
IDPG: An Instance-Dependent Prompt Generation Method

Anonymous ACL submission

Abstract
Prompt tuning is a new, efficient NLP trans-001
fer learning paradigm that adds a task-specific002
prompt in each input instance during the model003
training stage. It freezes the pre-trained lan-004
guage model and only optimizes a few task-005
specific prompts. In this paper, we propose a006
conditional prompt generation method to gen-007
erate prompts for each input instance, referred008
to as the Instance-Dependent Prompt Genera-009
tion (IDPG). Unlike traditional prompt tuning010
methods that use a fixed prompt, IDPG intro-011
duces a lightweight and trainable component to012
generate prompts based on each input sentence.013
Empirical experiments on ten natural language014
understanding (NLU) tasks show that our pro-015
posed method consistently outperforms various016
prompt tuning methods and other efficient trans-017
fer learning methods such as Compacter while018
tuning far fewer model parameters.019

1 Introduction020

Recently, pre-training a transformer model on a021

large corpus with language modeling tasks and fine-022

tuning it on different downstream tasks has become023

the main transfer learning paradigm in natural lan-024

guage processing (Devlin et al., 2019). Notably,025

this paradigm requires updating and storing all the026

model parameters for every downstream task. As027

the model size proliferates (e.g., 330M parame-028

ters for BERT (Devlin et al., 2019) and 175B for029

GPT-3 (Brown et al., 2020)), it becomes compu-030

tationally expensive and challenging to fine-tune031

the entire pre-trained language model (LM). Thus,032

it is natural to ask the question of whether we can033

transfer the knowledge of a pre-trained LM into034

downstream tasks by tuning only a small portion035

of its parameters with most of them freezing.036

Studies have attempted to address this ques-037

tion from different perspectives. One line of038

research (Li and Liang, 2021) suggests to aug-039

ment the model with a few small trainable mod-040

ules and freeze the original transformer weight.041

0.00001 0.001 0.01 0.1 1 10 100

86

88

90

92

prompt tuning

Linear Probing

Compacter

Adapter
IDPG-PHM

RoBERTa-FT

Percentage of trained parameters per task (relative to RoBERTa)

A
ve

ra
ge

Sc
or

e

Figure 1: Overall evaluation on 10 NLU tasks. Note
that we do not include parameters from classification
heads.

Take Adapter (Houlsby et al., 2019; Pfeiffer et al., 042

2020a,b) and Compacter (Mahabadi et al., 2021) 043

for example, both of them insert a small set of ad- 044

ditional modules between each transformer layer. 045

During fine-tuning, only these additional and task- 046

specific modules are trained, reducing the trainable 047

parameters to 1–3% of the original transformer 048

model per task. 049

Another line of works focus on prompting. 050

The GPT-3 models (Brown et al., 2020; Schick 051

and Schütze, 2020) find that with proper manual 052

prompts, a pre-trained LM can successfully match 053

the fine-tuning performance of BERT models. LM- 054

BFF (Gao et al., 2020), EFL (Wang et al., 2021), 055

and AutoPrompt (Shin et al., 2020) further this di- 056

rection by insert prompts in the input embedding 057

layer. However, these methods rely on grid-search 058

for a natural language-based prompt from a large 059

search space, resulting in difficulties to optimize. 060

To tackle this issue, prompt tuning (Lester et al., 061

2021), prefix tuning (Li and Liang, 2021), and P- 062

tuning (Liu et al., 2021b) are proposed to prepend 063

trainable prefix tokens to the input layer and train 064

these soft prompts only during the fine-tuning stage. 065

In doing so, the problem of searching discrete 066

1



prompts are converted into an continuous optimiza-067

tion task, which can be solved by a variety of op-068

timization techniques such as SGD and thus sig-069

nificantly reduced the number of trainable parame-070

ters to only a few thousand. However, all existing071

prompt-tuning methods have thus far focused on072

task-specific prompts, making them incompatible073

with the traditional LM objective. For example, it074

is unlikely to see many different sentences with the075

same prefix in the pre-training corpus. In light of076

these limitations, we instead ask the following ques-077

tion: Can we generate input-dependent prompts to078

smooth the domain difference?079

In this paper, we present the instance-dependent080

prompt generation (IDPG) strategy for efficiently081

tuning large-scale LMs. Different from the tradi-082

tional prompt-tuning methods that rely on a fixed083

prompt for each task, IDPG instead develops a084

conditional prompt generation model to generate085

prompts for each instance. Formally, the IDPG086

generator can be denoted as f (x;W), where x is087

the instance representation and W represents the088

trainable parameters. In the extreme case, set-089

ting W to a zero matrix and only training the bias090

would degenerate it to the traditional prompt tun-091

ing (Lester et al., 2021). To further reduce the092

number of parameters in the generator f (x;W), we093

first apply a lightweight bottleneck architecture (a094

two-layer perceptron), and then decompose it by a095

parameterized hypercomplex multiplication (PHM)096

layer (Zhang et al., 2021). In summary, our contri-097

butions are three-fold:098

• We proposed an input-dependent prompt gen-099

eration method, IDPG, which only requires100

training 105K parameters per task (roughly101

equal to 0.03% of a pre-trained LM like102

RoBERTa-Large (Liu et al., 2019)).103

• A systematic evaluation on ten natural lan-104

guage understanding (NLU) tasks shows that105

our proposed method consistently outper-106

forms the traditional task-specific prompt tun-107

ing methods by 0.4–1.9 points. Our method108

also has comparable performance to Adapter-109

based methods while using much fewer pa-110

rameters (105K vs. 6.2M).111

• This method provides a new research angle112

for prompt-tuning, which can be combined113

with other efficient transfer learning paradigm114

such as multi-layer prompt tuning.115

2 Preliminary 116

2.1 Manual Prompt 117

Manual prompt learning (Brown et al., 2020; 118

Schick and Schütze, 2020) insert a pre-defined la- 119

bel words in each input sentence. For example, 120

it reformulates a sentence sentiment classification 121

task with an input sentence S1 as 122

xin = [CLS]P[SEP]S1[EOS], 123

where P is the prompt such as “indicating the pos- 124

itive user sentiment”. Using pre-trained language 125

model M, we can obtain the sentence represen- 126

tation h[CLS] = M(xin), and train a task-specific 127

head softmax(Wh[CLS]) to maximize the log- 128

probability of the correct label. LM-BFF (Gao 129

et al., 2020) showed that adding a specifically de- 130

signed prompt during fine-tuning can benefit the 131

few-shot scenario. EFL (Wang et al., 2021) further 132

showed that reformulating the task as entailment 133

can further improve the performance in both low- 134

resource and high-resource scenarios. 135

2.2 Prompt Tuning 136

Prompt tuning (Lester et al., 2021), prefix tun- 137

ing (Li and Liang, 2021), and P-tuning (Liu et al., 138

2021b) methods propose to insert a trainable prefix 139

in front of the input sequence. Specifically, they 140

reformulate the input for single sentence tasks as 141

xin = concat[Wp,E([SEP]S2[EOS])] 142

and for sentence pair tasks as 143

xin = concat[Wp,E([SEP]S2[SEP]S3[EOS])], 144

where Wp is the embedding table of the inserted 145

prompt, S2 and S3 are input sentences, and E de- 146

notes the operation of tokenization and extraction 147

of embedding. Apart from LM-BFF and EFL, there 148

is no corresponding real text for the prompt as Wp 149

is a set of random-initialized tensors to represent 150

the soft prompt. 151

3 Instance-Dependent Prompt 152

Generation (IDPG) 153

We now introduce our proposed method, IDPG, 154

along with various model optimizations. The main 155

procedure is illustrated in Figure 2. 156

2



Pre-trained Model

EEE [CLS] EEEI EEE love EEE these EEEactors EEE [SEP] EEE they EEEare EEEgreat EEE [EOS]

[CLS] I love these actors [SEP] they are great [EOS]

manually generated
prompt

hhh[CLS]

Classification head
Feed forward layer

√
1

× 0
Predict

(a) Manual Prompt

Pre-trained Model

EEE [CLS] EEE1 · · · EEEtEEE1 EEEI EEE love EEE these EEEactors EEE [EOS]

[CLS] I love these actors [EOS]

hhh[CLS]

Classification head
Feed forward layer

√
1

× 0
Predict

randomly generated
prompt

(b) Prompt Tuning

Pre-trained Model

EEE [CLS] EEEI EEE love EEE these EEEactors EEE [EOS]

[CLS] I love these actors [EOS]

Prompt Generator

EEE [CLS] EEEI EEE love EEE these EEEactors EEE [SEP] EEE1 · · · EEEtEEE1 EEE [EOS]

[CLS] I love these actors [SEP] [EOS]

hhh[CLS]

Classification head
Feed forward layer

√
1

× 0
Predict

Instance-dependent
prompt

tuned frozen

(c) Instance-Dependent Prompt Generation

Figure 2: An illustration of (a) manual prompt; (b) prompt-tuning method; (c) our proposed method. The red block
refers to the trainable module, while the blue block refers to the frozen module.

3.1 Instance-Dependent Generation157

Let us assume a task T with training data Dtrain =158

{(xi,yi)}N
i=1. Following prompt tuning, we define159

the input xi = E([SEP]S1[SEP]S2[EOS]) for160

sentence-pair task or xi = E([SEP]S1[EOS]) for161

single-sentence task, where E(·) is the token em-162

bedding for input sentences. Different from all pre-163

vious works that only define a task-specific prompt164

Wp(T ) ∈ Rd×t , where t is the number of tokens165

in prompt representation and d is the hidden di-166

mension, we propose a instance-dependent prompt167

generation method. Specifically, we suppose that168

the generation of prompt should not only depend169

on the task T , but also be affected by input se-170

quence xi. If M(xi) ∈ Rd is a representation of the171

input sequence xi from the same pre-trained LM172

M, we design a lightweight model G to generate173

the prompt,174

Wp(T,xi) = G(M(xi),T ), xi ∈ Dtrain (1)175

Then, we insert a prompt Wp(T ) together with176

input sequence xi to infer yi during fine-tuning. In177

this way, we have a unified template178

softmax(Wh[CLS]) (2)179

180

h[CLS] = M(concat[xi,Wp(T,xi)]) (3) 181

where W is the trainable LM classification head. 182

To reduce the number of trainable parameters in 183

G, we apply a lightweight bottleneck architecture 184

(i.e., a two-layer perceptron) for generation. As il- 185

lustrated in Figure 3, the generator G first projects 186

the original d-dimensional sentence representation 187

hi into m dimensions. After passing through a 188

nonlinear function, generator G projects the hid- 189

den representation back to a d dimensions with t 190

timestamps. The total number of parameters for 191

generator G is m(d +1)+ td(m+1) (bias term in- 192

cluded). This model can be regarded as the general 193

version of prompt tuning: the bias term t ×d in the 194

second layer of G is a task-specific prompt, with 195

preceding parts generating an instance-dependent 196

prompt. The final prompt our method generated is 197

a combination of both. We can control the added 198

number of trainable parameters by setting m ≪ d, 199

but it is still expensive since hidden dimension d is 200

usually large (1024 in BERT/RoBERTa-Large). In 201

the sequel, we will introduce a parameter squeez- 202

ing method to further reduce trainable parameters 203

3



Feedforward
down-project

Nonlinearity

...

Feedforward
up-project

Prompt 
Generator 

Figure 3: An illustration of prompt generator. In prac-
tice, PHM decomposes W1 and W2 as sum of Kronecker
products.

without sacrificing performance.204

Note that our proposed method relies on the205

input sentence representation M(xi) to generate206

prompts. One caveat is that this method will have207

two forward passes of the pre-trained LM during208

inference time – first to generate M(xi) and then to209

generate classification results. However, the sen-210

tence representation M(xi) used in our method is211

task-agnostic. In practice, we can cache the predic-212

tion M(xi) and use it in various downstream tasks213

or rely on a lightweight sentence representation214

such as Glove (Pennington et al., 2014).215

3.2 Optimization216

We propose two optimization techniques to further217

improve our proposed method.218

3.2.1 Parameterized Hypercomplex219

Multiplication (PHM) Layers220

Inspired by the recent application of parameterized221

hypercomplex multiplication (PHM) layers (Zhang222

et al., 2021) in Compacter (Mahabadi et al., 2021),223

we can leverage PHM layers to optimize our224

prompt generator, G. Generally, the PHM layer225

is a fully-connected layer with form y = Wx+ b,226

where x ∈ Rd is the input feature, y ∈ Rm is the227

output feature, and W ∈ Rm×d and b ∈ Rm are the228

trainable parameters. When m and d are large, the229

cost of learning W becomes the main bottleneck.230

PHM replaces the matrix W by a sum of Kronecker231

products of several small matrices. Given a user-232

defined hyperparameter n ∈ Z+ that divides m and233

d, W can be calculated as follows:234

W =
n

∑
i=1

Ai
⊗

Bi (4)235

where Ai ∈Rn×n, Bi ∈Rm
n ×

d
n , and

⊗
is Kronecker 236

product. In this way, the number of trainable param- 237

eter is reduced to n× (n×n+ m
n × d

n ) = n3 + m×d
n . 238

Considering n is usually much smaller than m and 239

d, PHM reduces the amount of parameters by a 240

factor of n. 241

Suppose that we have a two layer perceptron 242

with down-sample projection W1 ∈ Rm×d and up- 243

sample projection W2 ∈ Rt×d×m, where d is the 244

input embedding dimension, m is the hidden layer 245

dimension, and t is the number of tokens we gener- 246

ate. For example, we use RoBERTa-Large with hid- 247

den size d = 1024, generator hidden size m = 256, 248

n = 16, prompt length t = 5. By substituting the 249

W1 and W2 by two PHM layers and letting Ai 250

shared by both layers, we can reduce the number 251

of parameters from 1.5M to 105K. 252

3.2.2 Supplementary Training 253

According to previous works (Phang et al., 2018; 254

Wang et al., 2021), supplementing pre-trained LMs 255

with rich data helps tasks with limited labels and 256

stabilizes downstream fine-tuning. Following this 257

idea, we conduct intermediate training for our pro- 258

posed method.

Figure 4: Length difference of GLUE sentence pair
datasets. 259

However, a drawback of supplementary training 260

is that if the data distribution of the downstream 261

tasks is quite different from the supplementary 262

training task, i.e., MRPC vs. MNLI (Wang et al., 263

2018), it may harm the downstream performance. 264

Figure 4 provides a comprehensive statistic among 265

all sentence pair tasks in GLUE benchmark. For 266

example, the length of the first sentence in MNLI 267

is 9.8 longer than the second sentence on average, 268

while this length difference in MRPC is only 0.6. 269

One natural solution to smooth the length distribu- 270

tion difference between tasks is to insert prompt in 271

4



both supplementary training and downstream fine-272

tuning stage. For example, assuming that we are273

adding a prompt with a length t = 5 after the sec-274

ond sentence in the supplementary training stage on275

MNLI. Then, when fine-tuning downstream tasks276

such as MRPC, we concatenate the prompt after277

the first sentence. In this way, the length differ-278

ence in MNLI and MRPC becomes more balanced:279

4.8 vs. 0.6+ 5 = 5.6. As shown in Figure 5, we280

test five different insertion positions (Pos 0–4) for281

sentence pair tasks and three different positions282

(Pos 0, 1, 4) for single sentence tasks. We further283

reduce the distribution difference by reconstruct-284

ing the supplementary training data. We double285

the MNLI dataset by reordering the two sentences286

on one shard, and use the doubled dataset during287

intermediate training.

[CLS] [SEP]Sent1 [SEP]Sent2

prompt prompt prompt prompt

[SEP]

[SEP] prompt [SEP]

0 1 2 3 4

Figure 5: Insertion positions for sentence-pair tasks.
288

4 Experiment Results289

4.1 Experimental Setup290

We evaluate on ten standard natural language un-291

derstanding (NLU) datasets – MPQA (Wiebe et al.,292

2005), Subj (Pang and Lee, 2004), CR (Hu and293

Liu, 2004), MR (Pang and Lee, 2005), and six294

tasks from GLUE (Wang et al., 2018) viz. SST-2,295

QNLI, RTE, MRPC, STS-B (Cer et al., 2017) and296

QQP. We compare our proposed method with a297

wide range of methods, as follows:298

Transformer fine-tuning: We instantiated two299

versions – vanilla transformer fine-tuning (Liu300

et al., 2019) and the entailment-based fine-301

tuning (Wang et al., 2021).302

Prompt tuning: We implemented two versions303

– standard prompt tuning (Lester et al., 2021) and304

prompt tuning with re-parameterization (Li and305

Liang, 2021). We also implemented the linear prob-306

ing method that can be regarded as prompt tuning307

with length t = 0.308

Adapter-based fine-tuning: This efficient309

transfer learning method inserts a adaptation310

module inside each transformer layer includ-311

ing Compactor (Mahabadi et al., 2021) and312

Adapter (Houlsby et al., 2019).313

We compare these against two versions of314

instance-dependent generation methods: IDPG-315

DNN and IDPG-PHM. The first version is based 316

on a 2-layer perceptron generator, which con- 317

tains 1.5M parameters. The second one uses the 318

PHM layer and only contains 105K parameters. 319

For a fair comparison, all the pre-trained LM are 320

24-layer 16-head RoBERTa-Large models (Liu 321

et al., 2019), and include supplementary training on 322

MNLI dataset before any downstream fine-tuning. 323

Fine-tuning on small datasets is significantly af- 324

fected by initialization (Wang et al., 2021). We 325

follow the existing standard paradigm, where each 326

model runs 5 times using 5 different random seeds. 327

We report both average and voting results that takes 328

the ensemble strategy across the 5 predictions. Us- 329

ing a majority vote can help us measure the limita- 330

tion of each model after reducing the large variance 331

problem. For intermediate training on MNLI, as 332

introduced in Section 3.2, we run all the methods 333

on a modified MNLI data (i.e., double the MNLI 334

data and reverse sentence order on one copy) for 335

5 epochs. We adopt a default fine-tuning setting: 336

training for 10 epochs on 8 GPUs, using a batch 337

size of 16/32, a learning rate of 5e−4 and a prompt 338

length t = 5. More training details can be found in 339

Appendix A. 340

4.2 Performance in high-resource scenario 341

Table 1 shows the results of all the methods on 342

full datasets across 10 NLU tasks. In all prompt- 343

tuning methods, we report both average and voting 344

results across 5 prompt implementations. We ob- 345

serve that: (i) Supplementary training on MNLI can 346

increase the performance of prompt-tuning across 347

most tasks, especially in the sentence-pair tasks. 348

(ii) Our proposed method IDPG-PHM (DNN) con- 349

sistently outperforms the prompt tuning method 350

(with MNLI training) by average 0.4pt (0.5pt) or 351

with voting by 0.6pt (0.5pt). The improvement is 352

even bigger in single-sentence classification task. 353

For example, our proposed method performs 1.9pt 354

better than prompt-tuning in CR. (iii) PHM-based 355

generator performs on par with the DNN-based 356

generator while having significantly lower num- 357

ber of trainable parameters. Another interesting 358

observation is that the re-parameterization scheme 359

proposed in (Li and Liang, 2021) performs slightly 360

worse compared to directly tuning the prompts, 361

which is consistent with the recent observation 362

in (Liu et al., 2021a). 363

Compared with other efficient transfer learning 364

methods, IDPG performs slightly better than the 365

5



Table 1: Main results of different transfer learning method. Each methods are evaluated on full test sets. We report
both average results (top) and the voting result (bottom) across 5 runs. Bold and underline mark the best result in
average and voting results, respectively. We report the average of accuracy and F1 for both MRPC and QQP, and
average of Pearson and Spearman correlation coefficients for STS-B. For all the other tasks, we report accuracy.

Method MPQA Subj CR MR SST-2 QNLI RTE MRPC STS-B QQP Avg

Transformer Fine-tuning

RoBERTa 90.3 97.2 92.4 91.8 95.8 94.8 86.2 91.2 92.0 90.6 92.2
EFL 90.7 97.3 92.6 92.3 96.3 94.3 84.8 90.9 92.0 90.7 92.2

Adapter

Compacter 90.5 96.9 85.8 84.1 93.0 92.9 77.7 90.8 90.5 88.6 89.1
Adapter 90.4 97.4 86.1 85.6 96.1 94.4 89.5 87.6 89.2 89.0 90.5

Prompting

Linear Probing
82.9±0.4 92.2±0.3 87.9±0.7 86.1±0.2 90.4±0.8 81.4±0.2 85.5±0.4 83.8±0.4 85.2±0.3 81.0±0.2 85.6

83.7 92.6 88.6 86.3 91.1 81.7 85.9 84.2 86.3 81.3 86.2

Prompt tuning
84.9±3.3 93.4±0.4 86.5±1.5 87.2±0.5 93.9±0.6 86.0±0.4 87.0±0.2 82.8±0.7 86.6±0.3 80.8±0.2 86.9

86.2 94.1 86.7 88.0 94.8 86.6 88.1 84.1 87.4 81.4 87.7

+ MNLI
88.8±0.2 94.3±0.5 88.4±2.8 89.1±0.7 94.4±0.3 90.8±0.1 89.2±0.1 83.8±0.5 85.1±0.6 82.0±0.4 88.6

89.3 94.7 90.5 89.8 94.7 91.2 89.5 83.7 86.1 82.3 89.2

+ Re-param
89.0±1.0 93.7±0.3 87.4±1.7 88.7±0.7 94.2±0.5 90.7±0.3 87.9±0.9 85.2±1.1 84.5±0.8 80.9±0.9 88.2

89.5 94.0 89.7 89.5 94.5 90.9 88.4 86.5 86.3 81.6 89.1

IDPG-PHM
89.6±0.3 94.4±0.3 90.3±0.2 89.3±0.4 94.7±0.2 90.7±0.3 89.2±0.2 84.3±0.8 84.7±0.9 82.5±0.2 89.0

90.1 95.3 91.3 90.1 95.3 91.3 89.5 85.4 86.5 83.0 89.8

IDPG-DNN
89.5±0.7 94.9±0.4 89.9±1.5 90.2±0.6 95.1±0.2 90.5±0.5 89.4±0.4 83.0±0.5 85.3±0.7 82.7±0.3 89.1

90.0 95.8 91.3 91.2 95.2 91.3 89.5 83.0 86.3 83.4 89.7

Compacter (Mahabadi et al., 2021), and slightly366

worse than Adapter (Houlsby et al., 2019), across367

the ten tasks. However, we observe that the gap is368

mostly from sentence-pair tasks while IDPG-PHM369

is very efficient in single-sentence tasks. For ex-370

ample, IDPG performs 1.2pts better than Adapter371

over the five single-sentence tasks. We hypothe-372

size that since the current prompt tuning method373

is embedding-based while Adapter/Compacter are374

layer-based, the sentence-pair tasks require steer-375

ing model attention within each layer. We discuss376

additional steps to improve the performance in Sec-377

tion 6.378

4.3 Efficiency379

Table 2 lists the number of trainable parameters for380

different methods excluding the classification head.381

The general goal for efficient transfer learning is to382

train models with fewer parameters while achieving383

better performance. The ideal model in Figure 1384

should be the one on the left-top corner. Tradi-385

tional prompt-tuning method only requires training386

a token embedding table with a few thousand pa-387

rameters. However, its performance is worse than388

a lightweight adapter model (e.g., Compacter with389

104K parameters). Our proposed method, espe-390

cially the IDPG-PHM, falls in the gap between391

prompt-tuning and adapter model, since it only392

requires training 105K parameters and performs393

better than the Compacter. 394

Method Parameters

Transformer Fine-tune (Liu et al., 2019) 355M
Adapter (Houlsby et al., 2019) 6.2M
Compacter (Mahabadi et al., 2021) 104k
Prompt-tuning (Lester et al., 2021) 5K
+ Re-param (Li and Liang, 2021) 14M
IDPG-DNN 1.5M
IDPG-PHM 105K

Table 2: Number of trainable parameters of different
methods. Note that we did not include the parameters
from classification heads.

4.4 Performance in low-resource scenario 395

We further evaluate our proposed method in the 396

low-resource scenario. Following the existing eval- 397

uation protocols in the few-shot setting (He et al., 398

2021), we sample a subset of the training data for 399

each task with size K ∈ {100,500,1000} as our 400

training data and another subset with size 1000 as 401

a development set. 402

In the extreme low-resource case when K=100, 403

IDPG performs 0.9pt better than the traditional 404

prompt tuning method. This improvement is higher 405

than in high-resource scenario, illustrating that our 406

method has better generalization in few-shot set- 407

tings. When K becomes larger, IDPG-PHM still 408

maintains good results with 0.1pt (K=500) and 409

0.5pt (K=1000) better accuracy than traditional 410

6



Table 3: Low-resource results are evaluated on full test sets. We report both average results (top) and the voting
result (bottom) across 5 runs. Bold and underline mark the best result in average and voting results, respectively. We
report the average of accuracy and F1 for both MRPC and QQP, and average of Pearson and Spearman correlation
coefficients for STS-B. For all other tasks, we report accuracy.

Method MPQA Subj CR MR SST-2 QNLI RTE MRPC STS-B QQP Avg

K = 100

prompt tuning 75.9±1.6 86.8±0.8 72.9±1.4 74.1±1.4 82.9±2.0 82.7±0.2 86.5±0.6 80.0±1.3 70.2±3.1 76.5±0.4 78.9
+ MNLI 76.9 87.4 72.7 74.7 84.0 83.1 87.7 81.1 72.8 76.7 79.7

IDPG-PHM
79.0±3.7 87.6±1.1 75.0±1.6 76.2±1.3 87.6±1.3 80.4±1.2 86.3±0.5 79.3±0.4 70.9±2.5 76.1±0.6 79.8

78.2 89.4 74.8 77.5 86.1 81.3 85.6 80.5 73.5 76.5 80.3

IDPG-DNN
78.0±2.1 84.2±1.6 76.3±4.5 77.4±0.5 89.6±1.2 81.1±0.8 87.4±0.8 78.8±1.3 70.6±2.8 74.1±0.9 79.8

74.6 85.2 76.5 78.4 92.5 82.3 88.4 79.6 72.8 74.5 80.5

K = 500

prompt tuning 82.4±1.3 91.2±0.1 86.8±0.4 84.6±0.8 88.6±1.0 86.3±0.4 86.5±0.4 80.0±0.4 77.4±1.9 77.8±0.3 84.2
+ MNLI 82.8 91.8 86.8 85.5 89.2 86.7 85.9 78.6 79.2 77.9 84.4

IDPG-PHM
81.6±2.7 91.4±0.7 85.8±2.0 85.8±0.5 88.5±1.3 85.0±0.4 86.31.3 81.9±0.8 78.3±1.5 78.1±0.3 84.3

82.5 92.5 85.6 86.9 89.4 86.3 86.6 82.7 79.7 78.6 85.1

IDPG-DNN
84.8±0.7 90.8±0.6 89.7±1.0 86.1±2.8 90.4±1.6 84.8±0.3 87.7±0.7 82.0±1.4 79.1±2.3 77.1±0.4 85.3

85.4 92.2 90.8 88.1 92.1 85.3 87.4 82.8 81.6 78.0 86.4

K = 1000

prompt tuning 83.9±2.0 92.6±0.4 87.2±1.4 86.7±0.3 89.9±1.0 86.9±0.1 86.4±0.7 82.5±0.3 82.9±1.3 78.6±0.3 85.8
+ MNLI 84.6 92.8 87.6 87.1 90.5 87.4 85.6 82.2 84.1 78.8 86.1

IDPG-PHM
83.4±1.7 93.4±0.9 89.2±0.8 88.0±0.9 90.2±1.0 85.5±0.6 86.9±0.6 83.1±0.4 83.9±0.8 78.9±0.4 86.3

85.2 94.2 90.0 88.6 91.2 86.2 86.3 84.5 85.2 79.3 87.1

IDPG-DNN
85.9±0.8 93.3±1.2 89.9±0.8 89.6±1.1 92.2±0.8 85.2±1.3 87.7±0.8 82.5±0.9 84.7±0.9 78.0±0.8 86.9

86.6 94.2 90.3 90.2 92.8 86.8 87.7 82.9 85.2 78.6 87.5

prompt tuning. We also observe that when K is411

small, our method sometimes has a higher variance412

than the standard prompt tuning method. We sus-413

pect that this may be due to bad initialization that414

leads our model to non-optimal parameters.415

4.5 Intrinsic Study416

We conduct several ablation studies including ex-417

ploration of different generator architectures and418

impact of selecting different prompt positions.419

4.5.1 Generator Architecture Exploration420

We explore three different architectures for the421

proposed PHM-based generator: (i) Residual: a422

residual structure (He et al., 2016) is applied to423

add the sentence representation to each generated424

tokens; (ii) LayerNorm: layer normalization (Ba425

et al., 2016) is also added to normalize the gener-426

ated token embedding; (iii) residual + layerNorm:427

a mixed model that uses both the residual compo-428

nent and LayerNorm. Note that, to balance the to-429

ken embedding and sentence embedding, we apply430

LayerNorm to each embedding first, then after the431

add-up, use LayerNorm again to control the gener-432

ated tokens. We observe that adding LayerNorm433

slightly improves the voting results, while residual434

performs slightly worse. One surprising result is435

that the mixed model of Residual and LayerNorm436

has significantly poorer performance compared to 437

other methods.

Architecture Avg Voting

PHM 86.1 86.9

+residual 85.9 86.7

+LayerNorm 86.1 87.1

+residual+LayerNorm 77.8 81.2

Table 4: Ablation study on generator architecture. 438

4.5.2 Prompt Position 439

As we discussed in Section 3.2.2, the prompt po- 440

sition has a direct impact on the prediction results. 441

We conduct a comprehensive study of the prompt 442

position for our proposed method in both sup- 443

plementary training and downstream fine-tuning 444

phases. 445

Looking at the prompt position in downstream 446

tasks first, Figure 6(a) shows that for both stan- 447

dard prompt tuning and our proposed method, the 448

best position is 0 for single-sentence tasks and 1 449

for sentence-pair tasks. This result is intuitive for 450

single-sentence tasks since prompt in position 0 451

can be regarded as the premise and original input 452

sentence as the hypothesis. For sentence-pair tasks, 453

we hypothesize that inserting prompt into position 454

1 can better align the two input sentences. Fig- 455

7



Figure 6: Impact of prompt position on (a) downstream
tasks; (b) supplementary training phase.

ure 6(b) illustrates the effect of prompt position456

on the supplementary training phase. It is interest-457

ing that IDPG achieves best results in position 0458

while the standard prompt-tuning achieves the best459

results in position 4 for both single-sentence and460

sentence-pair tasks.461

5 Related Work462

Supplementary Training: Existing works (Phang463

et al., 2018; Liu et al., 2019) have observed that464

starting from the fine-tuned MNLI model results in465

a better performance than directly from the vanilla466

pre-trained models for RTE, STS, and MRPC tasks.467

A series of work (SentenceBERT (Reimers and468

Gurevych, 2019), BERT-flow (Li et al., 2020), Sim-469

CSE (Gao et al., 2021)) explored intermediate train-470

ing to improve STS tasks. All of them applied471

pre-fine tuning on NLI datasets. More recently,472

EFL (Wang et al., 2021) proposed a task transfor-473

mation paradigm, improving single sentence tasks474

with less labels using rich sentence-pair datasets.475

Adapter Tuning: Adapter tuning has emerged476

as a novel parameter-efficient transfer learning477

paradigm (Houlsby et al., 2019; Pfeiffer et al.,478

2020b), in which adapter layers – small bottleneck479

layers – are inserted and trained between frozen480

pre-trained transformer layers. On the GLUE481

benchmark, adapters attain within 0.4% of the482

performance of full fine-tuning by only training483

3.6% parameters per task. Compactor (Mahabadi484

et al., 2021) substitutes the down-projector and up-485

projector matrices by a sum of Kronecker products,486

reducing the parameters by a large margin while487

maintaining the overall performance.488

Prompting: Hand-crafted prompts were shown to489

be helpful to adapt generation in GPT-3 (Brown490

et al., 2020). Existing works including LM-491

BFF (Gao et al., 2020; Wang et al., 2021) explored492

the prompt searching in a few-shot setting.493

Recently, several researchers have proposed con-494

tinuous prompts training to overcome the chal- 495

lenges in discrete prompt searching. Prefix tun- 496

ing (Li and Liang, 2021) prepends a sequence of 497

trainable embeddings at each transformer layer and 498

optimizes them for natural language generation 499

tasks. Two contemporaneous works – prompt tun- 500

ing (Lester et al., 2021) and P-tuning (Liu et al., 501

2021b), interleave the training parameters in the 502

input embedding layer instead of each transformer 503

layer. All these methods focus on task-specific 504

prompt optimization. Our proposed method, IDPG, 505

is the first prompt generator that is not only task- 506

specific but also instance-specific. 507

6 Conclusion and Discussion 508

We have introduced IDPG, an instance-dependent 509

prompt generation model that generalizes better 510

than the existing prompt tuning methods. Our 511

method first factors in a instance-dependent prompt, 512

which is robust to data variance. Parameterized 513

Hypercomplex Multiplication (PHM) is applied to 514

shrink the training parameters in our prompt gener- 515

ator, which helps us build an extreme lightweight 516

generation model. Despite adding fewer parame- 517

ters than prompt tuning, IDPG shows consistent 518

improvement. It also outperforms the lightweight 519

adapter tuning methods such as Compacter while 520

using similar amount of trainable parameters. This 521

work provided a new research angle for prompt- 522

tuning of a pre-trained language model. We also 523

obtained a comprehensive understanding of how to 524

smooth the distribution gap in intermediate training 525

through our extensive experiments. These results 526

could be further improved in future by: 527

Multi-layer Prompt Generation: Existing 528

work (Li and Liang, 2021; Liu et al., 2021a) 529

showed that we can insert prompts or prefixes into 530

each layer of pre-trained LM, which can further 531

improve the performance while slightly increasing 532

number of trainable parameters. One promising 533

direction is to combine our PHM-based generation 534

model with the multi-layer prompt tuning. 535

Lightweight Input Representation: The pro- 536

posed IDPG method relies on pre-trained LM to 537

extract sentence representation, i.e., [CLS] token 538

embedding. Obtaining contextualized transformer 539

sentence embedding is often expensive if it is not 540

pre-computed. One open question is to explore reli- 541

ability on lightweight sentence representations such 542

as GLOVE embedding (Pennington et al., 2014) or 543

token embedding of pre-trained language models. 544

8



References545

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-546
ton. 2016. Layer normalization. arXiv preprint547
arXiv:1607.06450.548

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie549
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind550
Neelakantan, Pranav Shyam, Girish Sastry, Amanda551
Askell, et al. 2020. Language models are few-shot552
learners. arXiv preprint arXiv:2005.14165.553

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-554
Gazpio, and Lucia Specia. 2017. Semeval-2017555
task 1: Semantic textual similarity-multilingual and556
cross-lingual focused evaluation. arXiv preprint557
arXiv:1708.00055.558

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and559
Kristina Toutanova. 2019. Bert: Pre-training of deep560
bidirectional transformers for language understand-561
ing. In Proceedings of the 2019 Conference of the562
North American Chapter of the Association for Com-563
putational Linguistics: Human Language Technolo-564
gies, Volume 1 (Long and Short Papers), pages 4171–565
4186.566

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.567
Making pre-trained language models better few-shot568
learners. arXiv preprint arXiv:2012.15723.569

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.570
Simcse: Simple contrastive learning of sentence em-571
beddings. arXiv preprint arXiv:2104.08821.572

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian573
Sun. 2016. Deep residual learning for image recog-574
nition. In Proceedings of the IEEE conference on575
computer vision and pattern recognition, pages 770–576
778.577

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng578
Ding, Liying Cheng, Jia-Wei Low, Lidong Bing,579
and Luo Si. 2021. On the effectiveness of adapter-580
based tuning for pretrained language model adapta-581
tion. arXiv preprint arXiv:2106.03164.582

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,583
Bruna Morrone, Quentin De Laroussilhe, Andrea584
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.585
Parameter-efficient transfer learning for nlp. In In-586
ternational Conference on Machine Learning, pages587
2790–2799. PMLR.588

Minqing Hu and Bing Liu. 2004. Mining and summa-589
rizing customer reviews. In Proceedings of the tenth590
ACM SIGKDD international conference on Knowl-591
edge discovery and data mining, pages 168–177.592

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.593
The power of scale for parameter-efficient prompt594
tuning. arXiv preprint arXiv:2104.08691.595

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,596
Yiming Yang, and Lei Li. 2020. On the sentence em-597
beddings from pre-trained language models. arXiv598
preprint arXiv:2011.05864.599

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 600
Optimizing continuous prompts for generation. arXiv 601
preprint arXiv:2101.00190. 602

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, 603
Zhilin Yang, and Jie Tang. 2021a. P-tuning v2: 604
Prompt tuning can be comparable to fine-tuning 605
universally across scales and tasks. arXiv preprint 606
arXiv:2110.07602. 607

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, 608
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt 609
understands, too. arXiv preprint arXiv:2103.10385. 610

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 611
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 612
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 613
Roberta: A robustly optimized bert pretraining ap- 614
proach. arXiv preprint arXiv:1907.11692. 615

Rabeeh Karimi Mahabadi, James Henderson, and Se- 616
bastian Ruder. 2021. Compacter: Efficient low- 617
rank hypercomplex adapter layers. arXiv preprint 618
arXiv:2106.04647. 619

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, 620
Sam Gross, Nathan Ng, David Grangier, and Michael 621
Auli. 2019. fairseq: A fast, extensible toolkit for 622
sequence modeling. In Proceedings of NAACL-HLT 623
2019: Demonstrations. 624

Bo Pang and Lillian Lee. 2004. A sentimental education: 625
Sentiment analysis using subjectivity summarization 626
based on minimum cuts. arXiv preprint cs/0409058. 627

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting 628
class relationships for sentiment categorization with 629
respect to rating scales. arXiv preprint cs/0506075. 630

Jeffrey Pennington, Richard Socher, and Christopher D 631
Manning. 2014. Glove: Global vectors for word rep- 632
resentation. In Proceedings of the 2014 conference 633
on empirical methods in natural language processing 634
(EMNLP), pages 1532–1543. 635

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 636
Kyunghyun Cho, and Iryna Gurevych. 2020a. 637
Adapterfusion: Non-destructive task composition for 638
transfer learning. arXiv preprint arXiv:2005.00247. 639

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas- 640
tian Ruder. 2020b. Mad-x: An adapter-based frame- 641
work for multi-task cross-lingual transfer. arXiv 642
preprint arXiv:2005.00052. 643

Jason Phang, Thibault Févry, and Samuel R Bowman. 644
2018. Sentence encoders on stilts: Supplementary 645
training on intermediate labeled-data tasks. arXiv 646
preprint arXiv:1811.01088. 647

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 648
Sentence embeddings using siamese bert-networks. 649
arXiv preprint arXiv:1908.10084. 650

9



Timo Schick and Hinrich Schütze. 2020. Exploit-651
ing cloze questions for few shot text classification652
and natural language inference. arXiv preprint653
arXiv:2001.07676.654

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,655
Eric Wallace, and Sameer Singh. 2020. Autoprompt:656
Eliciting knowledge from language models with657
automatically generated prompts. arXiv preprint658
arXiv:2010.15980.659

Alex Wang, Amanpreet Singh, Julian Michael, Felix660
Hill, Omer Levy, and Samuel R Bowman. 2018.661
Glue: A multi-task benchmark and analysis platform662
for natural language understanding. arXiv preprint663
arXiv:1804.07461.664

Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao,665
and Hao Ma. 2021. Entailment as few-shot learner.666
arXiv preprint arXiv:2104.14690.667

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.668
Annotating expressions of opinions and emotions669
in language. Language resources and evaluation,670
39(2):165–210.671

Aston Zhang, Yi Tay, Shuai Zhang, Alvin Chan,672
Anh Tuan Luu, Siu Cheung Hui, and Jie Fu. 2021.673
Beyond fully-connected layers with quaternions: Pa-674
rameterization of hypercomplex multiplications with675
1/n parameters. arXiv preprint arXiv:2102.08597.676

10



A Appendix 677

A.1 Experimental Settings 678

We use RoBERTa-Large (Liu et al., 2019) model implemented by Fairseq (Ott et al., 2019) as our basic 679

model. The detailed model hyperparameters are listed below: 680

Hyperparam Supplmentary Finetune few-shot

#Layers 24 24 24

Hidden size 1024 1024 1024

FFN inner hidden size 4096 4096 4096

Attention heads 16 16 16

Attention head size 64 64 64

dropout 0.1 0.1 0.1

Learning Rate linearly decayed fixed fixed

Peak Learning Rate 1e−5 5e−4 5e−4

Batch Size 32 {16, 32} 16

Weight Decay 0.1 0.1 0.1

Training Epoch 10 10 50

Adam ε 1e-6 1e-6 1e-6

Adam β1 0.9 0.9 0.9

Adam β2 0.98 0.98 0.98

Table 5: Hyperparameters for supplmentary training, fine-tuning, few-shot fine-tuning.

Note that both transformer fine-tuning method including RoBERTa (Liu et al., 2019) and EFL (Wang 681

et al., 2021) used a polynomial learning rate scheduler with 6% of total steps to warm up. 682

A.2 Datasets 683

We provide a detailed information in Table 6 for 10 NLU datasets we used.

Corpus |Train| |Valiadation| Task Evaluation Metrics

Single Sentence Tasks

CR 1,775 2,000 sentiment accuracy
MR 8,662 2,000 sentiment accuracy
SUBJ 8,000 2,000 sentiment accuracy
MPQA 8,606 2,000 opinion polarity accuracy
SST-2 67,349 1,821 sentiment analysis accuracy

Sentence Pair Tasks

QNLI 104,743 5,463 NLI accuracy
RTE 2,491 278 NLI accuracy
MRPC 3,668 409 paraphrase accuracy/F1
QQP 363,846 40,430 paraphrase accuracy/F1
STS-B 5,749 1,500 sentence similarity Pearson/Spearman corr.

Table 6: The datasets evaluated in this work.

684

11


