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ABSTRACT

Even on out-of-domain image captioning datasets such as nocaps, models often
outperform humans according to captioning metrics like CIDEr. Yet, in real
world conditions, model captions are often wrong. We demonstrate that this
performance deficit exists by introducing a new dataset and a new captioning
metric. We introduce a new dataset, called ObjectNet Captions, that reduces
spurious correlations which machines often exploit. We show the shortcomings
of current captioning metrics with a head-to-head experiment against humans,
where we find that humans rate human-generated captions as being of much higher
quality than machine captions. Driven by this, we introduce HUMANr, a new,
highly robust, easy to replicate, and consistent metric, computed from head-to-head
comparisons, which can be crowdsourced at low cost. We also develop tooling to
automatically compute HUMANr. HUMANr is an absolute performance metric:
driving it to 0 means that humans can no longer distinguish machine captions from
human captions. No current metric provides such a fixed target to aim for along
with knowledge of when captioning is solved in this sense. Moreover, HUMANr
can reveal that humans still outperform machines, which no current metric is
able to demonstrate. Existing metrics both overstate the performance of machine
models and, at the same time, they inherently limit it. While most current metrics
are saturated, HUMANr provides significant opportunities for further captioning
research, thereby opening the door to new advances. ObjectNet Captions and
HUMANr are made available to the research community.

1 INTRODUCTION

Machines perform remarkably well on current image captioning datasets. On nocaps out-of-domain,
they significantly outperform humans (Agrawal et al., 2019; Wang et al., 2022), despite the fact
that the dataset was constructed to challenge systems with novel objects. On Conceptual Captions,
they are roughly on par with humans (Mokady et al., 2021; Sharma et al., 2018). Yet, anecdotally,
real-world image captioning performance appears to significantly underperform. Systems routinely
misidentify objects and their properties, and have nowhere near the reliability of humans. Here, we
demonstrate that this gap exists by introducing a new dataset, ObjectNet Captions, and pairing it
with a new evaluation methodology that overcomes a critical shortcoming in how we understand
captioning performance today.

There are at least three reasons why systems perform well on current datasets but suffer when
challenged by real-world conditions; each of these points is addressed by ObjectNet Captions. First,
current datasets are composed of images sourced from the web which have numerous biases, such as a
preference for aesthetically pleasing images. This bias largely eliminates many real-world phenomena
such as clutter, conspires to put objects in common locations (such as forks in kitchens), arranges
those objects in pleasing orientations (cups tend to be upright), and allows for only a few camera
angles. Among existing datasets, VizWiz-Caption (Gurari et al., 2020) stands out as containing much
more diverse, but not systematically debiased, images.

We build our new dataset on top of ObjectNet (Barbu et al., 2019), a dataset specifically collected
to remove correlations between object class and background, object orientation, and camera angle.
ObjectNet images also represent a wide range of socioeconomic conditions. ObjectNet Captions
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inherits the ObjectNet license: it is only a test set and can never be used for training, ensuring that
results will be more transferrable to real-world conditions.

Figure 1: Human-in-the-loop evaluation demonstrating
our new score, HUMANr. HUMANr measures the prob-
ability that humans prefer human or machine captions.
In a head-to-head experiment, human subjects are shown
an image and a pair of captions. One caption is gener-
ated by another human, the other by a model. A score
of zero means that machine- and human-generated cap-
tions are indistinguishable from one another. A negative
score means that humans prefer human captions, while a
positive score indicates the converse. In the top row, we
pit human captions against one another, and demonstrate
that, as expected, they cannot be distinguished from one
another. When we test machines, humans have a strong
preference for human-generated captions; this is in stark
contrast to what current metrics would lead one to be-
lieve. Humans prefer human captions on both nocaps
and ObjectNet Captions, but the preference for human
captions is almost twice as pronounced on ObjectNet
Captions. The crude nature of current metrics masks the
reality that humans find human-generated captions to
be of far higher quality regardless of which evaluation
dataset is used. Routine and automated human-in-the-
loop evaluation, such as with HUMANr, can be incor-
porated into new research and can open the way to new
methods that would otherwise languish due to the lack
of headroom in current evaluation methodologies.

Second, current captioning datasets tend to have
short captions, with an average caption length
of around 10 to 11 words (Agrawal et al., 2019).
This is not because long descriptions would not
be useful or because human image descriptions
are naturally short. It is because annotators are
asked to write about images online without in-
centives or guidance to produce long descrip-
tions. Other dataset development efforts, such
as Places Audio (Harwath et al., 2018), Spoken
ObjectNet (Palmer et al., 2021), and Localized
Narratives (Pont-Tuset et al., 2020), have ob-
served that subjects naturally produce far richer
descriptions when they speak compared to typ-
ing image captions. To that end, ObjectNet Cap-
tions consists of transcriptions of Spoken Ob-
jectNet recordings, with an average length of 25
words.

Third, current metrics for image captioning have
flaws: they both overstate and limit machine
performance, holding back current research. A
description system which produces flowing, ac-
curate prose, might simply use a different style
or tone than the reference captions in the dataset,
resulting in poor scores. No current metric can
demonstrate that machines have matched hu-
man performance (as current metrics don’t have
a well-defined upperbound or human setpoint)
and no current metrics can enable machines to
achieve parity with humans.

Our new metric, HUMANr, sidesteps these is-
sues with current metrics. It demonstrates a
large gap between machines and humans (see
fig. 1), enabling new research rather than uninter-
pretable improvements when it is unclear how
the improvements translate to caption quality.
It provides a human setpoint – score 0 in HU-
MANr means that humans cannot distinguish
human and machine captions—and it allows machines to exceed human performance in a meaningful
way—positive HUMANr means that humans systematically prefer machine output. While human
judgments are often used in image captioning to motivate new metrics, what we propose is a stan-
dardized way to use human judgments to evaluate new models. Such a protocol has not achieved
widespread adoption in the captioning community, but other areas such as speech generation often use
human studies as the final arbiters of performance (Nayem & Williamson, 2021). HUMANr is simple
to compute; we provide tooling to automatically run it on Mechanical Turk. It is cheap—on the order
of $100—a cost that must only be paid once per submission. It is robust and replicable: with only
a few hundred examples from a dataset, HUMANr stabilizes and provides a reliable performance
metric.

Our contributions are: 1. a new test set, ObjectNet Captions, which consists of 100k spoken and
transcribed image captions describing 20k ObjectNet images, 2. a new evaluation metric, HUMANr,
which reveals a large gap between humans and machines, 3. tooling to automatically compute
HUMANr, 4. a demonstration that ObjectNet Captions provides a significant challenge above that of
current datasets, and 5. an analysis of the failure modes of current systems.
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2 RELATED WORK

Image Captioning Datasets Many image captioning datasets have been published in recent years
(Chen et al., 2015b; Agrawal et al., 2019; Gurari et al., 2020; Yoshikawa et al., 2017; Sidorov et al.,
2020; Chen et al., 2015a; Sharma et al., 2018). Much analysis to date relies on performance on
COCO Captions (Chen et al., 2015b) which consists of simple captions for images from 80 object
classes. Newer datasets have sought to address limitations of COCO Captions by increasing scale like
Conceptual Captions (Sharma et al., 2018), including out-of-domain objects like nocaps (Agrawal
et al., 2019), and in the case of TextCaps (Sidorov et al., 2020), by challenging models to retrieve
particular textual information from the image. Our dataset, ObjectNet Captions, poses additional
challenges to image captioning systems in both the vision and language domains. It contains out-of-
distribution ObjectNet images which decorrelate objects from their typical backgrounds, orientations,
and image viewpoints, each of which is paired with captions which are transcribed from spoken
descriptions. In addition to the added image difficulty, these captions are significantly longer and
more linguistically diverse than in previous datasets due to our spoken caption collection method.
Though we continue to refer to "captions" in our dataset, the collected image-accompanying texts
more closely align with the definition of "descriptions" as presented by Kreiss et al. (2021) which
find that the distinction between "captions" and "descriptions" is meaningful for task definition.

Spoken Captions Research in spoken language processing has led to a number of datasets consist-
ing of images with audio captions and occasionally with corresponding text captions (Havard et al.,
2017; Palmer et al., 2021; Harwath et al., 2018; Pont-Tuset et al., 2020; Oncescu et al., 2021; Monfort
et al., 2021; Hsu et al., 2021; Harwath & Glass, 2015). The first such dataset to be collected on a
large scale was Places Audio (Harwath et al., 2018) with 400k spoken captions. Other captioning
datasets, such as SpokenCOCO (Hsu et al., 2021) and Flickr Audio (Harwath & Glass, 2015), contain
both text and audio captions; however, the spoken captions were collected with annotators reading
the preexisting text captions which lack the advantages of spontaneous speech. Audio captions
presented in Localized Narratives (Pont-Tuset et al., 2020) were indeed collected spontaneously and
demonstrate significant length and levels of detail exceeding even that of our captions. However,
the task posed is to fully describe everything in the image and the typical image captioning task is
to describe the most salient features in an image. Additionally, the images comprising Localized
Narratives are sourced from traditional web-scraped image datasets that have been shown to contain
strong biases (Torralba & Efros, 2011) and offer little challenge to state-of-the-art vision models.
Spoken ObjectNet (Palmer et al., 2021) used the same data collection paradigm as Places Audio, but
collected spoken captions for the 50k bias-controlled images from ObjectNet (Barbu et al., 2019).

Figure 2: Example images and human-generated captions from ObjectNet Captions along with machine
descriptions of those images. Human-generated captions are far richer and, as we show later, more accurate.
ObjectNet Captions represents a step up in difficulty in terms of images, of text, and by having a much more
rigorous automated evaluation metric that uses humans in the loop.

Image Captioning Metrics Designing metrics to measure the task performance of image captioning
models has been a hard problem since work on the task began (Rashtchian et al., 2010; Hodosh et al.,
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2013; Kilickaya et al., 2016). Progress has been incremental and the field has largely failed to land
on a convincing candidate to rally behind. The first captioning metrics were borrowed from machine
translation (Papineni et al., 2002; Lin, 2004; Denkowski & Lavie, 2014), but eventually new metrics
were developed specifically for image captioning (Vedantam et al., 2015; Anderson et al., 2016).
Early metrics are built on rule-based text comparisons relying on increasingly sophisticated textual
precision-recall tradeoffs. Failure modes for each of these metrics are well-known and well-explored
(Kilickaya et al., 2016; Kasai et al., 2021). Dataset Tokens Unique

bigrams
Unique
3-grams

Unique
4-grams

nocaps 9,515 62,799 121,160 150,132
COCO 7,794 49,139 96,711 124,164
Ours 13,206 100,081 226,543 335,113

Table 1: Not only are captions in ObjectNet Captions longer,
but they are also more diverse. To control for the relative
sizes of the datasets we randomly sample 4,500 images and
5 captions per image for each. ObjectNet Captions has
nearly twice as many tokens, i.e., unique words, as COCO,
and 40% more than nocaps.

A recognition of similarity between the tasks
of caption generation and caption evaluation
has led to metrics which leverage successes
in language modeling and computer vision
(Kusner et al., 2015; Zhang et al., 2019)
including CLIP-Score (Hessel et al., 2021)
which notably uses image features in its eval-
uation and can be used in a reference-free
setting. However, this pipeline is circular. In
these paradigms, we evaluate state-of-the-art
models by their similarity with state-of-the-
art models which confounds evaluation results and threatens to set an artificial ceiling on performance.

Human evaluation has long been used in image captioning for evaluating models and motivating
metrics (Rashtchian et al., 2010; Hodosh et al., 2013; Young et al., 2014; Aditya et al., 2015; Mitchell
et al., 2012; Li et al., 2011; Vedantam et al., 2015; Anderson et al., 2016; Bernardi et al., 2016) as
well as in NLP more broadly (Schuff et al., 2023; Nakache et al., 2005; Bhatt et al., 2021; Resnik &
Lin, 2010). With ThumB, Kasai et al. (2021) similarly propose a human metric, although one that is
not head to head—an approach that has been shown to be much more reliable (Karpinska et al., 2021).
Moreover, HUMANr is much simpler to compute. Human-in-the-loop evaluation is also popular in
related tasks like text-to-image synthesis (Otani et al., 2023).

3 DATA COLLECTION

Images The images for ObjectNet Captions were selected from the ObjectNet (Barbu et al., 2019)
dataset. Specifically, 17,674 out of 50,273 images were chosen for ObjectNet Captions with images
largely balanced across the 313 ObjectNet classes. The images were chosen to maximize the dataset’s
value for the task of image captioning by selecting images with longer Spoken ObjectNet (Palmer
et al., 2021) captions. We reasoned that images with longer captions were more likely to be detailed
or contain interesting visual features that more fully challenge captioning models.

Spoken captions ObjectNet Captions builds on Spoken ObjectNet 20k (SON-20k) (Palmer, 2021;
Palmer et al., 2021), by collecting 5 captions per image rather than one. We followed the methodology
of Spoken ObjectNet (Palmer et al., 2021) to collect spoken captions including all validation and
worker qualification procedures. All told, 2,372 Mechanical Turk workers contributed spoken
descriptions to ObjectNet Captions and were paid $0.25 for each task containing 4 images with an
hourly wage of approximately $15 per hour.

Transcriptions After collecting the spoken descriptions, another Mechanical Turk task was used
for transcribing the captions (Palmer, 2021). Workers were given an audio description and shown
the corresponding automatic transcription in an editable textbox. Workers were instructed to listen
to the recording and correct the transcription as needed. They were also instructed to add proper
punctuation and capitalization as well as could be inferred. The workers could play the recording as
many times as they liked and were not allowed to submit the transcription task without editing the
caption. As the ASR transcription did not include any capitalization or punctuation, every caption
needed at least some correction even if every word was correctly recognized. Each transcription HIT
contained 4 images for which the workers were compensated $0.25 with an estimated hourly wage of
approximately $15 per hour. No worker information is released with the dataset.

Dataset Analysis Since ObjectNet Captions is derived from spoken rather than written language,
we expect that its statistics will be quite different compared to other datasets. The average caption
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Dataset Model B-1 B-4 R METEOR CIDEr SPICE BERT
Score CLIP-S RefCLIP-S HUMANr

COCO

GITL 80.8 ± 0.4 41.8 ± 0.6 60.3 ± 0.4 30.4 ± 0.3 136.4 ± 2.0 23.5 ± 0.3 71.9 ± 0.1 77.3 ± 0.2 82.9 ± 0.1 -0.05 ± 0.02
ClipCap 74.2 ± 0.4 32.2 ± 0.6 55.0 ± 0.4 27.1 ± 0.3 108.5 ± 1.8 20.1 ± 0.2 68.9 ± 0.1 78.3 ± 0.2 82.6 ± 0.1 -0.18 ± 0.02
ExpNet 82.7 ± 0.4 41.0 ± 0.6 60.3 ± 0.4 30.2 ± 0.3 139.6 ± 1.9 24.4 ± 0.2 73.7 ± 0.1 76.9 ± 0.2 82.7 ± 0.1 -0.07 ± 0.02
Human 63.1 ± 0.4 19.4 ± 0.5 46.5 ± 0.4 24.1 ± 0.2 87.8 ± 1.5 20.8 ± 0.3 58.0 ± 0.1 78.2 ± 0.2 82.2 ± 0.1 0.03 ± 0.02

nocaps

GITL 74.8 ± 0.6 37.5 ± 0.7 54.2 ± 0.5 25.5 ± 0.3 94.7 ± 1.7 12.3 ± 0.2 60.6 ± 0.5 77.1 ± 0.2 82.0 ± 0.2 -0.25 ± 0.02
ClipCap 75.1 ± 0.4 29.9 ± 0.6 52.0 ± 0.3 23.8 ± 0.2 69.0 ± 1.5 10.7 ± 0.2 60.1 ± 0.3 73.1 ± 0.2 77.8 ± 0.2 -0.37 ± 0.02
ExpNet 80.3 ± 0.4 36.6 ± 0.6 55.8 ± 0.4 25.6 ± 0.2 82.2 ± 1.5 12.1 ± 0.2 62.6 ± 0.3 70.0 ± 0.2 76.5 ± 0.2 -0.35 ± 0.02
Human 74.8 ± 0.4 28.3 ± 0.5 52.1 ± 0.4 27.6 ± 0.2 86.4 ± 1.5 15.2 ± 0.2 58.6 ± 0.3 78.0 ± 0.2 82.6 ± 0.1 0.01 ± 0.02

ObjectNet
Captions

GITL 43.8 ± 0.3 16.2 ± 0.2 36.4 ± 0.2 13.3 ± 0.1 20.9 ± 0.4 8.4 ± 0.1 42.1 ± 0.2 75.8 ± 0.1 77.2 ± 0.1 -0.46 ± 0.02
ClipCap 50.0 ± 0.3 15.4 ± 0.2 35.3 ± 0.1 12.4 ± 0.1 10.2 ± 0.3 6.2 ± 0.1 39.7 ± 0.1 74.2 ± 0.1 73.7 ± 0.1 -0.69 ± 0.01
ExpNet 51.3 ± 0.3 17.6 ± 0.2 38.5 ± 0.1 13.9 ± 0.1 14.9 ± 0.3 8.1 ± 0.1 43.5 ± 0.1 72.0 ± 0.1 74.4 ± 0.1 -0.56 ± 0.02
Human 60.5 ± 0.2 16.1 ± 0.2 38.7 ± 0.2 20.4 ± 0.1 31.3 ± 0.5 16.3 ± 0.1 37.6 ± 0.2 77.0 ± 0.1 77.9 ± 0.1 0.0 ± 0.02

Table 2: Standard performance metrics and HUMANr (ours) computed for three top models along with human
performance on those metrics on COCO, nocaps and ObjectNet Captions (ours). While humans lead on some
metrics on ObjectNet Captions, they fall behind on others, while being significantly behind in BERTScore.
Human results were produced by holding out one random caption per image. These results indicate that models
and humans are comparable on this task, with models trailing humans only slightly. As we show later, this stands
in stark contrast to what human evaluators think about the performance of systems and their overwhelming
preference for human-generated captions. Additional metrics are available in the appendix.
length of ObjectNet Captions (25 words) is over twice as long as that of nocaps (11 words), COCO
(10 words), and Conceptual Captions (10 words). This provides the opportunity to capture many more
intricate and useful details of an image. The distribution of caption lengths in ObjectNet Captions
has a very long tail, with a significant fraction of captions having over 30 words, which is not seen
in nocaps, COCO or Conceptual Captions. The vocabulary used in ObjectNet Captions is similarly
expanded; see table 1. Compared to COCO, the vocabulary is nearly twice as large, and about 40%
larger than nocaps.

While ObjectNet Captions has much longer sentences, the distribution of part of speech (POS) tags
is fairly similar compared to that of other datasets. Notable is the fact that the frequency of verbs
is similar, despite ObjectNet images consisting almost exclusively of static scenes. Compared to
other datasets, pronouns are much more frequent while nouns are somewhat less frequent. This likely
makes understanding and grounding the captions considerably more difficult. See the appendix for
additional dataset analysis and figures.

4 EXPERIMENTS

4.1 AUTOMATIC EVALUATION

To obtain a baseline for how current image captioning methods perform on this new dataset, we
evaluated the performance of a few state-of-the-art image captioning models with COCO finetuning
on ObjectNet Captions.

GITL (Wang et al., 2022) is a model consisting of a single image encoder and a text decoder which
achieves state-of-the-art performance on many captioning benchmarks despite strong competition
from models like SimVLM (Wang et al., 2021), VinVL (Zhang et al., 2021), and GRIT (Nguyen
et al., 2022). The image encoder is pretrained using a contrastive vision-language framework based
on (Yuan et al., 2021) and the text encoder leverages both textual input and the image encoding to
generate text in a language modeling task. The text decoder is pretrained using 800M image-text pairs
and then finetuned for dataset-specific tasks if necessary. We use the pretrained and publicly available
GITL model with COCO finetuning; no larger variants have been released by the GIT authors to date.

ClipCap(Mokady et al., 2021) is a captioning model that uses a frozen CLIP (Radford et al., 2021)
model to encode images which are mapped into a textual embedding space to be used as a prefix
to GPT-2 (Radford et al., 2019) to then generate text. Since both the CLIP and GPT-2 models are
frozen, training burden is very light. CLIP has also been shown to be very robust to the ObjectNet
distribution shift in an image classification task. We use a pretrained ClipCap model finetuned on
COCO with a ViT-B/32 (Dosovitskiy et al., 2020) vision component.

ExpansionNetv2 (Hu et al., 2022) is a recent model that uses novel expansion layers to distribute
input information. The model uses a SwinTransformer (Liu et al., 2021) pretrained on ImageNet
but the captioning mechanism is trained exclusively on MS COCO. Despite very limited training
data with respect to the other chosen models, ExpansionNetv2 achieves impressive performance on
COCO. We chose this model to provide a baseline for models without massive scale training data.
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We evaluate these models using many conventional metrics: BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), CIDEr (Vedantam et al., 2015), METEOR (Denkowski & Lavie, 2014), SPICE (Anderson
et al., 2016), and BERTScore (Zhang et al., 2019), and CLIPScore (Hessel et al., 2021). We also
collect a human baseline by computing the inter-annotator score according to each of these metrics.
The results are displayed in table 2.

Beginning with ObjectNet Captions, the results of the evaluation indicate that humans outperform
machines on this dataset although on most metrics, models are not far behind. The ObjectNet
Captions scores reported in table 2 are generally lower than is reported on existing datasets. The
human inter-annotator scores are lower than the human scores on nocaps, for example, but—with the
exception of CIDEr—the scores are within the range of what we might expect from longer, more
diverse captions compared to what has been reported on other datasets. The human CIDEr score
on ObjectNet Captions is significantly lower than that of nocaps (86.1 versus 31.3 on ObjectNet
Captions) which is likely also a result of the length and diversity of the captions. CIDEr relies on a
scaled average dot-product between TF-IDF vectors (Vedantam et al., 2015); more diverse captions
may have less word overlap than is found in other datasets and since our captions are longer on
average, the same number of overlapping words contributes less toward the cosine-similarity.

Perhaps more interesting than what the ObjectNet Captions results show is what they do not show.
Specifically, the results do not show high performance from models over humans as is recorded on
other datasets (Wang et al., 2022). Indeed, in table 2. we see that on COCO, models outperform
humans on all metrics except CLIPScore where they tie for first. Models also lead in most metrics on
nocaps and where humans win, it is only by narrow margins.

We would like to highlight the CLIPScore evaluations which demonstrate what might be a concerning
byproduct of model-based evaluation. By following convention and benchmarking a handful of
state-of-the-art models on our dataset with established metrics, we have found ourselves in an ironic
situation in which we have evaluated CLIP’s similarity with itself! Indeed, ClipCap and CLIPScore
both use a CLIP (Radford et al., 2021) image encoder and there is a meaningful difference in how it
ranks ClipCap against our other two models. ClipCap ranks worst among the three chosen models
according to every metric—including our human-in-the-loop metric—on every dataset except when
measured by CLIPScore variants where it ranks often second or even first. This suggests a bias which
makes it impossible to conclude anything about ClipCap’s performance using CLIPScore. If such
is the case then all CLIP-based models must be categorically excluded from CLIPScore evaluation
which complicates benchmarking procedures by necessitating an additional metric by which CLIP-
based captioning models can be measured with respect to other algorithms. However, the bias likely
goes beyond just CLIP models themselves. Models that were exposed during training to data that
was used to train CLIP may be preferentially evaluated by CLIPScore depending on the extent of
the exposure. In the age of vison-language pretraining on web-scale data, model-based captioning
metrics may introduce a subtle and nebulous data-leakage problem which is not obviously soluble. It
is, however, avoidable. Human-in-the-loop evaluation sidesteps these data-leakage problems while
also providing a clearer and more reliable picture of the current state of image-captioning.

4.2 HUMAN-IN-THE-LOOP EVALUATION

While current metrics often rank models above humans even on out-of-domain datasets like nocaps
and ObjectNet Captions (see table 2), our new metric, HUMANr, does not. With ObjectNet Captions
and HUMANr together, we reveal the existence and extent of the performance gap. HUMANr is a
head-to-head challenge between models and machines. Participants are not told the source of any
caption, only that they must select the caption which suits the image best.

We published tasks on Amazon Mechanical Turk in which a worker is shown an image from ObjectNet
and two captions which describe the image. The worker is asked to indicate which description best
matches the image by selecting a rating between 1 and 9. They are told that a score of 1 means that
only the caption on the left can describe the image, a score of 9 means that only the caption on the right
can describe the image, and a score of 5 means both captions match the image equally well. See fig. 3
for an illustration of the task setup. Images were shown up to 4 times total to different workers: Once
with a randomly selected pair of its human annotated captions, three additional times with a random
human annotation and a caption from each of our three models. The human-human comparisons
provide a baseline variance that we use to determine whether the model-human comparisons present
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Figure 3: (left) Subjects on Mechanical Turk see an image and two captions. They choose how well the captions
fit the image. Our tool automates this process enabling low-cost human-in-the-loop evaluations. (right) GITL

makes frequent visual errors like misclassifying or hallucinating objects compared to humans. Human captions
are more likely to be ungrammatical or generally awkward, likely an artifact from crowdsourcing.
statistically significant deviations from human captioning performance. The order in which captions
appear left-to-right on the participant’s screen is randomized.

Workers complete tasks in groups of 10 with 10 distinct images. Each group contains one attention
check, where one of the two captions is selected from a random image. If a worker fails the attention
check by preferring that random caption, their responses are eliminated. Very few workers failed
the attention checks so this did not affect our results. A total of 162 workers participated in the task.
Workers were paid $0.25 per 10 comparisons receiving wages of over $15 per hour.

We ran this experiment three times: once with images and reference captions from COCO, once with
nocaps, and once with ObjectNet Captions. For COCO, 5,000 images were used, for nocaps, all the
images in the validation sets were used, whereas for ObjectNet Captions, a random set of about 3,500
images were selected for use.

The question posed to workers was chosen carefully to minimize the bias it injected into the task.
We were careful not to imply that participants should judge the captions according to any notion of
quality other than their functional role. That is, we did not ask “Which caption is better?” or “Which
caption is a better description of this image?” because both of these questions are problematic: the
first may encourage judgments of intrinsic caption quality that do not relate to the image at all (e.g.
grammaticality), and the second is likely to bias workers toward longer captions since a reasonable
interpretation of a “better description” is a more descriptive description. Instead, we asked workers
simply to judge which caption “goes best” with the image or “matches” the image best and allowed
them the ability to indicate whether they matched equally well.

In fig. 1, we show the average HUMANr score on each of the comparison types (Human-Human,
Human-GITL, Human-ClipCap, Human-ExpansionNetv2) for each dataset. HUMANr scores are
aligned such that a score of -1 indicates preference for human captions, zero indicates no preference,
and a score of 1 indicates that machines are far better than humans. Our results show that, as expected,
human-human results are near chance, but models underperform systematically although they have
closed the human-machine gap almost entirely on COCO Captions. They do not produce human-level
captions on nocaps and they struggle even more on ObjectNet Captions.

The HUMANr scores sharply diverge from the other metrics in table 2. Most other metrics indicate
that models outperform humans on nocaps; whereas we see that humans consider the human captions
to be better. Some metrics, like CLIPScore, slightly prefer humans but the gap between machines
and humans is negligible. This leaves little room for improvement, and clearly misleads by massively
understating the gap between humans and machines. Since HUMANr has a setpoint where machines
equal humans, and an upper bound where they significantly exceed human performance—unlike
other metrics—it provides a measure of our progress solving current datasets. With this, we can state
that COCO is essentially solved which is not clear from using current metrics.
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Figure 4: HUMANr reproducibility results. On the left,
the distribution of HUMANr computed on randomly
selected halves of the worker pool. On the right, the
standard deviation of HUMANr as a function of number
of images. HUMANr is robust to changes in the worker
pool and quickly becomes stable with only a few hun-
dred images.

HUMANr is reproducible and robust with re-
spect to both images and workers. The stan-
dard deviation of HUMANr computed on ran-
dom half-splits of workers is very small, see
fig. 4(left). As a function of the number of im-
ages evaluated, fig. 4(right), even using only 500
images leads to a HUMANr with a standard de-
viation of less than 0.02. HUMANr is reliable,
simple, and cheap to compute.

4.3 EXPLAINING THE HUMAN-MODEL GAP

To understand the disparity between human cap-
tion preferences and scores from automated met-
rics, we selected 500 images from ObjectNet
Captions. For each image, we randomly selected
one GITL caption and one human caption. We
manually inspected this pair while answering
seven questions: three questions about visual
object classification, two questions about object
properties and relationships, and 2 questions
about the language used in the caption. The
seven questions were: 1) Does the caption mis-
classify an object present in the image? 2) Does
the caption describe an object that is not present in the image? 3) Is the primary object in the image
correctly classified? 4) Are all of the properties assigned to the objects correct? 5) Are all of the
relationships between objects correct? 6) Is the caption grammatically correct? 7) Is the language in
the caption awkward?

We find that GITL makes significantly more visual misclassification errors than humans, almost twice
as many. It also makes significantly more errors about the relationship between objects; see fig. 3.
To understand the percentage of HUMANr that these questions explain, we eliminated all images
where GITL failed any of the seven checks above—human failures were not considered. This left 215
caption pairs. On the full 500 images, GILL has a HUMANr score of -0.43, while on the restricted
set it scores -0.34. This implies that these seven questions account for around 21% of the HUMANr
score. While it seems like visual failures are a key part of the differences between humans and
machines, the root cause of most failures is still unclear.

5 DISCUSSION AND LIMITATIONS

With the combination of our new dataset and new metric, HUMANr, we present a starkly different
picture of the state-of-the-art in image captioning. Current metrics indicate that machines either
exceed human performance or that they barely underperform. Our metric reveals that machines vastly
underperform humans on nocaps. We also release ObjectNet Captions which presents a tougher
challenge with images that lack many spurious correlations, text which is longer and more detailed,
and a novel metric. We hope that this large performance gap will support new research directions
which would otherwise not be possible with metrics that had saturated. The benefits to adopting
better metrics are immense: a clearer picture of where we are and where we must go in the future.

While model-based metrics like CLIPScore seem on the surface to improve on the weaknesses of
existing metrics, our results show that we should be concerned about their circularity. They seem to
prefer models like themselves and even when such metrics show a human-machine gap, it is small
and inconsequential. This makes research difficult; there is not much to improve. We encourage
research that investigates the existence and extent of these biases.

Likely, the most controversial part of our approach is our promotion of a new metric that uses human-
in-the-loop evaluation. The general position of the community is that human evaluation is optimal
but intractable while automatic metrics are all too convenient to rethink. We challenge this view. Our
work shows that automatic metrics are perhaps more problematic than is believed—especially with
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the potential biases in increasingly popular machine metrics—while also demonstrating that human
evaluation is cheaper, easier, and more reproducible than is believed. While traditional methods have
guided image captioning toward impressive achievements, they are becoming obsolete. As models
become increasingly capable of visual understanding, our tools for evaluating them must become
increasingly valid and accurate.

As for the reliability of MTurk, running HUMANr with the same input will give slightly different
results, but that does not mean it is not reproducible. For most sciences, especially those which rely
on measurements of human behavior—which we believe is true of AI—this is not how reproducibility
is defined (Resnik & Shamoo, 2017). Extensive surveys have been performed to investigate the
repeatability of experiments conducted on MTurk concluding that though there are challenges, the
problems are manageable, solutions exist, and we should welcome crowdsourcing as a legitimate
scientific practice (Hauser et al., 2019; Stewart et al., 2017). Many classical results in cognitive science
are easily reproduced on MTurk, even between different worker populations (Stewart et al., 2017).
Our own results demonstrate that this holds true of our caption comparison task (fig. 4). Running
HUMANr with enough images to ensure stability and reporting scores with confidence intervals will
produce reproducible results and enable much-needed improvements to caption evaluation.

To alleviate concerns about cost and tractability of human evaluation we release a tool to automate
this process on Mechanical Turk 1. This eliminates many of complexities and concerns around
reproducibility by standardizing HUMANr. Computing HUMANr is also fairly cheap — around
$100 for one model on one dataset. This is affordable to most research groups and provides an
evaluation that cannot be matched by current metrics which can only crudely measure overlap with
existing annotations and cannot identify other mistakes in generated captions.

While human-in-the-loop evaluation metrics for determining the performance of systems have not
gained traction in the computer vision community, we hope to normalize this situation in the future.
Human evaluation is already commonplace in speech synthesis (Hayashi et al., 2019; Nayem &
Williamson, 2021) and is growing more common for image generation (Otani et al., 2023).

The nominal cost of human-in-the-loop metrics may also on its own be beneficial. Overfitting to
metrics is a major problem throughout machine learning. This small cost makes it much more likely
that evaluations will be used as intended. Rather than parameter sweeping to carefully fine-tune near
arbitrary constants in order to beat a benchmark, HUMANr is much more likely to be used in the
final stages to validate a model.

Only a small random subset of any one dataset need be evaluated to establish a HUMANr score.
A few hundred images drive the variance in HUMANr very close to zero. This makes HUMANr
replicable, easy to compute, and cheap. Although any official report of HUMANr should be computed
using a large enough sample to ensure stability with reasonable error bounds, unofficial runs need
not be costly. Spending $10 here and there to get a signal during model development could be a cost
effective way to gauge progress. Such human-in-the-loop feedback cycles during training have shown
promise with recent advances in language modeling (Ouyang et al., 2022).

Although we motivate our own metric for adoption, we do not argue that automatic metrics need
be abandoned. We maintain that HUMANr should be reported along with each new model release,
but that automatic metrics will still prove generally useful—especially in model development where
metrics can efficiently provide gradients for model updates. We encourage researchers, however, to
consider these metrics as a means to an end rather than an end in themselves.

While ObjectNet Captions presents a meaningful challenge to today’s captioning models, it has its
limitations. The dataset contains only objects and scenes which are commonly found in the home
and does not cover important domains such as natural scenes, people, etc. ObjectNet Captions could
support other tasks in the future such as an end-to-end task that describes images directly in audio
without intermediate transcriptions. Features only present in the raw audio files such as the timing of
words, the spacing between words, and the emphasis placed on each word make this dataset uniquely
useful for evaluating models on an image to spoken description task compared to past text-only
captioning datasets. Extending this methodology and dataset to visual question answering, a field
that has had many issues with evaluation, is of great interest to us.

1This code toolkit is in the supplemental material and will be released on GitHub upon acceptance

9



Under review as a conference paper at ICLR 2024

REFERENCES

Somak Aditya, Yezhou Yang, Chitta Baral, Cornelia Fermuller, and Yiannis Aloimonos. From images
to sentences through scene description graphs using commonsense reasoning and knowledge. arXiv
preprint arXiv:1511.03292, 2015.

Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra,
Devi Parikh, Stefan Lee, and Peter Anderson. Nocaps: Novel object captioning at scale. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8948–8957,
2019.

Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic propositional
image caption evaluation. In European conference on computer vision, pp. 382–398. Springer,
2016.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits
of object recognition models. Advances in neural information processing systems, 32, 2019.

Raffaella Bernardi, Ruket Cakici, Desmond Elliott, Aykut Erdem, Erkut Erdem, Nazli Ikizler-Cinbis,
Frank Keller, Adrian Muscat, and Barbara Plank. Automatic description generation from images:
A survey of models, datasets, and evaluation measures. Journal of Artificial Intelligence Research,
55:409–442, 2016.

Shaily Bhatt, Rahul Jain, Sandipan Dandapat, and Sunayana Sitaram. A case study of efficacy and
challenges in practical human-in-loop evaluation of nlp systems using checklist. In Proceedings of
the Workshop on Human Evaluation of NLP Systems (HumEval), pp. 120–130, 2021.

Jianfu Chen, Polina Kuznetsova, David Warren, and Yejin Choi. Déja image-captions: A corpus of
expressive descriptions in repetition. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
504–514, 2015a.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015b.

Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation evaluation for
any target language. In Proceedings of the ninth workshop on statistical machine translation, pp.
376–380, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Danna Gurari, Yinan Zhao, Meng Zhang, and Nilavra Bhattacharya. Captioning images taken by
people who are blind. In European Conference on Computer Vision, pp. 417–434. Springer, 2020.

David Harwath and James Glass. Deep multimodal semantic embeddings for speech and images. In
Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp.
237–244. IEEE, 2015.

David Harwath, Adria Recasens, Dídac Surís, Galen Chuang, Antonio Torralba, and James Glass.
Jointly discovering visual objects and spoken words from raw sensory input. In Proceedings of the
European conference on computer vision (ECCV), pp. 649–665, 2018.

David Hauser, Gabriele Paolacci, and Jesse Chandler. Common concerns with mturk as a participant
pool: Evidence and solutions. In Handbook of research methods in consumer psychology, pp.
319–337. Routledge, 2019.

William Havard, Laurent Besacier, and Olivier Rosec. Speech-coco: 600k visually grounded spoken
captions aligned to mscoco data set. arXiv preprint arXiv:1707.08435, 2017.

10



Under review as a conference paper at ICLR 2024

Tomoki Hayashi, Shinji Watanabe, Tomoki Toda, Kazuya Takeda, Shubham Toshniwal, and Karen
Livescu. Pre-trained text embeddings for enhanced text-to-speech synthesis. In INTERSPEECH,
pp. 4430–4434, 2019.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Micah Hodosh, Peter Young, and Julia Hockenmaier. Framing image description as a ranking task:
Data, models and evaluation metrics. Journal of Artificial Intelligence Research, 47:853–899,
2013.

Wei-Ning Hsu, David Harwath, Tyler Miller, Christopher Song, and James Glass. Text-free image-to-
speech synthesis using learned segmental units. In Proceedings of ACL-IJCNLP, 2021.

Jia Cheng Hu, Roberto Cavicchioli, and Alessandro Capotondi. Expansionnet v2: Block static
expansion in fast end to end training for image captioning. arXiv preprint arXiv:2208.06551, 2022.

Marzena Karpinska, Nader Akoury, and Mohit Iyyer. The perils of using mechanical turk to evaluate
open-ended text generation. arXiv preprint arXiv:2109.06835, 2021.

Jungo Kasai, Keisuke Sakaguchi, Lavinia Dunagan, Jacob Morrison, Ronan Le Bras, Yejin Choi,
and Noah A Smith. Transparent human evaluation for image captioning. arXiv preprint
arXiv:2111.08940, 2021.

Mert Kilickaya, Aykut Erdem, Nazli Ikizler-Cinbis, and Erkut Erdem. Re-evaluating automatic
metrics for image captioning. arXiv preprint arXiv:1612.07600, 2016.

Elisa Kreiss, Fei Fang, Noah D Goodman, and Christopher Potts. Concadia: Towards image-based
text generation with a purpose. arXiv preprint arXiv:2104.08376, 2021.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document
distances. In International conference on machine learning, pp. 957–966. PMLR, 2015.

Siming Li, Girish Kulkarni, Tamara Berg, Alexander Berg, and Yejin Choi. Composing simple
image descriptions using web-scale n-grams. In Proceedings of the Fifteenth Conference on
Computational Natural Language Learning, pp. 220–228, 2011.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Margaret Mitchell, Jesse Dodge, Amit Goyal, Kota Yamaguchi, Karl Stratos, Xufeng Han, Alyssa
Mensch, Alexander Berg, Tamara Berg, and Hal Daumé III. Midge: Generating image descriptions
from computer vision detections. In Proceedings of the 13th Conference of the European Chapter
of the Association for Computational Linguistics, pp. 747–756, 2012.

Ron Mokady, Amir Hertz, and Amit H Bermano. ClipCap: CLIP prefix for image captioning. arXiv
preprint arXiv:2111.09734, 2021.

Mathew Monfort, SouYoung Jin, Alexander Liu, David Harwath, Rogerio Feris, James Glass, and
Aude Oliva. Spoken moments: Learning joint audio-visual representations from video descriptions.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14871–14881, 2021.

Didier Nakache, Elisabeth Metais, and Jean François Timsit. Evaluation and nlp. In Database and
Expert Systems Applications: 16th International Conference, DEXA 2005, Copenhagen, Denmark,
August 22-26, 2005. Proceedings 16, pp. 626–632. Springer, 2005.

Khandokar Md Nayem and Donald S Williamson. Incorporating embedding vectors from a human
mean-opinion score prediction model for monaural speech enhancement. In Interspeech, pp.
216–220, 2021.

11



Under review as a conference paper at ICLR 2024

Van-Quang Nguyen, Masanori Suganuma, and Takayuki Okatani. Grit: Faster and better image
captioning transformer using dual visual features. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXVI, pp. 167–184.
Springer, 2022.

Andreea-Maria Oncescu, Joao F Henriques, Yang Liu, Andrew Zisserman, and Samuel Albanie.
Queryd: A video dataset with high-quality text and audio narrations. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2265–2269.
IEEE, 2021.

Mayu Otani, Riku Togashi, Yu Sawai, Ryosuke Ishigami, Yuta Nakashima, Esa Rahtu, Janne
Heikkilä, and Shin’ichi Satoh. Toward verifiable and reproducible human evaluation for text-to-
image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14277–14286, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Ian Palmer. Spoken ObjectNet: Creating a bias-controlled spoken caption dataset. Master’s thesis,
Cambridge, MA, 2021.

Ian Palmer, Andrew Rouditchenko, Andrei Barbu, Boris Katz, and James Glass. Spoken ObjectNet:
A bias-controlled spoken caption dataset. In Proceedings of Interspeech, 2021.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Jordi Pont-Tuset, Jasper Uijlings, Soravit Changpinyo, Radu Soricut, and Vittorio Ferrari. Connecting
vision and language with localized narratives. In European conference on computer vision, pp.
647–664. Springer, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier. Collecting image annotations
using amazon’s mechanical turk. In Proceedings of the NAACL HLT 2010 workshop on creating
speech and language data with Amazon’s Mechanical Turk, pp. 139–147, 2010.

David B Resnik and Adil E Shamoo. Reproducibility and research integrity. Accountability in
research, 24(2):116–123, 2017.

Philip Resnik and Jimmy Lin. Evaluation of nlp systems. The handbook of computational linguistics
and natural language processing, pp. 271–295, 2010.

Hendrik Schuff, Lindsey Vanderlyn, Heike Adel, and Ngoc Thang Vu. How to do human evaluation:
A brief introduction to user studies in nlp. Natural Language Engineering, pp. 1–24, 2023.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2556–2565, 2018.

Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for
image captioning with reading comprehension. In European conference on computer vision, pp.
742–758. Springer, 2020.

12



Under review as a conference paper at ICLR 2024

Neil Stewart, Jesse Chandler, and Gabriele Paolacci. Crowdsourcing samples in cognitive science.
Trends in cognitive sciences, 21(10):736–748, 2017.

Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR 2011, pp. 1521–1528.
IEEE, 2011.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
description evaluation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4566–4575, 2015.

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu,
and Lijuan Wang. Git: A generative image-to-text transformer for vision and language. arXiv
preprint arXiv:2205.14100, 2022.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlm: Simple
visual language model pretraining with weak supervision. arXiv preprint arXiv:2108.10904, 2021.

Yuya Yoshikawa, Yutaro Shigeto, and Akikazu Takeuchi. Stair captions: Constructing a large-scale
japanese image caption dataset. arXiv preprint arXiv:1705.00823, 2017.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. Transactions
of the Association for Computational Linguistics, 2:67–78, 2014.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu,
Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer
vision. arXiv preprint arXiv:2111.11432, 2021.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and
Jianfeng Gao. Vinvl: Revisiting visual representations in vision-language models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5579–5588, 2021.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

13


	Introduction
	Related Work
	Data Collection
	Experiments
	Automatic evaluation
	Human-in-the-loop evaluation
	Explaining the human-model gap

	Discussion and Limitations

