresponds to the naive re-
setting framework proposed by (Nikishin et al., 2022).

Table 4 shows the average success ratio for the task set
configurations in the MT10 benchmark (training curves pro-
vided in Appendix D.2)). Here, Ceasy represents the set of
seven tasks with the highest success ratios, while the remain-
ing tasks constitute the difficult set, Cdifficult. Removing the
reset mechanism or reward scaling results in performance
drops of 27.5% and 27.0%, respectively. The absence of the
reset mechanism significantly reduces the performance of
the easy task set, underscoring its importance for stable train-
ing. On the other hand, reward scaling notably enhances
the performance of the difficult task set, demonstrating its
effectiveness in addressing varying reward distributions and
ensuring balanced learning across tasks. These observa-
tions highlight the significance of both components in the
effectiveness of the ARS framework.

Next, to verify the effectiveness of the proposed reward
scaling method, we conducted experiments using alternative
scaling approaches including mean reward, standard devia-
tion of reward, and normalization. The scaled rewards based
on standard deviation (r̂σi) and normalization (r̂normal

i) for
each task Ti are defined as r̂σi = r

σ(ri)
and r̂normal

i = r−r̄i
σ(ri)

,

Table 4. Ablation study on the components of ARS.

Algorithm

Task set ARS w/o reset ARS w/o reward scaling ARS

Ceasy 85.9±11.0 100±0.0 99.6±1.0
Cdifficult 32.1±15.6 0.8±1.5 91.7±7.3

C 69.8 ±8.1 70.3 ± 0.5 97.3±2.1

Table 5. Ablation study on the reward scaling method.

Reward Scaling Method

Task set Normalization Standard Deviation Mean Reward(Ours)

Ceasy 85.9 ± 26.0 99.1±2.0 99.6±1.0
Cdifficult 75.0 ± 33.3 82.9±22.0 91.7±7.3

C 82.4 ± 27.9 94.3±7.1 97.3±2.1

respectively. Table 5 presents the average success ratio
for each scaling metric. The results show that scaled-up
based on the mean rewards consistently outperforms other
approaches, highlighting the effectiveness of our method.

Finally, we conducted an ablation study to investigate the
effect of network capacity. While the MOORE (Hendawy
et al., 2024) model integrated with ARS achieves the highest
performance on the MT50 benchmark among multi-task
methods, a key contributing factor is its larger network size.
Each network in MOORE contains approximately 2.0M
parameters, whereas our main result in Table 2 uses only
0.5M. To assess the impact of model size, we increased the
hidden unit size in our architecture to 512, 800, and 1024.
The configuration with 800 hidden units has a parameter
count comparable to that of the MOORE model. As shown
in Table 6, the performance of ARS improves consistently
with increased capacity, whereas SAC-MT (w/o ARS) does
not. This highlights ARS as a scalable and effective method
for leveraging larger models through reset and dynamic
reward scaling. Remarkably, ARS-LN with 1024 hidden
units achieves the highest average success rate of 88.9%
across all evaluated MTRL methods. Furthermore, despite
having similar network capacity, ARS-LN with 800 hidden
units outperforms the MOORE model integrated with ARS.
This performance gain demonstrates the effectiveness of
the layer normalization technique, even though its adoption
is significantly simpler compared to the complex model
design of MOORE. Additional ablation studies are provided
in Appendix E.

6. Related Works
Multi-task RL. Multi-task learning has become a key area
in machine learning, focusing on algorithms that perform
well across various tasks. In the context of RL, it aims

8

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

Table 6. Ablation study on the network capacity.

Network Capacity: Hidden Layer Dimensions

Algorithm [400, 400, 400, 400] [512, 512, 512, 512] [800, 800, 800, 800] [1024, 1024, 1024, 1024]

ARS-LN 78.3±3.7 84.2±1.7 88.0±2.9 88.9±2.6
ARS 65.9±2.9 73.6±4.4 75.1±3.8 78.7±2.9

SAC-MT 47.6±2.0 48.8±2.6 47.2±1.7 45.5±2.4

to develop models capable of handling diverse tasks (Wil-
son et al., 2007; Pinto & Gupta, 2017; Zeng et al., 2018;
Hausman et al., 2018).

Various approach for Multi-taks RL Addressing neg-
ative transfer is crucial for the success of multi-task RL,
and various strategies have been developed to tackle this
issue. (i) Distillation methods leverage policy distillation to
merge knowledge from multiple tasks into a unified model
but often require task-specific networks, increasing resource
demands(Rusu et al., 2016a; Parisotto et al., 2016; Teh et al.,
2017). (ii) Modular networks assign distinct modules to
tasks with task-specific routing, enabling strategic param-
eter sharing to reduce interference and negative transfer
(Rusu et al., 2016b; Devin et al., 2017; Andreas et al., 2017;
Haarnoja et al., 2018a; Yang et al., 2020; Sun et al., 2022;
Hendawy et al., 2024). (iii) Gradient-based approaches ana-
lyze task gradients to address conflicts but face challenges
due to gradient noise and variability (Zhang & Yeung, 2013;
Chen et al., 2018; Hu et al., 2019; Yu et al., 2020). (iv)
Explicit policy-sharing methods share behaviors or policies
across tasks to obtain good samples from different tasks,
enabling knowledge transfer without sharing parameters
(Zhang et al., 2023; He et al., 2024). (v) Task scheduling
methods use a scheduling framework to prioritize and train
more effective tasks earlier in the training process of diverse
tasks. (Cho et al., 2024).

In contrast, our method focuses on the reward function. The
varying reward distributions make training challenging, so
we introduce an adaptive reward scaling scheme to enable
stable and efficient training in multi-task RL.

Resetting Deep RL Agent In deep RL, primacy bias, or
overfitting to early experiences, has been addressed through
periodic resets of agent parameters while retaining the re-
play buffer (Nikishin et al., 2022). Extending this concept,
D’Oro et al. (2023) Subsequent advancements include reset
frequency modulation (D’Oro et al., 2023), ensemble-based
resets (Kim et al., 2023), and refined mechanisms achieving
human-level Atari performance (Schwarzer et al., 2023).

Our method extends these ideas to a multi-task RL setting,
where resets not only address primacy bias but also mitigate
biases toward tasks learned earlier in training.

Reward Scaling in Deep RL Early studies showed that re-

ward scaling is one of the key factors for stabilizing training:
Henderson et al. (2018) demonstrated that SAC and DDPG
are sensitive to this choice, while Wu et al. (2018) proposed
Automatic Reward Scaling (ANS), which adjusts a global
factor based on return statistics. In multi-task RL, PopArt
(Hessel et al., 2019) introduced scale-invariant updates by
normalizing critic targets through an adaptive affine trans-
formation, enabling training across 57 Atari games with
different reward scales. However, PopArt only normalizes
the value head and overlooks the broader impact of reward
scaling on deep RL training, which remains critical for solv-
ing difficult tasks.

Our ARS differs in that it equalizes the mean reward across
tasks using a simple, parameter-free rule based on replay
buffer statistics (Eq. 6), automatically assigning higher scal-
ing factors to harder tasks. As demonstrated in Sections
5.1–5.2 and E.3, this lightweight framework consistently
outperforms PopArt-style and other normalization methods
on MT10 and MT50.

7. Conclusion
In this work, we introduced Adaptive Reward Scaling
(ARS), a novel framework designed to tackle the critical
challenges caused by varying reward distributions. By em-
ploying a history-based reward scaling strategy, ARS dy-
namically adjusts reward magnitudes to balance training
focus across diverse tasks. The integration of a reset mecha-
nism further enhances ARS by mitigating biases introduced
by early learned tasks, ensuring improved adaptability and
convergence. Together, these innovations enable ARS to
achieve state-of-the-art performance on challenging bench-
marks such as Meta-World, demonstrating its effectiveness
in handling diverse and complex task sets. Future work
could extend ARS to other multi-task RL algorithms and
more diverse domains, as well as refining its reward scal-
ing and reset strategies for greater efficiency. Investigating
alternative approaches to task representation and value nor-
malization, alongside scaling ARS to multi-agent or hier-
archical RL frameworks, presents exciting directions for
further research. By addressing key limitations in multi-task
RL, ARS contributes significantly to advancing the field,
paving the way for more scalable and robust solutions to
real-world problems.

9

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

Impact Statement
A major challenge in reinforcement learning (RL) is gener-
alization, where a policy trained for one task often struggles
to perform effectively on different tasks. Addressing this
issue is crucial for training policies that can handle multi-
ple related tasks effectively. In this paper, we introduced
a novel reward scaling framework for multi-task RL that
improves overall performance. Our approach contributes to
the advancement of RL in real-world applications requiring
the ability to solve multiple similar tasks.

Acknowledgments
This work was supported in part by Institute of Informa-
tion & Communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government (MSIT)
(No.2022-0-00124, Development of Artificial Intelligence
Technology for Self-Improving Competency-Aware Learn-
ing Capabilities, 50%) and in part by the Institute of Infor-
mation & Communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government (MSIT)
(No.2022-0-00469, Development of Core Technologies for
Task-oriented Reinforcement Learning for Commercializa-
tion of Autonomous Drones, 50%)

References
Andreas, J., Klein, D., and Levine, S. Modular multitask

reinforcement learning with policy sketches. In Proceed-
ings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 Au-
gust 2017, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 166–175. PMLR, 2017.

Ba, L. J., Kiros, J. R., and Hinton, G. E. Layer normalization.
CoRR, abs/1607.06450, 2016.

Ball, P. J., Smith, L. M., Kostrikov, I., and Levine, S. Effi-
cient online reinforcement learning with offline data. In
Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato,
S., and Scarlett, J. (eds.), International Conference on Ma-
chine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 1577–1594. PMLR, 2023.

Caruana, R. Multitask learning. Mach. Learn., 28(1):41–75,
1997.

Cetin, E., Ball, P. J., Roberts, S. J., and Çeliktutan, O. Sta-
bilizing off-policy deep reinforcement learning from pix-
els. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári,
C., Niu, G., and Sabato, S. (eds.), International Confer-
ence on Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA, volume 162 of Proceedings

of Machine Learning Research, pp. 2784–2810. PMLR,
2022.

Chen, Z., Badrinarayanan, V., Lee, C., and Rabinovich,
A. Gradnorm: Gradient normalization for adaptive loss
balancing in deep multitask networks. In Proceedings
of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pp. 793–802. PMLR, 2018.

Cho, M., Park, J., Lee, S., and Sung, Y. Hard tasks first:
Multi-task reinforcement learning through task schedul-
ing. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024.

Devin, C., Gupta, A., Darrell, T., Abbeel, P., and Levine,
S. Learning modular neural network policies for multi-
task and multi-robot transfer. In 2017 IEEE International
Conference on Robotics and Automation, ICRA 2017,
Singapore, Singapore, May 29 - June 3, 2017, pp. 2169–
2176. IEEE, 2017.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P., Belle-
mare, M. G., and Courville, A. C. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier.
In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing
function approximation error in actor-critic methods. In
Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 1582–1591.
PMLR, 2018.

Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P.,
and Levine, S. Composable deep reinforcement learning
for robotic manipulation. In 2018 IEEE International
Conference on Robotics and Automation, ICRA 2018,
Brisbane, Australia, May 21-25, 2018, pp. 6244–6251.
IEEE, 2018a.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In Proceedings
of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pp. 1856–1865. PMLR, 2018b.

Hafner, D., Lillicrap, T. P., Norouzi, M., and Ba, J. Master-
ing atari with discrete world models. In 9th International
Conference on Learning Representations, ICLR 2021,

10

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N.,
and Riedmiller, M. A. Learning an embedding space for
transferable robot skills. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings. OpenReview.net, 2018.

He, J., Li, K., Zang, Y., Fu, H., Fu, Q., Xing, J., and Cheng,
J. Efficient multi-task reinforcement learning with cross-
task policy guidance. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems, 2024.

Hendawy, A., Peters, J., and D’Eramo, C. Multi-task rein-
forcement learning with mixture of orthogonal experts. In
The Twelfth International Conference on Learning Repre-
sentations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that mat-
ters. In McIlraith, S. A. and Weinberger, K. Q. (eds.),
Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Ap-
plications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pp. 3207–3214. AAAI Press, 2018.
doi: 10.1609/AAAI.V32I1.11694.

Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt,
S., and van Hasselt, H. Multi-task deep reinforcement
learning with popart. In The Thirty-Third AAAI Confer-
ence on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - Febru-
ary 1, 2019, pp. 3796–3803. AAAI Press, 2019. doi:
10.1609/AAAI.V33I01.33013796.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Hu, H., Dey, D., Hebert, M., and Bagnell, J. A. Learn-
ing anytime predictions in neural networks via adaptive
loss balancing. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Inno-
vative Applications of Artificial Intelligence Conference,
IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu,

Hawaii, USA, January 27 - February 1, 2019, pp. 3812–
3821. AAAI Press, 2019.

Kapturowski, S., Campos, V., Jiang, R., Rakicevic, N., van
Hasselt, H., Blundell, C., and Badia, A. P. Human-level
atari 200x faster. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023.

Kaufmann, E., Bauersfeld, L., Loquercio, A., Müller,
M., Koltun, V., and Scaramuzza, D. Champion-
level drone racing using deep reinforcement learn-
ing. Nat., 620(7976):982–987, 2023. doi: 10.1038/
S41586-023-06419-4.

Kim, W., Shin, Y., Park, J., and Sung, Y. Sample-efficient
and safe deep reinforcement learning via reset deep en-
semble agents. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10-16, 2023, 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Bengio, Y. and LeCun, Y. (eds.), 3rd
International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, 2015.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M. A., Fid-
jeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D. Human-level control through
deep reinforcement learning. Nat., 518(7540):529–533,
2015.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P., and
Courville, A. C. The primacy bias in deep reinforcement
learning. In International Conference on Machine Learn-
ing, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning
Research, pp. 16828–16847. PMLR, 2022.

Parisotto, E., Ba, L. J., and Salakhutdinov, R. Actor-mimic:
Deep multitask and transfer reinforcement learning. In
4th International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016.

Pinto, L. and Gupta, A. Learning to push by grasping:
Using multiple tasks for effective learning. In 2017 IEEE
International Conference on Robotics and Automation,
ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017,
pp. 2161–2168. IEEE, 2017.

Rusu, A. A., Colmenarejo, S. G., Gülçehre, Ç., Desjardins,
G., Kirkpatrick, J., Pascanu, R., Mnih, V., Kavukcuoglu,

11

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

K., and Hadsell, R. Policy distillation. In 4th Interna-
tional Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016a.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer,
H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R.,
and Hadsell, R. Progressive neural networks. CoRR,
abs/1606.04671, 2016b.

Schwarzer, M., Ceron, J. S. O., Courville, A., Bellemare,
M. G., Agarwal, R., and Castro, P. S. Bigger, better,
faster: Human-level atari with human-level efficiency.
In International Conference on Machine Learning, pp.
30365–30380. PMLR, 2023.

Sun, L., Zhang, H., Xu, W., and Tomizuka, M. Paco:
Parameter-compositional multi-task reinforcement learn-
ing. Advances in Neural Information Processing Systems,
35:21495–21507, 2022.

Sun, X., Panda, R., Feris, R., and Saenko, K. Adashare:
Learning what to share for efficient deep multi-task learn-
ing. In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

Tang, C., Abbatematteo, B., Hu, J., Chandra, R., Martı́n-
Martı́n, R., and Stone, P. Deep reinforcement learning
for robotics: A survey of real-world successes. Annual
Review of Control, Robotics, and Autonomous Systems, 8,
2024.

Teh, Y. W., Bapst, V., Czarnecki, W. M., Quan, J., Kirk-
patrick, J., Hadsell, R., Heess, N., and Pascanu, R. Distral:
Robust multitask reinforcement learning. In Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pp.
4496–4506, 2017.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
IROS 2012, Vilamoura, Algarve, Portugal, October 7-12,
2012, pp. 5026–5033. IEEE, 2012.

Wilson, A., Fern, A., Ray, S., and Tadepalli, P. Multi-task
reinforcement learning: a hierarchical bayesian approach.
In Machine Learning, Proceedings of the Twenty-Fourth
International Conference (ICML 2007), Corvallis, Ore-
gon, USA, June 20-24, 2007, volume 227 of ACM Inter-
national Conference Proceeding Series, pp. 1015–1022.
ACM, 2007.

Wu, Y.-H., Sun, F.-Y., Chang, Y.-Y., and Lin, S.-D. Ans:
adaptive network scaling for deep rectifier reinforcement
learning models. arXiv preprint arXiv:1809.02112, 2018.

Yang, R., Xu, H., Wu, Y., and Wang, X. Multi-task reinforce-
ment learning with soft modularization. In Advances in
Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
3rd Annual Conference on Robot Learning, CoRL 2019,
Osaka, Japan, October 30 - November 1, 2019, Proceed-
ings, volume 100 of Proceedings of Machine Learning
Research, pp. 1094–1100. PMLR, 2019.

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K.,
and Finn, C. Gradient surgery for multi-task learning.
In Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., and
Funkhouser, T. A. Learning synergies between pushing
and grasping with self-supervised deep reinforcement
learning. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2018, Madrid,
Spain, October 1-5, 2018, pp. 4238–4245. IEEE, 2018.

Zhang, G., Jain, A., Hwang, I., Sun, S., and Lim, J. J.
Efficient multi-task reinforcement learning via selective
behavior sharing. CoRR, abs/2302.00671, 2023. doi:
10.48550/ARXIV.2302.00671.

Zhang, Y. and Yeung, D. A regularization approach to
learning task relationships in multitask learning. ACM
Trans. Knowl. Discov. Data, 8(3):12:1–12:31, 2013.

12

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

A. MT10 and MT50 Environments
To evaluate multi-task reinforcement learning methods, we adopt the robotic manipulation tasks provided by the Meta-World
benchmark suite (Yu et al., 2019). Meta-World contains 50 distinct tasks and defines two standard benchmarks for multi-task
RL: MT10 and MT50, comprising 10 and 50 tasks, respectively. The MT10 benchmark consists of the following 10
tasks with their corresponding task ID numbers: (1) reach, (2) push, (3) pick-place, (4) door-open, (5) drawer-open, (6)
drawer-close, (7) button-press-topdown, (8) peg-insert-side, (9) window-open, and (10) window-close.

Performance is measured using the success rate per task. An episode is considered successful if the agent completes the task
at least once during the episode, following common evaluation protocols in prior work (Yu et al., 2020; Haarnoja et al.,
2018b; Sun et al., 2022; Hendawy et al., 2024; Cho et al., 2024). In addition, we adopt modified versions of MT10 and
MT50 as our default evaluation setting, where each task is trained with randomly sampled goal positions and evaluated
across 10 randomized goal configurations, consistent with prior studies (Yang et al., 2020; Sun et al., 2022; Hendawy et al.,
2024).

B. Low-Rank Adaptation for Multi-Task RL
Low-Rank Adaptation (LoRA) (Hu et al., 2022) injects a learnable, low-rank update into a frozen weight matrix so that
only a small number of additional parameters are trained while the original backbone remains intact. In our experiments we
attach LoRA adapters to the actor and critic multilayer perceptrons (MLPs) used in ARS-LN.

Parameterisation. For any linear layer with weights W0 ∈ Rdout×din we introduce two trainable matrices A ∈ Rdout×r and
B ∈ Rr×din of rank r ≪ min(dout, din). The effective weight becomes

W =W0 + α
AB

r
, (9)

where α is a scaling constant set to the LoRA rank (8 for MT10, 16 for MT50). Gradients flow only through A and B; W0

is frozen throughout.

Adapter placement. We wrap the input projection and all hidden linear layers of both the actor and critic with LoRA. The
final output heads are left untouched to preserve output variance accumulated during pre-LoRA training.

Activation schedule. To avoid destabilizing early training, LoRA adapters are disabled (i.e. A = B = 0) for the first
0.75× T training steps on MT10 and 0.833× T steps on MT50, where T is the total number of gradient updates reported
in Table 8. From that point onwards the adapters are enabled and trained jointly with the actor and critic optimizer.

Parameter overhead. The additional learnable parameters introduced by LoRA are r(dout + din) per adapted layer. With
r = 8 (MT10) and r = 16 (MT50) this overhead amounts to less than 3% of the original network size, providing efficient
task-specific specialization without significant memory or compute cost.

C. Hyperparameters
In this section, we provide the hyperparameters for ARS used in the MT10 and MT50 experiments in Table 7, along with
some general hyperparameters used across ARS and the baselines in Table 8. Specifically, for the Soft Modular method, we
adopt the deep structure proposed in (Yang et al., 2020), consisting of 4 layers with 4 modules and a hidden unit size of 128.

Table 7. ARS specific hyperparameters.

Hyperparameters MT10 MT50

number of Reset 4 6

13

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

Table 8. General Multi-task RL hyperparameters.

Hyperparameters MT10 MT50

training steps 2× 107 1× 108

number of reset (nreset) 4 6

replay buffer size per task 1× 106 5× 105

episode length 500

optimizer Adam (Kingma & Ba, 2015)

batch size per task 100

learning rate (all networks) 3e-4

activation for critic Tanh

activation for actor ReLU

discount factor (γ) 0.99

MLP hidden layer size [400, 400, 400, 400]

target network update period 1

tau(τ) 5e-3

D. Additional Results
D.1. Learning Curves of Q-Values with the SAC-MT Algorithm

In addition to Figure 3 in Section 3.2, we plot additional learning curves of Q-values for all tasks in the MT10 benchmark.
As shown in Figure 6, the training of the Q-network struggles with the more challenging tasks—‘push,’ ‘pick-place,’ and
‘peg-insert-side.’ where their Q-values remain negative.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0

200

400

600

800

1000

Q
 v

al
ue

s

(a) reach

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

40

30

20

10

0

10

20

30

40

Q
 v

al
ue

s

(b) push

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

40

30

20

10

0

10

20

30

40

Q
 v

al
ue

s

(c) pick-place

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0

200

400

600

800

1000

Q
 v

al
ue

s

(d) door-open

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0

200

400

600

800
Q

 v
al

ue
s

(e) drawer-open

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0

200

400

600

800

1000

Q
 v

al
ue

s

(f) drawer-close

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0

100

200

300

400

500

600

700

800

Q
 v

al
ue

s

(g) button-press-topdown

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

30

20

10

0

10

20

30

40

Q
 v

al
ue

s

(h) peg-insert-side

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0

200

400

600

800

1000

Q
 v

al
ue

s

(i) window-open

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0

200

400

600

800

Q
 v

al
ue

s

(j) window-close

Figure 6. Learning curves of Q-values with SAC-MT for all tasks in MT10 benchmark

14

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

D.2. Learning Curves of Average Success Ratios on MT10 Based on Key ARS Components

Figures 7 and 8 show the average success rates of ARS and its two variants (without reward scaling and without reset)
in MT10 experiments. ’ARS w/o reset’ exhibits greater variation and instability due to biases from amplified rewards,
whereas ’ARS w/o reward scaling’ is more stable but underperforms on challenging tasks, such as ’push,’ ’pick-place,’ and
’peg-insert-side,’ due to low reward magnitudes, as shown in Figure 7. The full ARS outperforms both variants, achieving
improved stability and success rates, with at least 0.93 average success across all random seeds.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
ti

o

SAC-MT
ARS w/o reward scaling
ARS w/o reset
ARS

(a) reach

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
ti

o
SAC-MT
ARS w/o reward scaling
ARS w/o reset
ARS

(b) push

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
ti

o

SAC-MT
ARS w/o reward scaling
ARS w/o reset
ARS

(c) pick-place

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
ti

o

SAC-MT
ARS w/o reward scaling
ARS w/o reset
ARS

(d) door-open

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
ti

o

SAC-MT
ARS w/o reward scaling
ARS w/o reset
ARS

(e) drawer-open

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
ti

o

SAC-MT
ARS w/o reward scaling
ARS w/o reset
ARS

(f) drawer-close

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
ti

o

SAC-MT
ARS w/o reward scaling
ARS w/o reset
ARS

(g) button-press-topdown

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
Ra

ti
o

SAC-MT
ARS w/o reward scaling
ARS w/o reset
ARS

(h) peg-insert-side

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
ti

o

SAC-MT
ARS w/o reward scaling
ARS w/o reset
ARS

(i) window-open

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
ti

o

SAC-MT
ARS w/o reward scaling
ARS w/o reset
ARS

(j) window-close

Figure 7. Learning curves of the success ratio averaged over all tasks in the MT10 benchmark, based on the key ARS components: (1) the
adaptive reward scaling scheme and (2) the reset mechanism.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
ti

o

SAC-MT
ARS w/o reward scaling
ARS w/o reset
ARS

Figure 8. Learning curves of average success ratios across tasks in the MT10 benchmark, based on the key ARS components: (1) the
adaptive reward scaling scheme and (2) the reset mechanism.

15

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

D.3. Learning Curves of Average Success Ratios on MT50

Figure 9 shows that all off-policy multi-task RL methods incorporating our ARS framework surpass the previous state-of-the-
art (SOTA) performance (Cho et al., 2024) on the MT50 benchmark, indicated by the dotted line. Even the simplest method,
SAC-MT, achieves exceptional results, emphasizing the remarkable effectiveness of the proposed framework. Furthermore,
our approach achieves at least the previous SOTA performance using only half the samples, i.e., 50 million.

Figure 10 show that the performance of ARS improves with capacity, whereas SAC-MT (w/o ARS) does not. This confirms
ARS as an effective approach for scaling model size and improving performance via reset and dynamic reward scaling.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
ti

o

SAC-MT + ARS-LN
SAC-MT + ARS
SAC-MT-MH + ARS
PCGrad + ARS
SoftModular + ARS
MOORE + ARS
Previous SOTA

Figure 9. Learning curves of average success ratios across tasks
in the MT50 benchmark using off-policy multi-task RL methods
incorporating the ARS framework. The dashed line indicates the
previous state-of-the-art performance (Cho et al., 2024).

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
ti

o

SAC-MT (400 X4)
SAC-MT (512 X4)
SAC-MT (800 X4)
SAC-MT (1024 X4)
ARS-LN (400 X4)
ARS-LN (512 X4)
ARS-LN (800 X4)
ARS-LN (1024 X4)
Previous SOTA

Figure 10. Learning curves of average success ratios across tasks in
the MT50 benchmark based on the network capacity.

16

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

E. Additional Ablation Studies
E.1. Ablation Study on the Hyperparameter nreset

Incorporating our ARS framework into other off-policy multi-task RL algorithms introduces a unique hyperparameter:
the number of resets (nreset). To evaluate its impact, we conducted ablation studies on nreset. Figure 11 shows the average
success ratios for different nreset values. The results show that performance remains robust across various values, though
lower nreset generally achieves better performance. This trend is likely due to the reduced frequency of model updates with
higher nreset, resulting in insufficient updates.

0 1 2 3 4 5 6 7 8 9 All
Task ID

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
io

ARS with nreset = 4
ARS with nreset = 6
ARS with nreset = 9

Figure 11. Comparison of the final success rate per task in the MT10 benchmark based on the number of resets (nreset).

E.2. Ablation Study on the Presence of Reset Mechanisms in Actor and Critic Networks

In this subsection, we conduct an ablation study to analyze the impact of reset mechanisms in the actor and critic networks.
Table 9 shows the average success ratio based on the reset strategy, showing the advantage of resetting both the actor and
critic networks.

Table 9. Ablation study on the Reset Mechansim

Reset Strategy

Benchmark No reset Reset Critic Only Reset Actor & Critic

MT10 69.4±0.8 96.3±2.3 97.3±2.1

17

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

E.3. Comparison with PopArt

Prior work, PopArt (Hessel et al., 2019), identifies the issue of varying reward scales and addresses it by introducing
scale-invariant updates, which normalize critic targets using an adaptive affine layer. To evaluate the effectiveness of our
proposed adaptive reward scaling (ARS) method against PopArt’s scale-invariant updates, we integrate the latter into the
SAC-MT algorithm and compare it with the ARS framework. We vary the update frequency of the scale-invariant updates
over 1, 10, 100, 500. As shown in Table 10, our ARS consistently outperforms PopArt on the MT10 benchmark across all
frequencies, demonstrating the effectiveness of the ARS framework.

Table 10. Results of average ratio (%) on Meta-World MT10 for PopArt Variants

Update Frequency for PopArt

1 10 100 500 ARS

MT10 67.1 ± 12.8 73.3 ± 7.6 75.0 ± 6.3 71.5 ± 7.8 97.3 ± 2.1

E.4. Ablation Study on the Horizon Length

In the default setup of the MetaWorld-v2 (Yu et al., 2019) environments, the horizon length is set to 500, which was used
consistently across all our experiments. However, we noticed that the experiments reported in the PaCo and MOORE papers
(Sun et al., 2022; Hendawy et al., 2024) were conducted using a horizon length of 150, making a direct comparison between
the reported results and our ARS method inappropriate. To address this, we reported the results of PaCo and MOORE with
the horizon length set to 500 in the main results (Table 1 & 2 in Section 5.1).

In addition to the results with a horizon length of 500, we compare the proposed method, ARS-LN, with two baselines
(PaCo and MOORE) on both the MT10 and MT50 benchmarks using a shorter horizon length of 150. As shown in Table 11,
ARS-LN significantly outperforms both baselines, achieving the highest average success rates of 98.4% on MT10 and 91.0%
on MT50, respectively. Notably, the scaling law observed with increased network capacity (as described in Section 5.4) still
holds in the horizon-150 setting. Moreover, ARS-LN even achieves slightly higher performance with a horizon length of
150 compared to the 500-horizon setting.

Table 11. Comparisons of average ratio (%) of the Meta-World MT10 and MT50 benchmark with Horizon Legnth 150

ARS-LN (Hidden Layer Dimensions)

[400, 400, 400, 400] [800, 800, 800, 800] [1024, 1024, 1024, 1024] PaCo MOORE

MT10 98.4 ± 1.5 - - 85.4±4.5 88.7 ± 5.6
MT50 83.3±4.3 89.8±1.6 91.0±2.4 57.3±1.3 72.9±3.3

18

ARS: Adaptive Reward Scaling for Multi-Task Reinforcement Learning

F. Overview of the ARS framework
This section provides an overview of the proposed ARS framework. The orange box highlights its key components, including
history-based reward scaling, supported by the reset mechanism (green box). It also illustrates that ARS can be seamlessly
integrated into any off-policy multi-task RL algorithm with minimal effort.

False

If 𝑻 % 𝑰𝒓𝒆𝒔𝒆𝒕

== 𝟎

True

Calculate Reward
Scaling Factor

Update 𝒄𝒊
𝒓𝒆𝒘 𝒊=𝟏

𝑵

Reset Networks
Initialize parameters

of networks

Apply reward
scaling factor

{ො𝒓𝒊← 𝒄𝒊
𝒓𝒆𝒘 × 𝒓𝒊}𝒊=𝟏

𝑵

Multi-Task
Off Policy
Algorithm

SAC-MT,
SAC-MT-MH,

Soft Modular, etc.

Multi-Task
Agent

𝝅𝜽, 𝑸𝝍

Task 𝓣𝟏 Task 𝓣𝑵

Store
𝒔𝒕

𝒊 , 𝒂𝒕
𝒊 , 𝒓𝒕

𝒊 , 𝒔𝒕+𝟏
𝒊

𝒊=𝟏

𝑵

Replay
Buffer 𝓓𝟏

Replay
Buffer 𝓓𝟐

Replay
Buffer 𝓓𝟐

Replay
Buffer 𝓓𝑵

Update the
parameters

ARS Framework

Sampling

Figure 12. Overview of the ARS framework. The orange box illustrates the history-based reward scaling, supported by a reset mechanism.

19

