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Abstract

Test-Time Adaptation (TTA) requires adapting a source-domain model to the target do-
main using online test data inputs. Existing methods that focus on adjusting normaliza-
tion layers to swiftly adapt to a new domain often neglect the problem of domain knowl-
edge forgetting, which hinders the model’s generalization capability. To address this, we
propose a novel Anti-forgetting Test-time Adaptation Network (ATAN) which consists of
three Siamese networks—Forerunner, Bridge and Momentum. The bridge network trans-
fers domain-specific knowledge from the forerunner network to the momentum network
which effectively overcomes forgetting by integrating cross-domain knowledge. To further
enhance the adaptability of the forerunner network, we propose reconstructing its loss
function based on the voting information from the Siamese networks. To strengthen the
learning of domain-invariant features, we introduce a weak augmentation consistency loss
for the bridge network. Extensive experiments on corruption and natural shift datasets
demonstrate the effectiveness and generalization of ATAN in long-term test-time domain
adaptation scenarios.

Keywords: Domain Adaptation; Test-time adaptation; Anti-forgetting

1. Introduction

Deep neural networks perform exceptionally well in computer vision tasks when training
and test data share the same distribution (He et al., 2016; Dosovitskiy et al., 2020; Liu
et al., 2024b). However, post-deployment factors such as weather, lighting, and sensor con-
ditions can induce dynamic changes in the target distribution. Under such circumstances, a
model trained on the source domain may suffer significant performance drops in the target
domain (Taori et al., 2020). Domain adaptation (Tzeng et al., 2014) aims to reduce the dis-
tribution gap between the source and target domains in the feature space during the training
phase, thereby obtaining a highly generalized static model to address this issue. It typically
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Figure 1: Once the adapted model is frozen, normalization layer-based (NL-based) methods
often exhibit noticeable performance degradation in previously encountered do-
mains, indicating the occurrence of domain knowledge forgetting. The proposed
method, ATAN, leveraging the momentum network that integrates multi-domain
knowledge, significantly overcomes forgetting.

requires a large amount of source domain data during training. However, source domain
data is sometimes inaccessible due to commercial or privacy concerns (Wang et al., 2020).
Furthermore, static models inherently face bottlenecks in generalization ability (Hendrycks
and Dietterich, 2019a). In scenarios requiring real-time predictions for dynamically chang-
ing target domain data, traditional domain adaptation approaches are often inadequate.
To address this, test-time adaptation has been proposed, which adjusts the parameters of
a pretrained model or corrects its outputs (Marsden et al., 2024) using target domain data
received during the testing phase to adapt to the new domain.

Existing mainstream methods for test-time adaptation (TTA) can be divided into two
categories. a) Normalization layer-based (NL-based) methods (Wang et al., 2020; Niu et al.,
2022, 2023) adjust the parameters of the normalization layers through entropy reduction to
achieve domain-specific adaptation. However, in the process of adapting to a new domain,
these methods forget knowledge from the previous domains. Specifically, they can perform
well in the current domain, but once the model is frozen, their performance on previously
seen domains may significantly decline (Fig. 1). b) The other category is self-distillation-
based methods (Wang et al., 2022; Yuan et al., 2023; Döbler et al., 2023) which leverage
a mean teacher to provide robust pseudo-labels for the student model. After prolonged
adaptation, these approaches can achieve good generalization performance. However, due
to the large momentum parameter in the exponential moving average process, these methods
tend to perform poorly in the early stages of adaptation. In other words, such methods
exhibit a certain degree of performance lag during the early stages of domain adaptation,
which diminishes their overall usability.

To enable dexterous adaptation while overcoming domain knowledge forgetting, we
propose a method called ATAN (Anti-forgetting Test-time Adaptation Network). ATAN
consists of three Siamese networks. Forerunner Network: Deployed with NL-based
(Normalization-layer) methods, it updates the normalization layer parameters through an
entropy reduction objective, thereby deftly learning domain-specific knowledge of the new
target domain. Bridge Network: Using the outputs of the forerunner network as super-
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vision to update all parameters, it transfers the domain knowledge from the normalization
layers of the forerunner network to all the trainable parameters. Momentum Network:
Constructed as the exponential moving average of the bridge network, it effectively in-
tegrates multi-domain knowledge during the adaptation process. Within this framework,
ATAN leverages the forerunner network for domain-specific adaptation and utilizes the
momentum network to mitigate forgetting.

Furthermore, we propose a vote-based loss adjustment mechanism to improve the adapt-
ability of the forerunner network. Specifically, we assess the reliability of samples based on
the voting consistency of the Siamese networks and reconstruct the loss function of the fore-
runner network, thereby reducing the error accumulation. Finally, to enhance the learning
of domain-invariant features, we construct a weak augmentation consistency loss for the
bridge network, ensuring that its predictions on weakly augmented samples align with the
predictions of the forerunner network and the momentum network on the original samples.

Our primary contributions can be summarized as follows:

• A novel Anti-forgetting Test-time Adaptation Network (ATAN) is proposed to over-
come domain knowledge forgetting by transferring the domain-specific knowledge from
a forerunner network to a bridge network and ultimately integrating it into a momen-
tum network. Extensive experiments on corruption and natural shift datasets validate
the effectiveness of our ATAN.

• A vote-based loss adjustment mechanism is proposed, which ingeniously utilizes the
consistency of Siamese networks to filter out reliable samples and noise samples,
thereby reducing the error accumulation and enabling more effective model updates.

• A weak augmentation consistency loss is constructed between the bridge network,
forerunner network, and momentum network, which enhances the model’s ability to
learn domain-invariant features.

2. Related Work

Unsupervised Domain Adaptation (UDA) utilizes labeled source domain data and
unlabeled target domain data to achieve better generalization performance of the model over
the target domain. A common category of UDA methods focuses on aligning the source
and target domain distributions in the feature space. This includes introducing domain
discriminators for adversarial learning (Long et al., 2018), constructing loss functions based
on domain discrepancies (Long et al., 2015). In addition, some methods assist training
at the input level by generating labeled target domain samples (Zhu et al., 2017), while
others improve predictions through regularization at the output level (Chen et al., 2019).
Although these methods have significantly advanced domain adaptation research, they all
require simultaneous access to both source and target domain data during the adaptation
process. Moreover, good generalization performance can only be achieved after prolonged,
multi-epoch training.

Test-Time Adaptation (TTA) typically operates under the premise of inaccessible
source data. The primary research motivation of TTA is to adjust the model or its outputs
during test time to adapt to the target domain distribution. Numerous studies (Wang et al.,
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2020; Niu et al., 2022) focus on Fully Test-Time Adaptation (FTTA), which assumes that
adaptation is required for a single, static target domain distribution at a time. Tent (Wang
et al., 2020) first proposed updating the Batch Normalization (BN) layers through entropy
minimization to achieve test-time adaptation. EATA (Niu et al., 2022) reduces error accu-
mulation and catastrophic forgetting in Tent (Wang et al., 2020) through sample filtering
and Fisher regularization. T3A achieves gradient-free TTA through a dynamically up-
dated prototype classifier. Some studies (Zhang et al., 2022; Niu et al., 2023; Gong et al.,
2022) consider more complex test data stream scenarios. MEMO (Zhang et al., 2022) fo-
cuses on single-sample inputs, applying multiple weak augmentations to each sample. The
model is optimized by minimizing the average prediction entropy across these augmented
samples. SAR (Niu et al., 2023) addresses inputs that are domain-mixed, mini-batched,
and label-imbalanced, optimizes the model using more stable Group Normalization and
Layer Normalization, along with a sharpness-aware entropy minimization loss. Methods
designed for FTTA sometimes fail to adapt to dynamically changing target domain dis-
tributions (Wang et al., 2022). Consequently, recent research has increasingly focused on
Continual Test-Time Adaptation (CTTA), or considers it as one of the essential scenarios
to be addressed (Wang et al., 2022; Döbler et al., 2023; Gan et al., 2023).

Continual Test-Time Adaptation (CTTA) focuses on adapting the source model to
continuously shifting target domain distribution. CoTTA (Wang et al., 2022) first defined
the CTTA setting and introduced mean teacher self-distillation (Tarvainen and Valpola,
2017) to address this task; additionally, it mitigates catastrophic forgetting through pa-
rameter probabilistic reset and enhances robust pseudo-label generation through averaging.
Some methods also adopt self-distillation as the framework but consider more flexible and
complex scenarios (Döbler et al., 2023; Yuan et al., 2023). RMT (Döbler et al., 2023)
flexibly considers scenarios where the source domain is available in reality, utilizing source
prototypes to compute losses and addressing catastrophic forgetting through source replay.
To address potential imbalanced data stream issues in the CTTA task, RoTTA (Yuan et al.,
2023) employs a dynamic repository to compute global robust statistics. In dynamic scenar-
ios, the mean teacher in self-distillation may generate noisy pseudo-labels, resulting in error
accumulation in the model. To address this issue, ADMA (Liu et al., 2024a) uses a masked
autoencoder to mask and reconstruct regions with high distribution shift in images, en-
abling better learning of domain-invariant features; VDP (Gan et al., 2023) fundamentally
avoids error accumulation problem by reformulating the input data instead of adjusting the
parameters of source model. Due to the lack of research on Universal TTA, ROID (Marsden
et al., 2024) achieves a superior method across various datasets and base models through the
design of a detailed loss weighting strategy, weight ensembling with source parameters, and
prior correction. These studies have significantly advanced the progress of CTTA. However,
there is still a lack of explicit discussion and solutions regarding the problem of domain
knowledge forgetting.

3. Method

3.1. Domain Knowledge Forgetting in CTTA

CTTA definition. At the outset, there is only one pre-trained model fθ0 from the source
domain DS = (XS, Y S), where θ0 represents the pre-trained parameters. Our objective is



Anti-Forgetting in CTTA via Simese Networks

to adapt fθ0 to continuously changing target domains DT = {DT
1 , D

T
2 , · · · , DT

n }. At time
step t, a batch of test data xt is input. We need to utilize xt to adjust the model parameters
from θt to θt+1 with the goal of improving the model’s predictive performance on xt+1. It
should be noted that the source data is inaccessible, and the test data is accessed online.

In this work, we also aim for the adapted model fθn to effectively retain knowledge
from previously encountered domains. Specifically, when the model is frozen, ensure that
no performance degradation or knowledge forgetting occurs on DT

1 → DT
n−1.

Domain knowledge forgetting. NL-based methods have made significant progress
in recent years (Wang et al., 2020; Niu et al., 2022; Marsden et al., 2024) but face a critical
limitation: while they can deftly adapt to new domain distributions, they may fail to re-
tain knowledge from previously encountered domains, a phenomenon we define as domain
knowledge forgetting. As a result, even after extended adaptation, the model’s true gener-
alization capability cannot be fundamentally improved. To quantify the degree of domain
knowledge forgetting, we propose a metric called the mean forgetting ratio(MFR). Spe-
cially, we conduct two rounds of testing on CTTA datasets. During the first round, the
model performed normal test-time domain adaptation. Afterward, the adapted model is
frozen and subjected to a second round of testing. MFR measures the discrepancy in error
rates of a model across two rounds of testing (before and after freezing).

MFR =
1
U

∑U
i=1 err

1st
i − 1

U

∑U
i=1 err

2nd
i

1
U

∑U
j=1 err

1st
j

=

∑U
i=1

(
err1sti − err2ndi

)∑U
j=1 err

1st
j

(1)

where U denotes the number of domains, err1sti and err2ndi represent the error rates in the
first and second round of testing for the i-th domain, respectively. If the MFR is negative, it
indicates that the error rate in the second test is higher than that in the first, signifying the
occurrence of domain knowledge forgetting. Conversely, a positive MFR suggests that the
model not only avoids forgetting but also leverages knowledge from subsequent domains
to improve predictions in previous domains. MFR is similar to the backward transfer
metric Lopez-Paz and Ranzato (2017) in continual learning, but the former focuses on the
impact of adapting to new domains on performance in old domains (where the task remains
the same), while the latter emphasizes the impact of learning new tasks on performance in
old tasks.

The occurrence of domain knowledge forgetting in NL-based methods may be attributed
to the following reasons: a) The parameters of the normalization layers are too limited to
accommodate knowledge from multiple domains simultaneously. For example, in ResNet50,
the parameters of all normalization layers account for only 0.21% of the total. b) When
directly updating the model through backpropagation, sharp gradients can lead to exces-
sively large adjustments in parameters (Niu et al., 2023), making it challenging to maintain
temporal consistency. The following sections will detail how our proposed method, ATAN,
builds upon NL-based approaches to overcome the issue of domain knowledge forgetting.

3.2. The Structure of the Proposed ATAN

ATAN consists of three Siamese networks, the forerunner network, the bridge network, and
the momentum network, all initialized from the same pretrained model.
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Figure 2: An overview of the proposed ATAN framework. The bridge network aligns with
both the forerunner and the momentum network on regular samples and weakly
augmented samples. The voting results of the three networks are utilized to
calculate the final prediction and guide the loss calculation for the forerunner
network.

The forerunner network is deployed with a NL-based method, which serves to deftly
adapt to the new distribution by updating the parameters of the normalization layers.
The role of normalization layers in domain adaptation and the domain-specific adaptation
capability of NL-based methods have been validated in many previous works (Li et al., 2018;
Wang et al., 2020; Marsden et al., 2024).

The bridge network updates all its parameters under the supervision of the outputs
from the forerunner and the momentum networks. Its functions include: a) Radiating the
new domain knowledge learned by the forerunner network from the normalization layers to
all trainable layers through consistency loss, thereby increasing the capacity for knowledge
storage. b) Acting as a bridge between the forerunner network and the momentum network,
transferring new domain knowledge from the former to the latter. The bridge network
computes the loss using the outputs of both the forerunner network and the momentum
network as supervision.

Lcst = Lsce(p, q) + Lsce(p, k) (2)

where p, q, k represent the Softmax outputs of the bridge network, forerunner network, and
momentum network, respectively.

Lsce(p, q) = −
C∑
c=1

(pc log(qc) + qc log(pc)) (3)

where C represents the number of classes. Lsce(p, k) is defined similarly. The reason for
introducing the momentum network as supervision is to maintain the stability of the bridge
network’s features, as the momentum network approximatively represents a temporal aver-
age of the bridge network.
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The momentum network is constructed as an exponential moving average (EMA) of
the bridge network.

θ′t+1 = αθ′t + (1− α)θt+1 (4)

where θ′, θ represent the parameters of the momentum network and the bridge network,
respectively. α is the momentum coefficient, and t indicates the time step. The primary
function of the momentum network is to continuously integrate domain knowledge orig-
inating from the forerunner network during adaptation, preventing knowledge waste and
overcoming domain knowledge forgetting.

In ATAN, the three networks are updated in different ways, potentially learning distinct
feature views (Allen-Zhu and Li, 2020). By averagining the outputs of them, we can
leverage multi-view information to enhance the robustness of the prediction.

ŷ = argmax
c

(p+ q + k) (5)

An overview of the ATAN framework is shown in Fig. 2.

3.3. Model Updates Guided by Voting Consistency

Inspired by the idea of collaborative training of multiple classifiers in Tri-Training (Zhou
and Li, 2005), we propose to assess the reliability of sample prediction based on the voting
consistency of Siamese networks in ATAN. Samples with fully consistent or fully inconsistent
voting results from the three networks can be regarded as high-confidence samples and noise
samples, respectively. When calculating the loss function for the forerunner network, the
loss terms corresponding to noise samples are first removed to reduce error accumulation
caused by incorrect predictions (for NL-based methods with a built-in sample selection step,
we skip this procedure to avoid disrupting their original selection logic). Next, an additional
entropy loss is computed for high-confidence samples and incorporated into the final loss
function, guiding the forerunner network to update in a more reliable direction.

LF =
1

N − |S|

N∑
i=1,i/∈S

lFi +
1

N

∑
j∈R

hFj (6)

S =

i|1 ≤ i ≤ N,

argmax
c

(p(i)) ̸= argmax
c

(q(i)),

argmax
c

(p(i)) ̸= argmax
c

(k(i)),

argmax
c

(q(i)) ̸= argmax
c

(k(i))

 (7)

R =

j|1 ≤ j ≤ N,

argmax
c

(p(j)) = argmax
c

(q(j))

= argmax
c

(k(j))

 (8)

where S and R represent the sets of sample indices with completely inconsistent and com-
pletely consistent voting results, respectively. lFi denotes the loss for the i-th sample in the
forerunner network, and hFj =

∑
c qc log (qc) represents the softmax prediction entropy loss

for the j-th sample in the forerunner network.
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3.4. Weak Augmentation Consistency Loss

To enhance the ATAN framework’s learning of domain-invariant features, we construct a
weak augmentation consistency loss (Xie et al., 2020), which encourages the bridge network’s
outputs on distorted samples to align with the outputs of the forerunner network and
momentum network on the original samples. Specifically, for each sample, we applied
three forms of random weak augmentation, including color jittering, horizontal flipping, and
affine transformations, to generate a distorted sample. The bridge network then generates a
prediction p′ for this distorted sample. Finally, a symmetric cross-entropy loss is constructed
between p′, q and k.

Lwac = Lsce(p′, q) + Lsce(p′, k) (9)

where Lsce is defined in the same way as in (3). Thus, the final objective function of the
bridge network is formulated as shown in (10).

LB =
1

4
(Lcst + Lwac) (10)

where Lcst (Eq. (2)) means ”consistency loss”, Lwac (Eq. (9)) means ”weak augmentation
consistency loss”.

4. Experiments

Datasets. To evaluate the effectiveness and generalizability of the proposed method, we
conducted experiments on multiple datasets spanning two different types: a) Corruption
datasets, including CIFAR-10-C, CIFAR-100-C, and ImageNet-C (Hendrycks and Diet-
terich, 2019b). These datasets are derived by applying fifteen types of corruptions to the
corresponding clean test datasets of CIFAR and ImageNet, with each corruption type having
5 levels of severity. b) Natural shift datasets, including ImageNet-Sketch (1,000 categories,
each containing 50 sketches) (Wang et al., 2019), and DomainNet-126 (4 domains, 126
categories) (Saito et al., 2019), where the domain distribution shifts are not caused by
introduced corruptions.

Baselines. We employed four different NL-based methods as the forerunner network
in ATAN—Tent (Wang et al., 2020), SAR (Niu et al., 2023), ETA (Niu et al., 2022), and
ROID (Marsden et al., 2024)—–to validate the effectiveness of ATAN. As a comparison,
we also present the results of CoTTA (Wang et al., 2022), RoTTA (Yuan et al., 2023),
RMT (Döbler et al., 2023), LAW (Park et al., 2024), OBAO (Zhu et al., 2024) and the
normalization-based method BN Stats.

Implementation details. In CTTA tasks, the model is required to provide imme-
diate predictions for online input data, without prior knowledge of domain changes, and
source data is inaccessible. For datasets with shifts caused by corruptions, adaptation to
15 corruption domains is required in sequence, with the severity level of corruption set to
5 (highest) for all. For ImageNet-Sketch, only one single target domain, ”Sketch”, requires
adaptation. For DomainNet126, after training the source model on one domain, adapta-
tions are performed sequentially on the remaining three domains(the adaptation order is
consistent with (Döbler et al., 2023)), thus requiring four pre-trained models from different
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Table 1: Classification error rate (%) across different datasets in CTTA setup. In paren-
theses are the gains from our proposed method. * Indicates that the results are
quoted from the original paper.

Method CIFAR10-C CIFAR100-C ImageNet-C ImageNet-S DomainNet126

Source 43.5 46.4 82.0 75.9 45.3
BN Stats 20.4 35.4 68.6 73.6 41.9

CoTTA (Wang et al., 2022) 16.5 32.8 62.7 69.5 39.8
RoTTA (Yuan et al., 2023) 19.3 34.8 67.5 70.8 40.8
RMT (Döbler et al., 2023) 17.0 30.2 59.9 68.4 36.8
LAW∗ (Park et al., 2024) 15.7 30.9 60.1 - -
OBAO∗ (Zhu et al., 2024) 15.8 29.0 59.0 - -

Tent-A (Wang et al., 2020) 17.9 33.9 61.9 70.2 40.4
+Ours 15.5(2.4) 29.3(4.6) 56.9(5.0) 67.2(3.0) 37.4(3.0)

SAR (Niu et al., 2023) 18.8 31.9 62.2 68.5 40.5
+Ours 15.5(3.3) 28.9(3.0) 57.6(4.6) 67.1(1.4) 37.4(3.1)

ETA (Niu et al., 2022) 17.6 32.3 60.5 64.4 38.8
+Ours 16.1(1.5) 29.3(3.0) 56.1(4.4) 64.1(0.3) 36.4(2.4)

ROID (Marsden et al., 2024) 16.2 29.4 54.5 64.2 37.3
+Ours 14.9(1.3) 27.5(1.9) 52.3(2.2) 63.4(0.8) 35.5(1.8)

source domains. Gradual Test-Time Adaptation (GTTA) is a special case of CTTA (Wang
et al., 2022). In GTTA setup, under each corruption domain, the severity level gradually
changes from 1 to 5 and back to 1. Thus it can only be considered on corruption datasets.

When deploying ATAN, Tent used the same weight ensembling method as in ROID (Mars-
den et al., 2024) to enable continuous adaptation, and it was named Tent-A. The prior
correction in ROID was removed, which does not affect its performance in our experimental
setup. When measuring the MRF of ATAN, we used the momentum network for the second
round of testing.

All pretrained model types and hyperparameters follow the settings in (Wang et al.,
2022) and (Döbler et al., 2023). Specially, for CIFAR10-C, CIFAR100-C and ImageNet-
C/Sketch, we apply WideResNet28 (Zagoruyko and Komodakis, 2016), ResNeXt29 (Xie
et al., 2017), and ResNet50 respectively, which are from RobustBench (Croce et al., 2020)
and pre-trained on corresponding clean datasets. For DomainNet126, the pre-trained
ResNet50s from (Chen et al., 2022) are applied. The batch size is set to 200 for CIFAR10-
C and CIFAR100-C, 64 for ImageNet-C/Sketch, and 128 for DomainNet126. The learning
rate settings for each method follow the configurations used in (Döbler et al., 2023). Error
rate is used as the metric. All results are averaged over 3 runs.

4.1. Results in CTTA Setup

The experimental results in CTTA setting are shown in Tab. 1. The static source model
performs poorly across all test sets, highlighting the negative impact of domain shift. Simply
using the test-time BN statistics (BN Stats) improves predictions. Both self-distillation-
based methods (CoTTA, RoTTA and RMT) and NL-based methods (Tent-A, SAR, ETA,
and ROID) further improve predictions. When using NL-based methods as the forerunner
network and deploying ATAN, significant improvements in adaptation are observed across
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Table 2: Classification error rate (%) across different datasets in GTTA setup. In paren-
theses are the gains from our proposed method.

Method CIFAR10-C CIFAR100-C ImageNet-C

Source 24.7 33.6 58.4
BN Stats 13.7 29.9 48.3
CoTTA 10.9 26.3 38.8
RoTTA 11.9 33.2 55.4
RMT 9.3 26.4 39.3
LAW∗ 9.6 26.1 38.6

Tent-A 11.6 27.9 41.7
+Ours 8.5(3.1) 23.2(4.7) 34.5(7.2)

SAR 11.6 28.7 42.9
+Ours 9.0(2.6) 24.7(3.0) 36.3(6.3)

ETA 15.9 32.0 44.0
+Ours 10.4(5.5) 25.8(6.2) 38.7(5.3)

ROID 10.6 24.4 38.8
+Ours 8.3(2.3) 22.5(1.9) 33.7(5.0)

corruption datasets (CIFAR10-C, CIFAR100-C, ImageNet-C) and natural shift datasets
(DomainNet126). This indicates that, in continual cross-domain adaptation tasks, ATAN
effectively integrates knowledge from multiple domains, enhancing the model’s generaliza-
tion ability. In a single-domain adaptation task (ImageNet-S(ketch)), the improvement
of ATAN is less noticeable, further emphasizing that ATAN’s strength lies in integrating
multi-domain knowledge.

4.2. Results in GTTA Setup

In Tab. 2, we report the classification error rate in GTTA setting where the severity of
corruption varies progressively across the corruption datasets. Both self-distillation-based
methods and NL-based methods significantly improve prediction results in this setting.
When deploying ATAN with NL-based methods as the forerunner network, the adaptation
performance is further enhanced. The improvement is most notable on the most challenging
corruption dataset, ImageNet-C (which requires predictions across 1,000 classes). These
results demonstrate that ATAN can effectively integrate multi-domain knowledge under
GTTA setting, thereby greatly improving adaptation performance.

4.3. Ablation Analysis

Tab. 3 evaluates the effectiveness of different configurations within ATAN. A represents the
configuration where Tent-A is used as the forerunner network in ATAN, Lcst (Eq. (2)) is
employed as the loss function. B introduces the proposed vote-based loss adjustment mech-
anism (Eqs. (6) to (8)) to guide the updates of the forerunner network. C constructs the
weak augmentation consistency loss (Lwac, Eq. (9)) for the bridge network. Configuration
A helps the model to integrate multi-domain knowledge thus improving generalizability.
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Table 3: Classification error rate (%) for different configurations. A: Siamese networks w/
Lcst. B: W/ vote-based loss adjustment mechanism. C: W/ Lwac. The table
presents the results of sequentially superimposing configurations A, B, and C.

Method CIFAR10-C CIFAR100-C ImageNet-C DomainNet126

Tent-A 17.9 33.9 61.9 40.4

+ A 15.8 30.2 58.1 38.3
+ B 15.6 29.6 57.7 38.0
+ C 15.5 29.3 56.9 37.2
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Figure 3: Mean forgetting ratio (MFR) on corruption datasets.

Configuration B helps the forerunner network to reduce error accumulation. Configura-
tion C strengthens the model’s learning of domain invariant knowledge. By sequentially
adding configurations A, B, and C, ATAN significantly improves the adaptation of the
source-domain model in the continually changing target domains.

4.4. Evaluation of Domain Knowledge Forgetting

To evaluate the degree of domain knowledge forgetting, we measured the mean forget-
ting ratio (MFR) of different methods on corruption datasets. As shown in Fig. 3, on
CIFAR10-C and CIFAR100-C, three out of the four NL-based methods exhibited varying
degrees of domain knowledge forgetting. Tent-A showed a forgetting ratio exceeding 10% on
CIFAR100-C. On ImageNet-C, among NL-based methods, the ROID that performed best
in the first round exhibited the highest degree of forgetting in the second round. SAR did
not demonstrate forgetting, likely due to its gradient sharpness-aware regularization strat-
egy. After deploying ATAN, all NL-based methods effectively leveraged the multi-domain
knowledge in the momentum network to significantly mitigate forgetting and further im-
prove predictions. In particular, the average gain on ImageNet-C is more than 10%.
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Figure 4: The inter-domain divergence of different models. BN Stats is the source model
using BN statistics. ATAN use Tent-A as its forerunner network. ATAN-M
indicates the momentum network from ATAN.

4.5. Inter-Domain Divergence

In order to more intuitively demonstrate the effectiveness of the proposed ATAN in in-
tegrating cross-domain knowledge, we calculated the distribution distances of the feature
representations across different target domains. As in prior works (Allaway et al., 2021; Liu
et al., 2024a), we use Jensen–Shannon (JS) divergence to measure inter-domain divergence
between two adjacent domains. A smaller inter-domain divergence indicates that the model
is less susceptible to cross-domain shifts (Ganin et al., 2016).

On CIFAR10-C, we calculate the JS divergence between the representations of adja-
cent domains in the order of adaptation. As shown in Fig. 4, compared to the source
model using test-time batch normalization statistics (BN Stats), Tent-A does not reduce
inter-domain divergence overall. However, the momentum network in ATAN significantly
reduces inter-domain divergence. This indicates that ATAN effectively integrates the cross-
domain knowledge, thereby exhibiting stronger consistency in feature representations across
different domains.

5. Limitations

Although the proposed ATAN can significantly improve the model’s generalization ability
in CTTA tasks and overcome domain knowledge forgetting issues, it still has certain lim-
itations for tasks that require lightweight and real-time performance. The limitation of
ATAN lies in that it requires more forward and backward propagations. Specifically, each
adaptation of ATAN typically requires 4 forward propagations, 1 global backward prop-
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Table 4: Computation complexity of the proposed ATAN in combination with various
NL-based methods on ImageNet-C. “SD-based” denotes the mean teacher self-
distillation-based methods.

Method Total inference time (s) FPS GFLOPs

NL-based

Tent-A 154.4 485.9 14.42
SAR 279.4 268.4 25.41
ETA 157.8 475.4 14.42
ROID 277.9 269.9 25.41

SD-based
CoTTA 578.2 129.7 52.87
RoTTA 660.1 113.6 60.43

ATAN

w/ Tent-A 534 140.4 48.75
w/ SAR 654.6 114.6 59.74
w/ ETA 529.6 141.6 48.75
w/ ROID 640.2 117.2 58.37

agation, and 1 backward propagation of the normalization layer parameters, resulting in
higher computational complexity compared to the NL-based methods. Nevertheless, com-
pared to the standard methods based on mean teacher self-distillation, ATAN only requires
backward propagation on an additional 1% of parameters (in the forerunner network). As
shown in Tab. 4, the NL-based methods exhibit the lowest computational complexity. The
computational complexity of the mean teacher method and ATAN are basically at the same
level. Despite the above limitations, ATAN can still achieve a processing speed of over 100
frames per second on a single GPU (RTX 3090).

6. Conclusion

In this work, we discussed the issue of domain knowledge forgetting in normalization-
layer-based methods under the Continual Test-Time Adaptation (CTTA) setting. To ad-
dress this problem while maintaining dexterous domain adaptation ability, we proposed a
method called ATAN (Anti-forgetting Test-time Adaptation Network), which consists of
three Siamese networks. ATAN learns domain-specific knowledge through the forerunner
network, expands the knowledge container and transfers knowledge via the bridge network,
and finally integrates multi-domain knowledge through the momentum network. ATAN ef-
fectively improves model performance across various datasets and tasks, while successfully
overcoming the issue of domain knowledge forgetting.
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