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Abstract001

Text watermark focuses on injecting identifi-002
able information into the generated content,003
which has become increasingly important with004
the rapid development of Large Language Mod-005
els (LLMs). Existing watermarking works ei-006
ther divide the vocabulary of LLMs into “green”007
and “red” tokens for the watermark genera-008
tion (i.e., token-level watermark), or use the009
distance of generated sentence embeddings to010
distinguish the “green” and “red” partitions011
(i.e., sentence-level watermark). Despite the012
achieved progress, existing methods are still013
vulnerable when dealing with attacking or Out-014
Of-Distribution (OOD) generalization. To this015
end, we focus on sentence-level watermark and016
propose a novel Semantic-oriented Robust Text017
Watermark for LLMs (SoTW). Specifically, we018
first employ a pre-trained embedding model to019
obtain representations of generated sentences.020
Then, different from existing sentence-level021
works, we design a novel Semantic Quanti-022
zation AutoEncoder (SQAE) to generate dis-023
crete representations for the partitions. More-024
over, a semantic loss and a consistency loss025
are developed to ensure the generalization and026
robustness of generated watermarks. Further-027
more, we develop an easy-to-use detection028
method for our proposed SoTW. Extensive ex-029
periments with two LLMs over two publicly030
available datasets demonstrated the robustness031
of SoTW in different attack methods and OOD032
settings. As a bypass, we release the code to033
facilitate the community1.034

1 Introduction035

Large Language Models (LLMs) have demon-036

strated impressive generation capabilities and have037

been widely used in various applications, such038

as ChatBot (OpenAI, 2023), Copilot (Microsoft,039

2023), Claude (Anthropic, 2023), etc. With the040

deep collaboration of LLMs in content generation,041

1http://anonymous.4open.science/r/SoTW/
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A gentle joy illuminated her face.

Her face glowed with joy.
Subtle joy illuminated her face.

It felt completely authentic.
The feeling was entirely real.

It came from the heart.

Figure 1: Illustration of sentence distributions divided
by existing sentence-level watermark algorithms, where
similar sentence embeddings are represented by the
same color, and the blue partition indicates that the
test data is misclassified based on the distribution space
partitioned by training data.

potential risks (e.g., misleading information, copy- 042

right issues) also become essential when using gen- 043

erated content (Rillig et al., 2023). For example, 044

lawyers use LLMs to fabricate a legal brief filled 045

with fictitious case references2, and the New York 046

Times sues OpenAI for generating content that in- 047

fringes on its copyrights3. 048

Among all of them, text watermark technology 049

can be used in both information identification and 050

copyright tracing, which has become a hot topic 051

in LLMs application (Kirchenbauer et al., 2023; 052

Chen et al., 2024b). Specifically, text watermark 053

for LLMs aims to embed implicit identifiable in- 054

formation into generated content, in which de- 055

signing “red” and “green” groups is the common 056

paradigm. For LLMs, this technology can be clas- 057

sified into token-level (e.g., KGW (Kirchenbauer 058

et al., 2023), SIR (Liu et al., 2024)) and sentence- 059

2https://www.nytimes.com/2023/06/22/nyregion/lawyers-
chatgpt-schwartz-loduca.html

3https://nytco-assets.nytimes.com/2023/12/NYT_Complaint_
Dec2023.pdf
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Algorithm Model Similar Dissimilar Avg.

SEMSTAMP LSH 42.30% 86.25% 64.28%
k-SEMSTAMP k-means 73.76% 53.32% 63.54%

Table 1: Results (Accuracy ↑) of partitioning sentences
by constructing sentence partitions with size 64 using
LSH and k-means employed in SEMSTAMP and k-
SEMSTAMP, respectively. Similar: sentences with a
similarity score above 4.0 fall into the same partition;
Dissimilar: sentences with a similarity score below 0.7
fall into different partitions. Note that the training data
is MultiNLI (Williams et al., 2018) and the test data is
STS (Cer et al., 2017).

level (e.g., SEMSTAMP (Hou et al., 2024a), k-060

SEMSTAMP (Hou et al., 2024b)) watermark algo-061

rithms based on the granularity of the watermark.062

Token-level methods usually focus on how to di-063

vide the vocabulary into “red” and “green” tokens.064

E.g., KGW utilizes the hash value of a previous065

token as the random seed to divide the vocabulary066

of LLMs into “red” and “green” tokens, favoring067

“green” tokens by increasing their logits during sam-068

pling. Sentence-level methods focus on projecting069

the sentence representations into “red” and “green”070

sentence partitions. For example, k-SEMSTAMP071

uses k-means clustering (Lloyd, 1982) based on072

sentence embedding distances to determine clus-073

ter centers as sentence partition anchors, then di-074

vides these sentence partitions into “green” and075

“red” partitions using the sentence partition number076

of a previous sentence as the random seed. During077

sampling, sentences that fall into “green” partitions078

are preferentially selected.079

Despite the progress, existing methods still suf-080

fer from the vulnerable watermarking capability081

and poor generalization. For token-level methods,082

sentence-level attacks (e.g., translation) can easily083

break pre-defined “red” and “green” groups, ren-084

dering the watermark. For sentence-level methods,085

existing methods usually construct sentence parti-086

tions based on the distances between the generated087

sentences and the partition anchors, suffering from088

weak Out-Of-Distribution (OOD) generalizations.089

Taking Figure 1 (a) as an example, existing meth-090

ods usually employ cluster methods to decide the091

partition anchors (i.e., the red and green points092

in the figure). Then, they use the distance calcu-093

lations to realize the partition. However, when094

dealing with OOD scenarios (i.e., Figure 1 (a)),095

existing methods will inevitably conduct incorrect096

partitions. Moreover, these incorrect partitions will097

cause a large number of generated sentences to be098

clustered into the same partition (i.e., 1⃝ partition in099

Figure 1 (b)), thus significantly reducing the quality 100

of watermarks. To support our opinion, we conduct 101

experiments over advanced k-SEMSTAMP and re- 102

port results in Table 1. From the results, we ob- 103

serve that k-SEMSTAMP tends to divide sentences 104

with different meanings into the same partition, re- 105

sulting in higher sentence concentration and lower 106

distinguishability (i.e., lower value on Dissimilar). 107

Therefore, one important question remains unre- 108

solved “How to construct robust sentence parti- 109

tions for sentence-level text watermarking?” 110

To this end, in this paper, we propose a novel 111

Semantic-oriented Robust Text Watermark for 112

LLMs (SoTW) for robust sentence-level watermark- 113

ing. Different from existing sentence-level meth- 114

ods, we innovatively propose to use a learnable 115

discrete representation to directly represent differ- 116

ent partitions. Specifically, we first leverage pre- 117

trained embedding models (e.g., BGE-M3 (Chen 118

et al., 2024a)) to generate sentence embeddings. 119

Then, instead of finding the partition anchors and 120

calculating the distance, we design a novel Seman- 121

tic Quantization AutoEncoder (SQAE) to generate 122

the discrete representations by taking the sentence 123

embeddings as the input. Since the discrete repre- 124

sentation will lose important semantic information, 125

we develop a semantic loss to ensure that discrete 126

representations can maintain as much information 127

as possible. Moreover, considering that sentences 128

with the same semantics can be expressed in multi- 129

ple different ways, we design a consistency loss to 130

improve the robustness of the partition boundaries. 131

Along this line, LLMs generated sentences can 132

be accurately assigned to corresponding partitions, 133

thus improving the generalization and robustness 134

of sentence-level watermarking. Finally, extensive 135

experiments on two advanced LLMs against eight 136

state-of-the-art algorithms demonstrate the superi- 137

ority and effectiveness of SoTW. Compared with 138

existing token-level and sentence-level watermark 139

algorithms, SoTW improves watermark embedding 140

success rate and resistance to translation attacks by 141

76% and 94%, respectively. 142

2 Related Work 143

In this section, we group the related work into two 144

categories based on the granularity of watermark: 145

Token-level watermark algorithms and Sentence- 146

level watermark algorithms. 147

Token-level watermark algorithms aim to 148

mark some tokens as “green” before generating 149
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Figure 2: The overall process of watermark generation and detection.

a token, and then select these green-marked to-150

kens during sampling. KGW (Kirchenbauer et al.,151

2023) divides the vocabulary of LLMs into “red”152

and “green” tokens based on the hash value of the153

previous token, and increases the probability of154

green-marked tokens being selected by increas-155

ing logits of these tokens. To improve the robust-156

ness of KGW, UNIGRAM (Zhao et al., 2024) fixes157

the vocabulary of LLMs globally to avoid the im-158

pact of text changes on “red” and “green” tokens.159

However, due to the lack of diversity in “red” and160

“green” tokens, they can be easily inferred, and161

non-watermarked texts may still contain a large162

number of green-marked tokens, leading to more163

false positives. Semantically Invariant Robust wa-164

termark algorithm (SIR) (Liu et al., 2024) divides165

the LLMs vocabulary according to text semantics,166

improving the robustness of the embedded water-167

mark against attacks. To further resist translation168

attacks, X-SIR (He et al., 2024) marks tokens that169

mutually translate in the vocabulary with the same170

color. Moreover, Robust and Imperceptible Water-171

mark algorithm (RIW) (Ren et al., 2024) leverages172

token prior probabilities to divide the vocabulary,173

improving detectability and maintaining watermark174

imperceptibility. Besides, to improve the quality175

of the generated text, Watermarking with Mutual176

Exclusion (WatME) (Chen et al., 2024b) clusters177

synonyms and divides them into “red” and “green”178

synonyms. However, paraphrase attacks can re-179

move watermarks by replacing words or word order180

without changing the semantics. Therefore, para-181

phrase attacks may eliminate watermarks generated182

by token-level watermark algorithms.183

Sentence-level watermark algorithms aim to184

mark some sentences as “green” before generat-185

ing sentences, and then select these green-marked186

sentences during sampling to embed watermarks.187

These algorithms embed watermarks based on sen-188

tence semantics, ensuring that the embedded wa-189

termarks will not be eliminated when the sentence 190

semantics are unchanged. SEMSTAMP (Hou et al., 191

2024a) uses locality-sensitive hashing (LSH) (In- 192

dyk and Motwani, 1998; Charikar, 2002) randomly 193

partitioning the hash space to construct sentence 194

partitions and dividing them into “green” and “red” 195

partitions. Subsequently, sentences that fall into 196

green-marked partitions are selected during sam- 197

pling. However, randomly constructing sentence 198

partitions does not guarantee that semantically sim- 199

ilar sentences fall into the same partition. Further, 200

k-SEMSTAMP (Hou et al., 2024b) determines sen- 201

tence partition centers using cluster centers derived 202

from k-means clustering (Lloyd, 1982), based on 203

the distances between sentence embeddings. 204

Our Distinction. Different from existing meth- 205

ods, we propose to directly learn the discrete rep- 206

resentations for sentence partitions, avoiding the 207

sensitivity of partition anchor searching and dis- 208

tance calculation methods in sentence-level meth- 209

ods. Moreover, we leverage semantic loss and con- 210

sistency loss to enhance the generalization and ro- 211

bustness of learned partition boundaries. Along 212

this line, SoTW can generate robust text watermark 213

against various OOD and attack scenarios. 214

3 Semantic-oriented Robust Text 215

Watermark for LLMs 216

In this section, we describe SoTW in detail. First, 217

we introduce the overall pipeline of watermark gen- 218

eration. Then, we introduce the technical details of 219

SQAE and the watermark detection process. 220

3.1 Overall Process 221

The overall process of watermark generation is 222

illustrated in Figure 2 (a). Specifically, given the 223

previous sentences S:t−1 = [s1, s2, ..., st−1], we 224

need to select the tth sentence from a newly gen- 225

erated sentence set St = [st1, st2, ..., stk], so that 226

the watermark can be properly inserted. Thus, we 227
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Algorithm 1 Pseudocode of Watermark Generation
Input: M: LLMs;

s1: a prompt;
T : the number of generated sentences;
E: a pre-trained embedding model;
Q: a trained SQAE;

Output: S:T : watermark text [s1, s2, ..., sT ];
1: for t = 2, 3, ..., T do
2: et−1 = E(st−1); //sentence embedding
3: dt−1 = Q(et−1); //discrete representation
4: Use dt−1 as the seed to divide sentence par-

titions into “green” and “red” partitions;
5: repeat
6: st = M(S:t−1); //next sentence
7: et = E(st); //sentence embedding
8: dt = Q(et); //discrete representation
9: until dt in “green” partitions;

10: end for

first leverage a pre-trained embedding model to228

generate embeddings Et = [et1, et2, ..., etk] for229

St. Then, we design a novel SQAE to generate230

discrete representations Dt = [dt1,dt2, ...,dtk].231

Next, we utilize the discrete representation dt−1232

of the previous sentence st−1 as the random seed233

to divide sentence partitions into “green” and “red”234

partitions, and select a sentence st that falls into235

“green” partition. By iterating the process, we can236

realize the watermark generation. We also provide237

the pseudocode in Algorithm 1 and the detailed238

notation explanation in Table 5 in Appendix A.239

3.2 SQAE240

Structure of SQAE. As mentioned in Section 3.1,241

we first leverage pre-trained embedding mod-242

els (e.g., BGE-M3) to obtain sentence embeddings243

Et. Then we need to construct the “green” and244

“red” partitions for watermarking. In general, we245

can define some partition anchors and use distance246

calculation to divide St, which is also the main247

strategy of existing methods. However, this strat-248

egy suffers from weak OOD generalizations. Thus,249

how to construct robust partitions with sentence250

embeddings remains challenging. In response, we251

propose to directly learn the partition representa-252

tion, which should be able to project the sentence253

embeddings to different partitions directly. There-254

fore, we can alleviate the negative impact of parti-255

tion anchor selections and distance calculations.256

Specifically, as illustrated in Figure 3, we design257

a novel SQAE to achieve this goal, which consists258

Enc( )

e1 e2

Dec( )

z1 z2

e1 e2

... ...c1 c2 cn

ci cj

 Consistency 
Loss

Semantic 
Loss Codebook

 ∙

 ∙

Figure 3: The architecture of our proposed SQAE.

of three main components: Encoder, Codebook, 259

and Decoder. For simplicity, we omit the subscript 260

t for better description. Note that the following 261

process focuses on the tth green sentence selection 262

(watermarking process). 263

For Encoder, we intend the sentence embeddings 264

to be separated from the discrete representations. 265

Therefore, we take sentence embeddings e1 and e2 266

as the input and use encoder Enc(·) to generate la- 267

tent representations, formulating as z1 = Enc(e1), 268

z2 = Enc(e2). 269

For Codebook, we aim to use the obtained pre- 270

sentations to directly generate discrete representa- 271

tions for the partitions. Thus, following previous 272

work (Van Den Oord et al., 2017), we first design a 273

codebook to represent the partition space, formu- 274

lating as R ∈ Rn×d. Then, we use the following 275

operation to obtain the discrete representations (i.e., 276

i for z1 and j for z2): 277

i = argmin
k

∥z1 − ck∥2,

j = argmin
k

∥z2 − ck∥2,
(1) 278

where ck is the kth partition representation. || · ||2 279

is the L2-norm. By using Eq.(1), we can select the 280

most suitable partition for each input sentence. 281

For Decoder, since there is no supervised signal 282

for the learning process of discrete partition rep- 283

resentations, we intend to incorporate an autoen- 284

coder to ensure the learning quality. Thus, we use 285

decoder Dec(·) to reconstruct the original embed- 286

dings based on latent representations, formulating 287

as: ê1 = Dec(ci), ê2 = Dec(cj). 288

Learning Strategy of SQAE. In the above 289

module, we intend to project the generated sen- 290

tences into different partitions for watermarking. 291
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However, one important issue remains unresolved:292

“There is no supervised signal for the learning pro-293

cess”. Moreover, how to ensure the robustness of294

learned discrete representations is still unclear. To295

tackle the above problems, we design two optimiza-296

tion targets for our proposed SQAE: semantic loss297

and consistency loss.298

1) Semantic Loss. Since SQAE projects the sen-299

tence embeddings into discrete representations, it300

will inevitably lose useful information, hurting the301

model performance. Therefore, we design a novel302

semantic loss to alleviate this problem. Specifically,303

we leverage the original embedding as the guidance304

to reconstruct the original embedding via the latent305

representation, ensuring that the latent representa-306

tion learns more semantic information about the307

original embedding. Thus, we utilize the original308

embedding as the prediction target and formulate309

the optimization objective as follows:310

Lrec = ||e1 − ê1||22
= ||e1 −Dec(z1 + sg(ci − z1))||22,

(2)311

where sg(·) denotes the stop-gradient operator that312

has zero partial derivatives. Meanwhile, since the313

minimum operation in Eq.(1) has no gradient, the314

above optimization objective cannot be used to up-315

date the codebook. In response, we utilize the latent316

embedding as the guidance to enable the embed-317

ding in the codebook learning the semantic infor-318

mation of the latent representation, and formulate319

the optimization objective as follows:320

Lco = ||z1 − ci||22
= ||ci − sg(z1)]||22 + δ||z1 − sg(ci)]||22,

(3)321

where the former optimizes the embedding in the322

codebook, the latter optimizes the latent represen-323

tation, and δ is generally set to a smaller value for324

reducing the update of the latent representation.325

Thus, the total semantic loss is326

Ls = Lrec + Lco. (4)327

2) Consistency Loss. Besides, LLMs can gen-328

erate multiple different sentences to express the329

same semantics. Therefore, SQAE should be able330

to project sentences with the same semantics into331

similar discrete representations, while projecting332

sentences with different semantics into different333

partitions as far as possible. To this end, we maxi-334

mize the divergence in their latent representations335

{z1, z2}, which can be formulated as follows: 336

Lc =
1

2N

N∑
i=1

[1sim(e1,e2)>αsim(z1, z2)
2+

1sim(e1,e2)≤αmax(sim(z1, z2)− α, 0)2],

(5) 337

where sim(·, ·) denotes the similarity function 338

(e.g., cosine similarity), α is a threshold, and 1 339

is the indicator function. 340

Finally, we use a weighted summarization of 341

Eq.(4) and Eq.(5) to construct the optimization 342

target for our proposed SoTW, where the former 343

ensures the learned quality of discrete representa- 344

tions and the latter improve the robustness of the 345

watermarking. The overall optimization can be 346

formulated with a hyper-parameter λ as follows: 347

L = λLs + (1− λ)Lc. (6) 348

3.3 Watermark Detection 349

As illustrated in Figure 2 (b), after generating wa- 350

termarks, it is also essential to develop a convenient 351

detection method. For our proposed SoTW, a third 352

party just needs to use the embedding model and 353

trained SQAE to obtain the partition of each sen- 354

tence and count the number of sentences that fall 355

into “green” partitions. Then they can detect water- 356

marks by testing the following null hypothesis: 357

H0: The rules for dividing sentence partitions 358

are unknown when generating text. 359

Since half of the sentence partitions are ran- 360

domly selected as “green” partitions, approxi- 361

mately half of sentences in the non-watermarked 362

text fall into “green” partitions, while all sentences 363

in the watermarked text fall into “green” partitions. 364

Therefore, we use the binomial test (Howell, 1992) 365

to evaluate the null hypothesis, as follows: 366

p-value =

NT∑
i=NG

(
NT

i

)(
1

2

)NT

, (7) 367

where NG refers to the number of green-marked 368

sentences, and NT is the total number of sentences. 369

Note that our detection method requires no LLMs 370

and can work efficiently. 371

4 Experiment 372

In this section, we first introduce the experimental 373

setup. Then, we provide a detailed analysis of the 374

experimental results of SoTW and its rivals. More- 375

over, we conduct detailed experiments to verify the 376

effectiveness of each component in SQAE. 377
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Setting Algorithm

C4 dataset LFQA dataset

Avg.↑LLaMA2-7B-Chat Baichuan2-7B-Chat LLaMA2-7B-Chat Baichuan2-7B-Chat

F1↑ F1↑
AUC↑

F1↑ F1↑
AUC↑

F1↑ F1↑
AUC↑

F1↑ F1↑
AUC↑1%FPR 5%FPR 1%FPR 5%FPR 1%FPR 5%FPR 1%FPR 5%FPR

No
Attack

KGWICML’23 97.14 96.96 99.66 99.30 97.74 99.94 93.68 95.41 99.14 98.70 98.13 99.90 97.98
UNIGRAMICLR’24 46.97 68.11 91.07 61.26 85.56 94.43 34.43 60.16 87.07 40.44 65.21 86.01 68.39

SIRICLR’24 89.13 92.20 98.37 93.91 95.52 99.04 81.59 91.62 96.98 96.52 96.44 99.36 94.22
X-SIRACL’24 67.45 83.72 96.30 96.20 96.35 99.46 77.87 88.63 96.60 96.62 97.15 99.73 91.34

RIWACL’24 (Findings) 14.34 59.25 85.54 24.35 73.34 90.33 22.81 46.49 79.79 29.39 59.60 86.30 55.96
WatMEACL’24 91.51 94.25 98.94 99.40 98.04 99.97 92.32 95.21 99.25 98.08 97.23 99.73 96.99

SEMSTAMPNAACL’24 0.40 6.72 48.07 8.71 12.66 60.59 0.40 1.89 49.14 5.02 16.11 58.77 22.37
k-SEMSTAMPACL’24 (Findings) 2.73 28.15 67.51 43.17 86.73 95.28 3.12 9.16 54.19 39.43 78.84 91.68 50.00

SoTW (Ours) 97.77 97.16 99.81 98.70 97.36 99.84 94.12 95.42 98.52 94.89 96.25 99.32 97.43

Rewrite

KGWICML’23 34.75 60.00 82.98 47.20 62.20 84.68 25.00 45.88 77.00 26.76 49.79 79.86 56.34
UNIGRAMICLR’24 14.00 37.71 78.49 6.51 22.97 67.74 9.79 32.54 77.44 3.88 11.15 54.42 34.72

SIRICLR’24 39.17 54.77 84.56 48.58 70.37 88.90 30.54 64.95 84.90 39.17 61.84 88.54 63.02
X-SIRACL’24 20.28 40.43 83.22 69.00 83.07 94.61 36.30 63.10 86.32 58.94 75.15 92.89 66.94

RIWACL’24 (Findings) 0.79 13.83 65.10 1.19 20.27 71.80 2.35 9.44 51.46 - 3.38 54.20 24.48
WatMEACL’24 19.96 33.12 73.17 49.70 68.09 88.95 24.96 47.61 78.05 31.39 47.61 78.08 53.39

SEMSTAMPNAACL’24 1.96 3.04 48.99 5.39 10.26 55.80 0.40 3.74 51.57 1.57 8.04 54.48 20.44
k-SEMSTAMPACL’24 (Findings) 0.79 20.82 70.67 12.96 51.49 83.51 3.50 7.75 63.44 15.69 52.62 77.12 38.36

SoTW (Ours) 40.94 63.28 85.48 52.98 70.69 90.20 34.21 58.68 83.45 36.36 64.52 86.15 63.91

Translate
Chinese

KGWICML’23 3.12 10.47 47.87 6.90 18.97 56.99 1.18 9.11 48.07 5.02 13.52 57.07 23.19
UNIGRAMICLR’24 3.89 8.39 49.33 4.26 20.24 64.00 3.88 10.49 50.34 3.88 13.17 55.41 23.94

SIRICLR’24 0.40 0.78 7.51 10.51 27.59 66.10 0.40 3.01 8.65 12.27 24.41 68.83 19.21
X-SIRACL’24 2.73 8.39 70.64 3.88 10.47 34.07 9.07 36.19 80.81 5.41 10.85 37.67 25.85

RIWACL’24 (Findings) - - - - - - - - - - - - 0
WatMEACL’24 1.57 2.26 21.95 - 0.38 16.51 1.58 4.47 31.25 2.75 3.42 16.91 8.59

SEMSTAMPNAACL’24 2.73 4.90 51.01 5.02 8.50 53.55 0.79 13.50 54.74 3.12 12.83 54.16 22.07
k-SEMSTAMPACL’24 (Findings) 0.79 17.71 69.70 12.27 42.58 77.84 3.12 8.10 63.52 21.55 58.81 81.27 38.11

SoTW (Ours) 19.32 41.39 73.02 22.50 43.52 78.63 13.33 37.96 71.68 21.91 48.92 76.71 45.74

Table 2: Model performance against various attacks. Boldface and underline denote the best and second best results.

4.1 Experiment Setup378

Dataset and Prompt: We utilize two datasets:379

C4 (Raffel et al., 2020) and LFQA (Krishna et al.,380

2024) to evaluate watermark algorithms. For381

C4, we take the first sentence as a prompt and382

generate the next 200 tokens. For LFQA, we383

use questions as prompts and generate 200 to-384

ken responses. For model training, we utilize the385

MultiNLI dataset (Williams et al., 2018) (different386

from C4 and LFQA) to generate embeddings.387

Baseline and Language Model: We select six388

token-level baselines (i.e., KGW (Kirchenbauer389

et al., 2023), UNIGRAM (Zhao et al., 2024),390

SIR (Liu et al., 2024), X-SIR (He et al., 2024),391

RIW (Ren et al., 2024), and WatME (Chen392

et al., 2024b)) and two sentence-level baselines393

(i.e., SEMSTAMP (Hou et al., 2024a) and k-394

SEMSTAMP (Hou et al., 2024b)). For a fair com-395

parison, we use BGE-M3 (Chen et al., 2024a) with396

cross-lingual capabilities as the embedding model.397

We select LLaMA2-7B-Chat (Touvron et al., 2023)398

and Baichuan2-7B-Chat (Yang et al., 2023) to gen-399

erate sentences for watermarking.400

Evaluation: Similar to (Liu et al., 2024; Chen401

et al., 2024b), to avoid the impact of detection402

thresholds, we set False Positive Rate (FPR) at403

1% and 5%, and adjusted the thresholds of detector404

accordingly to calculate the F1 score. We also cal-405

culate the Area Under the Curve (AUC) to evaluate406

CD=1.90

9 8 7 6 5 4 3 2 1

SoTW (Ours)1.65

KGW3.48

X−SIR4.15

k−SEMSTAMP4.63

WatME4.86

SIR 5.24

UNIGRAM 5.81

SEMSTAMP 6.80

RIW 8.39

Figure 4: The crucial difference diagram of the Nemenyi
test for our proposed SoTW and its rivals.

performance. Furthermore, we evaluate the quality 407

of the generated watermarked text by calculating its 408

perplexity using the superior LLaMA2-13B (Tou- 409

vron et al., 2023) model. 410

Hyper-parameters: For SQAE training, we use 411

Adam optimizer (lr = 1 ∗ 10−5), the batch size is 412

64, the latent representation size (i.e., dimension 413

of z1 in Eq.(1)) is 1, 000, the size of the codebook 414

n is 64, the δ in Eq.(3) is 0.25, the α in Eq.(5) 415

is 0.7, and the λ in Eq.(6) is 0.5. Moreover, all 416

experiments are conducted on NVIDIA A100 GPU. 417

4.2 Watermark Robustness 418

Table 2 presents the watermark detection results, in- 419

cluding scenarios without attacks, as well as rewrit- 420

ing and translation to Chinese using GPT4o-mini. 421

We also illustrate results of watermark text trans- 422

lated into French and Japanese in the Appendix B. 423

For Rewrite and Translate attacks, we use prompts 424
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Figure 5: Text quality generated by LLMs with different watermark algorithms.

“Rewrite the following paragraph” and “Translate425

the following English into Chinese”, respectively.426

From these results, we can draw the following427

conclusions. Firstly, SoTW utilizes SQAE to re-428

place cluster method for constructing sentence par-429

titions, effectively improving the success rate of430

embedded watermarks (94% improvement in no431

attack setting), proving the effectiveness of SQAE.432

Moreover, when facing sentence-level attacks, es-433

pecially the more destructive translation attacks,434

SoTW has significant advantages. By using seman-435

tic loss to capture the semantic information of sen-436

tence embeddings as much as possible, and using437

consistency loss to preserve the similarity infor-438

mation between sentence embeddings, SQAE can439

improve the generalization and robustness of con-440

structing sentence partitions in an unsupervised441

manner, boosting the performance of SoTW.442

Meanwhile, we observe that SIR and X-SIR have443

better performance when handling rewrite attacks.444

Since they tried to fix the token partitions as much445

as possible (e.g., marking synonym tokens into446

the same partition), they can successfully handle447

rewrite attacks. However, this operation will incor-448

rectly mark those generated texts that have not been449

watermarked, resulting in incorrect detection (e.g.,450

3.2% decrease in no attack setting). Moreover, they451

still cannot deal with translation attacks. Mean-452

while, k-SEMSTAMP projects sentences with dif-453

ferent semantics into the same partition, which may454

improve its ability to resist attacks, but higher ag-455

gregation and lower distinguishability significantly456

reduce the quality of the embedded watermark. In457

contrast, SoTW generates discrete representations458

to directly project the sentence into different par-459

titions and use two optimization targets to ensure460

the generalization of the partitions, thus achieving461

better performance over different scenarios.462

To further evaluate model performance, we per-463

form Friedman test (Friedman, 1937) at 5% signifi-464

cance level. The null hypothesis that all algorithms465

perform equally is rejected. The average ranks 466

of KWG, UNIGRAM, SIR, X-SIR, RIW, WatME, 467

SEMSTAMP, k-SEMSTAMP, and SoTW are 3.48, 468

5.81, 5.24, 4.15, 8.39, 4.86, 6.80, 4.63, and 1.65, 469

respectively (the lower rank, the better). Then, 470

Nemenyi test (Nemenyi, 1963) is performed as a 471

post-hoc test. Figure 4 provides a Critical Differ- 472

ence (CD) diagram illustrating the average ranks of 473

each algorithm marked along the axis. The results 474

indicate that SoTW is significantly better than its 475

rivals when the critical difference is 1.90. 476

4.3 Watermark Text Quality 477

We also conduct experiments to evaluate the impact 478

of text watermark on text quality and summarize re- 479

sults in Figure 5. Here low perplexity denotes better 480

performance. We observe that SoTW achieves com- 481

parable or lower perplexity than advanced sentence- 482

level baselines, and even has better performance 483

than token-level baselines on LLaMA2-7B-Chat, 484

demonstrating the superiority of SoTW. In con- 485

trast, advanced sentence-level baselines struggle 486

to generate green-marked partition sentences due 487

to their partition method and distance calculation. 488

We also provide examples of watermark text in the 489

Appendix C for a more intuitive understanding. 490

4.4 Detailed Analysis 491

To figure out which part plays a more important 492

role in SQAE, we conduct detailed analyses on the 493

learning strategies, hyperparameter λ in Eq.(6), and 494

embedding backbones. We also verify the impact 495

of different codebook sizes in the Appendix D. 496

Learning Strategy. Since semantic loss in 497

Eq.(4) is the core target of SoTW, here we just 498

verify the impact of consistency loss in Eq.(6). Ac- 499

cording to Table 3, the existence of the consistency 500

loss significantly enhances SQAE to group similar 501

sentences within the same partition and to sepa- 502

rate sentences with different meanings into distinct 503

spaces (7.2% and 12.9% improvements on Similar 504
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Setting Similar Dissimilar Avg.

w/o consistency loss 70.63% 56.09% 63.36%
w consistency loss 75.76% 63.38% 69.57%

Table 3: Results (Acc↑) with/without consistency loss.
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Figure 6: Impact of Hyperparameter λ on SQAE.

and Dissimilar). This indicates that the consis-505

tency loss effectively helps the model build parti-506

tion boundaries, improving the robustness of the507

learned discrete representations.508

Hyperparameter λ. In Eq.(6), we employ λ to509

balance the semantic loss and consistency loss. To510

evaluate its impact, we conduct parameter sensi-511

tive test and report results in Figure 6. From the512

figure, we observe that model performance first513

increases and then decreases slightly. The best514

results are achieved when λ ∈ [0.4, 0.6], which515

is in line with our expectations. For the increas-516

ing part, SoTW focuses more on the boundaries517

of sentence partitions, which is essential for water-518

marking, thus model performance increasing. For519

the latter slightly fluctuating part, SoTW pays more520

attention to the semantic loss, which may cause the521

partition boundaries to not be so clear, leading to522

the incorrect projection of sentences.523

Embedding Models. To further investigate the524

impact of different embedding models, we select525

four advanced pre-trained embedding models for526

comparison, whose results are summarized in Ta-527

ble 4. From the table, we have the following obser-528

vations. Since BERT is not specially designed to529

obtain sentence embeddings, it tends to generate530

embeddings with high similarity (Liu et al., 2024),531

resulting in difficulty for SQAE to construct robust532

partition boundaries. In contrast, sentence BERT is533

specifically designed for sentence embeddings. We534

can observe that SQAE with sentence BERT can535

better deal with semantically similar sentences and536

dissimilar sentences. This phenomenon is also in537

line with our intuition. Better sentence embeddings538

can provide more information for SoTW to gener-539

ate robust discrete representations, thus generating540

better watermarking. Although Sentence-BERT541

achieves comparable results, its applicability is lim-542

Model Similar Dissimilar Avg.

BERT 41.63% 70.29% 55.96%
Sentence-BERT 75.57% 69.83% 72.70%

Compositional-BERT 64.64% 71.13% 67.88%
BGE-M3 75.76% 63.38% 69.57%

Table 4: Results (Acc ↑) on various embedding models.

ited to approximately 50 languages. Therefore, we 543

opt for BGE-M3 as the embedding model. 544

5 Conclusion 545

In this paper, we argued that existing sentence-level 546

watermark algorithms for LLMs suffered from 547

the lack of generalizability in constructing sen- 548

tence partitions, showing vulnerable performance 549

in OOD scenarios and attacks. In response, we pro- 550

posed to construct sentence partitions by directly 551

generating discrete representations of sentence par- 552

titions and developed a novel SoTW. Specifically, 553

we first employed a pre-trained embedding model 554

to generate sentence embeddings. Then, we de- 555

signed a novel SQAE to project sentence embed- 556

dings into discrete representations for the water- 557

marking. To enhance the robustness of the learned 558

watermark, we designed a semantic loss to help 559

SoTW maintain as much information as possible 560

for discrete representations of sentence partitions, 561

and developed a consistency loss to improve the 562

robustness of learned sentence partition boundaries. 563

Finally, extensive experiments against different at- 564

tacks over different datasets and backbone LLMs 565

demonstrate the effectiveness of SoTW. 566

Limitations 567

To inspire future work, we summarize some limita- 568

tions of our proposed SoTW as follows: 569

1) Although SoTW improves the robustness of text 570

watermarks, limited by the performance of SQAE, 571

the watermark detection rate is still significantly 572

reduced after attacks. How to further improve the 573

accuracy of constructing sentence partitions needs 574

to be investigated. 575

2) SoTW achieves fast detection of watermarked 576

text. However, due to multiple sampling of sen- 577

tences during the watermark generation, text gen- 578

eration with SoTW is slower than that without wa- 579

termarks. This represents a limitation that warrants 580

further discussion and exploration in future work. 581

Despite these limitations, we believe our work 582

serves as an important catalyst in the field, con- 583

tributing positively to the advancement of more 584

robust text watermark techniques. 585
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A Notations 709

We summarize the necessary notations in Table 5 710

used in this paper. 711

Notation Explanation

M LLMs
E A pre-trained embedding model
Q A trained SQAE
S:t The sequence of the previous t sentences
si The ith sentence
ei The sentence embedding of si
zi The latent representation of ei

Rn×d
A codebook containing
n embeddings of dimension d

ci The ith embedding in Rn×d

Table 5: Notations and explanations in SoTW.

B Additional Watermark Robustness 712

Results 713

We include additional experimental results on 714

watermark robustness, i.e., translate watermark 715

text into Japanese and French using GPT4o-mini 716

with prompt “Translate the following English into 717

French (Japanese)”, as shown in Table 6. We 718

observe that SoTW achieves almost the best re- 719

sults when translated into multiple languages, prov- 720

ing the robustness of SoTW against translation at- 721

tacks. This observation is consistent with the re- 722

sults in Section 4.2. Moreover, after translating into 723

Japanese, which is quite different from English, 724

the detection effect of our proposed algorithm is 725

almost doubled compared to existing token-level 726

watermark algorithms. This provides solid proof 727

for the superiority of SoTW. 728

C Case Study 729

We present some examples of SoTW generated wa- 730

termark text. 731

D Analysis of Different Codebook Size 732

Different codebook sizes construct sentence parti- 733

tions with different sizes. To evaluate the impact of 734

codebook size on sentence partitioning, we conduct 735

experiments summarized in Table 7. The results 736

show that as the codebook size increases, the distri- 737

bution of sentences becomes more dispersed (i.e., 738

higher Dissimilar values). The suboptimal results 739

are achieved with n=64. This result can be at- 740

tributed to the fact that a larger number of sentence 741

partitions allows sentences to select partitions that 742

are more relevant to their semantics, facilitating 743

sentences with different semantics to be assigned 744
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Setting Algorithm

C4 dataset LFQA dataset

Avg.↑LLaMA2-7B-Chat Baichuan2-7B-Chat LLaMA2-7B-Chat Baichuan2-7B-Chat|

F1↑ F1↑
AUC↑

F1↑ F1↑
AUC↑

F1↑ F1↑
AUC↑

F1↑ F1↑
AUC↑1%FPR 5%FPR 1%FPR 5%FPR 1%FPR 5%FPR 1%FPR 5%FPR

Translate
French

KGWICML’23 4.27 15.47 55.87 6.17 16.43 58.12 2.35 9.80 51.43 4.64 14.18 55.70 24.54
UNIGRAMICLR’24 33.88 60.74 88.73 0.40 3.01 32.09 40.44 64.34 89.43 - 1.14 30.29 37.04

SIRICLR’24 0.80 1.51 30.08 0.40 2.64 29.39 0.79 3.04 30.69 0.79 1.54 19.55 10.10
X-SIRACL’24 5.77 13.17 58.96 1.58 18.65 63.88 7.25 21.47 62.99 2.36 7.72 61.82 27.14

RIWACL’24 (Findings) - - - - - - - - - - - - 0
WatMEACL’24 4.26 11.83 56.14 17.36 34.12 74.40 7.62 25.58 65.14 23.43 35.68 70.43 35.50

SEMSTAMPNAACL’24 1.18 4.16 49.41 4.26 8.15 53.36 0.79 4.10 50.74 2.73 9.78 52.82 20.12
k-SEMSTAMPACL’24 (Findings) 1.96 25.29 74.08 23.43 60.56 87.68 2.73 9.85 66.06 24.96 64.68 85.10 43.87

SoTW (Ours) 37.62 60.19 82.88 45.33 61.84 85.56 30.59 53.96 79.39 29.73 59.06 80.76 58.91

Translate
Japanese

KGWICML’23 4.65 23.53 63.88 11.24 24.41 63.93 6.15 21.12 60.97 15.69 30.97 66.95 32.79
UNIGRAMICLR’24 - 1.89 22.51 - - 2.67 - 1.89 19.62 - - 1.17 4.15

SIRICLR’24 - - 10.66 2.35 13.83 32.97 0.40 1.15 11.11 0.40 3.38 25.56 8.48
X-SIRACL’24 - - 42.25 1.57 6.63 47.06 1.96 11.15 66.12 4.64 18.34 72.57 22.69

RIWACL’24 (Findings) - - - - - - - - - - - - 0
WatMEACL’24 0.40 0.39 18.79 - 0.76 19.34 - 3.00 28.45 0.40 0.39 12.64 7.05

SEMSTAMPNAACL’24 0.79 3.04 49.82 1.57 3.42 50.88 0.40 4.83 51.03 5.02 11.49 51.84 19.51
k-SEMSTAMPACL’24 (Findings) 0.40 14.49 68.82 9.07 41.15 78.29 3.12 9.85 62.14 16.70 45.86 74.18 35.34

SoTW (Ours) 20.60 40.18 74.81 22.18 41.63 79.76 12.29 33.86 67.24 19.68 43.75 73.07 44.09

Table 6: Results of our algorithm (SoTW) and its rivals against various attack methods. Boldface and underline
denote the best and the second best results.

Text Content P-value
Prompt A version of this article appeared in the print edition of The Daily Star on July 12, 2018, on page 16.

Original

A version of this article appeared in the print edition of The Daily Star on July 12, 2018, on page 16.\nAssembled by Palestinian 
artist Said Baalbaki, the exhibition presents 50 of Abbo's sketches, etchings and object, as well as texts – all taken from Baalbaki's 
personal collection of work from, and publications on, the elusive sculptor. Baalbaki has no work of his own in this show.\nBorn in 
Safad, northern Palestine, around 1888-1890, Abbo was a farmer and fisherman who later took up carpentry and stone masonry. It 
was not until he moved to Berlin in 1911 to study sculpture that his artistic career took shape.\nBaalbaki has spent the last four 
years finding, and determining attribution for, 70 artworks and 100 texts mentioning the artist.[...truncated]

0.00

Watermarked

A version of this article appeared in the print edition of The Daily Star on July 12, 2018, on page 16. Investors are being warned 
about a new crypto scam that is sweeping the digital asset space. A message from our editor: Welcome to The Daily Star's news 
podcast, coming to you live from […]. Investors in cryptocurrency are being warmed about a new scam that involves fake celebrity 
endorsements and manipulated trading volume. Cryptocurrency investors beware: a new scams that involves fake endorsements by 
celebrities has been identified by security researchers.  [...truncated]

0.99

Prompt According to Variety, one of the movies about the 1973 tennis match between Billie Jean King and Bobby Riggs is recasting one of 
its leads.

Original

According to Variety, one of the movies about the 1973 tennis match between Billie Jean King and Bobby Riggs is recasting one of 
its leads. No, not the serious one that HBO is doing with Elizabeth Banks and Paul Giamatti, and not the overtly comedic one that 
Will Ferrell is set to star in. It’s Battle Of The Sexes, the middle one that’s supposed to be a comedy with “dramatic and 
political overtones”—as we said in an earlier report. Battle Of The Sexes comes from Little Miss Sunshine’s Jonathan Dayton 
and Valerie Faris, and it was set to star Emma Stone and Steve Carell as the eponymous sexes.[...truncated]

0.01

Watermarked

According to Variety, one of the movies about the 1973 tennis match between Billie Jean King and Bobby Riggs is recasting one of 
its leads. According to Variety's sources, Emma Stone will no longer be playing the role of Billie Jean king in the upcoming movie 
\"Battle of the Sexes\". No reason was given for Stone's departure, but it's likely that her schedule won't allow her to take on the role. 
While Stone has not confirmed anything herself, her Representative did release a statement saying she was no longer going to be 
part of the film. [...truncated]

0.99

Figure 7: Comparison of original and watermarked text using the LLaMA2-7B-Chat. Green and red sentences are
color-coded respectively.

n Similar Dissimilar Avg.

8 75.38% 58.03% 66.70%
16 78.33% 53.69% 66.01%
32 72.53% 63.28% 67.91%
64 75.76% 63.38% 69.57%
128 74.43% 62.73% 68.58%
256 71.10% 68.91% 70.01%

Table 7: Results (Accuracy ↑) of SQAE with different
codebook sizes. Boldface and underline denote the best
and the second best results.

to different partitions. However, limited by the745

ability of the pre-trained embedding model to cap-746

ture semantic features of sentences, the increased747

codebook size also increases the number of mis-748

classified semantically similar sentences.749
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