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Abstract

Sparse Auto-Encoders (SAEs) are commonly employed in mechanistic inter-1

pretability to decompose the residual stream into monosemantic SAE latents.2

Recent work demonstrates that perturbing a model’s activations at an early layer3

results in a step-function-like change in the model’s final layer activations. Further-4

more, the model’s sensitivity to this perturbation differs between model-generated5

(real) activations and random activations. In our study, we assess model sensitivity6

to compare real activations to synthetic activations composed of SAE latents. Our7

findings indicate that synthetic activations closely resemble real activations when8

we control for the sparsity and cosine similarity of the constituent SAE latents.9

This suggests that real activations cannot be explained by a simple “bag of SAE10

latents” lacking internal structure, and instead suggests that SAE latents possess11

significant geometric and statistical properties. Notably, we observe that our syn-12

thetic activations exhibit less pronounced activation plateaus compared to those13

typically surrounding real activations.14

1 Introduction15

Neural networks often exhibit polysemanticity, where individual neurons fire for multiple features16

Olah et al. [2017]. To explain this, the theory of superposition suggests that neural networks represent17

more features than they have dimensions, with features linearly represented as directions in activation18

space [Elhage et al., 2022, Bricken et al., 2023]. However, the claim that all features are represented19

as directions remains speculative [Engels et al., 2024, Smith, 2024, Olah, 2024].20

Sparse Auto-Encoders (SAEs) have become increasingly popular for decomposing a model’s residual21

stream into more interpretable latents Sharkey et al. [2022], Bricken et al. [2023], Cunningham et al.22

[2023]. As reliance on SAEs grows, it is crucial to verify that they accurately capture model-used23

abstractions.24

Neural networks employing superposition to represent features must address the challenge of interfer-25

ence to maintain performance [Hänni et al., 2024]. This necessitates an ability to accurately extract26

individual features while mitigating noise from “nearby” features in the representation space.27

Heimersheim and Mendel [2024] observed two key phenomena related to this: activation plateaus and28

directional sensitivity. These are characterized by changes in the L2 distance of model activations at29

the final layer in response to early layer perturbations. Activation plateaus indicate model robustness30

to small amounts of noise, while directional sensitivity refers to the model’s varied response to31

perturbations in different directions. Importantly, activation plateaus are present around model-32

generated activations (real) but not around random points sampled from the Gaussian approximation33

of the distribution of model-generated activations (random).34
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In this paper, we generate synthetic activations composed of SAE latents and test if they behave35

like real activations. We investigate whether arbitrary combinations of SAE latents, “bags of SAE36

latents”, can produce activations resembling real ones, and explore the role of latent sparsity and37

cosine similarity in this process. Our key contributions include:38

1. We find that the “bag of SAE latents” approach is not sufficient to produce synthetic39

activations that resemble model-generated (real) activations.40

2. We find that the sparsity of the top SAE latent, the relative latent activations, and the cosine41

similarity between the active latents and the top latent play an important role in determining42

whether synthetic activations behave like real activations.43

3. The performance of synthetic activations in the sensitivity experiment does not transfer to44

the activation plateau experiment that we conduct. We find that synthetic activations do not45

have activation plateaus around them like real activations do.46

2 Background47

Our experiments are based on the setup described in Heimersheim and Mendel [2024], wherein they48

perturbed model activations at an early layer and measured the effect it had on the L2 distance of late-49

layer activations. They investigated activation plateaus and sensitive directions in GPT-2, motivated50

by the error correction mechanism predicted by computation in superposition. They explored51

two key predictions: (1) model-generated activations should be resistant to small perturbations,52

exhibiting "activation plateaus", and (2) perturbations towards model-generated activations should53

affect model output more quickly than towards random directions. Their findings supported both of54

their predictions, providing evidence for an error correction mechanism used by the model to suppress55

small amounts of noise. This research aimed to better understand computation in superposition and56

to find dataset-independent evidence for model features, potentially connecting to SAE research.57

3 Related Work58

Several studies have explored model responses to residual stream perturbations:59

Janiak et al. [2024] identified stable regions (corresponding to activation plateaus) in the activation60

space of transformer-based models, hypothesizing their role in error correction and semantic distinc-61

tions. Our work primarily focuses on sensitive directions, though we study activation plateaus around62

synthetic activations and compare them against real activations.63

Gurnee [2024] showed that SAE reconstructions cause larger KL divergence shifts in model outputs64

compared to equidistant random vectors when substituted for original activations. While our work65

focuses on compositions of SAE latents, we study the effect of SAE reconstruction error on our66

experiments (Appendix D).67

Lee and Heimersheim [2024] investigated SAE reconstruction errors and end-to-end SAE latents,68

focusing on individual latent directions. Our work differs by studying compositions of SAE latents.69

Lindsey [2024] examined the effects of ablating and dampening SAE latents on model performance.70

In our study, we focus on composing synthetic activations and studying SAE latent properties.71

4 Method72

We adapt the experimental settings from Heimersheim and Mendel [2024] to test whether synthetic73

activations composed of SAE latents exhibit behaviors similar to model-generated (real) activations.74

This approach allows us to study key relationships between SAE latents for generating in-distribution75

synthetic activations. Section 4.1 outlines the directional sensitivity experiment methodology, Sec-76

tions 4.2 and 4.3 describe the activation types tested, and Section 4.4 details the activation plateau77

experiment.78
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4.1 Perturbation Setup79

We perturb activations at the last token position in layer 1 (blocks.1.hook_resid_pre). The80

unperturbed base activation A is perturbed towards a direction D:81

Apert(n) = A + 0.5 · n ·D

where n is the step number (0 to 100), and D is the normalized difference between base and target82

activations. We use a step size of 0.5, making perturbation norms comparable to typical activation83

norms (≃ 56).84

We measure L2 distance between original and perturbed activations after the final layer85

(blocks.11.hook_resid_post), preferring it over KL divergence for clearer activation plateau86

structure (KL divergence results in Appendix C).87

To locate blowups, we use the maximum slope (MS) step of the L2 distance curve (Figure 1; we88

discuss alternative metrics in Appendix B).89

We use GPT2-small [Radford et al., 2019] for our experiments, running inference on random 10-90

token prompts from OpenWebText [Gokaslan and Cohen, 2019]*. Model-generated activations are91

collected from Layer 1 (blocks.1.hook_resid_pre). We employ GPT2-small SAEs [Bloom,92

2024], sae-lens [Bloom and Chanin, 2024], and TransformerLens [Nanda and Bloom, 2022] for93

experiments and synthetic activation generation.94

4.2 Non-SAE Baselines95

In order to compare our setup to previous work [Heimersheim and Mendel, 2024], we run perturba-96

tions towards model-generated (real) and random activations. We sample 1000 prompts and obtain97

base activations, and perturb each base activation in two directions:98

• Model-generated (real): Towards a randomly selected activation produced by the model.99

• Random: Towards a randomly sampled point from a normal distribution with the same mean100

and covariance as model-generated activations (calculated using 32, 000 model-generated101

activations).102

We plot examples of perturbations towards real and random activations in Figure 1. Both baselines103

have similar base-target distances (mean ≃ 40, corresponding to step 80). The average cosine104

similarity between model-generated activations (w.r.t. SAE decoder bias) is ≃ 0.42.105

Figure 1: L2 distance (left) and KL divergence (right) between perturbed and unperturbed models for pertur-
bations towards model-generated (orange) and random (blue) activations. X-axis: 100 perturbation steps of
0.5 size each. Dots: maximum slope steps. Dashed lines: average over 1000 perturbations. Initial linear part:
activation plateau; sharp rise: blowup.

*Tokenized dataset link anonymized for review
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4.3 Synthetic Activations106

We construct synthetic activations using three methods, each incorporating different levels of SAE107

latent information:108

Synthetic-random: Randomly selects SAE latents, assigning them base activation’s latent activations.109

We present results for this activation type in Appendix A.110

Synthetic-baseline: Accounts for SAE latent sparsities and activations ("bag of SAE latents"):111

1. Encode base activation to obtain active latents and their activations.112

2. Replace each active latent with a random one from the 10 most similarly-sparse latents and113

assign the same activation as the original latent.114

3. Decode to obtain synthetic-baseline activation.115

Synthetic-structured: Additionally captures geometric properties of real activations’ SAE latents:116

1. Encode base activation, identifying active latents and their activations. Define top_base as117

the latent with highest activation.118

2. Create a list of 100 non-dead SAE latents with the most similar sparsity to top_base. Out119

of the 100 selected latents, select one that has cosine similarity closest to 0.42 (mean cosine120

similarity between two real activations w.r.t. the SAE decoder bias) with top_base.121

3. This latent becomes the top latent for our synthetic activation (top_synth), and we give it122

a latent activation value equal to that of top_base.123

4. For each remaining active latent in the base activation:124

(a) Calculate its cosine similarity (l_top_cos_sim) with top_base.125

(b) Select a latent (l_synth) that has cosine similarity with top_synth equal to126

l_top_cos_sim.127

(c) Assign l_synth a latent activation value equal to that of l_base.128

5. Construct a latent activation vector with zeros for all latents except the latents selected above,129

and decode it to obtain the synthetic-structured activation.130

We perform 1000 perturbations per synthetic activation type, as described in Section 4.1.131

4.4 Activation Plateaus132

To test if synthetic activations exhibit activation plateaus like real activations, we use the following133

approach:134

1. Initiate perturbations from four base activation types: model-generated, synthetic-baseline,135

synthetic-structured, and random (as described in Section 4.2).136

2. Perturb all base types towards random activations (as described in Section 4.2).137

3. Record the activation plateau (AP) step where L2 distance at Layer 11 crosses 20, indicating138

plateau flatness.139

We perform 1000 perturbations per base type, collecting AP size distributions. Larger AP steps140

indicate flatter activation plateaus.141

5 Results142

Synthetic activations behave differently from real and random activations across our two experiments,143

suggesting directional sensitivity and activation plateaus point to different properties of SAE latents144

in real activations (details in Appendix E). We primarily focus on studying directional sensitivity,145

though we also include our findings regarding activation plateaus below.146
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5.1 Directional Sensitivity147

We perturb real activations towards different activation types and study the model’s sensitivity. Figure148

2 and Table 1 show the distributions and statistics of max slope (MS) steps for L2 distance across149

perturbation types.150

Perturbations towards real activations cause earlier and more localized blowups compared to random151

activations, indicating higher model sensitivity. Synthetic-baseline activations, while not fully152

replicating real activation behavior, outperform random activations. We use the Kolmogorov-Smirnov153

statistic [Smirnov, 1948] to measure distribution similarities.154

Synthetic-structured activations more closely resemble model-generated activations than synthetic-155

baseline or random activations do. (Figure 2, Table 1). This suggests that relationships between SAE156

latents are important, and that model-generated activations are not approximated well by “bags of157

SAE latents”. Synthetic-random activations perform worse than synthetic-baseline, validating our158

choice of the latter as a stronger baseline (details in Appendix A).159

To account for varying distances between base and target activations, we also perform perturbations160

with relative step size (Appendix A). This reduces the gap between synthetic-structured and synthetic-161

baseline performance, as synthetic-baseline activations are typically further from base activations and162

thus cause later blowups. It also decreases performance of synthetic-structured.163

Figure 2: Distribution of MS steps for perturbations towards model-generated (orange), random (blue), synthetic-
baseline (purple), and synthetic-structured (green) activations. Left: histogram; Right: cumulative frequency.
Synthetic-structured perturbations more closely resemble model-generated ones compared to synthetic-baseline.

Max Slope (MS) step distribution statistics
Activation Type Mean Std dev KS

Model Generated 41.11 10.40 0.00
Random 52.49 10.21 0.45
Synthetic Baseline 49.61 13.25 0.28
Synthetic Structured 43.48 12.79 0.11

Table 1: Mean, standard deviation, and KS statistic of MS step distributions for perturbations with fixed
step size. KS statistic measured against model-generated activations (lower values indicate higher similarity).
Synthetic-structured activations most closely resemble model-generated ones.

5.2 Activation Plateaus164

Starting from a base of different activation types, we towards random directions to assess their165

activation plateaus. Figure 3 shows the distributions of AP steps for L2 distance across activation166

types.167

Model-generated activations display pronounced activation plateaus that are not present around in168

random activations. We find that neither synthetic-baseline or synthetic-structured activations show169
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such plateaus, providing further evidence against the "bag of SAE latents" approach but also showing170

that our synthetic-structure activations do not capture all relevant properties of real activations.171

The SAE reconstruction error minimally contributes to the discrepancy between synthetic and model-172

generated activations, we test this in Appendix D.173

Figure 3: Distribution of activation plateau (AP) steps for perturbations from various activation types towards
random activations. Left: histogram; Right: cumulative frequency. Model-generated activations (orange)
show flattest plateaus; synthetic-baseline (purple) the steepest. Synthetic-structured (green) and random (blue)
activations show similar plateau characteristics.

6 Limitations174

The heuristics we use to construct synthetic activations leave room for improvement, as evidenced by175

the gap between them and model-generated activations, especially for activation plateaus. We use176

cosine similarity between SAE latents to capture geometric relationships between them, but leave177

accounting for latent co-occurrence and other relationships between latents for future work.178

Synthetic activations don’t fully match the cosine similarity distribution of SAE latents in model-179

generated activations (Appendix E).180

Our method leverages information from the base activation in order to construct synthetic activations.181

While this is not ideal, we have verified that using information from a different model-generated182

activation for the construction does not change our results.183

L2 distance curves’ variability may affect our MS metric’s effectiveness, as it assumes curve smooth-184

ness (Figure 1). More robust metrics could yield clearer results (Appendix B).185

Our study is limited to one early layer of GPT2-small and the final token position. Further research186

across different layers, models, SAEs, and context lengths is needed to establish broader applicability187

and generalizability of our findings.188

7 Conclusion189

Our findings provide additional evidence that GPT-2 is more sensitive to perturbations towards190

model-generated activations than random directions, and that model-generated activations are not191

merely "bags of SAE latents". Leveraging statistical and geometric properties of SAE latents allows192

us to create synthetic-structured activations more similar to model-generated ones, indicating that they193

capture important properties of SAE latents. However, these lack characteristic plateaus of model-194

generated activations, suggesting additional SAE latent properties influence model computation.195

This presents exciting avenues for future work on model sensitivity to perturbations: developing196

improved synthetic activation construction methods; investigating thresholds for model response197

to latent activation changes; examining model sensitivity to perturbations using interpretable SAE198

latents and contextual information; and analyzing latent ablation-based perturbations to identify key199

contributors to blowups.200

6



References201

Joseph Bloom and David Chanin. Saelens. https://github.com/jbloomAus/SAELens, 2024.202

Joseph Isaac Bloom. Open source sparse autoencoders for all residual stream layers of gpt2-203

small, Feb 2024. URL https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/204

open-source-sparse-autoencoders-for-all-residual-stream.205

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick206

Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,207

Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina208

Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and209

Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary210

learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-211

features/index.html.212

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-213

coders find highly interpretable features in language models, 2023. URL https://arxiv.org/214

abs/2309.08600.215

Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom Henighan, Scott Johnston, Sheer216

ElShowk, Nicholas Joseph, Nova DasSarma, Ben Mann, Danny Hernandez, Amanda Askell, Kamal217

Ndousse, Andy Jones, Dawn Drain, Anna Chen, Yuntao Bai, Deep Ganguli, Liane Lovitt, Zac218

Hatfield-Dodds, Jackson Kernion, Tom Conerly, Shauna Kravec, Stanislav Fort, Saurav Kadavath,219

Josh Jacobson, Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, Sam McCandlish,220

Dario Amodei, and Christopher Olah. Softmax linear units. Transformer Circuits Thread, 2022.221

https://transformer-circuits.pub/2022/solu/index.html.222

Joshua Engels, Isaac Liao, Eric J. Michaud, Wes Gurnee, and Max Tegmark. Not all language model223

features are linear, 2024. URL https://arxiv.org/abs/2405.14860.224

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/225

OpenWebTextCorpus, 2019.226

Wes Gurnee. Sae reconstruction errors are (empirically) pathological, Mar227

2024. URL https://www.alignmentforum.org/posts/rZPiuFxESMxCDHe4B/228

sae-reconstruction-errors-are-empirically-pathological.229

Stefan Heimersheim and Jake Mendel. Activation plateaus and sensitive directions in230

gpt2, Jul 2024. URL https://www.alignmentforum.org/posts/LajDyGyiyX8DNNsuF/231

interim-research-report-activation-plateaus-and-sensitive-1.232

Kaarel Hänni, Jake Mendel, Dmitry Vaintrob, and Lawrence Chan. Mathematical models of compu-233

tation in superposition, 2024. URL https://arxiv.org/abs/2408.05451.234

Jett Janiak, Jacek Karwowski, Chatrik Singh Mangat, Giorgi Giglemiani, Nora Petrova, and Stefan235

Heimersheim. Boundaries of stable regions in activation space of llms become sharper with more236

compute, September 2024.237

Daniel J. Lee and Stefan Heimersheim. Investigating sensitive directions238

in gpt-2: An improved baseline and comparative analysis of saes, Sep239

2024. URL https://www.lesswrong.com/posts/dS5dSgwaDQRoWdTuu/240

investigating-sensitive-directions-in-gpt-2-an-improved.241

Jack Lindsey. How strongly do dictionary learning features influence model behavior? Transformer242

Circuits Thread, 2024. https://transformer-circuits.pub/2024/april-update/index.html.243

Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/TransformerLensOrg/244

TransformerLens, 2022.245

Chris Olah. What is a linear representation? what is a multidimensional feature? Transformer246

Circuits Thread, 2024. https://transformer-circuits.pub/2024/july-update/index.html.247

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization, 2017.248

7

https://github.com/jbloomAus/SAELens
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2405.14860
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://www.alignmentforum.org/posts/rZPiuFxESMxCDHe4B/sae-reconstruction-errors-are-empirically-pathological
https://www.alignmentforum.org/posts/rZPiuFxESMxCDHe4B/sae-reconstruction-errors-are-empirically-pathological
https://www.alignmentforum.org/posts/rZPiuFxESMxCDHe4B/sae-reconstruction-errors-are-empirically-pathological
https://www.alignmentforum.org/posts/LajDyGyiyX8DNNsuF/interim-research-report-activation-plateaus-and-sensitive-1
https://www.alignmentforum.org/posts/LajDyGyiyX8DNNsuF/interim-research-report-activation-plateaus-and-sensitive-1
https://www.alignmentforum.org/posts/LajDyGyiyX8DNNsuF/interim-research-report-activation-plateaus-and-sensitive-1
https://arxiv.org/abs/2408.05451
https://www.lesswrong.com/posts/dS5dSgwaDQRoWdTuu/investigating-sensitive-directions-in-gpt-2-an-improved
https://www.lesswrong.com/posts/dS5dSgwaDQRoWdTuu/investigating-sensitive-directions-in-gpt-2-an-improved
https://www.lesswrong.com/posts/dS5dSgwaDQRoWdTuu/investigating-sensitive-directions-in-gpt-2-an-improved
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens


Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language249

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.250

Lee Sharkey, Dan Braun, and Beren Millidge. Taking features out of superposition with sparse autoen-251

coders, Dec 2022. URL https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/252

interim-research-report-taking-features-out-of-superposition.253

N. Smirnov. Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals254

of Mathematical Statistics, 19(2):279 – 281, 1948. doi: 10.1214/aoms/1177730256. URL255

https://doi.org/10.1214/aoms/1177730256.256

Lewis Smith. The ‘strong’ feature hypothesis could be wrong, Aug 2024.257

URL https://www.alignmentforum.org/posts/tojtPCCRpKLSHBdpn/258

the-strong-feature-hypothesis-could-be-wrong.259

A Analyzing different perturbations setups and synthetic activations260

In the main paper we use absolute step size for perturbations, however blowup locations have a261

dependence on the distance between the base and target activations, which can make the MS step262

distributions with absolute step size misleading. We know that the blowup location does not solely263

depend on the distance between the base and target activations, and in order to isolate this property,264

we create a distance agnostic setup using relative step sizes. In the relative step size approach, our265

perturbations always start at a base activation (A) and end at a target activation (T) using linear266

interpolation:267

Apert(n) =
(
1− n

100

)
·A+

n

100
· T

where n is the perturbation step, which goes from 0 to 100. This method ensures that we always268

transition from the base activation to the target activation in a fixed number of steps, regardless of269

the distance between them. By using relative step size, we remove the dependence of the blowup270

location on distance, and instead compare the effect of perturbations purely in terms of the percentage271

of base and target activations present at each step. For example, step 50 in this setup implies that the272

perturbed activation is made up of 50% base activation and 50% target activation.273

In the relative step size setup, we find that the MS step distribution for perturbations towards model-274

generated activations peaks more strongly around step 50 than in the absolute step size setup. The275

blowups are also localized between step 30 and 70, implying that blowups usually happen in the276

middle of the perturbation (Figure A.1). We posit that until step 30, the model treats the interpolated277

activation as the base activation. This is due to 70% of the interpolated activation coming from the278

base activation, and the remaining 30% coming from the target activation being treated as noise. This279

effect reverses at step 70, where the model starts treating the interpolated activation as the target280

activation, and the 30% that comes from the base activation is considered noise.281

Our analysis reveals that the MS step distribution for random activation perturbations exhibits282

marginally higher variance than the absolute step size setup, with a rightward shift relative to the283

distribution for model-generated activation perturbations (Table A.1). This suggests that stronger284

perturbations towards random activations are required to induce a blowup compared to model-285

generated activations. Furthermore, it indicates that the model is more resilient to random noise than286

to noise directed towards another model-generated activation, requiring a greater magnitude of the287

former to cause confusion in the model.288

In this setup, comparing perturbations with synthetic-baseline and synthetic-structured activations289

reveals that while synthetic-structured activations still more closely mimic model-generated acti-290

vations, the disparity between the two has notably decreased (Figure A.1, Table A.1). This sug-291

gests that synthetic-baseline activations less effectively align with the residual stream geometry of292

model-generated activations compared to synthetic-structured ones, explaining the latter’s superior293

performance in the absolute step size setup. Our findings indicate that considering latent sparsity is294

important for synthetic activations to emulate model-generated activations in the relative step size295

setup. Consequently, both synthetic-structured and synthetic-baseline outperform synthetic activations296

created using the “bag of SAE latents” approach without accounting for sparsity (synthetic-random).297
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We find that when we construct synthetic-structured activations (Section 4.3), omitting the cosine298

similarity constraint on the top latent and instead selecting based on sparsity similarity to the base299

activation’s top latent yields the best-performing synthetic activations in the relative step size setup.300

However, these activations typically have greater distance from the base activation compared to301

synthetic-structured activations. Consequently, their performance in the absolute step size scenario is302

inferior to that of synthetic-structured activations.303

Figure A.1: The distributions of the max slope (MS) steps for perturbations with relative step size towards model-
generated (orange), random (blue), synthetic-baseline (purple), and synthetic-structured (green) activations.
The left panel shows the counts of MS steps occurring in different bins along the length of the perturbation,
and the right panel shows the cumulative frequency for the same. We find that perturbing towards synthetic-
structured activations in the relative step size setup is slightly more similar to perturbing towards model-generated
activations than perturbing towards synthetic-baseline activations is.

Max Slope (MS) Step Distribution Statistics

Activation Type Absolute Step Size Relative Step Size

Mean Std dev KS Mean Std dev KS

Model Generated 41.21 10.32 0.00 51.65 7.42 0.00
Random 52.49 10.34 0.44 64.89 10.50 0.62
Synthetic Baseline 49.88 12.60 0.31 57.07 11.29 0.27
Synthetic Structured 43.45 12.78 0.11 55.69 11.31 0.22
Synthetic Random 51.30 10.25 0.39 55.25 8.74 0.19
Synthetic Structured (w/o cos sim) 50.17 11.96 0.31 54.47 10.68 0.17

Table A.1: We find that controlling for the sparsity of the top latent and the cosine similarity between the
active latents play an important role in making synthetic-structured activations perform well in both absolute and
relative step setups. This table contains the mean, standard deviation and KS statistic for MS step distributions
for all types of synthetic activations we tested. The KS statistic is measured against perturbations towards
model-generated activations, with a lower value meaning higher similarity. The entries in bold show the best
match with statistics for model-generated activations.
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B Metrics for analysing blowups304

In our main analysis, we focus on the maximum slope (MS) as an indicator of the blowup step. In305

this section we share findings using the Area Under the Curve (AUC) and Non Linear (NL) metrics306

to represent important parts of the L2 distance vs perturbation step curve.307

B.1 Area Under Curve (AUC)308

Our experimental results reveal that certain L2 distance curves deviate from the expected step-309

function-like pattern, causing the MS step to misrepresent the actual blowup location for these curves.310

In contrast, the AUC metric provides a more comprehensive assessment of activation behavior across311

the entire perturbation process. This approach not only identifies the steepest increase point but also312

effectively screens out atypical curves that might otherwise evade detection. AUC calculates the step313

at which the following ratio is maximized:314

R = area of the triangle defined by (0,0), (x,0) and (f(x),x)/area under the curve f(x)

where f(x) is L2 distance as a function of the perturbation step x. This method is sensitive to the315

concavity or convexity of the perturbation curve. For predominantly concave curves (where the rate316

of change increases over time), the AUC blowup step tends to occur later, as the triangular area takes317

longer to outpace the actual area under the curve. Conversely, for convex curves (where the rate of318

change decreases over time), the AUC blowup step tends to occur earlier. This property allows the319

AUC method to implicitly capture information about the shape of the perturbation.320

The AUC metric serves as sanity check, confirming that most perturbations align with expectations.321

Convex L2 distance curves yield early AUC peaks, and Figure B.1 demonstrates that the majority of322

perturbations exhibit the anticipated concave shape. We find that our perturbation results hold for323

AUC step distributions in the absolute step size setup (Table B.1), with structured-synthetic activations324

more closely mimicking model-generated activations compared to synthetic-baseline activations. In325

the relative step size setup (detailed in Appendix A), synthetic-structured and synthetic-baseline326

activations perform similarly. This can be attributed to the higher prevalence of convex curves in327

perturbations towards synthetic-structured activations versus synthetic-baseline activations.328

Area Under Curve (AUC) Step Distribution Statistics

Activation Type Absolute Step Size Relative Step Size

Mean Std dev KS Mean Std dev KS

Model Generated 41.94 11.78 0.00 51.98 9.64 0.00
Random 52.73 13.66 0.43 64.97 16.01 0.59
Synthetic Baseline 49.31 14.20 0.25 56.66 13.20 0.22
Synthetic Structured 43.54 14.99 0.09 54.84 15.51 0.21

Table B.1: We find that our results for the AUC step distributions are similar to those for the MS step
distributions. This table contains the mean, standard deviation and KS statistic for AUC step distributions for
all the perturbations we perform. The KS statistic is measured against perturbations towards model-generated
activations, with a lower value meaning higher similarity.
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Figure B.1: The distributions of the AUC steps for perturbations with absolute step size (top) and relative
step size (bottom) towards model-generated (orange), random (blue), synthetic-baseline (purple), and synthetic-
structured (green) activations. The left column shows the counts of AUC steps occurring in different bins along
the length of the perturbation, and the right column shows the cumulative frequency for the same. We find that
our results for the AUC step distributions are similar to those for the MS step distributions.

B.2 Non-Linear (NL)329

Using L2 distance to observe the perturbations reveals that the region before the blowup is not flat,330

but linear with varying slopes (Figure 1). In order to study the size of the initial linear portion of the331

curves, we use the Non-Linear (NL) metric, which points to the earliest step at which the slope of332

the L2 distance vs perturbation step curve deviates from linearity by more than 10% of the initial333

slope. We use this metric as an alternate measure for the size of the activation plateau around the334

base activation along different perturbation directions.335

We observe that perturbations towards model-generated activations cause the quickest deviation336

from linearity followed by synthetic-structured activations, which is in line with our previous results337

for blowup locations (Figure B.2, Table B.2). However, we find that the deviation from linearity338

occurs the latest during perturbations towards synthetic-baseline activations, which suggests that L2339

distance has a higher initial slope for these perturbations, giving more room for changes in the slope340

before they are classified as a deviation from linearity. In this case, the behavior of synthetic-baseline341

activations provides further evidence that local relationships between SAE latents are important to342

approximate model-generated activations.343
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Figure B.2: The distributions of the NL steps for perturbations with absolute step size (top) and relative step
size (bottom) towards model-generated (orange), random (blue), synthetic-baseline (purple), and synthetic-
structured (green) activations. The left column shows the counts of NL steps occurring in different bins along
the length of the perturbation, and the right column shows the cumulative frequency for the same. We find
that synthetic-structured activations and random activations behave more like model-generated activations than
synthetic-baseline activations do.

Non-Linear (NL) Step Distribution Statistics

Activation Type Absolute Step Size Relative Step Size

Mean Std dev KS Mean Std dev KS

Model Generated 24.17 8.87 0.00 29.98 9.95 0.00
Random 29.80 11.72 0.22 36.33 12.33 0.27
Synthetic Baseline 32.90 11.25 0.40 37.91 10.96 0.37
Synthetic Structured 26.72 12.25 0.11 33.69 13.44 0.17

Table B.2: In terms of NL step distributions, we find that synthetic-structured activations perform better than
random activations, but synthetic-baseline activations do not. This table contains the mean, standard deviation
and KS statistic for NL step distributions for all the perturbations we perform. The KS statistic is measured
against perturbations towards model-generated activations, with a lower value meaning higher similarity.

C KL Divergence344

While previous works have predominantly used KL divergence as a measure of sensitivity, our345

analysis revealed potential limitations of this approach. We observed that KL divergence produces a346

step-function-like curve even when linear perturbations are performed at the final layer of the model347

right before the unembedding. This behavior suggests that the step-function shape might be an artifact348

of the KL divergence metric itself (or possibly due to softmax), rather than a true representation349
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of activation plateaus. The logarithmic nature of KL divergence may amplify differences as they350

become larger, leading to a more pronounced blowup region and a flatter initial plateau region.351

With the mentioned caveats in mind, we perform perturbations at Layer 1 and observe their effect on352

KL divergence of the logits distribution instead of L2 distance at Layer 11. Figure C.1 illustrates the353

MS step distribution for KL divergence across different activation types. KL divergence blowups are354

more localized in the relative step size setup than L2 distance blowups, suggesting that the model’s355

output distribution is more robust to noise than the model’s final layer activations, only blowing up356

when more than 40% of the base activation has been replaced. Similar to the results for L2 distance,357

we find that perturbations towards synthetic-structured activations are more similar to perturbations358

towards model-generated activations than synthetic-baseline activations are. The difference between359

synthetic-structured and synthetic-baseline activations is more pronounced for KL divergence than360

L2 distance.361

Figure C.1: The distributions of the MS steps for KL divergence of next-token prediction probabilities for
perturbations with absolute step size (top) and relative step size (bottom) towards model-generated (orange),
random (blue), synthetic-baseline (purple), and synthetic-structured (green) activations. The left column shows
the counts of MS steps occurring in different bins along the length of the perturbation, and the right column
shows the cumulative frequency for the same. We find that our results for KL divergence are similar to those for
L2 distance.
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Max Slope (MS) Step Distribution Statistics for KL divergence

Activation Type Absolute Step Size Relative Step Size

Mean Std dev KS Mean Std dev KS

Model Generated 45.51 12.89 0.00 56.34 9.08 0.00
Random 58.54 12.33 0.47 71.83 11.75 0.69
Synthetic Baseline 54.79 14.02 0.32 62.41 12.05 0.32
Synthetic Structured 48.79 15.64 0.13 61.86 13.51 0.26

Table C.1: We find that our results for KL divergence of next-token prediction probabilities are similar to
those for L2 distance at Layer 11. This table contains the mean, standard deviation and KS statistic for MS step
distributions for all the perturbations we perform. The KS statistic is measured against perturbations towards
model-generated activations, with a lower value meaning higher similarity.

D Isolating the effect of SAE reconstruction error362

We denote the reconstruction of an activation A with SAE(A) = decode(encode(A)). To isolate363

the effect of SAE reconstruction error on the blowup location, we examine perturbations towards a364

reconstruction of a model-generated target activation SAE(T). We compare these to perturbations365

towards model-generated activations and find that they are very similar, with blowups occurring366

slightly later for perturbations towards SAE reconstructions (Figure D.1, Table D.1). We also find367

that reconstructions of model-generated activations also have plateaus around them. This shows that368

the majority of the difference in our synthetic activations comes from the heuristics we use to select369

latents, and not the SAE reconstruction error.370

This similarity suggests that SAE reconstructions behave like model-generated activations for the371

most part, and that the reconstruction error causes a small systematic shift in the blowup location.372

This points to some information loss that causes the model to respond slightly less to perturbations373

towards SAE reconstruction, which is relevant for interpreting experiments that use SAE latents.374

Max Slope (MS) Step Distribution Statistics for SAE reconstructions

Activation Type Absolute Step Size Relative Step Size

Mean Std dev KS Mean Std dev KS

Model Generated 41.11 10.40 0.00 51.60 7.82 0.00
Random 52.49 10.21 0.45 65.01 11.19 0.61
SAE Reconstruction 41.49 11.34 0.02 53.34 8.39 0.11

Table D.1: We find that perturbations towards model-generated activations are almost identical to perturbations
towards their SAE reconstructions. This table contains the mean, standard deviation and KS statistic for MS step
distributions for all the perturbations we perform. The KS statistic is measured against perturbations towards
model-generated activations, with a lower value meaning higher similarity.
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Figure D.1: The distributions of the MS steps for perturbations with absolute step size (top) and relative
step size (bottom) towards random activations (blue), model-generated activations (orange), and their SAE
reconstructions (brown). The left column shows the counts of MS steps occurring in different bins along the
length of the perturbation, and the right column shows the cumulative frequency for the same. We find that
perturbations towards model-generated activations and perturbations towards their SAE reconstructions are
almost identical.

E Properties of SAE latents in model activations375

We observe that model-generated activations with a low SAE reconstruction error contain approx-376

imately 21 active SAE latents on average (Figure E.1 left). The distribution is narrow around the377

mean and falls off very rapidly. The top latent represents around 49% of the total latent activation378

norm average (Figure E.1 right). The norm falls off rapidly thereafter, with the second top latent379

representing only around 10% on average. The distribution flattens out afterwards where latter ranks380

have similar contribution to the norm.381

Additionally, we find that model-generated activations are made up of SAE latents that have cosine382

similarity to one another of approximately 0.29 on average (Figure E.2 left), with a distinct peak383

at 0. SAE latents primarily have positive cosine similarity to the top SAE latent, with mean cosine384

similarity of 0.18 (Figure E.2 right) and with a more pronounced peak at 0.385
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Figure E.1: The distribution of the total number of active SAE latents per activation (left) and the distribution
of the percentage of the latent activation norm represented by the top 10 active latents (right) aggregated over
2000 activations.

Figure E.2: The distribution of cosine similarities between all active SAE latents per activation (left) and
distribution of cosine similarities that active SAE latents have with the top SAE latent (right) aggregated over
2000 activations.
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