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Abstract

Prompt tuning is a new, efficient NLP trans-
fer learning paradigm that adds a task-specific
prompt in each input instance during the model
training stage. It freezes the pre-trained lan-
guage model and only optimizes a few task-
specific prompts. In this paper, we propose a
conditional prompt generation method to gen-
erate prompts for each input instance, referred
to as the Instance-Dependent Prompt Genera-
tion (IDPG). Unlike traditional prompt tuning
methods that use a fixed prompt, IDPG intro-
duces a lightweight and trainable component to
generate prompts based on each input sentence.
Empirical experiments on ten natural language
understanding (NLU) tasks show that our pro-
posed method consistently outperforms various
prompt tuning methods and other efficient trans-
fer learning methods such as Compacter while
tuning far fewer model parameters.

1 Introduction

Recently, pre-training a transformer model on a
large corpus with language modeling tasks and fine-
tuning it on different downstream tasks has become
the main transfer learning paradigm in natural lan-
guage processing (Devlin et al., 2019). Notably,
this paradigm requires updating and storing all the
model parameters for every downstream task. As
the model size proliferates (e.g., 330M parame-
ters for BERT (Devlin et al., 2019) and 175B for
GPT-3 (Brown et al., 2020)), it becomes compu-
tationally expensive and challenging to fine-tune
the entire pre-trained language model (LM). Thus,
it is natural to ask the question of whether we can
transfer the knowledge of a pre-trained LM into
downstream tasks by tuning only a small portion
of its parameters with most of them freezing.
Studies have attempted to address this ques-
tion from different perspectives. One line of
research (Li and Liang, 2021) suggests to aug-
ment the model with a few small trainable mod-
ules and freeze the original transformer weight.
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Figure 1: Overall evaluation on 10 NLU tasks. Note
that we do not include parameters from classification
heads.

Take Adapter (Houlsby et al., 2019; Pfeiffer et al.,
2020a,b) and Compacter (Mahabadi et al., 2021)
for example, both of them insert a small set of ad-
ditional modules between each transformer layer.
During fine-tuning, only these additional and task-
specific modules are trained, reducing the trainable
parameters to 1-3% of the original transformer
model per task.

Another line of works focus on prompting.
The GPT-3 models (Brown et al., 2020; Schick
and Schiitze, 2020) find that with proper manual
prompts, a pre-trained LM can successfully match
the fine-tuning performance of BERT models. LM-
BFF (Gao et al., 2020), EFL (Wang et al., 2021),
and AutoPrompt (Shin et al., 2020) further this di-
rection by insert prompts in the input embedding
layer. However, these methods rely on grid-search
for a natural language-based prompt from a large
search space, resulting in difficulties to optimize.

To tackle this issue, prompt tuning (Lester et al.,
2021), prefix tuning (Li and Liang, 2021), and P-
tuning (Liu et al., 2021b) are proposed to prepend
trainable prefix tokens to the input layer and train
these soft prompts only during the fine-tuning stage.
In doing so, the problem of searching discrete



prompts are converted into an continuous optimiza-
tion task, which can be solved by a variety of op-
timization techniques such as SGD and thus sig-
nificantly reduced the number of trainable parame-
ters to only a few thousand. However, all existing
prompt-tuning methods have thus far focused on
task-specific prompts, making them incompatible
with the traditional LM objective. For example, it
is unlikely to see many different sentences with the
same prefix in the pre-training corpus. In light of
these limitations, we instead ask the following ques-
tion: Can we generate input-dependent prompts to
smooth the domain difference?

In this paper, we present the instance-dependent
prompt generation (IDPG) strategy for efficiently
tuning large-scale LMs. Different from the tradi-
tional prompt-tuning methods that rely on a fixed
prompt for each task, IDPG instead develops a
conditional prompt generation model to generate
prompts for each instance. Formally, the IDPG
generator can be denoted as f(x; W), where x is
the instance representation and W represents the
trainable parameters. In the extreme case, set-
ting W to a zero matrix and only training the bias
would degenerate it to the traditional prompt tun-
ing (Lester et al., 2021). To further reduce the
number of parameters in the generator f(x; W), we
first apply a lightweight bottleneck architecture (a
two-layer perceptron), and then decompose it by a
parameterized hypercomplex multiplication (PHM)
layer (Zhang et al., 2021). In summary, our contri-
butions are three-fold:

* We proposed an input-dependent prompt gen-
eration method, IDPG, which only requires
training 105K parameters per task (roughly
equal to 0.03% of a pre-trained LM like
RoBERTa-Large (Liu et al., 2019)).

* A systematic evaluation on ten natural lan-
guage understanding (NLU) tasks shows that
our proposed method consistently outper-
forms the traditional task-specific prompt tun-
ing methods by 0.4-1.9 points. Our method
also has comparable performance to Adapter-
based methods while using much fewer pa-
rameters (105K vs. 6.2M).

* This method provides a new research angle
for prompt-tuning, which can be combined
with other efficient transfer learning paradigm
such as multi-layer prompt tuning.

2 Preliminary

2.1 Manual Prompt

Manual prompt learning (Brown et al., 2020;
Schick and Schiitze, 2020) insert a pre-defined la-
bel words in each input sentence. For example,
it reformulates a sentence sentiment classification
task with an input sentence S as

Xin = [CLS]P[SEP]S; [EOS],

where P is the prompt such as “indicating the pos-
itive user sentiment”. Using pre-trained language
model M, we can obtain the sentence represen-
tation hc1s; = M(x;,), and train a task-specific
head softmax(Whcys;) to maximize the log-
probability of the correct label. LM-BFF (Gao
et al., 2020) showed that adding a specifically de-
signed prompt during fine-tuning can benefit the
few-shot scenario. EFL (Wang et al., 2021) further
showed that reformulating the task as entailment
can further improve the performance in both low-
resource and high-resource scenarios.

2.2 Prompt Tuning

Prompt tuning (Lester et al., 2021), prefix tun-
ing (Li and Liang, 2021), and P-tuning (Liu et al.,
2021b) methods propose to insert a trainable prefix
in front of the input sequence. Specifically, they
reformulate the input for single sentence tasks as

xin = concat|[W,,E([SEP]S, [EOS])]
and for sentence pair tasks as
xin = concat|[W,,E([SEP]S, [SEP]S3[E0S])],

where W), is the embedding table of the inserted
prompt, Sy and S3 are input sentences, and E de-
notes the operation of tokenization and extraction
of embedding. Apart from LM-BFF and EFL, there
is no corresponding real text for the prompt as W,
is a set of random-initialized tensors to represent
the soft prompt.

3 Instance-Dependent Prompt
Generation (IDPG)

We now introduce our proposed method, IDPG,
along with various model optimizations. The main
procedure is illustrated in Figure 2.
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Figure 2: An illustration of (a) manual prompt; (b) prompt-tuning method; (c) our proposed method. The red block
refers to the trainable module, while the blue block refers to the frozen module.

3.1 Instance-Dependent Generation

Let us assume a task 7' with training data Dy, =
{(xi,y:) },. Following prompt tuning, we define
the input x; = E([SEP]S; [SEP]S,[E0S]) for
sentence-pair task or x; = E([SEP ] S| [EOS] ) for
single-sentence task, where E(-) is the token em-
bedding for input sentences. Different from all pre-
vious works that only define a task-specific prompt
W, (T) € R¥!, where ¢ is the number of tokens
in prompt representation and d is the hidden di-
mension, we propose a instance-dependent prompt
generation method. Specifically, we suppose that
the generation of prompt should not only depend
on the task 7', but also be affected by input se-
quence x;. If M(x;) € R? is a representation of the
input sequence x; from the same pre-trained LM
M, we design a lightweight model G to generate
the prompt,

WP(Tvxi) G(M(xi)vT)a Xi € Dtrain (1)

Then, we insert a prompt W,(7) together with
input sequence x; to infer y; during fine-tuning. In
this way, we have a unified template

softmax(Whicrs;) )

hicis; =M(concatx, W,(T,x)]) ()

where W is the trainable LM classification head.
To reduce the number of trainable parameters in
G, we apply a lightweight bottleneck architecture
(i.e., a two-layer perceptron) for generation. As il-
lustrated in Figure 3, the generator G first projects
the original d-dimensional sentence representation
h; into m dimensions. After passing through a
nonlinear function, generator G projects the hid-
den representation back to a d dimensions with ¢
timestamps. The total number of parameters for
generator G is m(d + 1) 4 td(m + 1) (bias term in-
cluded). This model can be regarded as the general
version of prompt tuning: the bias term ¢ X d in the
second layer of G is a task-specific prompt, with
preceding parts generating an instance-dependent
prompt. The final prompt our method generated is
a combination of both. We can control the added
number of trainable parameters by setting m < d,
but it is still expensive since hidden dimension d is
usually large (1024 in BERT/RoBERTa-Large). In
the sequel, we will introduce a parameter squeez-
ing method to further reduce trainable parameters
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Figure 3: An illustration of prompt generator. In prac-
tice, PHM decomposes W1 and W, as sum of Kronecker
products.

without sacrificing performance.

Note that our proposed method relies on the
input sentence representation M(xl-) to generate
prompts. One caveat is that this method will have
two forward passes of the pre-trained LM during
inference time — first to generate M(x;) and then to
generate classification results. However, the sen-
tence representation M(x;) used in our method is
task-agnostic. In practice, we can cache the predic-
tion M(x;) and use it in various downstream tasks
or rely on a lightweight sentence representation
such as Glove (Pennington et al., 2014).

3.2 Optimization

We propose two optimization techniques to further
improve our proposed method.

3.2.1 Parameterized Hypercomplex
Multiplication (PHM) Layers

Inspired by the recent application of parameterized
hypercomplex multiplication (PHM) layers (Zhang
et al., 2021) in Compacter (Mahabadi et al., 2021),
we can leverage PHM layers to optimize our
prompt generator, G. Generally, the PHM layer
is a fully-connected layer with form y = Wx + b,
where x € R? is the input feature, y € R™ is the
output feature, and W € R”*? and b € R are the
trainable parameters. When m and d are large, the
cost of learning W becomes the main bottleneck.
PHM replaces the matrix W by a sum of Kronecker
products of several small matrices. Given a user-
defined hyperparameter n € Z" that divides m and
d, W can be calculated as follows:

W= iAi®Bi €]
i=1

where A; € R"" B; € R%X%, and ) is Kronecker
product. In this way, the number of trainable param-
eter is reduced ton x (n x n+2 x 4) = p3 4 mxd
Considering 7 is usually much smaller than m and
d, PHM reduces the amount of parameters by a
factor of n.

Suppose that we have a two layer perceptron
with down-sample projection W € R”*¢ and up-
sample projection W, € R™*4*™" where d is the
input embedding dimension, m is the hidden layer
dimension, and ¢ is the number of tokens we gener-
ate. For example, we use RoOBERTa-Large with hid-
den size d = 1024, generator hidden size m = 256,
n = 16, prompt length ¢+ = 5. By substituting the
W; and W, by two PHM layers and letting A;
shared by both layers, we can reduce the number
of parameters from 1.5M to 105K.

3.2.2 Supplementary Training

According to previous works (Phang et al., 2018;
Wang et al., 2021), supplementing pre-trained LMs
with rich data helps tasks with limited labels and
stabilizes downstream fine-tuning. Following this
idea, we conduct intermediate training for our pro-
posed method.
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Figure 4: Length difference of GLUE sentence pair
datasets.

However, a drawback of supplementary training
is that if the data distribution of the downstream
tasks is quite different from the supplementary
training task, i.e., MRPC vs. MNLI (Wang et al.,
2018), it may harm the downstream performance.
Figure 4 provides a comprehensive statistic among
all sentence pair tasks in GLUE benchmark. For
example, the length of the first sentence in MNLI
is 9.8 longer than the second sentence on average,
while this length difference in MRPC is only 0.6.
One natural solution to smooth the length distribu-
tion difference between tasks is to insert prompt in



both supplementary training and downstream fine-
tuning stage. For example, assuming that we are
adding a prompt with a length t = 5 after the sec-
ond sentence in the supplementary training stage on
MNLI. Then, when fine-tuning downstream tasks
such as MRPC, we concatenate the prompt after
the first sentence. In this way, the length differ-
ence in MNLI and MRPC becomes more balanced:
4.8 vs. 0.6 +5 = 5.6. As shown in Figure 5, we
test five different insertion positions (Pos 0—4) for
sentence pair tasks and three different positions
(Pos 0, 1, 4) for single sentence tasks. We further
reduce the distribution difference by reconstruct-
ing the supplementary training data. We double
the MNLI dataset by reordering the two sentences
on one shard, and use the doubled dataset during
intermediate training.
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Figure 5: Insertion positions for sentence-pair tasks.

4 Experiment Results

4.1 Experimental Setup

We evaluate on ten standard natural language un-
derstanding (NLU) datasets — MPQA (Wiebe et al.,
2005), Subj (Pang and Lee, 2004), CR (Hu and
Liu, 2004), MR (Pang and Lee, 2005), and six
tasks from GLUE (Wang et al., 2018) viz. SST-2,
QNLI, RTE, MRPC, STS-B (Cer et al., 2017) and
QQP. We compare our proposed method with a
wide range of methods, as follows:

Transformer fine-tuning: We instantiated two
versions — vanilla transformer fine-tuning (Liu
et al.,, 2019) and the entailment-based fine-
tuning (Wang et al., 2021).

Prompt tuning: We implemented two versions
— standard prompt tuning (Lester et al., 2021) and
prompt tuning with re-parameterization (Li and
Liang, 2021). We also implemented the linear prob-
ing method that can be regarded as prompt tuning
with length # = 0.

Adapter-based fine-tuning: This efficient
transfer learning method inserts a adaptation
module inside each transformer layer includ-
ing Compactor (Mahabadi et al., 2021) and
Adapter (Houlsby et al., 2019).

We compare these against two versions of
instance-dependent generation methods: IDPG-

DNN and IDPG-PHM. The first version is based
on a 2-layer perceptron generator, which con-
tains 1.5M parameters. The second one uses the
PHM layer and only contains 105K parameters.
For a fair comparison, all the pre-trained LM are
24-layer 16-head RoBERTa-Large models (Liu
etal., 2019), and include supplementary training on
MNLI dataset before any downstream fine-tuning.

Fine-tuning on small datasets is significantly af-
fected by initialization (Wang et al., 2021). We
follow the existing standard paradigm, where each
model runs 5 times using 5 different random seeds.
We report both average and voting results that takes
the ensemble strategy across the 5 predictions. Us-
ing a majority vote can help us measure the limita-
tion of each model after reducing the large variance
problem. For intermediate training on MNLI, as
introduced in Section 3.2, we run all the methods
on a modified MNLI data (i.e., double the MNLI
data and reverse sentence order on one copy) for
5 epochs. We adopt a default fine-tuning setting:
training for 10 epochs on 8 GPUs, using a batch
size of 16/32, a learning rate of 5e~* and a prompt
length ¢t = 5. More training details can be found in
Appendix A.

4.2 Performance in high-resource scenario

Table 1 shows the results of all the methods on
full datasets across 10 NLU tasks. In all prompt-
tuning methods, we report both average and voting
results across 5 prompt implementations. We ob-
serve that: (i) Supplementary training on MNLI can
increase the performance of prompt-tuning across
most tasks, especially in the sentence-pair tasks.
(ii) Our proposed method IDPG-PHM (DNN) con-
sistently outperforms the prompt tuning method
(with MNLI training) by average 0.4pt (0.5pt) or
with voting by 0.6pt (0.5pt). The improvement is
even bigger in single-sentence classification task.
For example, our proposed method performs 1.9pt
better than prompt-tuning in CR. (iii) PHM-based
generator performs on par with the DNN-based
generator while having significantly lower num-
ber of trainable parameters. Another interesting
observation is that the re-parameterization scheme
proposed in (Li and Liang, 2021) performs slightly
worse compared to directly tuning the prompts,
which is consistent with the recent observation
in (Liu et al., 2021a).

Compared with other efficient transfer learning
methods, IDPG performs slightly better than the



Table 1: Main results of different transfer learning method. Each methods are evaluated on full test sets. We report
both average results (top) and the voting result (bottom) across 5 runs. Bold and underline mark the best result in
average and voting results, respectively. We report the average of accuracy and F1 for both MRPC and QQP, and

average of Pearson and Spearman correlation coefficients for STS-B. For all the other tasks, we report accuracy.

Method MPQA  Subj CR MR SST2 QNLI  RTE  MRPC STS-B  QQP | Avg
Transformer Fine-tuning
RoBERTa 90.3 972 92.4 918 95.8 94.8 86.2 91.2 92.0 906 | 922
EFL 90.7 97.3 92.6 923 96.3 94.3 84.8 90.9 92,0 90.7 | 92.2
Adapter
Compacter 90.5 96.9 85.8 84.1 93.0 92.9 71.7 90.8 90.5 88.6 | 89.1
Adapter 90.4 97.4 86.1 85.6 96.1 94.4 89.5 87.6 89.2 89.0 | 90.5
Prompting
) 829194 922403 879107 86.0zg2 90495 8l4rgr 855104 838204 85203 81.092 | 85.6
Linear Probing g3 5 92,6 88.6 86.3 91.1 81.7 85.9 84.2 86.3 813 | 86.2
) 8491335 934104 865115 872:05 939106 860104 87.0102 828107 86.6103 80.8:02 | 86.9
Prompttuning " g¢ > 94.1 86.7 88.0 94.8 86.6 88.1 84.1 87.4 814 | 877
+ MNLI 88.8102 943405 884125 89097 94493 908101 892101 838405 8516 82.004 | 88.6
89.3 94.7 90.5 89.8 94.7 91.2 89.5 83.7 86.1 823 | 892
+ Re-param 894011_0 93.7:&0‘3 87.411‘7 88.710,7 94-2i0.5 90.7:&0_3 87.9:&0_9 85.211,1 84.510‘3 80.910,9 88.2
P 89.5 94.0 89.7 89.5 94.5 90.9 88.4 86.5 86.3 81.6 | 89.1
[DPG-PHM 89.6.105 94495 903, 8931904 947102 907403 89240, 84395 847i9 82540, | 89.0
90.1 95.3 913 90.1 95.3 91.3 89.5 85.4 86.5 830 | 8938
IDPG.DNN 895007 949104 899115 902106 95.1in 905105 894104 830105 853107 82.7.03 | 89.1
90.0 95.8 91.3 91.2 95.2 91.3 89.5 83.0 86.3 83.4 | 897
Compacter (Mahabadi et al., 2021), and slightly  better than the Compacter.
worse than Adapter (Houlsby et al., 2019), across
the ten tasks. However, we observe that the gap is Method | Parameters
mostly from sentence-pair tasks while IDPG-PHM Transformer Fine-tune (Liu et al., 2019) 355M
is very efficient in single-sentence tasks. For ex- Adapter (Houlsby et al., 2019) 6.2M
y g Compacter (Mahabadi et al., 2021) 104k
ample, IDPG performs 1.2pts better than Adapter Prompt-tuning (Lester et al., 2021) 5K
over the five single-sentence tasks. We hypothe- + Re-param (Li and Liang, 2021) 14M
. : . IDPG-DNN 1.5M
size that since the current prompt tuning method IDPG-PHM 105K

is embedding-based while Adapter/Compacter are
layer-based, the sentence-pair tasks require steer-
ing model attention within each layer. We discuss
additional steps to improve the performance in Sec-
tion 6.

4.3 Efficiency

Table 2 lists the number of trainable parameters for
different methods excluding the classification head.
The general goal for efficient transfer learning is to
train models with fewer parameters while achieving
better performance. The ideal model in Figure 1
should be the one on the left-top corner. Tradi-
tional prompt-tuning method only requires training
a token embedding table with a few thousand pa-
rameters. However, its performance is worse than
a lightweight adapter model (e.g., Compacter with
104K parameters). Our proposed method, espe-
cially the IDPG-PHM, falls in the gap between
prompt-tuning and adapter model, since it only
requires training 105K parameters and performs

Table 2: Number of trainable parameters of different
methods. Note that we did not include the parameters
from classification heads.

4.4 Performance in low-resource scenario

We further evaluate our proposed method in the
low-resource scenario. Following the existing eval-
uation protocols in the few-shot setting (He et al.,
2021), we sample a subset of the training data for
each task with size K € {100,500,1000} as our
training data and another subset with size 1000 as
a development set.

In the extreme low-resource case when K=100,
IDPG performs 0.9pt better than the traditional
prompt tuning method. This improvement is higher
than in high-resource scenario, illustrating that our
method has better generalization in few-shot set-
tings. When K becomes larger, IDPG-PHM still
maintains good results with 0.1pt (K=500) and
0.5pt (K=1000) better accuracy than traditional



Table 3: Low-resource results are evaluated on full test sets. We report both average results (top) and the voting
result (bottom) across 5 runs. Bold and underline mark the best result in average and voting results, respectively. We
report the average of accuracy and F1 for both MRPC and QQP, and average of Pearson and Spearman correlation
coefficients for STS-B. For all other tasks, we report accuracy.

Method MPQA Subj CR MR SST-2 QNLI RTE MRPC STS-B QQpP ‘ Avg
K =100
prompt tuning 75-9i1.6 86.8i0_3 72-9i1.4 74-1i1.4 82.9i2,0 82.7i0,2 86.5i0.6 80.0i1,3 70-2i3.1 76.5i044 78.9
+ MNLI 76.9 87.4 72.7 74.7 84.0 83.1 87.7 81.1 72.8 76.7 79.7
IDPG-PHM 79.0.37 87.6.1 750416 762413 87.6113 80.411, 86.3105 793104 709,55 76.1106 79.8
) 78.2 89.4 74.8 77.5 86.1 81.3 85.6 80.5 73.5 76.5 80.3
IDPG-DNN 78.0421 842116 763145 774105  89.6:12 8l.ligg 874108 788i13  70.6008  T4lio9 | 79.8
74.6 85.2 76.5 78.4 92.5 82.3 88.4 79.6 72.8 74.5 80.5
K =500
prompt tuning 82.4i1.3 91-2i0.l 86.8i0‘4 84.6i0,g 88.6i1,0 86.3i0,4 86.5i0.4 80.0i0.4 77-4il.9 77.8i()‘3 84.2
+ MNLI 82.8 91.8 86.8 85.5 89.2 86.7 85.9 78.6 79.2 719 84.4
IDPG-PHM 81.6427 914,07 858170 858105 88513 850404 86.313 819108 783115 781403 | 843
82.5 9.5 85.6 86.9 89.4 86.3 86.6 82.7 79.7 8.6 85.1
IDPG-DNN 84.8.07 90.8.10.6 89.7110 86.1.73 9046 84.8.03 87.7 107 82.014 79173 771404 85.3
854 92.2 90.8 88.1 92.1 85.3 87.4 82.8 81.6 78.0 86.4
K =1000
prompt tuning 839120 92.640.4 872414 86.7403 89.9.410 86.9..1 86.4.107 82.5403 829413 78.6403 85.8
+ MNLI 84.6 92.8 87.6 87.1 90.5 87.4 85.6 82.2 84.1 78.8 86.1
IDPG-PHM 834417 934,00 892408 88.0109 9024150 855106 869106 83104 839108 789404 | 86.3
85.2 94.2 90.0 88.6 91.2 86.2 86.3 84.5 85.2 79.3 87.1
IDPG-DNN 859,08 933112 899,03 89.6.1; 922,03 852:13 87.7:08 825i09 847109 78.0i08 | 86.9
86.6 94.2 90.3 90.2 92.8 86.8 87.7 82.9 85.2 78.6 87.5

prompt tuning. We also observe that when K is
small, our method sometimes has a higher variance
than the standard prompt tuning method. We sus-
pect that this may be due to bad initialization that
leads our model to non-optimal parameters.

4.5 Intrinsic Study

We conduct several ablation studies including ex-
ploration of different generator architectures and
impact of selecting different prompt positions.

4.5.1 Generator Architecture Exploration

We explore three different architectures for the
proposed PHM-based generator: (i) Residual: a
residual structure (He et al., 2016) is applied to
add the sentence representation to each generated
tokens; (ii) LayerNorm: layer normalization (Ba
et al., 2016) is also added to normalize the gener-
ated token embedding; (iii) residual + layerNorm:
a mixed model that uses both the residual compo-
nent and LayerNorm. Note that, to balance the to-
ken embedding and sentence embedding, we apply
LayerNorm to each embedding first, then after the
add-up, use LayerNorm again to control the gener-
ated tokens. We observe that adding LayerNorm
slightly improves the voting results, while residual
performs slightly worse. One surprising result is
that the mixed model of Residual and LayerNorm

has significantly poorer performance compared to
other methods.

Architecture Avg  Voting
PHM 86.1 86.9
+residual 85.9 86.7
+LayerNorm 86.1 87.1

+residual+LayerNorm  77.8 81.2

Table 4: Ablation study on generator architecture.

4.5.2 Prompt Position

As we discussed in Section 3.2.2, the prompt po-
sition has a direct impact on the prediction results.
We conduct a comprehensive study of the prompt
position for our proposed method in both sup-
plementary training and downstream fine-tuning
phases.

Looking at the prompt position in downstream
tasks first, Figure 6(a) shows that for both stan-
dard prompt tuning and our proposed method, the
best position is O for single-sentence tasks and 1
for sentence-pair tasks. This result is intuitive for
single-sentence tasks since prompt in position 0
can be regarded as the premise and original input
sentence as the hypothesis. For sentence-pair tasks,
we hypothesize that inserting prompt into position
1 can better align the two input sentences. Fig-
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Figure 6: Impact of prompt position on (a) downstream
tasks; (b) supplementary training phase.

ure 6(b) illustrates the effect of prompt position
on the supplementary training phase. It is interest-
ing that IDPG achieves best results in position 0
while the standard prompt-tuning achieves the best
results in position 4 for both single-sentence and
sentence-pair tasks.

5 Related Work

Supplementary Training: Existing works (Phang
et al., 2018; Liu et al., 2019) have observed that
starting from the fine-tuned MNLI model results in
a better performance than directly from the vanilla
pre-trained models for RTE, STS, and MRPC tasks.
A series of work (SentenceBERT (Reimers and
Gurevych, 2019), BERT-flow (Li et al., 2020), Sim-
CSE (Gao et al., 2021)) explored intermediate train-
ing to improve STS tasks. All of them applied
pre-fine tuning on NLI datasets. More recently,
EFL (Wang et al., 2021) proposed a task transfor-
mation paradigm, improving single sentence tasks
with less labels using rich sentence-pair datasets.
Adapter Tuning: Adapter tuning has emerged
as a novel parameter-efficient transfer learning
paradigm (Houlsby et al., 2019; Pfeiffer et al.,
2020b), in which adapter layers — small bottleneck
layers — are inserted and trained between frozen
pre-trained transformer layers. On the GLUE
benchmark, adapters attain within 0.4% of the
performance of full fine-tuning by only training
3.6% parameters per task. Compactor (Mahabadi
et al., 2021) substitutes the down-projector and up-
projector matrices by a sum of Kronecker products,
reducing the parameters by a large margin while
maintaining the overall performance.
Prompting: Hand-crafted prompts were shown to
be helpful to adapt generation in GPT-3 (Brown
et al,, 2020). Existing works including LM-
BFF (Gao et al., 2020; Wang et al., 2021) explored
the prompt searching in a few-shot setting.
Recently, several researchers have proposed con-

tinuous prompts training to overcome the chal-
lenges in discrete prompt searching. Prefix tun-
ing (Li and Liang, 2021) prepends a sequence of
trainable embeddings at each transformer layer and
optimizes them for natural language generation
tasks. Two contemporaneous works — prompt tun-
ing (Lester et al., 2021) and P-tuning (Liu et al.,
2021b), interleave the training parameters in the
input embedding layer instead of each transformer
layer. All these methods focus on task-specific
prompt optimization. Our proposed method, IDPG,
is the first prompt generator that is not only task-
specific but also instance-specific.

6 Conclusion and Discussion

We have introduced IDPG, an instance-dependent
prompt generation model that generalizes better
than the existing prompt tuning methods. Our
method first factors in a instance-dependent prompt,
which is robust to data variance. Parameterized
Hypercomplex Multiplication (PHM) is applied to
shrink the training parameters in our prompt gener-
ator, which helps us build an extreme lightweight
generation model. Despite adding fewer parame-
ters than prompt tuning, IDPG shows consistent
improvement. It also outperforms the lightweight
adapter tuning methods such as Compacter while
using similar amount of trainable parameters. This
work provided a new research angle for prompt-
tuning of a pre-trained language model. We also
obtained a comprehensive understanding of how to
smooth the distribution gap in intermediate training
through our extensive experiments. These results
could be further improved in future by:
Multi-layer Prompt Generation: Existing
work (Li and Liang, 2021; Liu et al., 2021a)
showed that we can insert prompts or prefixes into
each layer of pre-trained LM, which can further
improve the performance while slightly increasing
number of trainable parameters. One promising
direction is to combine our PHM-based generation
model with the multi-layer prompt tuning.
Lightweight Input Representation: The pro-
posed IDPG method relies on pre-trained LM to
extract sentence representation, i.e., [CLS] token
embedding. Obtaining contextualized transformer
sentence embedding is often expensive if it is not
pre-computed. One open question is to explore reli-
ability on lightweight sentence representations such
as GLOVE embedding (Pennington et al., 2014) or
token embedding of pre-trained language models.
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A Appendix

A.1 Experimental Settings

We use RoBERTa-Large (Liu et al., 2019) model implemented by Fairseq (Ott et al., 2019) as our basic
model. The detailed model hyperparameters are listed below:

Hyperparam Supplmentary  Finetune few-shot
#Layers 24 24 24
Hidden size 1024 1024 1024
FFN inner hidden size 4096 4096 4096
Attention heads 16 16 16
Attention head size 64 64 64
dropout 0.1 0.1 0.1
Learning Rate linearly decayed fixed fixed
Peak Learning Rate le™d 5e~4 5e74
Batch Size 32 {16, 32} 16
Weight Decay 0.1 0.1 0.1
Training Epoch 10 10 50
Adam € le-6 le-6 le-6
Adam S, 0.9 0.9 0.9
Adam f3, 0.98 0.98 0.98

Table 5: Hyperparameters for supplmentary training, fine-tuning, few-shot fine-tuning.

Note that both transformer fine-tuning method including RoBERTa (Liu et al., 2019) and EFL (Wang
etal., 2021) used a polynomial learning rate scheduler with 6% of total steps to warm up.

A.2 Datasets
We provide a detailed information in Table 6 for 10 NLU datasets we used.

Corpus ITrainl  |Valiadationl Task Evaluation Metrics

Single Sentence Tasks

CR 1,775 2,000 sentiment accuracy
MR 8,662 2,000 sentiment accuracy
SUBIJ 8,000 2,000 sentiment accuracy
MPQA 8,606 2,000 opinion polarity accuracy
SST-2 67,349 1,821 sentiment analysis accuracy
Sentence Pair Tasks

QNLI 104,743 5,463 NLI accuracy
RTE 2,491 278 NLI accuracy
MRPC 3,668 409 paraphrase accuracy/F1
QQP 363,846 40,430 paraphrase accuracy/F1
STS-B 5,749 1,500 sentence similarity ~ Pearson/Spearman corr.

Table 6: The datasets evaluated in this work.
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