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Abstract

An important task in machine learning (ML)001
research is comparing prior work, which is of-002
ten performed via ML leaderboards: a tabu-003
lar overview of experiments with comparable004
conditions (e.g. same task, dataset, and met-005
ric). However, the growing volume of litera-006
ture creates challenges in creating and main-007
taining these leaderboards. To ease this bur-008
den, researchers have developed methods to ex-009
tract leaderboard entries from research papers010
for automated leaderboard curation. Yet, prior011
work varies in problem framing, complicating012
comparisons and limiting real-world applicabil-013
ity. In this position paper, we present the first014
overview of Automatic Leaderboard Genera-015
tion (ALG) research, identifying fundamental016
differences in assumptions, scope, and output017
formats. We propose an ALG unified concep-018
tual framework to standardise how the ALG019
task is defined. We offer ALG benchmark-020
ing guidelines, including recommendations for021
datasets and metrics that promote fair, repro-022
ducible evaluation. Lastly, we outline chal-023
lenges and new directions for ALG, advo-024
cating for broader coverage by including all025
reported results and richer metadata.026

1 Introduction027

In today’s fast-paced Machine Learning (ML) re-028

search environment, keeping abreast of advance-029

ments is more crucial than ever. The expo-030

nential growth in publications, exemplified by031

nearly a quarter of a million arXiv submissions032

in 2024, underscores the expanding global com-033

munity of scholars and the accelerating pace of034

research (arXiv, 2025). This vast increase in infor-035

mation presents researchers with both rich opportu-036

nities for discovery but also makes it increasingly037

difficult to stay up to date.038

A key task for researchers is comparing past039

study outcomes to identify state-of-the-art results040

or benchmark against prior work. In ML, this is041

Leaderboard

Paper ID Task Dataset Metric Score

1910.13461

1905.03197

QA

SQuAD 2.0
89.2

F1

QA
87.6

F1

SQuAD 2.0

F1

F1 89.2

87.6

QA

QA SQuAD 2.0

SQuAD 2.0

1905.03197

1910.13461

Figure 1: An example of extracting ⟨task, dataset, met-
ric, score⟩ tuples from research papers to build a leader-
board2.

typically done using leaderboards: tables of exper- 042

imental results under comparable conditions (e.g. 043

task, dataset, metric). The popularity of platforms 044

like Papers with Code1 underscores their value in 045

providing accessible, up-to-date comparisons that 046

help researchers track progress and identify leading 047

methods. 048

However, leaderboards on these platforms are 049

often incomplete or missing for certain tasks, and 050

they typically rely on manual updates. To reduce 051

this manual effort, recent work has focused on 052

automatically extracting experimental outcomes 053

(referred to here as “tuples”) from research pa- 054

pers to populate leaderboards. We refer to this 055

body of work as Automatic Leaderboard Genera- 056

tion (ALG): “A systematic process for extracting 057

relevant experimental findings from scientific pub- 058

lications to create and maintain a leaderboard.”. 059

Figure 1 illustrates an example of this process, 060

showing the extraction of ⟨task, dataset, metric, 061

score⟩ tuples from two research papers to construct 062

a leaderboard. 063

Research on ALG using natural language pro- 064

1https://paperswithcode.com
2An example of two SciLead (Şahinüç et al., 2024) leader-

board entries summarising Lewis et al. (2020) and Dong et al.
(2019).
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cessing (NLP) methodologies has seen significant065

developments in recent years. Indeed, there are still066

many open research questions as exemplified by the067

2024 shared task on ALG (D’Souza et al., 2024),068

underscoring the ongoing relevance of ALG. This069

growing body of work has led to varied problem070

formulations and evaluation approaches, includ-071

ing differing assumptions about prior knowledge072

(§ 2.1) and extraction scope (§ 2.2), which makes073

comparisons across work difficult.074

This position paper makes four important con-075

tributions. First, we provide the first overview of076

ALG efforts (§ 2-§ 4). By comparing prior studies077

side-by-side, we identify key divergences, such as078

variations in the assumed input scope (e.g. open vs.079

closed-domain) and captured results information,080

that previously hindered apples-to-apples compar-081

isons. Our analysis provides a much-needed base-082

line map of the field, clarifying the field’s current083

state and identifying critical gaps.084

Second, based on this comparison, we propose085

an ALG unified conceptual framework (§ 5), es-086

sentially a problem formulation with unified termi-087

nology. This framework consolidates prior formu-088

lations into a coherent schema, providing a com-089

mon language for researchers and enabling direct090

comparison of approaches.091

Third, we provide ALG Benchmarking Guide-092

lines (§ 6), to unify evaluation practices, addressing093

the previous lack of consensus. These guidelines094

establish shared standards for consistent, transpar-095

ent evaluation and reliable progress tracking.096

Fourth, we outline challenges and new direc-097

tions for ALG (§ 7). We advocate expanding the098

extraction schema beyond just “best scores” to in-099

clude all reported results (e.g. baselines, ablations)100

and enriching tuples with metadata (e.g. model101

architecture, hyperparameters) to enable more flex-102

ible result filtering.103

Ultimately, the goal of this position paper is to re-104

solve long-standing fragmentation, establish shared105

standards, and open new horizons for ALG.106

2 Overview of Problem Definition107

The ALG field has seen many advances over the108

years. At a broad level, the ALG task is an infor-109

mation extraction task, to extract a tuple containing110

key details of an ML experimental result.3111

3We acknowledge that ALG work rests on a long history
of work in information extraction (IE) in scientific literature.
The full body of IE work is out of scope for this analysis but

Hou et al. (2019) and Singh et al. (2019) laid 112

the foundation by introducing methods for extract- 113

ing leaderboard tuples directly from research pa- 114

pers. These methodologies have since been refined 115

and expanded upon by new methods such as Ax- 116

Cell (Kardas et al., 2020), which was put into pro- 117

duction by Papers with Code. The most recent 118

methodologies use prompting of pre-trained Large 119

Language Models (LLMs), e.g. prompting Llama 120

2 7B (Touvron et al., 2023) and Mistral 7B (Jiang 121

et al., 2023) to extract ⟨task, dataset, metric, score⟩ 122

tuples from research papers (Kabongo et al., 2024). 123

A key issue in the field is the variation in input 124

and output expectations across studies. Table 1 lists 125

key ALG papers we examined, focusing on recent 126

work using transformer models that enable data 127

scaling.4 128

We can characterise the key differences in the 129

problem definition as concerning expectations 130

about input and output data. Specifically, we dis- 131

cuss: (1) reliance on domain knowledge, and (2) 132

limited scope of extraction.5 133

2.1 Reliance on Domain Knowledge 134

We observe that the ALG domains can be cate- 135

gorised as having different levels of reliance on 136

prior domain knowledge, which ultimately impacts 137

what information can be extracted. Essentially, two 138

variants of the problem have been previously tack- 139

led: closed domain and open domain.6 140

Closed Domain: The closed-domain ALG prob- 141

lem stipulates that all the entities or tuples are pre- 142

defined.7 In the field, there have been two subvari- 143

ants that we name: (1) predefined typed entities 144

(PTE) and (2) predefined typed tuples (PTT).8 145

We define the predefined typed entities (PTE) as: 146

“A closed-domain problem for ALG, in which the 147

system is supplied with a finite catalogue of sci- 148

entific concept classes (for instance, specific tasks, 149

datasets, or metrics), and extractions are confined 150

to items from that predefined list.” The system may 151

be given a declarative resource specifying entities, 152

is introduced briefly in Appendix A.
4Details on prior work are in Appendix C.
5We also note that various works have differed in expec-

tations on the data format (e.g., PDF or LATEX). However, we
do not see this as critical in hindering comparisons of results.

6The “open domain” category includes hybrid cases that
start with no domain knowledge and incrementally builds up
knowledge as publications are processed.

7As in, bound by the closed world assumption.
8We borrow “predefined” from Şahinüç et al. (2024).
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Methodology Domain Structured Data Scope of Extraction

TDMS-IE Hou et al. (2019) closed Y ⟨task, dataset, metric⟩ & best score
PI Graph Singh et al. (2019) open Y undefined
AxCell Kardas et al. (2020) closed Y ⟨task, dataset, metric⟩ & best score
SciREX-IE Jain et al. (2020) open Y ⟨task, dataset, metric, method⟩, no score
ORKG-TDM Kabongo et al. (2021) closed Y ⟨task, dataset, metric⟩, no score
TELIN Yang et al. (2022) open Y ⟨task, dataset, metric⟩, best score*

ORKG-LB Kabongo et al. (2023b) closed Y ⟨task, dataset, metric⟩, no score
TDMS-PR Kabongo et al. (2024) open Y ⟨task, dataset, metric⟩ & best score
MS-PR Singh et al. (2024) open N ⟨task⟩ & best score
TDMR-PR Şahinüç et al. (2024) open N ⟨task, dataset, metric⟩ & best score
* The scope of extraction is ambiguous (Yang et al., 2022). A response from the authors is pending for clarification.

Table 1: Characterisation of problem framing per method. Domain: open if extraction does not rely on prior
knowledge, closed if restricted to a defined scope. Structured Data: Y if leaderboard tuples must appear in specific
paper sections (e.g. tables or results), N otherwise. Scope of Extraction: extent of tuples extracted.

such as in Kardas et al. (2020). This could take153

the form of a taxonomy, a hierarchical structure of154

scientific concepts (e.g. tasks, datasets, metrics), or155

a simpler list of scientific named entities.156

PTT is a further restriction beyond PTE in that157

only prescribed combinations of these science con-158

cepts are considered for establishing new tuples.159

We define PTT as “A closed-domain problem for160

ALG, in which a system is only allowed to detect161

leaderboard entries composed of specific, prede-162

fined combinations of known scientific concepts163

rather than forming any new combination.” In PTT164

variants of ALG, only predetermined combinations165

(often observed combinations) are used for creating166

new tuples (e.g., as in Hou et al. (2019)).167

Open Domain: An open-domain problem allows168

extraction of novel entities or tuples without rely-169

ing on prior knowledge (e.g. taxonomies or lists),170

making it less constrained. This setup is often171

more application-friendly, as the extraction scope172

is guided solely by the user’s information needs.173

While more appealing to users, the open-174

domain variant requires handling duplicates, as the175

same concept may appear in different forms (e.g.176

"ROUGE" vs. "RGE" (Jain et al., 2020; Şahinüç177

et al., 2024)). This makes evaluation harder than178

in the closed domain, where canonical represen-179

tations (e.g. predefined strings) enable direct ac-180

curacy measurement. Open-domain outputs may181

require fuzzy or semantic comparison metrics to182

handle variation.183

2.2 Scope of Extraction184

Beyond differences in domain knowledge, extrac-185

tion scope also varies. Prior work differs in which186

classes of scientific concepts, typically methodolog-187

ical attributes like task, dataset, method, metric,188

and score, are included. 189

Furthermore, most work focuses only on extract- 190

ing the top results from each paper, restricting each 191

paper to a single entry per leaderboard (Hou et al., 192

2019; Kardas et al., 2020; Hou et al., 2021; Yang 193

et al., 2022). If a publication presents two methods, 194

only the top-performing one typically appears on 195

the leaderboard. This can lead to an incomplete 196

and potentially biased view, omitting valuable con- 197

tributions such as negative results.9 198

3 Overview of ALG Datasets 199

With the growth of the field, several datasets have 200

been proposed to evaluate ALG methods, making 201

it hard for researchers to identify which datasets 202

are best suited for benchmarking. To guide dataset 203

selection, Table 2 summarises their key character- 204

istics10. We highlight the main dimensions along 205

which datasets differ. The main takeaway from 206

this table is the diversity of the datasets that have 207

been used in past research, making it hard to make 208

fair comparisons. We discuss the variations be- 209

low. A few recent datasets offer valuable attributes: 210

LEGOBench (Singh et al., 2024) is the largest and 211

covers the broadest tuple scope (including score), 212

while SciLead (Şahinüç et al., 2024) stands out for 213

its exhaustive manual annotations. 214

3.1 ML Experiment Science Entities 215

As prior work has varied in the entity classes stud- 216

ied, datasets have likewise differed in the scope 217

of their tuple and entity annotations. The most 218

9E.g., one may wish to compare neural networks with
other machine learning methods (e.g., logistic regression, ran-
dom forests) to evaluate the cost-benefit trade-off.

10A more detailed version of this table can be found in
Appendix D Table 5
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Entities Format Annotations Unk.

Dataset First Reported In Versions T D M S Md PDF LATEX HA PwC NLPP Ann.
ORKG-PwC Kabongo et al. (2021) v1-v7 ✓ ✓ ✓ ✗ ✗ □ □ ✗ ✓ ✗ □
NLP-TDMS Hou et al. (2019) v1-v3 ✓ ✓ ✓ ✓ ✗ □ □ ✗ ✗ ✓ □
PwC-LB Kardas et al. (2020) v1-v2 ✓ ✓ ✓ ✓ ✗ □ □ ✗ ✓ ✗ ✗
SciREX Jain et al. (2020) - ✓ ✓ ✓ ✗ ✓ ∼ ∼ ✓ ✓ ✗ ✗
TDMS-Ctx Kabongo et al. (2024) v1-v6 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓
LEGOBench Singh et al. (2024) - ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓
SciLead Şahinüç et al. (2024) - ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

Table 2: Summary of datasets, detailing dataset variant (V), Entities captured (T = Task, D = Dataset, M = Metric,
S = Score, Md = Method), format (PDF, LATEX), Annotations (HA = Human Annotation, PwC = Papers with Code,
NLPP = NLP Progress), inclusion of unknown annotations (Unk. Ann.) and the number of papers and tuples.

common format is ⟨task, dataset, metric, score⟩219

(NLP-TDMS, (Hou et al., 2019), PwC-LB (Kardas220

et al., 2020), TDMS-Ctx (Kabongo et al., 2024),221

SciLead (Şahinüç et al., 2024)), while the most222

comprehensive format is ⟨task, dataset, metric,223

score, method⟩ (LEGOBench, (Singh et al., 2024)).224

These five datasets can be considered “complete”225

leaderboard datasets, as they include the score226

within the tuple.11 In contrast, two related datasets227

do not include scores (ORKG-PwC (Kabongo et al.,228

2021), SciREX (Jain et al., 2020).13229

3.2 Source of Annotations230

Most datasets are assembled using manually cu-231

rated leaderboards as a distant supervision source.232

For example, the first leaderboard dataset, NLP-233

TDMS (Hou et al., 2019), was derived from a234

community-maintained GitHub repository NLP235

Progress14, tracking state-of-the-art NLP datasets236

and tasks. With the growing popularity of Paper237

with Code, many researchers turn to this resource to238

build ALG datasets, including ORKG-PwC, PwC-239

LB, SciREX, TDMS-Ctx and LEGOBench.240

Not all datasets were created with manual an-241

notations, however. Of the datasets derived from242

Papers with Code, only SciREX was subsequently243

corrected by a human annotator to ensure high accu-244

racy. Similarly, for SciLead (Şahinüç et al., 2024),245

the leaderboard tuples ⟨task, dataset, metric, score⟩246

were fully annotated by a single human annotator,247

11These datasets can sometimes be divided into further
subsets based on the size of the leaderboard. E.g., the ORKG-
PwC and NLP-TDMS datasets filter out leaderboards with less
than five entries. Datasets can also be divided into pre-defined
subsets. E.g., the ORKG datasets include pre-defined splits
that correspond experimentation by Kabongo et al. (2024)12.

13Although the paper does not mention recording the score,
we found that the Github dataset includes a score. It is unclear
whether this was added after the publication of the paper.
https://github.com/allenai/SciREX

14https://github.com/sebastianruder/NLP-progress

prioritising quality but limiting dataset size due to 248

the manual effort involved. 249

3.3 Format of the Papers 250

Datasets differ in publication formats. PDFs, 251

though common, mix presentation with logical 252

structure, whereas cleaner organisation. Some 253

datasets use only one format—PDF (LEGOBench, 254

SciLead) or LATEX(TDMS-CtX)—while others pro- 255

vide both (NLP-TDMS, ORKG-PwC, PwC-LB). 256

We note that this distinction is less important as 257

tools like Grobid (Lopez, 2009) grow in maturity 258

to transform PDF files into a logical structure for- 259

mat, such as XML. 260

4 Overview of ALG Evaluation Metrics 261

One key issue in the field has been the use of var- 262

ious metrics for ALG evaluation, hindering result 263

comparisons. Appendix E lists all metrics used in 264

leaderboard experiments. Below, we outline the 265

key evaluation metrics used in prior work. 266

4.1 Precision, Recall and F1 267

Most work reports micro precision, recall, and F1, 268

either for exact tuple matches or per entity class 269

(e.g., task, metric). Some report macro variants, 270

which offer deeper insights when frequent entities 271

or tuples skew micro scores. 272

Although not explicitly stated, we believe that 273

generally these scores are calculated per paper and 274

then averaged. However, Singh et al. (2024) cal- 275

culated precision and recall per leaderboard. Ex- 276

perimental results can vary significantly depend- 277

ing on whether metrics are averaged across papers, 278

leaderboards, or entities/tuples. To demonstrate 279

this significance, we replicated an experiment of 280

Şahinüç et al. (2024) and found that if authors had 281

used global averaging instead of per paper averages 282
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the recall would differ by 12.61.15 In Table 6 (Ap-283

pendix E), we provide definitions of these metrics.284

With the rise of generative AI with LLMs, there285

has been a need to explore string comparison met-286

rics beyond exact match. For example, Kabongo287

et al. (2024) explored partial matches. We note288

that metrics are useful in open-domain settings,289

where multiple valid expressions may exist and290

exact matching is too restrictive.291

4.2 Leaderboard Specific Metrics292

In addition to standard retrieval metrics, Şahinüç293

et al. (2024) introduced four metrics for leader-294

board evaluation: leaderboard recall (LR), paper295

coverage (PC), result coverage (RC), and aver-296

age overlap (AO). LR measures the percentage297

of correctly identified test leaderboards. PC and298

RC compute the average percentage of correctly299

linked papers and scores per leaderboard, respec-300

tively. AO quantifies the overlap between generated301

and test leaderboards (Webber et al., 2010). These302

leaderboard-specific metrics go beyond entity- or303

tuple-level evaluation by directly measuring the304

quality of the reconstructed leaderboard as a whole.305

This shift is crucial: standard precision and recall306

metrics may overlook whether the extracted infor-307

mation actually supports leaderboard reconstruc-308

tion, i.e. better reflect the end-goal of ALG sys-309

tems. Hence, adopting such metrics is essential for310

driving progress in building end-to-end usable and311

trustworthy leaderboard extraction tools.312

4.3 Granularity of Science Concepts313

As science advances, scientific concepts evolve.314

For example, broad terms like neural LMs may315

split into finer categories (e.g. pre-trained LMs vs.316

LLMs), or sibling concepts may merge or become317

unevenly prominent (e.g. abstractive summari-318

sation overtaking extractive summarisation with319

generative AI). Relatedly, capturing fine-grained320

method attributes, such as hyperparameters for neu-321

ral networks, becomes increasingly important.322

4.4 Extraction beyond Best Scores323

Current ALG’s focus on best scores limits its use324

to state-of-the-art comparisons and has drawn criti-325

cism for lacking real-world relevance. Ethayarajh326

and Jurafsky (2020) highlight that this emphasis327

15The authors conducted a zero-shot experiment evaluated
using exact match. They reported a recall of 47.53 when
averaging per paper, whereas the recall would have been 34.92
if averaged globally across all tuples.

Research
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Document
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Tuple Candidate
Generation

Tuple Verification and
Entity Alignment

Updating Leaderboard
Database

Leaderboard
Database

Figure 2: ALG Unified Conceptual Framework.

neglects factors like fairness, compactness, and en- 328

ergy efficiency. Santy and Bhattacharya (2021) call 329

for metrics beyond accuracy to better reflect practi- 330

cal utility. Braggaar et al. (2024) argue that rank- 331

ings can mislead, as top models may underperform 332

in practice. Rodriguez et al. (2021) emphasise that 333

not all evaluation examples are equally informative, 334

urging leaderboards to account for difficulty. To- 335

gether, these critiques advocate for broader, more 336

meaningful evaluation. 337

Including all experimental results introduces 338

complexity, both methodologically (e.g. an LLM 339

must extract more tuples, though many LLMs can- 340

not output that many tokens) and from a user per- 341

spective (e.g. users must interpret a more complex 342

leaderboard instead of a traditional one). 343

5 ALG Unified Conceptual Framework 344

To allow AI system builders to make system design 345

choices based on research outcomes from ALG, we 346

present the ALG Unified Conceptual Framework. 347

For example, to build an ML leaderboard system, 348

engineers may want to use the conceptualisation as 349

inspiration for modules in a system architecture or 350

agents in an Agentic AI system. 351

This conceptualisation is based on our analysis 352

of the papers outlined in Table 1. Figure 2 illus- 353

trates these conceptual components and we provide 354

examples of the methods for these components be- 355

low, noting not all works include every component, 356

reflecting differing research focuses. 357

The purpose of this conceptualisation is three- 358

fold: to (1) guide future researchers entering ALG 359

research or building ALG systems; (2) organise the 360

ALG experimentation space; and (3) understand 361

the system-level importance of contributions. 362

5.1 Document Representation 363

We note that several papers focus on finding the 364

best representation of paper contents, whether start- 365

ing from PDF or structured formats like LATEXõr 366
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XML. Such representations help highlight key in-367

formation, especially when later ML components368

must process limited input text.369

For example, approaches using pre-trained lan-370

guage models (e.g. BERT), document representa-371

tion is crucial due to input length limits (Hou et al.,372

2019). Hou et al. (2019) and Kabongo et al. (2021)373

used document surrogates like “DocTAET” (title,374

abstract, experimental setup, tables). Document375

representation can be more granular; for example,376

Jain et al. (2020) use entity chains to detect tuples.377

Even with LLMs and their larger context win-378

dows, document representation remains impor-379

tant. Although LLMs can process full papers, the380

representation affects which information is used.381

Kabongo et al. (2024), for example, compare fil-382

tered document views with full-text inputs to assess383

effectiveness.384

5.2 Tuple Candidate Generation385

Given a document representation, this compo-386

nent extracts key contextual experimental attributes387

(e.g., task, dataset) and the result. There are vari-388

ous ways to extract this information, based on how389

domain knowledge is used.390

5.2.1 Regarding Closed Domain Approaches391

For PTE closed domain approaches, entities are392

generally defined in a finite set (PTE class). Any393

candidate tuples must be composed of these prede-394

fined entities and any new combination is accept-395

able. For example, systems can identify the key396

scientific concepts (e.g., extracting experiment at-397

tributes from relevant tables (Kardas et al., 2020))398

to compose the tuples. For PTT approaches, the399

aim is to match the predefined tuple with the source400

document, in order to check for an improvement401

in performance. Hou et al. (2019) frame this as402

a Natural Language Inference (NLI) task, to see403

whether the tuple is inferred by the document rep-404

resentation.405

5.2.2 Regarding Open Domain Approaches406

For open-domain approaches, tuples may include407

entities beyond a predefined list. For example, in408

SciREX (Jain et al., 2020), an entity detector iden-409

tifies spans corresponding to task, data set, metric,410

or method. These unbounded entities are then used411

to compose tuples. However, the authors do not412

specify how the extracted tuples would update the413

leaderboard database.414

In Şahinüç et al. (2024), detected entities cor- 415

respond to concepts that fall into two categories: 416

(1) unseen (i.e., new) and (2) seen. Using a leader- 417

board database that is initially empty, entities are 418

checked for corresponding entries, with either an 419

exact match or a partial match. If a match exists, 420

the existing form in the database is used as the 421

canonical representation for that concept. This can 422

be viewed as a data normalisation step. For all un- 423

matched entities, these are treated as unseen, and a 424

new database entry is created for it. 425

5.2.3 A Note on Score Extraction 426

Despite being central to ALG, only a handful of 427

works (Hou et al., 2019; Kardas et al., 2020; Singh 428

et al., 2024; Kabongo et al., 2024; Şahinüç et al., 429

2024) extract best scores. Other work focused on 430

extracting the experimental conditions. We note 431

that this is a precursor to finding the full tuple 432

for ALG (identifying experimental conditions to 433

which the best score belongs). For works that ex- 434

tract best scores, methods vary. Hou et al. (2019) 435

apply heuristics based on orthographic features 436

(boldface), whereas Kardas et al. (2020) use more 437

complex inferences, classifying table cells as nu- 438

meric or non-numeric. Extracted quantities are nor- 439

malised and the extreme (maximum or minimum) 440

score is kept based on the metric. Earlier models 441

used dedicated methods to align scores with con- 442

ditions, whereas recent LLM prompting extracts 443

entire tuples, including scores, with a single task- 444

based prompt (Kabongo et al., 2024; Singh et al., 445

2024; Şahinüç et al., 2024). 446

5.3 Tuple Verification and Entity Alignment 447

For each extracted tuple, the system should ver- 448

ify its correctness, especially for LLM-based ap- 449

proaches, which risk hallucinations. Pre-LLM 450

methods often implicitly included this step within 451

the extraction process. For example, by framing 452

the tuple generation task as an NLI problem, Hou 453

et al. (2019) extract tuples that are aligned with the 454

source content and entailed by the source text, es- 455

sentially performing verification. Others use partial 456

alignment of the tuple at the entity level, such as 457

using a Bayesian model to map different equivalent 458

referring expressions to a canonical value (Kardas 459

et al., 2020). 460

5.4 Updating Leaderboard Database 461

Once a tuple is verified, the final step is updating 462

the leaderboard database. Kardas et al. (2020) link 463
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experimental conditions to existing Papers with464

Code entries. Data may be normalised prior to this465

step (Şahinüç et al., 2024), and filtered to exclude,466

for example, ablation studies (Kardas et al., 2020).467

Most prior work does not detail this step, as the468

focus lies on NLP techniques for extraction rather469

than their downstream application, despite often470

being motivated by it.471

6 ALG Benchmarking Guidelines472

6.1 Open versus Closed Domain Reporting473

We recommend that researchers report results for474

both open- and closed-domain scenarios. Closed-475

domain, which assumes predefined entities and tu-476

ples, provides the simplest case and typically yields477

the highest accuracy. Open-domain, by contrast,478

does not rely on predefined knowledge and thus479

represents the most challenging case. However,480

in practical applications, scenarios will typically481

fall between these extremes. To ensure that bench-482

marking captures this full range of difficulty, and to483

allow comparisons across studies, we advise that re-484

searchers always include results for both domains.485

Including both allows to assess the feasibility of486

leaderboard extraction under both the most con-487

strained and the most unconstrained settings, which488

reflects the diversity of real-world conditions.489

6.2 Dataset Reporting490

We recommend that researchers report results on491

publicly available datasets as a minimum require-492

ment. We highlight SciLead and LEGOBench493

as two suitable options. SciLead is valuable for494

its fully human-curated annotations, ensuring high495

quality. LEGOBench offers the largest dataset496

with broad tuple coverage, enabling large-scale497

benchmarking across diverse tasks and methods.498

These two datasets are complementary: SciLead499

provides a gold standard for high-accuracy eval-500

uation, while LEGOBench allows robust assess-501

ment at scale. The feasibility of achieving broader502

and more informative evaluations strongly depends503

on ensuring open access to such datasets. Fortu-504

nately, SciLead and LEGOBench are fully open-505

source and thus support the practical feasibility506

of standardised evaluation without subscription or507

copyright barriers. However, a limitation of both508

datasets is that they only cover a restricted set of509

metadata attributes and focus solely on extracting510

the best results per paper. Therefore, in the next511

section (§7.6), we recommend that researchers de-512

velop more comprehensive datasets that include all 513

reported results and richer metadata. 514

6.3 Metrics 515

Researchers should report precision, recall, and 516

F1 as both micro and macro scores. Micro scores 517

capture overall accuracy, favouring frequent entries, 518

while macro scores weight papers, leaderboards, 519

or entities equally and better reflect performance 520

across varied result types. Reporting both provides 521

balance, but most importantly researchers must 522

clearly state the averaging method used (e.g. per 523

paper, per leaderboard, or global). 524

In open-domain settings, exact string matching 525

may be overly restrictive. We recommend reporting 526

partial match metrics, which account for fuzzy or 527

approximate matches. Such metrics better capture 528

performance when multiple valid surface forms 529

exist for the same scientific concept. This reflects 530

real-world feasibility more accurately. 531

To assess practical usability for leaderboard con- 532

struction, researchers should report leaderboard- 533

specific metrics. In particular, we highlight leader- 534

board recall (LR), paper coverage (PC), result cov- 535

erage (RC), and average overlap (AO). These met- 536

rics provide insights into how effectively extracted 537

tuples populate leaderboards. Leaderboard recall 538

reflects whether leaderboards are correctly identi- 539

fied. Paper coverage measures whether all relevant 540

papers are linked. Result coverage assesses the 541

proportion of extracted results, and average over- 542

lap quantifies agreement between generated and 543

ground truth leaderboards. 544

When possible, results should also be analysed 545

across fine-grained scientific concepts. For ex- 546

ample, extraction accuracy should be reported not 547

only at the tuple level, but also separately for tasks, 548

datasets, metrics, methods, and scores. This sup- 549

ports a nuanced understanding of performance, es- 550

pecially where new or rarely seen concepts may be 551

difficult to extract. 552

7 ALG Challenges and New Directions 553

To help guide ALG researchers and system design- 554

ers to potentially novel capabilities, we list in this 555

section challenges and new directions for ALG. 556

7.1 New or Unseen Entities 557

The 2024 shared task on ALG (D’Souza et al., 558

2024) highlights that many aspects of the task are 559

still unsolved. It includes closed and open domain 560
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subtasks, with the latter involving new entity detec-561

tion.16 Indeed, Kabongo et al. (2023a) showed that562

ML performance in extracting tuples with new en-563

tities (i.e., new scientific concepts, such as a newly564

introduced ML task or dataset) is much lower than565

extracting tuples with previously observed entities.566

In production, a challenge will be the feasibility of567

canonicalisation and disambiguation of these newly568

introduced ML entities. New entities often have569

ambiguous and inconsistent naming. For example,570

a newly introduced dataset might be referred to in571

short and long forms or with typos. In practice,572

feasibility depends on having automated canoni-573

calisation methods that can cluster or align differ-574

ent surface forms of unseen entities. Without this,575

leaderboard entries will fragment into inconsistent576

records, undermining usability.577

7.2 Document Representation578

Representing source paper content remains an open579

challenge, even with LLMs’ larger context win-580

dows. Kabongo et al. (2024) found that using the581

full document with DocTAET led to worse tuple ex-582

traction, underscoring the need for representations583

that balance coverage and minimise irrelevant con-584

tent during inference. Another practical feasibility585

consideration is that LLMs with larger context win-586

dows are more expensive, making it desirable for587

users to adopt document representations that allow588

feasible use of smaller, more efficient models.589

7.3 Extracting Numerical Scores590

In most cases, the performance of tuple extraction,591

including scores, is significantly lower than that592

of tuples containing only the experimental condi-593

tions (which typically has F1 scores > 80), high-594

lighting the difficulty of score extraction(Kardas595

et al., 2020; Hou et al., 2019; Yang et al., 2022;596

Şahinüç et al., 2024). For example, in recent work597

by Şahinüç et al. (2024), score extraction using598

GPT-4 achieved an F1 score of approximately 70.599

Feasibility of extracting scores from a practi-600

cal perspective goes further: not only must scores601

be extracted accurately, but extraction must be ro-602

bust across various expressions of results. Systems603

must also handle ambiguous cases, such as ranges,604

averages, or multiple competing values. Current605

systems fall short in this respect, limiting the feasi-606

bility of fully automated leaderboard generation.607

16The organisers refer to these as few-shot and zero-shot,
referring on current ML terminology.

7.4 Feasibility of Extraction at Scale 608

Most research papers benchmark ALG systems 609

on dozens or hundreds of papers. However, 610

production-grade leaderboards such as Papers with 611

Code integrate tens of thousands of papers. Extract- 612

ing tuples at this scale introduces feasibility chal- 613

lenges in computational efficiency and LLM infer- 614

ence cost. Practical implementation of an always- 615

updating leaderboard requires optimised batching, 616

caching strategies, and asynchronous processing. 617

7.5 Generalisability beyond ML 618

A promising direction for future research is to ex- 619

plore the generalisability of ALG beyond ML. Do- 620

mains like material science and biomedicine also 621

report experimental results but use more varied for- 622

mats and less standardised terminology. Key chal- 623

lenges include handling heterogeneous result ex- 624

pressions, complex domain language, and diverse 625

contextual cues. 626

7.6 Comprehensive Leaderboards 627

A key direction for future research is the develop- 628

ment of comprehensive leaderboards. By compre- 629

hensive, we mean not only vertically, by including 630

all experimental results rather than only the best, 631

but also horizontally, by capturing richer metadata 632

(e.g., hyperparameters). A necessary first step is 633

the creation of a novel dataset to benchmark both 634

existing and new techniques. 635

8 Conclusion 636

In the position paper, we provide the first overview 637

of ALG research, which reveals substantial diver- 638

sity in problem framing and benchmarking prac- 639

tices. To address this fragmentation, we propose an 640

ALG unified conceptual framework and present 641

ALG benchmarking guidelines. Furthermore, our 642

first overview of ALG research to date revealed 643

that the scope of current leaderboards is limited. 644

Therefore, one key recommendation in our list of 645

challenges and new directions for ALG is to ex- 646

pand leaderboard coverage. Future leaderboards 647

should report all results, including baselines, ab- 648

lations, and method variations, and enrich tuples 649

with broader metadata (e.g. hyperparameters) to 650

create a more informative resource. In support of 651

this initiative, a continually updated reading list is 652

maintained in a GitHub repository17. 653

17Anonymous while under review: https://github.com/ano
nymous391860/leaderboard-survey-anonymous
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Limitations654

A limitation of this paper is the scope, as we solely655

focus on the automatic generation of ML leader-656

boards. We note that other disciplines also report657

experimental outcomes, although the nature of the658

experimental procedures may differ. For example,659

Ghosh et al. (2024) explores finetuning LLMs for660

schema-based information extraction in material661

science. Another example is Wang et al. (2024),662

which introduced SciDaSynth, an interactive sys-663

tem using LLMs to extract and synthesise struc-664

tured knowledge from the scientific literature in the665

form of tables.666

Ethics667

This research is subject to the governance by the668

ethics board of ANONYMOUS. We note that our669

proposal for AI research is to facilitate decision-670

making by users, as opposed to complete automa-671

tion of tasks. We note that data mining activities for672

scientific literature should comply with the terms673

and conditions of the publishers disseminating pub-674

lished work, noting that scientific text mining is675

often consider to be fair use of copyright material.676

The use of AI for data mining in this case is on677

public domain material.678
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A Related Work Beyond ALG981

Entity Recognition and Relation Extraction982

from Scientific Text Entity and relation extrac-983

tion from scientific papers gained attention in 2017984

with the SemEval-2017 ScienceIE task, which fo-985

cused on identifying key elements like processes,986

tasks, and materials in publications (Augenstein987

et al., 2017). The SemEval-2018 Task 7 advanced988

this by classifying relationships such as “uses”,989

“compares”, and “improves” between scientific con-990

cepts (Buscaldi et al., 2018). Datasets like Sci-991

ERC (Luan et al., 2018), TDMSci (Hou et al.,992

2021), and Dmdd (Pan et al., 2023) further support993

entity extraction research. The methods developed994

for scientific entity and relationship extraction can995

be leveraged to generate scientific leaderboards au-996

tomatically.997

Structured Scientific Information Extraction998

A scientific leaderboard compares methods, high-999

lighting the best-performing one. It is a specific1000

case of structured scientific information compari-1001

son and meta-analysis. Research has focused on1002

extracting structured information without empha-1003

sizing leaderboards. For example, Ghosh et al.1004

(2024) explored LLMs for schema-based informa-1005

tion extraction in material science. Walker et al.1006

(2023) improved extraction of experimental pro-1007

cedures using fine-tuned language models, while1008

Wang et al. (2024) introduced SciDaSynth, an inter-1009

active system using LLMs to extract and synthesise1010

structured knowledge from scientific literature.1011

B Problem Framing Details1012

Different methodologies for extracting leaderboard1013

tuples rely on distinct document representations.1014

The document representation defines which sec-1015

tions of a research paper are used before ex-1016

tracting leaderboard-related information. Doc-1017

TAET contains text from a Document’s Title,1018

Abstract, Experimental Setup, and Table informa-1019

tion. DocREC consists of text from a Document’s1020

Results, Experiments, and Conclusion sections.1021

Some approaches extract content from the full pa-1022

per, while others focus specifically on tables or cita-1023

tion tables. In Table 3, we show for each proposed1024

methodology which document representation they1025

use.1026

Methodology Document
Representation

TDMS-IE (Hou et al., 2019) DocTAET*, SC
ORKG-TDM (Kabongo et al., 2021) DocTAET
ORKG-LB (Kabongo et al., 2023b) DocTAET
PI Graph (Singh et al., 2019) Citation Tables
AXCELL (Kardas et al., 2020) Full Paper & Tables
SciREX-IE (Jain et al., 2020) Full Paper
TELIN (Yang et al., 2022) Full Paper & Tables
TDMS-PR (Kabongo et al., 2024) DocREC†

MS-PR (Singh et al., 2024) Full Paper
TDMR-PR (Şahinüç et al., 2024) Full Paper & Tables

* Hou et al. (2019) perform ablation studies with varia-
tions of DocTAET.
† Kabongo et al. (2024) compare the performance of
three document representations: DocREC, DocTAET,
and the Full Paper.

Table 3: Overview of the Methodologies. Document
Representation: The content extracted from the paper
before extracting the leaderboard tuples.

C Methodology Details 1027

In this section, we provide a summary of all the 1028

proposed ALG methodologies, and in Table 4, we 1029

list for each methodology which language models 1030

it uses. 1031

TDMS-IE Hou et al. (2019) propose TDMS- 1032

IE, a methodology to automatically extract ⟨task, 1033

dataset, metric, score⟩ tuples from research papers. 1034

The first step of TDMS-IE is extracting the docu- 1035

ment representation and the score context from the 1036

research paper. The document representation, Doc- 1037

TAET, covers the title, abstract, experimental setup, 1038

and table information. The title and abstract help 1039

predict the task, while the experimental setup and 1040

table information assist in identifying the dataset 1041

and metric. A second document-based structure, 1042

the score context, SC, represents contents from 1043

tables, since the work relies on table-based (and 1044

formatting, i.e., bold font) heuristics to generate 1045

candidate tuples. The SC captures the table caption 1046

and column headers corresponding to each bold- 1047

faced numeric score in each table of the research 1048

paper. This is used in conjunction with formatting- 1049

based heuristics to identify candidates for the best 1050

score of a ⟨task, dataset, metric⟩ tuple.18 Hou et al. 1051

(2019) frame the problem as a natural language in- 1052

ference (NLI) task using two entailment models: 1) 1053

DocTAET-TDM and 2) SC-DM. Each model gen- 1054

erates a tuple hypothesis (a Task-Dataset-Metric, or 1055

TDM, tuple for DocTAET-TDM; a Score-Dataset- 1056

18For example, bold-faced scores are most likely to be best
score.
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Metric tuple for SC-DM), by searching for can-1057

didate argument combinations from a “taxonomy”1058

(that is, a knowledge base) of previously observed1059

tuples. A fine-tuned BERT model (for NLI) pre-1060

dicts whether a candidate tuple can be inferred from1061

DocTAET, inferring links between the paper’s text1062

and the predefined canonical labels for the Task,1063

Dataset, and Metric, as represented in the taxon-1064

omy. For instance, the model can recognise that1065

"Rg-2" and "ROUGE-2" refer to the same metric.1066

Similarly, the SC-DM infers entailment relation-1067

ships between the SC document representations1068

and dataset-metric tuples. Both models use the1069

BERT model limited to 512 tokens (Devlin et al.,1070

2019), although newer models with larger token1071

capacities may improve performance.1072

PI Graph Singh et al. (2019) introduce the per-1073

formance improvement graph (PI Graph) to rank1074

research papers based on their performance. This1075

graph is constructed from performance tables,1076

which compare the methodologies and results of a1077

paper with those from previous works. Citations1078

within these tables create edges between papers, re-1079

flecting performance improvements. However, the1080

authors do not detail how the performance tables1081

are identified, extracted, or processed. The focus1082

of this work is on ranking papers by performance,1083

not on the extraction of leaderboard tuples, which1084

falls outside the scope of their methodology.1085

AxCell Kardas et al. (2020) introduce AxCell, a1086

pipeline for automatically extracting results from1087

machine learning papers. AxCell first categorises1088

tables into leaderboard, ablation, or irrelevant types1089

using the ULMFiT classifier (Howard and Ruder,1090

2018). For leaderboard and ablation tables, each1091

cell is classified as a dataset, metric, paper model,1092

cited model, or other. BM25 (Robertson et al.,1093

2009) is employed to extract relevant context from1094

the paper for each cell. A generative model, based1095

on the naive Bayes assumption, then links numeric1096

cells to predefined leaderboards. Finally, the sys-1097

tem filters out cited models, low-scoring links, and1098

inferior results, retaining only the top results for1099

each leaderboard.1100

SciREX-IE Jain et al. (2020) introduce SciREX-1101

IE, a methodology for extracting N-ary relations1102

from research papers. The process starts by extract-1103

ing raw text and section information from docu-1104

ments (excluding figures, tables, and equations).1105

SciREX-IE encodes the text in two steps: first,1106

section-level token embeddings are obtained us- 1107

ing SciBERT (Beltagy et al., 2019), followed by a 1108

BiLSTM (Graves and Schmidhuber, 2005) to cap- 1109

ture cross-section dependencies. A BIOUL-based 1110

CRF tagger identifies and classifies mentions us- 1111

ing BERT-BiLSTM embeddings, which are created 1112

by combining token embeddings with additional 1113

features. The system classifies mentions as salient 1114

or not and performs coreference resolution using 1115

the SciBERT embeddings, clustering mentions into 1116

entities. Salient clusters are then used for relation 1117

extraction, with document-level embeddings aggre- 1118

gating section data. The model jointly optimises 1119

mention identification, saliency classification, and 1120

relation extraction during training. 1121

ORKG-TDM Kabongo et al. (2021) propose 1122

ORKG-TDM, a methodology to extract ⟨task, 1123

dataset, metric⟩ tuples from research papers. The 1124

authors refer to their approach as the ORKG-TDM, 1125

as it is integrated into a scholarly knowledge plat- 1126

form called Open Research Knowledge Graph 1127

(ORKG) (Jaradeh et al., 2019). ORKG-TDM fol- 1128

lows a similar approach to TDMS-IE (Hou et al., 1129

2019) by framing the tuple extraction problem as 1130

an entailment problem, but uses a single-step ap- 1131

proach. As in TDMS-IE, DocTAET is the docu- 1132

ment representation, and leaderboard tuples com- 1133

ing from a predefined taxonomy are the hypotheses. 1134

New to ORKG-TDM is a task-specific parameter 1135

for the number of false triples per paper. While Hou 1136

et al. (2019) conducted experiments with only the 1137

original BERT model for TDMS-IE, Kabongo et al. 1138

2021, in implementing the ORKG-TDM methodol- 1139

ogy, also experimented with the pre-trained SciB- 1140

ERT model (Beltagy et al., 2019), designed for 1141

scientific text, and XLNet (Yang et al., 2019), an 1142

autoregressive transformer capable of handling con- 1143

texts longer than BERT’s 512-token maximum. 1144

TELIN Yang et al. (2022) proposed TELIN, 1145

a methodology to extract ⟨task, dataset, model, 1146

method⟩ tuples from research papers. TELIN be- 1147

gins by converting unstructured PDFs into struc- 1148

tured documents, using YOLO to detect paragraphs, 1149

headings, captions, and tables (Redmon et al., 1150

2016). SPLERGE is then applied to extract ta- 1151

ble components such as rows, columns, and cells 1152

(Tensmeyer et al., 2019). For NER, TELIN uses 1153

SpERT, a BERT-based model pre-trained on the 1154

SCiERC dataset, to classify scientific entities into 1155

categories like task, method, dataset, and evalua- 1156

13



Methodology Language Models
TDMS-IE (Hou et al., 2019) BERT (Devlin et al., 2019)
ORKG-TDM (Kabongo et al., 2021) XLNet (Yang et al., 2019), SciBERT (Beltagy et al., 2019), BERTbase (Devlin et al., 2019)
ORKG-LB (Kabongo et al., 2023b) BERT (Devlin et al., 2019), SciBERT (Beltagy et al., 2019), XLNet (Yang et al., 2019),

BigBird (Michalopoulos et al., 2022)
PI Graph (Singh et al., 2019) Undefined
AxCell (Kardas et al., 2020) ULMFiT classifier (Howard and Ruder, 2018), BM25 (Robertson et al., 2009)
SciREX-IE (Jain et al., 2020) SciBERT (Beltagy et al., 2019), BiLSTM (Graves and Schmidhuber, 2005)
TELIN (Yang et al., 2022) SpERT (Eberts and Ulges, 2020)
TDMS-PR (Kabongo et al., 2024) Llama 2 (Touvron et al., 2023), Mistral (Jiang et al., 2023)
MS-PR (Singh et al., 2024) Falcon (Almazrouei et al., 2023), Galactica (Taylor et al., 2022), Llama 2 (Touvron et al.,

2023), Llama 3 (Dubey et al., 2024), Mistral (Jiang et al., 2023), Vicuna (Chiang et al.,
2023), Zephyr (Tunstall et al., 2023), Gemini (Team et al., 2023), GPT-4 (Achiam et al.,
2023)

TDMR-PR (Şahinüç et al., 2024) Llama 2 (Touvron et al., 2023), Llama 3 (Dubey et al., 2024), Mixtral (Jiang et al., 2024),
GPT-4 (Achiam et al., 2023)

Table 4: Overview of the language models used in each methodology, demonstrating how the methodologies have
(logically) adopted more advanced models over time as discussed in Section 5.

tion metric (Eberts and Ulges, 2020). String match-1157

ing between these entities and non-numeric table1158

cells is performed using fuzzy search to handle non-1159

exact matches and acronyms. Tuples are formed1160

when at least three of the four entities (task, dataset,1161

metric, model) are identified within the table and1162

its caption. These extracted leaderboards are stored1163

in a shared knowledge base, which is iteratively1164

refined to discover more entities across documents.1165

A human review stage prioritises uncertain entities,1166

using feedback to fine-tune SpERT, iterating until1167

entity prediction stabilises.1168

ORKG-LB Kabongo et al. (2023b) introduced1169

ORKG Leaderboard (ORKG-LB), a follow-up1170

methodology of ORKG-TDM (Kabongo et al.,1171

2021). ORKG-LB focuses on the extraction of1172

the ⟨task, dataset, metric⟩ tuples by framing the ex-1173

traction task as an entailment problem. ORKG-LB1174

starts by allowing users to input a LaTeX or PDF1175

version of the research paper. ORKG-LB uses the1176

GROBID parser (Lopez, 2009) for PDF files and1177

PANDOC (MacFarlane, 2006–) to convert LaTeX1178

files into XML TEI markup. Then, ORKG-LB ex-1179

tracts DocTAET (Hou et al., 2019), focusing on1180

sections likely to contain task–dataset–metric men-1181

tions, reducing noise and enhancing generalisation.1182

For training the inference, for each paper, positive1183

and negative samples of tuples are required. For1184

the number of false triples per paper, ORKG-LB re-1185

lies on the same task-specific parameter as used for1186

ORKG-TDM. For the inference model, the authors1187

of ORKG-LB experiment with four different trans-1188

former model variants: BERT (Devlin et al., 2019),1189

SciBERT (Beltagy et al., 2019), XLNet (Yang et al.,1190

2019) and BigBird (Zaheer et al., 2020).1191

TDMS-PR The work of Kabongo et al. (2024) 1192

experiments with prompting LLMs to extract ⟨task, 1193

dataset, metric, score⟩ tuples from research papers, 1194

and we refer to this methodology as TDMS-PR. 1195

The authors experiment with different document 1196

representations provided to the LLM when prompt- 1197

ing the LLM. They propose a novel document rep- 1198

resentation, DocREC, which comprises text from 1199

the results (R), experiments (E) and conclusions 1200

(C) sections. They compare the results when us- 1201

ing DocREC to when using DocTAET (Hou et al., 1202

2019) or DocFull, which is the full paper as docu- 1203

ment representation. On average, DocREC consists 1204

of more tokens than DocTAET, 1,586 versus 493, 1205

and by definition, DocFull is by default always the 1206

longest document representation. The authors ex- 1207

periment with LLMs from the Flan-T5 collection, 1208

Mistral 7B and Llama 3 7B. 1209

MS-PR The authors of Singh et al. (2024) 1210

prompt an LLM to extract the ⟨method, score⟩ tuple 1211

given a research paper representation and a ⟨task, 1212

dataset, metric⟩ tuple; we refer to this as MS-PR. 1213

While both TDMS-PR (Kabongo et al., 2024) and 1214

MS-PR are prompt-based, their tuple scopes differ: 1215

TDMS-PR focuses on ⟨task, dataset, metric⟩, while 1216

MS-PR targets ⟨method, score⟩. Singh et al. (2024) 1217

experiment with MS-PR by using a wide range of 1218

LLMs: Falcon, Falcon Instruct, Galactica, Llama 1219

2 (7B & 13B), Llama 2 Chat (7B & 13B), Mistral 1220

Instruct, Vicuna (7B & 13B), Zephyr Beta, Gemini 1221

Pro and GPT-4 (Almazrouei et al., 2023; Taylor 1222

et al., 2022; Touvron et al., 2023; Jiang et al., 2023; 1223

Team, 2023; Anthropic, 2024; Team et al., 2023; 1224

Achiam et al., 2023). 1225
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TDMR-PR The authors of Şahinüç et al. (2024)1226

prompt an LLM to extract ⟨task, dataset, metric,1227

score⟩ tuples, we refer to this method as TDMR-PR.1228

First, TDMR-PR extracts the tuples from the papers1229

via a retrieval-augmented generation method using1230

an LLM. Second, depending on the domain (closed,1231

hybrid, or, open), TDMR-PR normalises these tu-1232

ples to a predefined taxonomy or creates new en-1233

tries for novel tasks, datasets, or metrics. Lastly,1234

TDMR-PR ranks the papers based on their per-1235

formance, constructing or updating leaderboards1236

accordingly.1237

D Dataset Details1238

Table 5 presents an extended version of Table 2,1239

providing detailed information for each version of1240

the included datasets. For every train, test, and1241

validation split, we report the number of associated1242

papers and extracted tuples. This table highlights1243

the substantial diversity across datasets, which com-1244

plicates direct comparisons between experiments.1245

E Definitions of Metrics1246

In this section, we define the micro and macro ver-1247

sions of the Precision, Recall, and F1 metrics for1248

the ALG task. Based on our best guess, most of1249

the existing works typically compute micro preci-1250

sion, micro recall, and micro F1 by first calculating1251

these scores per paper and then averaging them.1252

However, this is solely a best guess, and we know1253

that, for example, Kabongo et al. (2024) and Singh1254

et al. (2024) calculate the score on a leaderboard1255

level. We recommend that future researchers either1256

use these definitions of these metrics or explicitly1257

specify if they average across a different dimension1258

(e.g., across leaderboards), as the choice of the av-1259

eraging method can significantly impact the final1260

score.1261

Micro P =
1

P

P∑
p=1

∑Np

i=1 TPp,i∑Np

i=1(TPp,i + FPp,i)
(1)1262

1263
where P represents the total number of papers,1264

and Np represents the total number of extracted1265

leaderboard tuples or entities, per paper p. The1266

term TPp,i denotes the number of true positive in-1267

stances for the i-th instance in paper p, while FPp,i1268

represents the number of false positive instances1269

for the i-th instance in the same paper. The pre-1270

cision is first computed for each individual paper1271

before being averaged across all P papers.1272

Micro Recall measures the proportion of cor- 1273

rectly identified leaderboard entities/tuples: 1274

Micro R =
1

P

P∑
p=1

∑Np

i=1 TPp,i∑Np

i=1(TPp,i + FNp,i)
(2) 1275

1276
where FNp,i represents the number of false neg- 1277

atives for the i-th instance in paper p. 1278

Micro F1 is the harmonic mean of micro preci- 1279

sion and micro recall, providing a balanced mea- 1280

sure of extraction performance: 1281

Micro F1 =
2× Micro P × Micro R

Micro P + Micro R
(3) 1282

1283
We recommend also reporting the macro variants 1284

of these metrics to give more insight if some of 1285

the entries/tuples appear frequently and, therefore, 1286

disproportionally influence the micro scores. For 1287

macro metrics, we first average across all classes 1288

and then across P papers. Macro precision is given 1289

by: 1290

Macro P =
1

P

P∑
p=1

1

Cp

Cp∑
c=1

∑Np,c

i=1 TPp,c,i∑Np,c

i=1 (TPp,c,i + FPp,c,i)

(4)

1291

1292
where Cp is the number of classes for each paper 1293

p. 1294

Macro Recall is given by: 1295

Macro R =
1

P

P∑
p=1

1

C

C∑
c=1

∑Np,c

i=1 TPp,c,i∑Np,c

i=1 (TPp,c,i + FNp,c,i)
(5) 1296

1297
And Macro F1 is given by: 1298

Macro F1 =
1

P

P∑
p=1

1

C

C∑
c=1

2× Pp,c × Rp,c

Pp,c + Rp,c
(6) 1299

1300
It is important to note that these definitions serve 1301

as an example of how micro and macro variations 1302

can be calculated when averaged at the paper level. 1303

However, these definitions can be easily adapted 1304

for calculations at the leaderboard level. 1305

F An Overview of Experimental Results 1306

We have compiled all the results we could find in 1307

the literature where researchers experiment with 1308

extracting leaderboard tuples and entities, evalu- 1309

ating these extractions using micro, partial micro, 1310

or macro precision, recall, and F1 scores. Table 7 1311

presents an overview of these experiments. This 1312

table highlights the complexity of comparing 1313
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Entities Format Annotations* Unk. Train Stats. Test Stats. Val. Stats.
Paper V T D M S Md PDF LATEX HA PwC NLPP Ann. #P #T #P #T #P #T
ORKG-PwC Dataset
Kabongo et al. (2021) v1 ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ 2,831† 11,724† 1,228† 5,060† - -
Kabongo et al. (2021) v2 ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ 3,753† 11,724† 1,608† 5,060† - -
Kabongo et al. (2023b) v3 ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ 587† 9,614† 270† 4,096† - -
Kabongo et al. (2023b) v4 ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ 2,946† 9,614† 1,262† 4,096† - -
Kabongo et al. (2023b) v5 ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ 587† 9,614† 270† 4,096† - -
Kabongo et al. (2023b) v6 ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ 2,946† 9,614† 1,262† 4,096† - -
Kabongo et al. (2023a) v7# ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ - - 1,000 1,925 - -

NLP-TDMS Dataset
Hou et al. (2019) v1 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ 124 325 118 281 - -
Hou et al. (2019) v2 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ 170 325 162 281 - -
Kardas et al. (2020) v3 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ≤170 ≤325 ≤162 ≤281 - -

PwC-LB Dataset
Kardas et al. (2020) v1 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ‡ ‡ 516 2,802 ‡ ‡
Yang et al. (2022) v2 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ - - 516 2,802 - -

SciREX Dataset
Jain et al. (2020) ✓ ✓ ✓ ✗ ✓ ∼ ∼ ✓ ✓ ✗ ✗ ≤438 ∇ ≤438 ∇ ≤438 ∇
TDMS-Ctx Dataset
Kabongo et al. (2024) v1§ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ 11,807 402,409 1,326 33,863 - -
Kabongo et al. (2024) v2§ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ 12,388 415,788 1,401 34,799 - -
Kabongo et al. (2024) v3§ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ 10,058 415,788 1,105 31,213 - -
Kabongo et al. (2024) v4§ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ 11,807 402,409 746 14,604 - -
Kabongo et al. (2024) v5§ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ 12,388 415,788 789 14,800 - -
Kabongo et al. (2024) v6§ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ 10,058 415,788 595 14,273 - -

LEGOBench Dataset
Singh et al. (2024) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ - - ♢ 43,105 - -

SciLead Dataset
Şahinüç et al. (2024) ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ - - 43 ⊘ - -

* For annotations, we distinguish between human annotations (HA), Papers with Code (PwC) and NLP Progress (NLPP),
however PwC includes partial human annotation, and domain experts fully curated NLP Progress via GitHub pull requests. ∼
Use LaTeX if available; otherwise, default to PDF. ‡Different data for training (unlabelled arXiv papers and segmented tables)
and validation (linked results). †Two-fold cross-validation: 70% train, 30% test, with averaged results. ♢ 9,847 leaderboards, and
the number of papers are unspecified. § v1–v3 are few-shot experiment datasets with document representations: v1 (DocFULL),
v2 (DocREC), and v3 (DocTAET). v4–v6 are zero-shot experiment datasets with the same representations: v4 (DocFULL), v5
(DocREC), and v6 (DocTAET). the same data source as v2, but with updated timestamps and no overlap with v2. ∇ An average
of 5 tuple annotations per paper. ⊘ Unspecified, with 138 unique tuples reported.

Table 5: This table summarises the datasets from multiple research papers, detailing dataset variant (V), Entities
captured (T = Task, D = Dataset, M = Metric, S = Score, Md = Method), format (PDF, LATEX), Annotations (HA
= Human Annotation, PwC = Papers with Code, NLPP = NLP Progress), and inclusion of unknown annotations
(Unk. Ann.). Additionally, the table includes Train, Test, and validation (Val.) statistics (Stats.): the number of
papers (#P) and tuples (#T).

different results due to the diversity of prob-1314

lem framing (e.g. closed versus open domain),1315

datasets and metrics.. We omitted details on how1316

the scores were averaged (e.g., across papers or1317

leaderboards), as this information is often not re-1318

ported in many studies. These differences in aver-1319

aging methods also complicate direct comparisons1320

between works. Please note that there may be ad-1321

ditional subtle variations in the experimental setup1322

that are not captured in the table, which could pre-1323

vent a fair comparison.1324
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Micro Macro Part. Micro

Paper P R F1 P R F1 P F1 Other Metrics
Hou et al. (2019) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ None
Kabongo et al. (2021) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ None
Kabongo et al. (2023b) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ None
Kabongo et al. (2023a) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ None
Kardas et al. (2020) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ None
Jain et al. (2020) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ None
Yang et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ None
Kabongo et al. (2024) ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ None
Singh et al. (2024) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ None
Şahinüç et al. (2024) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ leaderboard recall (LR), paper cover-

age (PC), result coverage (RC), and
average overlap (AO)

Table 6: Overview of evaluation metrics used in each paper.
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Micro Macro Part. Micro

Reported In P R F1 P R F1 P F1 Dataset Method Experimental Setup

Results of Extracting ⟨Task, Dataset, Metric⟩ for Closed Domain Problem Framing

Hou et al. (2019) 60.2 73.1 66.0 54.1 65.9 56.6 NLP-TDMS-v1 TDMS-IE
Hou et al. (2019) 29.4 42.0 34.6 24.9 43.6 28.1 NLP-TDMS-v1 EL†

Hou et al. (2019) 56.8 23.8 33.6 56.8 30.9 37.3 NLP-TDMS-v1 MLC†

Hou et al. (2019) 16.8 7.8 10.6 8.1 6.4 6.9 NLP-TDMS-v1 SM†

Hou et al. (2019) 60.8 76.8 67.8 62.5 75.2 65.3 NLP-TDMS-v2 TDMS-IE
Hou et al. (2019) 24.3 36.3 29.1 18.1 31.8 20.5 NLP-TDMS-v2 EL†

Hou et al. (2019) 42.0 20.9 27.9 42.0 23.1 27.8 NLP-TDMS-v2 MLC†

Hou et al. (2019) 36.0 19.6 25.4 31.8 30.6 31.0 NLP-TDMS-v2 SM†

Hou et al. (2019) 68.6 40.3 50.8 29.6 29.1 28.1 NLP-TDMS-v2 TDMS-IE TAE#

Hou et al. (2019) 50.0 23.7 32.2 20.8 20.1 19.4 NLP-TDMS-v2 TDMS-IE TAT#

Hou et al. (2019) 47.9 14.2 21.9 11.3 11.3 10.7 NLP-TDMS-v2 TDMS-IE TA#

Kardas et al. (2020) 65.8 58.5 61.9 56.0 55.8 54.1 NLP-TDMS-v3 AxCell
Kardas et al. (2020) 53.4 66.3 59.2 57.1 66.1 58.5 NLP-TDMS-v3 TDMS-IE
Kardas et al. (2020) 67.8 47.8 56.1 47.9 46.4 43.5 PwC-LB-v1 AxCell
Kabongo et al. (2021) 76.4 66.4 71.1 63.5 64.1 61.4 NLP-TDMS-v1 ORKG-TDM XLNet
Kabongo et al. (2021) 65.3 73.1 69.0 57.6 68.7 60.1 NLP-TDMS-v1 ORKG-TDM SciBERT
Kabongo et al. (2021) 79.5 57.6 66.8 59.0 55.4 54.7 NLP-TDMS-v1 ORKG-TDM BERT
Kabongo et al. (2021) 77.1 70.9 73.9 71.7 73.9 70.6 NLP-TDMS-v2 ORKG-TDM XLNet
Kabongo et al. (2021) 79.6 63.3 70.5 68.1 67.5 65.5 NLP-TDMS-v2 ORKG-TDM BERT
Kabongo et al. (2021) 65.7 76.8 70.8 65.7 77.2 68.3 NLP-TDMS-v2 ORKG-TDM SciBERT
Kabongo et al. (2021) 95.1 92 93.5 92.3 93.5 91.7 ORKG-PwC-v1 ORKG-TDM XLNet TAET#

Kabongo et al. (2021) 93.5 93.2 93.3 90.5 94.4 91.2 ORKG-PwC-v1 ORKG-TDM XLNet TAT#

Kabongo et al. (2021) 95.0 90.5 92.7 91.6 93.1 91.2 ORKG-PwC-v1 ORKG-TDM XLNet#

Kabongo et al. (2021) 95.7 88.3 91.8 91.7 92.1 90.8 ORKG-PwC-v1 ORKG-TDM BERT
Kabongo et al. (2021) 94.2 89 91.5 89.2 91.5 89.2 ORKG-PwC-v1 ORKG-TDM XLNet TAE#

Kabongo et al. (2021) 94.4 87.6 90.9 89.7 91.4 89.4 ORKG-PwC-v1 ORKG-TDM SciBERT
Kabongo et al. (2021) 92.6 90 91.3 88.6 92.9 89.4 ORKG-PwC-v1 ORKG-TDM XLNet TA#

Kabongo et al. (2021) 94.9 91.2 93.0 92.8 94.8 92.8 ORKG-PwC-v2 ORKG-TDM XLNet
Kabongo et al. (2021) 95.5 89.1 92.1 92.8 93.9 92.4 ORKG-PwC-v2 ORKG-TDM BERT
Kabongo et al. (2021) 94.1 88.5 91.2 90.9 93.4 91.1 ORKG-PwC-v2 ORKG-TDM SciBERT
Kabongo et al. (2023b) 95.2 92.2 93.6 91.5 93.3 91.3 ORKG-PwC-v5 ORKG-LB BigBERT
Kabongo et al. (2023b) 94.8 93.9 94.3 91.3 94.4 91.8 ORKG-PwC-v5 ORKG-LB BERT
Kabongo et al. (2023b) 94.8 93.9 94.3 91.3 94.4 91.8 ORKG-PwC-v5 ORKG-LB SciBERT
Kabongo et al. (2023b) 95.4 93.9 94.7 93.2 95.7 93.5 ORKG-PwC-v6 ORKG-LB BERT
Kabongo et al. (2023b) 95.4 91.1 93.2 92.6 94.3 92.2 ORKG-PwC-v6 ORKG-LB SciBERT
Kabongo et al. (2023b) 93.2 94.9 93.0 95.7 92.4 94.0 ORKG-PwC-v6 ORKG-LB BigBERT
Kabongo et al. (2023b) 95.1 94.6 94.8 93.1 96.4 93.7 ORKG-PwC-v6 ORKG-LB XLNet
Kabongo et al. (2023b) 95.4 88.0 91.5 91.2 92.3 90.6 ORKG-PwC-v3 ORKG-LB BERT
Kabongo et al. (2023b) 93.7 86.0 89.7 89.4 91.7 89.2 ORKG-PwC-v3 ORKG-LB SciBERT
Kabongo et al. (2023b) 93.6 85.3 89.3 87.5 88.7 86.6 ORKG-PwC-v3 ORKG-LB BigBird
Kabongo et al. (2023b) 94.9 91.2 93.0 91.9 94.4 92.0 ORKG-PwC-v4 ORKG-LB XLNet
Kabongo et al. (2023b) 96.0 90.0 92.9 93.5 94.2 92.8 ORKG-PwC-v4 ORKG-LB BERT
Kabongo et al. (2023b) 94.6 88.6 91.5 91.7 93.9 91.6 ORKG-PwC-v4 ORKG-LB SciBERT
Kabongo et al. (2023b) 94.6 87.2 90.7 90.7 91.6 89.7 ORKG-PwC-v4 ORKG-LB BigBird
Kabongo et al. (2023a) 9.2 78.1 16.5 14.3 86.6 21.9 ORKG-PwC-v7* ORKG-TDM XLNet
Kabongo et al. (2023a) 14.1 72.9 23.6 20.1 83.4 28.9 ORKG-PwC-v7* ORKG-TDM BERT
Kabongo et al. (2023a) 10.4 81.7 18.4 16.2 89 24.4 ORKG-PwC-v7* ORKG-TDM BERT
Kabongo et al. (2023a) 10.1 76.8 17.8 14.9 86.4 22.7 ORKG-PwC-v7* ORKG-TDM XLNet
Şahinüç et al. (2024) 55.1 25.8 35.1 SciLead AxCell
Şahinüç et al. (2024) 40.7 39.5 40.1 SciLead TDMR-PR Llama 2+CS
Şahinüç et al. (2024) 35.9 34.9 35.4 SciLead TDMR-PR Llama 2
Şahinüç et al. (2024) 58.4 52.1 55.1 SciLead TDMR-PR Mixtral+CS
Şahinüç et al. (2024) 55.7 48.8 51.0 SciLead TDMR-PR Mixtral
Şahinüç et al. (2024) 62.0 58.1 60.0 SciLead TDMR-PR Llama 3+CS
Şahinüç et al. (2024) 77.1 72.6 74.8 SciLead TDMR-PR Llama 3
Şahinüç et al. (2024) 69.0 63.8 66.3 SciLead TDMR-PR GPT-4+CS
Şahinüç et al. (2024) 75.3 70.4 72.8 SciLead TDMR-PR GPT-4

Results of Extracting ⟨Task, Dataset, Metric⟩ for Open Domain Problem Framing

Yang et al. (2022) 68.2 45.3 56.5 49.7 43.1 42.5 PwC-LB-v2 TELIN

Results of Extracting ⟨Task, Dataset, Metric⟩ for Hybrid Domain Problem Framing
Continued on next page.
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Micro Macro Part. Micro

Reported In P R F1 P R F1 P F1 Dataset Method Experimental Setup

Şahinüç et al. (2024) 27.23 22.99 24.93 SciLead TDMR-PR Llama 2
Şahinüç et al. (2024) 27.89 24.48 26.07 SciLead TDMR-PR Mixtral
Şahinüç et al. (2024) 50.75 45.30 47.87 SciLead TDMR-PR Llama 3
Şahinüç et al. (2024) 56.08 51.89 53.90 SciLead TDMR-PR GPT-4

Results of Extracting ⟨Task, Dataset, Metric, Score⟩ for Closed Domain Problem Framing

Hou et al. (2019) 10.8 13.1 11.8 9.3 11.8 9.9 NLP-TDMS-v1 TDMS-IE
Hou et al. (2019) 3.8 1.8 2.4 1.3 1.0 1.1 NLP-TDMS-v1 SM†

Hou et al. (2019) 6.8 2.9 4.0 6.8 6.1 6.2 NLP-TDMS-v1 MLC†

Kardas et al. (2020) 27.4 24.4 25.8 20.2 20.6 19.7 NLP-TDMS-v3 AxCell
Kardas et al. (2020) 6.8 8.4 7.5 8.6 9.5 8.8 NLP-TDMS-v3 TDMS-IE
Kardas et al. (2020) 37.4 23.2 28.7 24.0 21.8 21.1 PwC-LB-v1 AxCell
Şahinüç et al. (2024) 32.59 13.67 19.26 SciLead AxCell
Şahinüç et al. (2024) 10.06 21.59 13.73 SciLead TDMR-PR Llama 2+CS
Şahinüç et al. (2024) 9.63 15.25 11.81 SciLead TDMR-PR Llama 2
Şahinüç et al. (2024) 26.54 24.61 25.54 SciLead TDMR-PR Mixtral+CS
Şahinüç et al. (2024) 24.66 21.73 23.10 SciLead TDMR-PR Mixtral
Şahinüç et al. (2024) 23.22 29.54 26.00 SciLead TDMR-PR Llama 3+CS
Şahinüç et al. (2024) 27.11 35.60 30.78 SciLead TDMR-PR Llama 3
Şahinüç et al. (2024) 49.82 48.71 49.26 SciLead TDMR-PR GPT-4+CS
Şahinüç et al. (2024) 56.02 54.53 55.27 SciLead TDMR-PR GPT-4

Results of Extracting ⟨Task, Dataset, Metric, Score⟩ for Open Domain Problem Framing

Yang et al. (2022) 38.3 20.8 26.3 26.6 19.2 21.3 PwC-LB-v2 TELIN

Results of Extracting ⟨Task, Dataset, Metric, Score⟩ for Hybrid Domain Problem Framing

Şahinüç et al. (2024) 4.17 9.89 5.87 SciLead TDMR-PR Llama 2
Şahinüç et al. (2024) 14.65 12.27 13.35 SciLead TDMR-PR Mixtral
Şahinüç et al. (2024) 15.70 18.75 17.09 SciLead TDMR-PR Llama 3
Şahinüç et al. (2024) 40.60 39.56 40.07 SciLead TDMR-PR GPT-4
Şahinüç et al. (2024) 51.01 51.03 51.02 SciLead TDMR-PR GPT-4 FS

Results of Extracting ⟨Task, Dataset, Metric, Method⟩ for Closed Domain Problem Framing

Jain et al. (2020) 0.48 0.89 0.62 SciREX TDMS-IE

Results of Extracting ⟨Task, Dataset, Metric, Method⟩ for Open Domain Problem Framing

Jain et al. (2020) 0.53 0.72 0.61 SciREX SciREX-IE

Results of Extracting ⟨Task⟩ for Closed Domain Problem Framing

Kardas et al. (2020) 70.6 57.3 63.3 60.7 62.6 59.7 PwC-LB-v1 AxCell
Kabongo et al. (2021) 97.4 93.6 95.5 93.7 94.8 93.6 ORKG-PwC-v1 ORKG-TDM XLNet
Kabongo et al. (2023b) 96.8 95.9 96.4 94.3 97.2 95.0 ORKG-PwC-v6 ORKG-LB XLNet
Kabongo et al. (2023b) 96.8 95.9 96.4 94.3 97.2 95.0 ORKG-PwC-v4 ORKG-LB XLNet
Şahinüç et al. (2024) 68.98 58.52 63.32 SciLead AxCell
Şahinüç et al. (2024) 59.83 67.20 63.30 SciLead TDMR-PR Llama 2+CS
Şahinüç et al. (2024) 55.45 60.74 57.97 SciLead TDMR-PR Llama 2
Şahinüç et al. (2024) 86.27 91.99 89.04 SciLead TDMR-PR Mixtral+CS
Şahinüç et al. (2024) 86.85 89.74 88.27 SciLead TDMR-PR Mixtral
Şahinüç et al. (2024) 85.69 90.85 88.19 SciLead TDMR-PR Llama 3+CS
Şahinüç et al. (2024) 87.33 92.17 89.68 SciLead TDMR-PR Llama 3
Şahinüç et al. (2024) 90.70 90.77 90.73 SciLead TDMR-PR GPT-4+CS
Şahinüç et al. (2024) 90.62 91.10 90.86 SciLead TDMR-PR GPT-4

Results of Extracting ⟨Task⟩ for Open Domain Problem Framing

Yang et al. (2022) 70.3 53.7 59.2 60.5 57.3 57.1 PwC-LB-v2 TELIN
Kabongo et al. (2024) 31.89 13.97 54.92 24.05 TDMS-Ctx-v5 TDMS-PR Llama2 7B ZS REC#

Kabongo et al. (2024) 24.56 21.75 43.46 38.48 TDMS-Ctx-v6 TDMS-PR Llama2 7B ZS TAET#

Kabongo et al. (2024) 2.06 2.06 52.54 3.36 TDMS-Ctx-v4 TDMS-PR Llama2 7B ZS Full#

Kabongo et al. (2024) 17.99 17.99 59.25 29.88 TDMS-Ctx-v5 TDMS-PR Mistral 7B ZS REC#

Kabongo et al. (2024) 26.99 26.99 64.00 44.90 TDMS-Ctx-v6 TDMS-PR Mistral 7B ZS TAET#

Kabongo et al. (2024) 0.22 0.56 62.50 0.56 TDMS-Ctx-v4 TDMS-PR Mistral 7B ZS Full#

Kabongo et al. (2024) 34.10 20.93 51.13 31.37 TDMS-Ctx-v2 TDMS-PR Llama2 7B FS REC#

Kabongo et al. (2024) 30.61 29.53 44.96 43.37 TDMS-Ctx-v3 TDMS-PR Llama2 7B FS TAET#

Kabongo et al. (2024) 34.69 1.59 50.00 2.29 TDMS-Ctx-v1 TDMS-PR Llama2 7B FS Full#
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Kabongo et al. (2024) 37.65 26.77 55.90 39.75 TDMS-Ctx-v2 TDMS-PR Mistral 7B FS REC#

Kabongo et al. (2024) 39.48 33.38 54.82 46.35 TDMS-Ctx-v3 TDMS-PR Mistral 7B FS TAET#

Kabongo et al. (2024) 32.43 0.81 71.43 1.19 TDMS-Ctx-v1 TDMS-PR Mistral 7B FS Full#

Results of Extracting ⟨Task⟩ for Hybrid Domain Problem Framing

Şahinüç et al. (2024) 39.70 42.98 41.27 SciLead TDMR-PR Llama 2
Şahinüç et al. (2024) 50.23 60.72 54.98 SciLead TDMR-PR Mixtral
Şahinüç et al. (2024) 65.72 80.39 72.32 SciLead TDMR-PR Llama 3
Şahinüç et al. (2024) 63.82 78.30 70.32 SciLead TDMR-PR GPT-4

Results of Extracting ⟨Dataset⟩ for Closed Domain Problem Framing

Kardas et al. (2020) 70.2 48.4 57.3 53.5 52.7 49.9 PwC-LB-v1 AxCell
Kabongo et al. (2021) 96.6 91.5 94.0 92.9 93.6 92.4 ORKG-PwC-v1 ORKG-TDM XLNet
Kabongo et al. (2023b) 96.2 95.4 95.8 93.8 96.7 94.4 ORKG-PwC-v6 ORKG-LB XLNet
Kabongo et al. (2023b) 96.2 95.4 95.8 93.8 96.7 94.4 ORKG-PwC-v4 ORKG-LB XLNet
Şahinüç et al. (2024) 63.66 33.87 44.22 SciLead AxCell
Şahinüç et al. (2024) 68.93 58.81 63.47 SciLead TDMR-PR Llama 2+CS
Şahinüç et al. (2024) 62.60 55.03 58.57 SciLead TDMR-PR Llama 2
Şahinüç et al. (2024) 85.03 73.20 78.67 SciLead TDMR-PR Mixtral+CS
Şahinüç et al. (2024) 81.68 71.26 76.12 SciLead TDMR-PR Mixtral
Şahinüç et al. (2024) 82.43 78.62 80.48 SciLead TDMR-PR Llama 3+CS
Şahinüç et al. (2024) 92.09 87.75 89.87 SciLead TDMR-PR Llama 3
Şahinüç et al. (2024) 86.36 79.93 83.02 SciLead TDMR-PR GPT-4+CS
Şahinüç et al. (2024) 92.64 86.05 89.22 SciLead TDMR-PR GPT-4

Results of Extracting ⟨Dataset⟩ for Open Domain Problem Framing

Kabongo et al. (2024) 15.77 6.83 38.32 16.6 TDMS-Ctx-v5 TDMS-PR Llama2 7B ZS REC#

Kabongo et al. (2024) 12.72 11.26 26.09 23.1 TDMS-Ctx-v6 TDMS-PR Llama2 7B ZS TAET#

Kabongo et al. (2024) 20.34 1.30 38.98 2.49 TDMS-Ctx-v4 TDMS-PR Llama2 7B ZS Full#

Kabongo et al. (2024) 23.40 11.80 41.73 21.05 TDMS-Ctx-v5 TDMS-PR Mistral 7B ZS REC#

Kabongo et al. (2024) 20.41 14.32 38.89 27.29 TDMS-Ctx-v6 TDMS-PR Mistral 7B ZS TAET#

Kabongo et al. (2024) 37.50 0.33 75.00 0.67 TDMS-Ctx-v4 TDMS-PR Mistral 7B ZS Full#

Kabongo et al. (2024) 21.27 13.06 36.66 22.50 TDMS-Ctx-v2 TDMS-PR Llama2 7B FS REC#

Kabongo et al. (2024) 17.29 16.68 31.48 30.36 TDMS-Ctx-v3 TDMS-PR Llama2 7B FS TAET#

Kabongo et al. (2024) 29.59 1.36 39.80 1.82 TDMS-Ctx-v1 TDMS-PR Llama2 7B FS Full#

Kabongo et al. (2024) 22.15 15.68 38.52 27.28 TDMS-Ctx-v2 TDMS-PR Mistral 7B FS REC#

Kabongo et al. (2024) 21.89 18.51 38.73 32.75 TDMS-Ctx-v3 TDMS-PR Mistral 7B FS TAET#

Kabongo et al. (2024) 32.43 0.57 48.65 0.85 TDMS-Ctx-v1 TDMS-PR Mistral 7B FS Full#

Yang et al. (2022) 70.9 52.8 59.3 54.7 55.2 53.9 PwC-LB-v2 TELIN

Results of Extracting ⟨Dataset⟩ for Hybrid Domain Problem Framing

Şahinüç et al. (2024) 41.05 33.14 36.67 SciLead TDMR-PR Llama 2
Şahinüç et al. (2024) 49.67 44.45 46.92 SciLead TDMR-PR Mixtral
Şahinüç et al. (2024) 66.81 62.86 64.77 SciLead TDMR-PR Llama 3
Şahinüç et al. (2024) 83.29 79.52 81.36 SciLead TDMR-PR GPT-4

Results of Extracting ⟨Metric⟩ for Closed Domain Problem Framing

Kardas et al. (2020) 68.8 58.5 63.3 58.4 60.4 56.5 PwC-LB-v1 AxCell
Kabongo et al. (2021) 96.0 92.5 94.2 92.5 94.2 92.5 ORKG-PwC-v1 ORKG-TDM XLNet
Kabongo et al. (2023b) 96.0 95.3 95.6 93.7 96.9 94.4 ORKG-PwC-v6 ORKG-LB XLNet
Kabongo et al. (2023b) 96.0 95.3 95.6 93.7 96.9 94.4 ORKG-PwC-v4 ORKG-LB XLNet
Kabongo et al. (2024) 26.77 11.72 41.73 18.28 TDMS-Ctx-v5 TDMS-PR Llama2 7B ZS REC#

Kabongo et al. (2024) 19.19 16.99 30.60 27.09 TDMS-Ctx-v6 TDMS-PR Llama2 7B ZS TAET#

Kabongo et al. (2024) 23.73 1.52 38.98 2.49 TDMS-Ctx-v4 TDMS-PR Llama2 7B ZS Full#

Kabongo et al. (2024) 31.02 15.55 46.20 23.16 TDMS-Ctx-v5 TDMS-PR Mistral 7B ZS REC#

Kabongo et al. (2024) 31.41 22.04 45.94 32.23 TDMS-Ctx-v6 TDMS-PR Mistral 7B ZS TAET#

Kabongo et al. (2024) 37.50 0.33 87.50 0.78 TDMS-Ctx-v4 TDMS-PR Mistral 7B ZS Full#

Kabongo et al. (2024) 22.74 13.96 35.82 21.99 TDMS-Ctx-v2 TDMS-PR Llama2 7B FS REC#

Kabongo et al. (2024) 20.78 20.02 31.66 30.51 TDMS-Ctx-v3 TDMS-PR Llama2 7B FS TAET#

Kabongo et al. (2024) 20.41 0.94 36.73 1.68 TDMS-Ctx-v1 TDMS-PR Llama2 7B FS Full#

Kabongo et al. (2024) 26.38 18.70 40.18 28.49 TDMS-Ctx-v2 TDMS-PR Mistral 7B FS REC#

Kabongo et al. (2024) 28.66 24.23 40.41 34.16 TDMS-Ctx-v3 TDMS-PR Mistral 7B FS TAET#

Kabongo et al. (2024) 32.43 0.57 45.95 0.81 TDMS-Ctx-v1 TDMS-PR Mistral 7B FS Full#
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Şahinüç et al. (2024) 69.35 51.36 59.01 SciLead AxCell
Şahinüç et al. (2024) 67.36 61.41 64.25 SciLead TDMR-PR Llama 2+CS
Şahinüç et al. (2024) 71.51 65.49 68.37 SciLead TDMR-PR Llama 2
Şahinüç et al. (2024) 76.56 71.78 74.09 SciLead TDMR-PR Mixtral+CS
Şahinüç et al. (2024) 76.72 67.20 71.65 SciLead TDMR-PR Mixtral
Şahinüç et al. (2024) 87.02 81.41 84.12 SciLead TDMR-PR Llama 3+CS
Şahinüç et al. (2024) 94.90 89.48 92.11 SciLead TDMR-PR Llama 3
Şahinüç et al. (2024) 86.36 81.49 83.85 SciLead TDMR-PR GPT-4+CS
Şahinüç et al. (2024) 88.18 86.46 87.31 SciLead TDMR-PR GPT-4

Results of Extracting ⟨Metric⟩ for Open Domain Problem Framing

Yang et al. (2022) 63.2 57.9 60.2 56.3 55.1 55.4 PwC-LB-v2 TELIN

Results of Extracting ⟨Metric⟩ for Hybrid Domain Problem Framing

Şahinüç et al. (2024) 61.24 59.34 60.28 SciLead TDMR-PR Llama 2
Şahinüç et al. (2024) 78.72 71.19 74.77 SciLead TDMR-PR Mixtral
Şahinüç et al. (2024) 94.90 88.90 91.80 SciLead TDMR-PR Llama 3
Şahinüç et al. (2024) 92.21 89.27 90.72 SciLead TDMR-PR GPT-4

Results of Extracting ⟨Score⟩ for Closed Domain Problem Framing

Şahinüç et al. (2024) 45.32 18.41 26.18 SciLead AxCell
Şahinüç et al. (2024) 23.75 31.61 27.12 SciLead TDMR-PR Llama 2
Şahinüç et al. (2024) 44.62 41.75 43.13 SciLead TDMR-PR Mixtral
Şahinüç et al. (2024) 39.50 49.56 43.96 SciLead TDMR-PR Llama 3
Şahinüç et al. (2024) 70.34 68.22 69.26 SciLead TDMR-PR GPT-4

Results of Extracting ⟨Score⟩ for Open Domain Problem Framing

Kabongo et al. (2024) 6.06 2.61 7.27 3.10 TDMS-Ctx-v5 TDMS-PR Llama2 7B ZS REC#

Kabongo et al. (2024) 0.87 0.77 1.09 0.96 TDMS-Ctx-v6 TDMS-PR Llama2 7B ZS TAET#

Kabongo et al. (2024) 5.08 0.33 8.47 0.54 TDMS-Ctx-v4 TDMS-PR Llama2 7B ZS Full#

Kabongo et al. (2024) 9.98 5.04 11.46 5.75 TDMS-Ctx-v5 TDMS-PR Mistral 7B ZS REC#

Kabongo et al. (2024) 1.71 1.20 2.03 1.41 TDMS-Ctx-v6 TDMS-PR Mistral 7B ZS TAET#

Kabongo et al. (2024) 14.00 0.76 21.62 0.87 TDMS-Ctx-v4 TDMS-PR Mistral 7B ZS Full#

Kabongo et al. (2024) 4.99 3.04 5.59 3.46 TDMS-Ctx-v2 TDMS-PR Llama2 7B FS REC#

Kabongo et al. (2024) 1.18 1.14 1.43 1.38 TDMS-Ctx-v3 TDMS-PR Llama2 7B FS TAET#

Kabongo et al. (2024) 5.10 0.23 8.16 0.37 TDMS-Ctx-v1 TDMS-PR Llama2 7B FS Full#

Kabongo et al. (2024) 8.94 6.36 9.95 7.08 TDMS-Ctx-v2 TDMS-PR Mistral 7B FS REC#

Kabongo et al. (2024) 2.21 1.87 2.65 2.25 TDMS-Ctx-v3 TDMS-PR Mistral 7B FS TAET#

Kabongo et al. (2024) 9.6 0.56 14.52 0.84 TDMS-Ctx-v1 TDMS-PR Mistral 7B FS Full#

Singh et al. (2024) 2.13 LEGOBench MS-PR‡ Mistral Instr. 7B
Singh et al. (2024) 1.81 LEGOBench MS-PR‡ Zephyr Beta 7B
Singh et al. (2024) 13.87 LEGOBench MS-PR‡ Gemini Pro
Singh et al. (2024) 13.06 LEGOBench MS-PR‡ GPT-4

Results of Extracting ⟨Score⟩ for Hybrid Domain Problem Framing

Şahinüç et al. (2024) 23.75 31.61 27.12 SciLead TDMR-PR Llama 2
Şahinüç et al. (2024) 44.62 41.75 43.13 SciLead TDMR-PR Mixtral
Şahinüç et al. (2024) 39.50 49.56 43.96 SciLead TDMR-PR Llama 3
Şahinüç et al. (2024) 70.34 68.22 69.26 SciLead TDMR-PR GPT-4

Results of Extracting ⟨Method⟩ for Open Domain Problem Framing

Singh et al. (2024) 0.010 LEGOBench MS-PR‡ Falcon 7B
Singh et al. (2024) 0.002 LEGOBench MS-PR‡ Falcon Instr. 7B
Singh et al. (2024) 0.000 LEGOBench MS-PR‡ Galactica 7B
Singh et al. (2024) 0.024 LEGOBench MS-PR‡ Llama 2 7B
Singh et al. (2024) 0.077 LEGOBench MS-PR‡ Llama 2 Chat 7B
Singh et al. (2024) 0.351 LEGOBench MS-PR‡ Mistral 7B
Singh et al. (2024) 5.75 20.42 LEGOBench MS-PR‡ Mistral Instr. 7B
Singh et al. (2024) 0.023 LEGOBench MS-PR‡ Vicuna 7B
Singh et al. (2024) 1.49 10.87 LEGOBench MS-PR‡ Zephyr Beta 7B
Singh et al. (2024) 0.014 LEGOBench MS-PR‡ Llama 2 13B
Singh et al. (2024) 0.02 LEGOBench MS-PR‡ Llama 2 Chat 13B
Singh et al. (2024) 0.06 LEGOBench MS-PR‡ Vicuna 13B
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Singh et al. (2024) 2.73 3.38 LEGOBench MS-PR‡ Gemini Pro
Singh et al. (2024) 17.14 25.24 LEGOBench MS-PR‡ GPT-4

* trained on ORKG-PwC-v6/v7 †SM, MLC, and EL are baseline methods, representing String Match, Multi-Label Classification,
and Entity Linking, respectively. ‡Conditional on ⟨task, dataset, metric⟩. # REC, TAET, and Full refer to DocREC, DocTAET, and
the Full Paper representations of the document, respectively. These are reported as part of an ablation study examining different
document representations. For more details on these representations, see § 5.1.

Table 7: Summary of results for leaderboard tuple extraction, evaluated using variations of Micro and Macro
Precision (P), Recall (R), and F1 scores. Notations: FS = Few Shot, ZS = Zero Shot, Instr. = Instruction.
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