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Abstract

Text watermark focuses on injecting identifi-
able information into the generated content,
which has become increasingly important with
the rapid development of Large Language Mod-
els (LLMs). Existing watermarking works ei-
ther divide the vocabulary of LLMs into “green”
and “red” tokens for the watermark genera-
tion (i.e., token-level watermark), or use the
distance of generated sentence embeddings to
distinguish the “green” and “red” partitions
(i.e., sentence-level watermark). Despite the
achieved progress, existing methods are still
vulnerable when dealing with attacking or Out-
Of-Distribution (OOD) generalization. To this
end, we focus on sentence-level watermark and
propose a novel Semantic-oriented Robust Text
Watermark for LLMs (SoTW). Specifically, we
first employ a pre-trained embedding model to
obtain representations of generated sentences.
Then, different from existing sentence-level
works, we design a novel Semantic Quanti-
zation AutoEncoder (SQAE) to generate dis-
crete representations for the partitions. More-
over, a semantic loss and a consistency loss
are developed to ensure the generalization and
robustness of generated watermarks. Further-
more, we develop an easy-to-use detection
method for our proposed SoTW. Extensive ex-
periments with two LLMs over two publicly
available datasets demonstrated the robustness
of SoTW in different attack methods and OOD
settings. As a bypass, we release the code to
facilitate the community'.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive generation capabilities and have
been widely used in various applications, such
as ChatBot (OpenAl, 2023), Copilot (Microsoft,
2023), Claude (Anthropic, 2023), etc. With the
deep collaboration of LLMs in content generation,
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Figure 1: Illustration of sentence distributions divided
by existing sentence-level watermark algorithms, where
similar sentence embeddings are represented by the
same color, and the blue partition indicates that the
test data is misclassified based on the distribution space
partitioned by training data.

potential risks (e.g., misleading information, copy-
right issues) also become essential when using gen-
erated content (Rillig et al., 2023). For example,
lawyers use LLMs to fabricate a legal brief filled
with fictitious case references?, and the New York
Times sues OpenAl for generating content that in-
fringes on its copyrights?.

Among all of them, text watermark technology
can be used in both information identification and
copyright tracing, which has become a hot topic
in LLMs application (Kirchenbauer et al., 2023;
Chen et al., 2024b). Specifically, text watermark
for LLMs aims to embed implicit identifiable in-
formation into generated content, in which de-
signing “red” and “green” groups is the common
paradigm. For LLMs, this technology can be clas-
sified into token-level (e.g., KGW (Kirchenbauer
et al., 2023), SIR (Liu et al., 2024)) and sentence-

Zhttps://www.nytimes.com/2023/06/22/nyregion/lawyers-
chatgpt-schwartz-loduca.html

3https://nytco-assets.nytimes.com/2023/12/NYT_Complaint_
Dec2023.pdf



Algorithm Model  Similar Dissimilar  Avg.
SEMSTAMP LSH 4230% 86.25% 64.28%
k-SEMSTAMP k-means 73.76%  53.32%  63.54%

Table 1: Results (Accuracy 1) of partitioning sentences
by constructing sentence partitions with size 64 using
LSH and k-means employed in SEMSTAMP and k-
SEMSTAMP, respectively. Similar: sentences with a
similarity score above 4.0 fall into the same partition;
Dissimilar: sentences with a similarity score below 0.7
fall into different partitions. Note that the training data
is MultiNLI (Williams et al., 2018) and the test data is
STS (Cer et al., 2017).

level (e.g., SEMSTAMP (Hou et al., 2024a), k-
SEMSTAMP (Hou et al., 2024b)) watermark algo-
rithms based on the granularity of the watermark.
Token-level methods usually focus on how to di-
vide the vocabulary into “red” and “green” tokens.
E.g., KGW utilizes the hash value of a previous
token as the random seed to divide the vocabulary
of LLMs into “red” and “green” tokens, favoring
“green” tokens by increasing their logits during sam-
pling. Sentence-level methods focus on projecting
the sentence representations into “red” and “green”
sentence partitions. For example, k--SEMSTAMP
uses k-means clustering (Lloyd, 1982) based on
sentence embedding distances to determine clus-
ter centers as sentence partition anchors, then di-
vides these sentence partitions into “green” and
“red” partitions using the sentence partition number
of a previous sentence as the random seed. During
sampling, sentences that fall into “green” partitions
are preferentially selected.

Despite the progress, existing methods still suf-
fer from the vulnerable watermarking capability
and poor generalization. For token-level methods,
sentence-level attacks (e.g., translation) can easily
break pre-defined “red” and “green” groups, ren-
dering the watermark. For sentence-level methods,
existing methods usually construct sentence parti-
tions based on the distances between the generated
sentences and the partition anchors, suffering from
weak Out-Of-Distribution (OOD) generalizations.
Taking Figure 1 (a) as an example, existing meth-
ods usually employ cluster methods to decide the
partition anchors (i.e., the red and green points
in the figure). Then, they use the distance calcu-
lations to realize the partition. However, when
dealing with OOD scenarios (i.e., Figure 1 (a)),
existing methods will inevitably conduct incorrect
partitions. Moreover, these incorrect partitions will
cause a large number of generated sentences to be
clustered into the same partition (i.e., (1) partition in

Figure 1 (b)), thus significantly reducing the quality
of watermarks. To support our opinion, we conduct
experiments over advanced k-SEMSTAMP and re-
port results in Table 1. From the results, we ob-
serve that k-SEMSTAMP tends to divide sentences
with different meanings into the same partition, re-
sulting in higher sentence concentration and lower
distinguishability (i.e., lower value on Dissimilar).
Therefore, one important question remains unre-
solved “How to construct robust sentence parti-
tions for sentence-level text watermarking?”

To this end, in this paper, we propose a novel
Semantic-oriented Robust Text Watermark for
LLMs (SoTW) for robust sentence-level watermark-
ing. Different from existing sentence-level meth-
ods, we innovatively propose to use a learnable
discrete representation to directly represent differ-
ent partitions. Specifically, we first leverage pre-
trained embedding models (e.g., BGE-M3 (Chen
et al., 2024a)) to generate sentence embeddings.
Then, instead of finding the partition anchors and
calculating the distance, we design a novel Seman-
tic Quantization AutoEncoder (SQAE) to generate
the discrete representations by taking the sentence
embeddings as the input. Since the discrete repre-
sentation will lose important semantic information,
we develop a semantic loss to ensure that discrete
representations can maintain as much information
as possible. Moreover, considering that sentences
with the same semantics can be expressed in multi-
ple different ways, we design a consistency loss to
improve the robustness of the partition boundaries.
Along this line, LLMs generated sentences can
be accurately assigned to corresponding partitions,
thus improving the generalization and robustness
of sentence-level watermarking. Finally, extensive
experiments on two advanced LLMs against eight
state-of-the-art algorithms demonstrate the superi-
ority and effectiveness of SoTW. Compared with
existing token-level and sentence-level watermark
algorithms, SoTW improves watermark embedding
success rate and resistance to translation attacks by
76% and 94%, respectively.

2 Related Work

In this section, we group the related work into two
categories based on the granularity of watermark:
Token-level watermark algorithms and Sentence-
level watermark algorithms.

Token-level watermark algorithms aim to
mark some tokens as “green” before generating
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Figure 2: The overall process of watermark generation and detection.

a token, and then select these green-marked to-
kens during sampling. KGW (Kirchenbauer et al.,
2023) divides the vocabulary of LLMs into “red”
and “green” tokens based on the hash value of the
previous token, and increases the probability of
green-marked tokens being selected by increas-
ing logits of these tokens. To improve the robust-
ness of KGW, UNIGRAM (Zhao et al., 2024) fixes
the vocabulary of LLMs globally to avoid the im-
pact of text changes on “red” and “green” tokens.
However, due to the lack of diversity in “red” and
“green” tokens, they can be easily inferred, and
non-watermarked texts may still contain a large
number of green-marked tokens, leading to more
false positives. Semantically Invariant Robust wa-
termark algorithm (SIR) (Liu et al., 2024) divides
the LLMs vocabulary according to text semantics,
improving the robustness of the embedded water-
mark against attacks. To further resist translation
attacks, X-SIR (He et al., 2024) marks tokens that
mutually translate in the vocabulary with the same
color. Moreover, Robust and Imperceptible Water-
mark algorithm (RIW) (Ren et al., 2024) leverages
token prior probabilities to divide the vocabulary,
improving detectability and maintaining watermark
imperceptibility. Besides, to improve the quality
of the generated text, Watermarking with Mutual
Exclusion (WatME) (Chen et al., 2024b) clusters
synonyms and divides them into “red” and “green”
synonyms. However, paraphrase attacks can re-
move watermarks by replacing words or word order
without changing the semantics. Therefore, para-
phrase attacks may eliminate watermarks generated
by token-level watermark algorithms.

Sentence-level watermark algorithms aim to
mark some sentences as “‘green’” before generat-
ing sentences, and then select these green-marked
sentences during sampling to embed watermarks.
These algorithms embed watermarks based on sen-
tence semantics, ensuring that the embedded wa-

termarks will not be eliminated when the sentence
semantics are unchanged. SEMSTAMP (Hou et al.,
2024a) uses locality-sensitive hashing (LSH) (In-
dyk and Motwani, 1998; Charikar, 2002) randomly
partitioning the hash space to construct sentence
partitions and dividing them into “green” and “red”
partitions. Subsequently, sentences that fall into
green-marked partitions are selected during sam-
pling. However, randomly constructing sentence
partitions does not guarantee that semantically sim-
ilar sentences fall into the same partition. Further,
k-SEMSTAMP (Hou et al., 2024b) determines sen-
tence partition centers using cluster centers derived
from k-means clustering (Lloyd, 1982), based on
the distances between sentence embeddings.

Our Distinction. Different from existing meth-
ods, we propose to directly learn the discrete rep-
resentations for sentence partitions, avoiding the
sensitivity of partition anchor searching and dis-
tance calculation methods in sentence-level meth-
ods. Moreover, we leverage semantic loss and con-
sistency loss to enhance the generalization and ro-
bustness of learned partition boundaries. Along
this line, SoTW can generate robust text watermark
against various OOD and attack scenarios.

3 Semantic-oriented Robust Text
Watermark for LLMs

In this section, we describe SoTW in detail. First,
we introduce the overall pipeline of watermark gen-
eration. Then, we introduce the technical details of
SQAE and the watermark detection process.

3.1 Overall Process

The overall process of watermark generation is
illustrated in Figure 2 (a). Specifically, given the
previous sentences S._1 = [s1, S2, ..., St—1], We
need to select the ¢ sentence from a newly gen-
erated sentence set Sy = [S¢1, S¢2, ..., Sk, SO that
the watermark can be properly inserted. Thus, we



Algorithm 1 Pseudocode of Watermark Generation
Input: M: LLMs;
S1: a prompt;
T': the number of generated sentences;
[E: a pre-trained embedding model;
Q: atrained SQAE;
Output: S.7: watermark text [s1, S2, ..., ST];
1: fort =2,3,...,T do
2:  ei—1 =[E(s4—1); //sentence embedding
3:  dy—1 =Q(e—1); /discrete representation
4:  Use d;_1 as the seed to divide sentence par-
titions into “green” and “red” partitions;

5 repeat
6 s¢ = MI(S.4_1); //next sentence
7 e = E(s); //sentence embedding
8: d; = Q(ey); //discrete representation
9:  until d; in “green” partitions;
10: end for

first leverage a pre-trained embedding model to

generate embeddings E; = [es, €2, ..., ey for
S:. Then, we design a novel SQAE to generate
discrete representations D; = [dy1,dy2, ..., du].

Next, we utilize the discrete representation d;—1
of the previous sentence s;_; as the random seed
to divide sentence partitions into “green” and “red”
partitions, and select a sentence s; that falls into
“green” partition. By iterating the process, we can
realize the watermark generation. We also provide
the pseudocode in Algorithm 1 and the detailed
notation explanation in Table 5 in Appendix A.

3.2 SQAE

Structure of SQAE. As mentioned in Section 3.1,
we first leverage pre-trained embedding mod-
els (e.g., BGE-M3) to obtain sentence embeddings
E;. Then we need to construct the “green” and
“red” partitions for watermarking. In general, we
can define some partition anchors and use distance
calculation to divide S}, which is also the main
strategy of existing methods. However, this strat-
egy suffers from weak OOD generalizations. Thus,
how to construct robust partitions with sentence
embeddings remains challenging. In response, we
propose to directly learn the partition representa-
tion, which should be able to project the sentence
embeddings to different partitions directly. There-
fore, we can alleviate the negative impact of parti-
tion anchor selections and distance calculations.
Specifically, as illustrated in Figure 3, we design
a novel SQAE to achieve this goal, which consists
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Figure 3: The architecture of our proposed SQAE.

of three main components: Encoder, Codebook,
and Decoder. For simplicity, we omit the subscript
t for better description. Note that the following
process focuses on the t** green sentence selection
(watermarking process).

For Encoder, we intend the sentence embeddings
to be separated from the discrete representations.
Therefore, we take sentence embeddings e; and es
as the input and use encoder Enc(-) to generate la-
tent representations, formulating as z; = Enc(ey),
zZ9 = Enc(eg).

For Codebook, we aim to use the obtained pre-
sentations to directly generate discrete representa-
tions for the partitions. Thus, following previous
work (Van Den Oord et al., 2017), we first design a
codebook to represent the partition space, formu-
lating as R € R™*?. Then, we use the following
operation to obtain the discrete representations (i.e.,
1 for z; and j for z»):

i = argmin |21 — e,

1

Jj= argmkin |22 — cxl|?,

where cy, is the k" partition representation. || - ||?
is the Lo-norm. By using Eq.(1), we can select the
most suitable partition for each input sentence.

For Decoder, since there is no supervised signal
for the learning process of discrete partition rep-
resentations, we intend to incorporate an autoen-
coder to ensure the learning quality. Thus, we use
decoder Dec(-) to reconstruct the original embed-
dings based on latent representations, formulating
as: €1 = Dec(c;), € = Dec(c;j).

Learning Strategy of SOAE. In the above
module, we intend to project the generated sen-
tences into different partitions for watermarking.



However, one important issue remains unresolved:
“There is no supervised signal for the learning pro-
cess”. Moreover, how to ensure the robustness of
learned discrete representations is still unclear. To
tackle the above problems, we design two optimiza-
tion targets for our proposed SQAE: semantic loss
and consistency loss.

1) Semantic Loss. Since SQAE projects the sen-
tence embeddings into discrete representations, it
will inevitably lose useful information, hurting the
model performance. Therefore, we design a novel
semantic loss to alleviate this problem. Specifically,
we leverage the original embedding as the guidance
to reconstruct the original embedding via the latent
representation, ensuring that the latent representa-
tion learns more semantic information about the
original embedding. Thus, we utilize the original
embedding as the prediction target and formulate
the optimization objective as follows:

E'rec -
= |le1 — Dec(z1 + sg(ci — z1))|[3,

ller — é1[3

2

where sg(-) denotes the stop-gradient operator that
has zero partial derivatives. Meanwhile, since the
minimum operation in Eq.(1) has no gradient, the
above optimization objective cannot be used to up-
date the codebook. In response, we utilize the latent
embedding as the guidance to enable the embed-
ding in the codebook learning the semantic infor-
mation of the latent representation, and formulate
the optimization objective as follows:

Leo = |21 — CZH%

3)
= [lei = sg(20)]If5 + 0l 21 — sg(ea)]If3,

where the former optimizes the embedding in the
codebook, the latter optimizes the latent represen-
tation, and ¢ is generally set to a smaller value for
reducing the update of the latent representation.
Thus, the total semantic loss is

Es — E'rec + Eco- (4)

2) Consistency Loss. Besides, LLMs can gen-
erate multiple different sentences to express the
same semantics. Therefore, SQAE should be able
to project sentences with the same semantics into
similar discrete representations, while projecting
sentences with different semantics into different
partitions as far as possible. To this end, we maxi-
mize the divergence in their latent representations

{z1, 22}, which can be formulated as follows:

N

1 .
»Cc []]-sim(el,eg)>a57lm(z17 Z2)2+

2N pt )
Lsim(er,e2)<a Max(sim(z1, 22) — a, 0)4],

where sim(-,-) denotes the similarity function
(e.g., cosine similarity), « is a threshold, and 1
is the indicator function.

Finally, we use a weighted summarization of
Eq.(4) and Eq.(5) to construct the optimization
target for our proposed SoTW, where the former
ensures the learned quality of discrete representa-
tions and the latter improve the robustness of the
watermarking. The overall optimization can be
formulated with a hyper-parameter A as follows:

L=Ms+ (1= NL. (6)

3.3 Watermark Detection

As illustrated in Figure 2 (b), after generating wa-
termarks, it is also essential to develop a convenient
detection method. For our proposed SoTW, a third
party just needs to use the embedding model and
trained SQAE to obtain the partition of each sen-
tence and count the number of sentences that fall
into “green” partitions. Then they can detect water-
marks by testing the following null hypothesis:

HO: The rules for dividing sentence partitions
are unknown when generating text.

Since half of the sentence partitions are ran-
domly selected as “green” partitions, approxi-
mately half of sentences in the non-watermarked
text fall into “green” partitions, while all sentences
in the watermarked text fall into “green” partitions.
Therefore, we use the binomial test (Howell, 1992)
to evaluate the null hypothesis, as follows:

Nt Nt
p-value = Z <]\ZT) (;) ) @)

i=Ng

where N¢ refers to the number of green-marked
sentences, and N is the total number of sentences.
Note that our detection method requires no LLMs
and can work efficiently.

4 Experiment

In this section, we first introduce the experimental
setup. Then, we provide a detailed analysis of the
experimental results of SoTW and its rivals. More-
over, we conduct detailed experiments to verify the
effectiveness of each component in SQAE.
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Algorithm
FI+  FIt FI+  FIf FI+  FIt FI+  FIf
1%FPR 5%FPR AUCT | 14FPR 5%FPR AUCT|19FPR 5%FPR AUCT|194FPR 5%FPR AUCT
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UNIGRAM, (| 2 4697 68.11 9107 | 6126 8556 9443 | 3443 60.16 87.07 | 4044 6521 86.01 | 68.39
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No X-SIR s 2 6745 8372 9630 | 9620 9635 99.46 | 77.87 88.63 96.60 | 96.62 97.15 99.73 | 91.34
Attack RIW 5124 (Findings) 1434 5925 8554 | 2435 7334 9033 | 22.81 4649 79.79 | 29.39  59.60 86.30 | 55.96
WatME 124 91.51 9425 98.94 | 99.40 98.04 99.97 | 9232 9521 99.25 | 98.08 97.23 99.73 | 96.99
SEMSTAMPy 4 sc1 24 040 672 4807 | 871 1266 6059 | 040 189 49.14 | 502 16.11 58.77 | 22.37
E-SEMSTAMP (o (rinaines) | 273 28.15  67.51 | 4317 8673 9528 | 3.12 9.6 54.19 | 3943 7884 91.68 | 50.00
SoTW (Ours) 9777 97.16 99.81 | 98.70 97.36 99.84 | 94.12 9542 9852 | 9489 9625 99.32 | 97.43
KGWicair o3 3475  60.00 8298 | 4720 6220 84.68 | 25.00 4588 77.00 | 2676 49.79 79.86 | 56.34
UNIGRAM (24 1400 3771 7849 | 651 2297 6774 | 979 3254 7744 | 388  11.15 5442 | 3472
SIR c1 R4 39.17 5477 84.56 | 48.58 7037 88.90 | 30.54 64.95 84.90 | 39.17 61.84 88.54 | 63.02
X-SIR 124 2028 4043 8322 | 69.00 83.07 94.61 | 3630 63.10 86.32 | 58.94 75.15 92.89 | 66.94
Rewrite RIW A124 (Findings 079 1383 6510 | 1.19 2027 7180 | 235 944 5146 | - 338 5420 | 24.48
WatME ¢y 24 1996  33.12 73.17 | 4970 68.09 88.95 | 2496 47.61 78.05 | 3139 47.61 78.08 | 53.39
SEMSTAMPy s 124 196 304 4899 | 539 1026 5580 | 040 374 5157 | 157  8.04 5448 | 2044
k-SEMSTAMPAc 24 (ringings) | 079 20.82 7067 | 1296 5149 83.51 | 3.50 775 6344 | 1569 5262 77.12 | 3836
SoTW (Ours) 4094 6328 8548 | 52.98 70.69 90.20 | 3421 58.68 8345 | 3636 6452 86.15 | 63.91
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Table 2: Model performance against various attacks. Boldface and underline denote the best and second best results.

4.1 Experiment Setup

Dataset and Prompt: We utilize two datasets:
C4 (Raffel et al., 2020) and LFQA (Krishna et al.,

CD=1.90
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2024) to evaluate watermark algorithms.

C4, we take the first sentence as a prompt and

generate the next 200 tokens.

For LFQA, we

For RIW 8.39] |1.65 SoTW (Ours)
SEMSTAMP 6.80 3.48 KGW
UNIGRAM 5.81 4.15 X-SIR
SIR 5.24 4.63 k—-SEMSTAMP

use questions as prompts and generate 200 to-
ken responses. For model training, we utilize the
MultiNLI dataset (Williams et al., 2018) (different
from C4 and LFQA) to generate embeddings.
Baseline and Language Model: We select six
token-level baselines (i.e., KGW (Kirchenbauer
et al., 2023), UNIGRAM (Zhao et al., 2024),
SIR (Liu et al., 2024), X-SIR (He et al., 2024),
RIW (Ren et al.,, 2024), and WatME (Chen
et al., 2024b)) and two sentence-level baselines
(i.e., SEMSTAMP (Hou et al., 2024a) and k-
SEMSTAMP (Hou et al., 2024b)). For a fair com-
parison, we use BGE-M3 (Chen et al., 2024a) with
cross-lingual capabilities as the embedding model.
We select LLaMA2-7B-Chat (Touvron et al., 2023)
and Baichuan2-7B-Chat (Yang et al., 2023) to gen-
erate sentences for watermarking.

Evaluation: Similar to (Liu et al., 2024; Chen
et al., 2024b), to avoid the impact of detection
thresholds, we set False Positive Rate (FPR) at
1% and 5%, and adjusted the thresholds of detector
accordingly to calculate the F1 score. We also cal-
culate the Area Under the Curve (AUC) to evaluate

4.86 WatME

Figure 4: The crucial difference diagram of the Nemenyi
test for our proposed SoTW and its rivals.

performance. Furthermore, we evaluate the quality
of the generated watermarked text by calculating its
perplexity using the superior LLaMA2-13B (Tou-
vron et al., 2023) model.

Hyper-parameters: For SOQAE training, we use
Adam optimizer (Ir = 1 x 107°), the batch size is
64, the latent representation size (i.e., dimension
of z1 in Eq.(1)) is 1, 000, the size of the codebook
n is 64, the § in Eq.(3) is 0.25, the « in Eq.(5)
is 0.7, and the A in Eq.(6) is 0.5. Moreover, all
experiments are conducted on NVIDIA A100 GPU.

4.2 Watermark Robustness

Table 2 presents the watermark detection results, in-
cluding scenarios without attacks, as well as rewrit-
ing and translation to Chinese using GPT4o-mini.
We also illustrate results of watermark text trans-
lated into French and Japanese in the Appendix B.
For Rewrite and Translate attacks, we use prompts
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Figure 5: Text quality generated by LLMs with different watermark algorithms.

“Rewrite the following paragraph” and “Translate
the following English into Chinese”, respectively.
From these results, we can draw the following
conclusions. Firstly, SoTW utilizes SQAE to re-
place cluster method for constructing sentence par-
titions, effectively improving the success rate of
embedded watermarks (94% improvement in no
attack setting), proving the effectiveness of SQAE.
Moreover, when facing sentence-level attacks, es-
pecially the more destructive translation attacks,
SoTW has significant advantages. By using seman-
tic loss to capture the semantic information of sen-
tence embeddings as much as possible, and using
consistency loss to preserve the similarity infor-
mation between sentence embeddings, SOQAE can
improve the generalization and robustness of con-
structing sentence partitions in an unsupervised
manner, boosting the performance of SoTW.

Meanwhile, we observe that SIR and X-SIR have
better performance when handling rewrite attacks.
Since they tried to fix the token partitions as much
as possible (e.g., marking synonym tokens into
the same partition), they can successfully handle
rewrite attacks. However, this operation will incor-
rectly mark those generated texts that have not been
watermarked, resulting in incorrect detection (e.g.,
3.2% decrease in no attack setting). Moreover, they
still cannot deal with translation attacks. Mean-
while, k-SEMSTAMP projects sentences with dif-
ferent semantics into the same partition, which may
improve its ability to resist attacks, but higher ag-
gregation and lower distinguishability significantly
reduce the quality of the embedded watermark. In
contrast, SoTW generates discrete representations
to directly project the sentence into different par-
titions and use two optimization targets to ensure
the generalization of the partitions, thus achieving
better performance over different scenarios.

To further evaluate model performance, we per-
form Friedman test (Friedman, 1937) at 5% signifi-
cance level. The null hypothesis that all algorithms

perform equally is rejected. The average ranks
of KWG, UNIGRAM, SIR, X-SIR, RIW, WatME,
SEMSTAMP, k-SEMSTAMP, and SoTW are 3.48,
5.81, 5.24, 4.15, 8.39, 4.86, 6.80, 4.63, and 1.65,
respectively (the lower rank, the better). Then,
Nemenyi test (Nemenyi, 1963) is performed as a
post-hoc test. Figure 4 provides a Critical Differ-
ence (CD) diagram illustrating the average ranks of
each algorithm marked along the axis. The results
indicate that SoTW is significantly better than its
rivals when the critical difference is 1.90.

4.3 Watermark Text Quality

We also conduct experiments to evaluate the impact
of text watermark on text quality and summarize re-
sults in Figure 5. Here low perplexity denotes better
performance. We observe that SoTW achieves com-
parable or lower perplexity than advanced sentence-
level baselines, and even has better performance
than token-level baselines on LLaMA2-7B-Chat,
demonstrating the superiority of SoTW. In con-
trast, advanced sentence-level baselines struggle
to generate green-marked partition sentences due
to their partition method and distance calculation.
We also provide examples of watermark text in the
Appendix C for a more intuitive understanding.

4.4 Detailed Analysis

To figure out which part plays a more important
role in SQAE, we conduct detailed analyses on the
learning strategies, hyperparameter A in Eq.(6), and
embedding backbones. We also verify the impact
of different codebook sizes in the Appendix D.
Learning Strategy. Since semantic loss in
Eq.(4) is the core target of SoTW, here we just
verify the impact of consistency loss in Eq.(6). Ac-
cording to Table 3, the existence of the consistency
loss significantly enhances SOQAE to group similar
sentences within the same partition and to sepa-
rate sentences with different meanings into distinct
spaces (7.2% and 12.9% improvements on Similar



Setting Similar  Dissimilar Avg. Model Similar  Dissimilar Avg.
w/o consistency loss  70.63% 56.09% 63.36% BERT 41.63% 70.29% 55.96%
w consistency loss  75.76% 63.38% 69.57% Sentence-BERT 75.57% 69.83% 72.70%
Compositional-BERT  64.64% 71.13% 67.88%
Table 3: Results (Acc?T) with/without consistency loss. BGE-M3 75716%  63.38%  69.57%
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Figure 6: Impact of Hyperparameter A on SQAE.

and Dissimilar). This indicates that the consis-
tency loss effectively helps the model build parti-
tion boundaries, improving the robustness of the
learned discrete representations.

Hyperparameter ). In Eq.(6), we employ A to
balance the semantic loss and consistency loss. To
evaluate its impact, we conduct parameter sensi-
tive test and report results in Figure 6. From the
figure, we observe that model performance first
increases and then decreases slightly. The best
results are achieved when A\ € [0.4,0.6], which
is in line with our expectations. For the increas-
ing part, SoTW focuses more on the boundaries
of sentence partitions, which is essential for water-
marking, thus model performance increasing. For
the latter slightly fluctuating part, SoTW pays more
attention to the semantic loss, which may cause the
partition boundaries to not be so clear, leading to
the incorrect projection of sentences.

Embedding Models. To further investigate the
impact of different embedding models, we select
four advanced pre-trained embedding models for
comparison, whose results are summarized in Ta-
ble 4. From the table, we have the following obser-
vations. Since BERT is not specially designed to
obtain sentence embeddings, it tends to generate
embeddings with high similarity (Liu et al., 2024),
resulting in difficulty for SQAE to construct robust
partition boundaries. In contrast, sentence BERT is
specifically designed for sentence embeddings. We
can observe that SOAE with sentence BERT can
better deal with semantically similar sentences and
dissimilar sentences. This phenomenon is also in
line with our intuition. Better sentence embeddings
can provide more information for SoTW to gener-
ate robust discrete representations, thus generating
better watermarking. Although Sentence-BERT
achieves comparable results, its applicability is lim-

Table 4: Results (Acc 1) on various embedding models.

ited to approximately 50 languages. Therefore, we
opt for BGE-M3 as the embedding model.

5 Conclusion

In this paper, we argued that existing sentence-level
watermark algorithms for LLMs suffered from
the lack of generalizability in constructing sen-
tence partitions, showing vulnerable performance
in OOD scenarios and attacks. In response, we pro-
posed to construct sentence partitions by directly
generating discrete representations of sentence par-
titions and developed a novel SoTW. Specifically,
we first employed a pre-trained embedding model
to generate sentence embeddings. Then, we de-
signed a novel SQAE to project sentence embed-
dings into discrete representations for the water-
marking. To enhance the robustness of the learned
watermark, we designed a semantic loss to help
SoTW maintain as much information as possible
for discrete representations of sentence partitions,
and developed a consistency loss to improve the
robustness of learned sentence partition boundaries.
Finally, extensive experiments against different at-
tacks over different datasets and backbone LLMs
demonstrate the effectiveness of SoTW.

Limitations

To inspire future work, we summarize some limita-
tions of our proposed SoTW as follows:
1) Although SoTW improves the robustness of text
watermarks, limited by the performance of SQAE,
the watermark detection rate is still significantly
reduced after attacks. How to further improve the
accuracy of constructing sentence partitions needs
to be investigated.
2) SoTW achieves fast detection of watermarked
text. However, due to multiple sampling of sen-
tences during the watermark generation, text gen-
eration with SoTW is slower than that without wa-
termarks. This represents a limitation that warrants
further discussion and exploration in future work.
Despite these limitations, we believe our work
serves as an important catalyst in the field, con-
tributing positively to the advancement of more
robust text watermark techniques.
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A Notations

We summarize the necessary notations in Table 5
used in this paper.

Notation | Explanation

M LLMs
E A pre-trained embedding model
Q A trained SQAE
S The sequence of the previous ¢ sentences
s The *" sentence
e; The sentence embedding of s;
Zi The latent representation of e;
A codebook containing
R n embeddings of dimension d
i The i** embedding in R™*¢

Table 5: Notations and explanations in SoTW.

B Additional Watermark Robustness
Results

We include additional experimental results on
watermark robustness, i.e., translate watermark
text into Japanese and French using GPT40-mini
with prompt “Translate the following English into
French (Japanese)”, as shown in Table 6. We
observe that SoTW achieves almost the best re-
sults when translated into multiple languages, prov-
ing the robustness of SoTW against translation at-
tacks. This observation is consistent with the re-
sults in Section 4.2. Moreover, after translating into
Japanese, which is quite different from English,
the detection effect of our proposed algorithm is
almost doubled compared to existing token-level
watermark algorithms. This provides solid proof
for the superiority of SoTW.

C Case Study

We present some examples of SoTW generated wa-
termark text.

D Analysis of Different Codebook Size

Different codebook sizes construct sentence parti-
tions with different sizes. To evaluate the impact of
codebook size on sentence partitioning, we conduct
experiments summarized in Table 7. The results
show that as the codebook size increases, the distri-
bution of sentences becomes more dispersed (i.e.,
higher Dissimilar values). The suboptimal results
are achieved with n=64. This result can be at-
tributed to the fact that a larger number of sentence
partitions allows sentences to select partitions that
are more relevant to their semantics, facilitating
sentences with different semantics to be assigned



| | C4 dataset | LFQA dataset |

| LLaMA2-7B-Chat | Baichuan2-7B-Chat | LLaMA2-7B-Chat | Baichuan2-7B-Chatl

Setting ‘ Algorithm
FI+  FIt FI+  FIf FI+  FIt FI+  FIf
1%FPR 5%FPR AUCT | 14FPR 5%FPR AUCT|19FPR 5%FPR AUCT|194FPR 5%FPR AUCT
KGWicyios 427 1547 5587 | 617 1643 58.12| 235 980 5143 | 464 14.18 5570 | 24.54
UNIGRAM, (| 2 3388 6074 8873 | 040  3.01 32.09 | 40.44 6434 8943 | - 114 3029 | 37.04
SIR ¢ o 080 151 3008 | 040 264 2939 | 079 304 3069 | 079 154 1955 | 10.10
X-SIR ¢ 22 577 1317 5896 | 1.58  18.65 63.88 | 725 2147 6299 | 236 772 61.82 |27.14
Translate RIW ACL 24 (Findings) - - - - - - - - - - - - 0
French WatME (124 426 1183 56.14 | 1736 3412 7440 | 7.62 2558 65.14 | 2343 3568 7043 | 35.50
SEMSTAMPy 4 oc1 24 118 416 4941 | 426 815 5336 | 079 410 5074 | 273 978  52.82 | 20.12
k-SEMSTAMP (o (pinines) | 196 2529 74.08 | 2343  60.56 87.68 | 273 985 66.06 | 2496 64.68 85.10 | 43.87
SoTW (Ours) 3762 60.19 82.88 | 4533 61.84 8556 | 30.59 53.96 79.39 | 2973 59.06 80.76 | 58.91
KGW ey s 465 23.53 63.88 | 1124 2441 6393 | 615 2112 6097 | 1569 3097 66.95 | 32.79
UNIGRAM o4 - 189 2251 - - 2.67 - 189 1962 | - - 117 | 4.15
SIR 1 s - - 1066 | 235 1383 3297 | 040 115 11.11 | 040 338 2556 | 8.48
X-SIR 124 - - 4225| 157 663 4706 | 196 1115 66.12 | 4.64 1834 72.57 | 22.69
Translate RIW Ac1 04 (Findings) - - - - - - - - - - - - 0
Japanese WatME (124 040 039 1879 | - 076 1934 | - 300 2845 | 040 039 12.64 | 7.05
SEMSTAMPy 1 zc 2 079  3.04 4982 | 157 342 5088 | 040 483 51.03| 502 1149 51.84 | 19.51
k-SEMSTAMPAC, 24 (ringings) | 040 1449 6882 | 9.07 4115 7829 | 3.12 985 6214 | 1670 4586 74.18 | 3534
SoTW (Ours) 20.60 40.18 74.81 | 2218 41.63 79.76 | 1229 33.86 67.24 | 19.68 4375 73.07 | 44.09

Table 6: Results of our algorithm (SoTW) and its rivals against various attack methods. Boldface and underline
denote the best and the second best results.

Text Content P-value
Prompt A version of this article appeared in the print edition of The Daily Star on July 12, 2018, on page 16.
A version of this article appeared in the print edition of The Daily Star on July 12, 2018, on page 16.\nAssembled by Palestinian
artist Said Baalbaki, the exhibition presents 50 of Abbo's sketches, etchings and object, as well as texts — all taken from Baalbaki's
Original personal collection of work from, and publications on, the elusive sculptor. B 0.00
was not until he moved to Berlin in 1911 to study sculpture that his artistic career took shape.\nBaalbaki has spent the last four
years finding, and determining attribution for, 70 artworks and 100 texts mentioning the artist.[...truncated]
A version of this article appeared in the print edition of The Daily Star on July 12, 2018, on page 16.
Watermarked 0.99
[...truncated]
Prompt According to Variety, one of the movies about the 1973 tennis match between Billie Jean King and Bobby Riggs is recasting one of
its leads.
According to Variety, one of the movies about the 1973 tennis match between Billie Jean King and Bobby Riggs is recasting one of
its leads.
Original It'" s Battle Of The Sexes, the middle one that' s supposed to be a comedy with “dramatic and | 0.01
political overtones” as we said in an earlier report. Battle Of The Sexes comes from Little Miss Sunshine’ s Jonathan Dayton
and Valerie Faris, and it was set to star Emma Stone and Steve Carell as the eponymous sexes.[...truncated]
According to Variety, one of the movies about the 1973 tennis match between Billie Jean King and Bobby Riggs is recasting one of
its leads.
Watermarked 0.99
[...truncated]

Figure 7: Comparison of original and watermarked text using the LLaMA2-7B-Chat. Green and red sentences are
color-coded respectively.

n Similar  Dissimilar Avg.

8 75.38% 58.03% 66.70%
16  78.33% 53.69% 66.01%
32 7253% 63.28% 67.91%
64  75.76% 63.38% 69.57%
128 74.43% 62.73% 68.58%
256 71.10% 68.91% 70.01%

Table 7: Results (Accuracy 1) of SQAE with different
codebook sizes. Boldface and underline denote the best
and the second best results.

to different partitions. However, limited by the
ability of the pre-trained embedding model to cap-
ture semantic features of sentences, the increased
codebook size also increases the number of mis-
classified semantically similar sentences.
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