
A Multi-Modal Foundation Model Across Species for
Interpreting Gene Functions

Tianyu Liu, Gefei Wang, Yu Li, Wengong Jin, Hongyu Zhao
Yale University, Broad Institute, The Chinese University of Hong Kong, Northeastern University

tianyu.liu@yale.edu

Abstract

Artificial Intelligence shows impressive performances in computational biology,
especially in modelling DNA sequences and processing biomedical text annota-
tions. To interpret the contributions of modality representations in learning and
predicting patterns in genomics and genetics, we develop DNACLIP and train it
with paired DNA sequences and text descriptions from over 300,000 genes across
24 species, to model text and DNA sequences jointly and perform cross-species
gene functional analysis. Through extensive benchmarking analysis, we show the
unique contributions of aligned gene embeddings and text embeddings in various
downstream applications, including gene clustering, gene annotation, disease risk
prediction, function prediction, perturbation prediction, and expression prediction,
etc. We also use DNACLIP to discover disease-specific gene programs from atlas
data. Finally, we discuss the dominant areas of modality-specific embeddings and
provide guidelines for users to select embeddings based on their requirements.

1 Introduction

DNA sequences are the foundation for heredity and evolution, mainly based on the functions of
transcripts or genes [9]. Specifically, the region with genetic signals plays an important role in
determining cellular structure, function, and fate, through transcription and translation [21, 31].
Therefore, interpreting the function of genes is essential for us to understand the meaningful context
behind the complex biological sequences and processes, and address representative tasks such as
genome annotation [27], gene representation [17, 18], gene-phenotype association [10], and others.

In this work, we develop a multi-modal foundation model, named DNACLIP, by leveraging the
pre-trained information from both gLMs and LLMs, to generate better sequence embeddings for
gene representation. By collecting the DNA sequences and corresponding functional annotations
from NCBI [25] and UniProt [8], we build a large-scale text-sequence dataset to pre-train DNACLIP.
Based on a contrastive learning framework known as CLIP [23], we learn a new sequence embedding
enriched with text annotation, and a new text embedding enriched with information about biological
sequences, and align their embeddings into a joint space for bridging the gap between modalities.
Such alignment relationship can be naturally used to generalize functional annotation for unseen
genes or poorly annotated genes in different species. Compared with the classical sequence alignment
algorithm BLAST (basic local alignment search tool) [3], our method takes the overall dependency
into consideration, and can also learn the change of sequences with low similarity. Finally, we
demonstrated that incorporating gene representations from DNACLIP with other domain-specific
models can also empower their performances in specific tasks, such as predicting perturbation effects
and gene expression levels based on single-cell transcriptomics. We believe that our method is an
effective way at the stage of building foundation models for DNA sequence modeling and further
unlocks the power of using deep learning to study genomes.
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Figure 1: Overview of large-scale DNA-TEXT paired datasets and model architecture. (a) Statistics
of DNA sequences and text annotations of genes across different species. We highlight the largest
and smallest number. (b) Model architecture of DNACLIP. Here we train a CLIP model [23] for
modalities including text (T) and DNA sequence (D), and it also accepts other modalities (M) as
inputs, and the combination of modalities is determined based on ablation studies. DNACLIP
supports various downstream applications, including function annotation, disease risk/gene ontology
prediction, gene-level interaction prediction, and perturbation prediction, etc.

2 Results

Dataset Construction. We first constructed a multi-modal gene (DNA sequence)-annotation (text)
dataset to train DNACLIP. Our DNA sequences are extracted from 24 species covering mammals,
birds, fish, microorganisms, and others. The illustration of data distribution and statistics is summa-
rized in Figure 1 (a). To collect information on DNA sequences, we downloaded the gtf/gff3 files to
access genome information of each gene, including position in the chromosome, starting site, and
ending site from Ensembl [13]. We then extracted the sequences from the reference genomes of these
species. To collect information on gene annotation, such as gene name and functional summary, we
retrieved the gene information from NCBI [26] based on authorized API. Through our analysis of
the data structure, we identified that Mus musculus has the largest number of identified genes and
Escherichia coli has the smallest. Also, we found that the labeling of genes from different species has
a largely imbalanced distribution. The genes of some species lack functional annotation and exhibit
the characteristics of low-resource data.
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Figure 2: Evaluation results of gene function clustering. We report the standard deviation (SD)
for trained baseline methods with five different random seeds (HyenaDNA and TEXT are from
pre-trained models and thus their SD is 0). (a) NMI scores across gene embeddings from different
methods based on functional labels. (b) ARI scores across gene embeddings from different methods
based on functional labels. (c) UMAP visualization of gene embeddings from DNACLIP colored
by functional labels. (d) UMAP visualization of gene embeddings from MS_DNACLIP colored by
species.

Method Overview. The DNA sequence embeddings of genes are generated based on HyenaDNA
[20], which has a long context window and shows strong performance across some baseline analyses.
We also include other genomic language models (gLMs), such as genaLM [12] and Evo2 [5], as
baseline methods. The text embeddings of gene annotations are generated based on the OpenAI
embedding model [1]. The most basic form of training DNACLIP is to learn a sequence projector and
a text projector based on gene pairs from two modalities. Moreover, DNACLIP can also accept input
from more than two modalities, which serves as a flexible multi-modal integration and alignment
framework. The overview of DNACLIP is illustrated in Figure 1 (b), with the corresponding
downstream applications including gene-level functional annotation, disease risk gene prediction,
gene ontology prediction, and perturbation prediction, etc.

DNACLIP better encodes and represents gene functions. By training DNACLIP, the sequencing
data can leverage the denoised gene function information from text embeddings and thus the em-
beddings from DNA sequences can be improved over the raw sequence embeddings generated by
HyenaDNA or other gLMs. To demonstrate this, we downloaded the classes of human gene functions
(such as protein-encoding and non-coding RNA) from [28] and performed clustering analysis based
on the gene embeddings in the testing set. Higher clustering metrics, such as normalized mutual
information (NMI) and Adjusted Rand Index (ARI) [22], mean better gene representations.

Figures 2 (a) and (b) show our clustering performances with gene embeddings from different sources,
annotated with NMI and ARI scores. The results from DNACLIP are repeated with runs from five
different random seeds, to investigate the robustness. For the embeddings from DNA sequences, we
found that DNACLIP achieved the best performances, with clear improvement over other baselines.
Furthermore, as we expected, the text embeddings had the highest clustering metrics, followed by
the results from the text projector. However, embeddings from the text projector did not lose much
information, shown by the slight decrease in clustering scores, but its dimension was reduced (3072
to 128) and thus DNACLIP could save resources for generating gene representations efficiently.
Including multi-species information did not affect the clustering performance. Since the human
genes are better studied and have better annotation quality, including text descriptions across different
species did not lead to an obvious performance drop, which implies that the functional annotation
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Figure 3: Results of functional annotation with DNACLIP. (a) Retrieval accuracy at different levels
across different species based on the training and validation datasets. (b) Retrieval accuracy at
different levels across different gene functions based on the testing dataset. (c) An example of using
DNACLIP and LLMs to reproduce known gene functions with DNA sequence embeddings. (d) An
example of using DNACLIP and LLMs to annotate unknown gene functions with DNA sequence
embeddings.

based on the similarity retrieval for under-explored genes is practical. Furthermore, we visualize
the gene embeddings with UMAP [19] in Figures 2 (c) (only testing set) and (d) (all paired genes),
which shows that embeddings from both projectors can have clear separation for most genes colored
by functional annotation and species.

The related hyper-parameters in DNACLIP training are tuned to the best performance, as discussed
in the Methods section and Extended Data Figures 4 (a)-(c). Here we found that higher temperature
values in contrastive learning and dimension could yield a better sequence projector to distinguish
genes from different functional groups. Reducing the temperature could generate better gene em-
beddings from the text projector. We also performed ablation studies to investigate the contributions
of different modalities and training frameworks. According to Extended Data Figures 5 (a) (NMI
score) and (b) (ARI score), fine-tuning the gLM (using HyenaDNA as the backbone model) does not
improve the ability of embeddings in representing gene functions, and having protein embeddings
generated by ESMC of corresponding genes also does not improve the clustering performance.
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Annotating unknown gene functions with similarity-based retrieval. As we previously mentioned,
one of the basic but powerful functions of contrastive learning models is retrieval. The contribution
of DNACLIP serves as an annotation tool for low-resource gene annotation information in the
under-explored species’ genomes. To evaluate the capacity of DNACLIP in sequence-text retrieval,
we considered two directions, which include searching the corresponding text description based
on sequence (DNA→TEXT), and searching the corresponding sequence based on text description
(TEXT→DNA), across different species and gene functions. We also selected Accuracy@TopK
(K∈ (1, 5, 10)), which computes the accuracy based on top-K candidates ranked by similarity for the
given sample, to perform evaluation.

Figure 3 (a) shows the retrieval results across different species based on training and validation
datasets, which demonstrates that DNACLIP can match accurately in species such as Ciona savigyni
and Tursiops truncatus. Moreover, we also observed imbalanced performances across different
species, for example, the annotation accuracy in Homo sapiens remains at a relatively low level across
different K. To explain this result, we also show the retrieval results based on the testing dataset in
Figure 3 (b), which only contains genes from Homo sapiens but with different functional annotations.
We ranked the functional annotations based on the number of genes in this functional class (as
shown in the figure, we have the largest number of genes with protein coding information and the
smallest number of genes belonging to the category IG_V), while as the number of genes decreases,
the performance increases. Therefore, the functional similarity of genes makes it impossible to
capture 100% of the correspondence between sequence and text description, which implies that
DNACLIP learns the correct biological patterns by keeping the within-group similarity in DNA
sequence modelling and does not overfit. Such result is also observed in CLIP models trained with
other biomedical data, shown in [6], with a similar level of accuracy.

To provide a sanity check, we show an example of reproducing the known gene function annotation
by selecting the gene ENSCSAVG00000012483 (also known as COX1), which has the text description
provided by NCBI. Here we searched its top 5 neighbors in the space of text embeddings with
DNACLIP, shown in Figure 3 (c). This figure shows that we successfully capture the matched text
annotation for this gene in its neighborhood list and we further summarized the descriptions from
these candidates with LLMs such as GPT-4o [15]. GPT-4o also provided the correct functional
description for this gene and linked this gene with other genes, such as COX3 and COX2, which
encode other subunits of cytochrome c oxidase, suggesting its role in catalyzing the reduction of
oxygen to water, a critical step in cellular respiration.

To illustrate the functionality of DNACLIP in annotating unseen genes, we selected the gene EN-
SCSAVG00000012485 in Ciona savigyni, encoded it with DNA sequences to generate gene repre-
sentations, and searched its top 5 neighbors in the space of text embeddings, shown in Figure 3 (d).
The discovered candidates in Drosophila are all in the same class, known as microRNA, and contain
functional annotations including biological mechanisms that they involve. By summarizing these
candidates with GPT-4o [15], we can produce the functional summary of this gene. MicroRNA
samples typically function by binding to complementary sequences in target messenger RNAs (mR-
NAs) to inhibit their translation or promote their degradation, often as part of the RNA-induced
silencing complex (RISC). Therefore, the gene ENSCSAVG00000012485 might also participate in
the regulation of gene expression through similar mechanisms in its organism. Interestingly, it has
been shown that synteny and colinearity patterns in Ciona are much more similar to those found
in the clades of Caenorhabditis and Drosophila [14], so the annotations of DNACLIP may have
genome-level interpretability.

3 Discussion and Conclusion

Here we pre-train DNACLIP with DNA sequences and text description pairs of genes from different
species. The initial representations of DNA sequences are generated by genomic language models,
while the initial representations of texts are generated by large language models. The paired sets of
vectors are fed into the CLIP model and transformed into modality-specific embeddings based on
sequence and text encoders as well as the modality-alignment-specific loss functions. Using a series
of ablation studies, we demonstrate the better performance of our framework that can balance the
quality of the embeddings generated by the two encoders to represent the function of the gene.
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A Appendix

A.1 Problem Definition.

Here we consider a set of multi-modal datasets D = (X1, X2, .., Xn), where each modality comes
from the same identity and the index is paired. For a set of genes from different species, we define
the sequence modality as XD and text annotation modality as XT . We aim to align these modalities
by training a set of projectors PD and PT , and the projectors take original modalities as inputs and
generate embeddings in the aligned space. Such embeddings can also be used to detect neighbors and
work as novel gene embeddings for handling gene-level tasks.

A.2 Dataset Construction.

We first collect the DNA sequences of genes of different species from NCBI and Ensembl, and we
select the reference genomes with known location information of genes (chromosome, starting site,
and ending site) to extract the paired DNA sequence of each gene. For the same gene, we collect text
descriptions from NCBI and UniProt to cover gene functions and protein functions, by following the
methods described in GenePT [7]. Finally, we generate embeddings of text descriptions based on
the OpenAI text embedding model by following methods described in GenePT and scELMo [16].
We then split the training, validation, and testing data for model training and deployment. DNA
sequences are embedded based on HyenaDNA [20] (1 million length context window).

A.3 Model Construction.

We create the set of projects based on the variation of Contrastive Language-Image Pre-Training
(CLIP) [23], known as Contrastive Language-Sequence Pre-Training. The idea of CLIP is to maximize
the probability of matching the embeddings from the same sample but different modalities, based
on contrastive learning. Here, we take embeddings from DNA sequences and embeddings from text
descriptions as inputs, and train the CLIP to have two modality-specific projectors. We also test
different variations of CLIP, including default CLIP, SigLIP [32] and proposed similarity-penalized
CLIP.

Considering n samples in our datasets, we have the produced embeddings from two encoders as
sDi = PD(XD

i ) and sTi = PT (XT
i ) for the ith pair, and the temperature t for contrastive learning.

The default CLIP loss is defined as:

LmCLIP = − 1

2n

n∑
i=1

(log
ets

D
i sTi∑n

j=1 e
tsDi sTj

+ log
ets

D
i sTi∑n

j=1 e
tsDj sTi

),

where the first log term computes the DNA to TEXT retrieval result and the second log term computes
the TEXT to DNA retrieval result.

SigLIP replaced the method to compute probability with Sigmoid. The default SigLIP loss is defined
as:

LSigLIP = −
n∑

i=1

n∑
j=1

log
1

1 + ezij(ts
D
i sTj +b)

,

where b is a trainable parameter and zij = 1 when i = j (positive pairs), else zij = 0 (negative pairs).

Similarity-penalized CLIP added one penalty term to restrict the learned embeddings to have the
same gene-gene interaction strength of each modality. The loss function is defined as:

LSimPenaltyCLIP = LmCLIP +
1

n

n∑
i=1

(sDi (sDi )′ −XD
i (XD

i )′)2 +
1

n

n∑
i=1

(sTi (s
T
i )

′ −XT
i (X

T
i )

′)2.

Based on our ablation results, we scale the default CLIP model with genes from different species and
functional groups.
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Regarding hyper parameters, we select the best learning rate, dimension of latent space, and tempera-
ture by tuning the model based on different conditions.

A.4 Similarity-based Gene Retrieval.

Since many genes from some species do not have gene annotation, by using our trained DNACLIP
to generate gene embeddings of less-annotated genes, we can retrieval the given genes with closet
annotated genes based on similarity (e.g., top-5 genes), and we call LLMs such as GPT-4o to
summarize the description of these genes as the renewed functional annotations. This method is a
novel gene annotation method, especially for low-resource species.

A.5 Demonstration of the Functionality of Gene Embeddings.

By training DNACLIP, we can generate gene embeddings from both sequence space and text
description space. These gene embeddings may have task-specific preferences, and understanding
these preferences is crucial for making recommendations based on users’ requirements. Additionally,
they can serve as a benchmarking analysis to demonstrate the strength of the proposed model and
framework. Here we consider three different tasks, including disease gene prediction, gene ontology
prediction, gene-gene interaction prediction, gene functional clustering, and perturbation prediction.
The first three tasks are described and formed in [33], and we use the same dataset to perform
evaluation for both text and sequence embeddings. Disease gene prediction means we predict genes
that cause disease due to mutation in hereditary diseases, and these diseases are selected from
Mendelian inheritance disorders. Gene ontology prediction means we predict genes involved in
certain Gene Ontology (GO) pathways. Gene-gene interaction means we predict whether a pair of
genes interacts in the biological process or not. Gene functional clustering means we annotate each
gene based on its functional class from Geneformer [28] and perform clustering to check if genes
with the same functional annotation are co-localized or not. The perturbation effect prediction task is
adapted from scLAMBDA [29], which leverages gene embeddings from text descriptions to predict
the perturbation effect based on control stage single-cell transcriptomic profiles. Similarly, we can
also predict the cell viability for cancer cell lines with a random forest regressor from gene expression
profiles and gene embeddings [24]. To predict cell-type-specific gene expression levels, we modify
UNICORN [18] with choices from more gene embeddings.

We note that text embeddings might benefit from knowledge leakage for the prediction and clustering
tasks, as the text descriptions of the given gene might contain information of diseases or pathway-
related information, and thus the sequence embeddings are more important there and text embeddings
work as a quality control tool, which means a well-trained model should produce text embeddings
which perform well for these tasks.

A.6 Extraction and analysis of gene programs.

By leveraging the trained gene embeddings generated by the sequence encoder, we can utilize
distance algorithm to construct the similarity matrix of different genes, and use clustering algorithm
to annotate gene cluster (programs) to perform gene enrichment analysis. Here we select the genes
from a pre-defined set and extract different gene programs to run Gene Ontology Enrichment Analysis
(GOEA) [4, 2, 11] and represent the gene clusters based on associated gene pathways. We also utilize
GeneAgent [30] to help us summarize the major functions of gene programs produced by DNACLIP.
GeneAgent accepts a list of genes as the input and outputs the functional summary of these genes as
the output.

A.7 Model Evaluation.

To evaluate DNACLIP and the produced gene embeddings, we consider both training-aware evaluation
and task-specific evaluation. For the training-aware evaluation, we compute the CLIP loss based
on the validation dataset to ensure that our model converges to the optimized stage with the lowest
validation loss. For task-specific evaluation, we consider different metrics based on the selected
tasks. For disease gene prediction and gene ontology prediction, since they are both gene-level
binary classification problems, we use AUROC and AUPRC as metrics [22]. For the gene-gene
interaction prediction task, since it is a paired-genes-level binary classification problem, we still use
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AUROC and AUPRC as metrics. For the gene functional clustering task, we use traditional clustering
metrics, including NMI and ARI [22]. For the perturbation prediction task, we use the Pearson
Correlation Coefficient (PCC) and Mean Squared Error (MSE) between observed and predicted
expression profiles after mean expression correction for evaluation. For the expression prediction
task, we select the Pearson Correlation Coefficient (PCC) and Mean Squared Error (MSE) between
the observed and predicted expression profiles for evaluation.

A.8 Baseline Methods.

The baseline methods included in our project are HyenaDNA, Evo2 [5], GenaLM [12], and GenePT.
HyenaDNA is a genomic language model pre-trained with DNA sequences from the human reference
genome, and it is based on the Hyena architecture. Evo2 is an extension of HyenaDNA and is trained
with multi-species DNA sequences. Evo2 also has a larger scale (7B). GenaLM is also a genomic
language model pre-trained with DNA sequences from multiple species. We use the multi-species
mode of GenaLM. We also include GenePT, which takes functional descriptions of genes and embeds
them with an OpenAI embedding model to access gene embeddings.

A.9 Code Availability

We will release our codes after peer review.
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A.10 Supplementary figures
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Extended Data Fig. 4: Clustering performances based on different hyper-parameters. (a) Relationship
between learning rate and clustering metrics. (b) Relationship between latent dimension and clustering
metrics. (c) Relationship between temperature and clustering metrics.
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Extended Data Fig. 5: Clustering performances based on different components. (a) NMI scores
across different model inputs and training strategies. (b) ARI scores across different model inputs
and training strategies. (C) NMI scores across different model architectures. (b) ARI scores across
different model architectures.

12



a b

c

UMAP1

U
M

AP
2

Perturbation targets

Extended Data Fig. 6: Perturbation predictions from more datasets. (a) Evaluation results with
PCC_delta across different methods based on the Adamson dataset. (b) Evaluation results with on
MSE_delta across different methods based on the Adamson dataset. (c) UMAP visualization of the
generation performance based on the ARC Challenge dataset colored by perturbation targets.
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Extended Data Fig. 7: Perturbation predictions from the HCT116 perturbed dataset. (a) Evaluation
results with PCC_delta across different methods. (b) Evaluation results with on MSE_delta across
different methods.
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Extended Data Fig. 8: Gene-level evaluation results based on different datasets. (a) Gene-level PCC
and MSE scores across different baseline methods based on the Onek1k dataset. (b) Gene-level PCC
and MSE scores across different baseline methods based on the AIDA dataset.
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Explore top gene candidates

Metric: Cell-level PCC
Improvement versus DNACLIP_DNA: 28.7%
Improvement versus DNACLIP_TEXT: 25.2%

Extended Data Fig. 9: GOEA results of specific gene clusters. We only select the top 10 pathways to
show ranked by their enrichment scores. Other information such as FDR and proportion is annotated
in this figure. We also report the ratio of prediction improvement introduced by the joint mode of
DNACLIP versus other modes.
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