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Abstract

Scoring rules elicit probabilistic predictions from
a strategic agent by scoring the prediction against
a ground truth state. A scoring rule is proper if,
from the agent’s perspective, reporting the true
belief maximizes the expected score. With the
development of language models, Wu & Hartline
(2024) proposes a reduction from textual informa-
tion elicitation to the numerical (i.e. probabilistic)
information elicitation problem, which achieves
provable properness for textual elicitation. How-
ever, not all proper scoring rules are well aligned
with human preference over text. Our paper de-
signs the Aligned Scoring rule (ASR) for text by
optimizing and minimizing the mean squared er-
ror between a proper scoring rule and a reference
score (e.g. human score). Our experiments show
that our ASR outperforms previous methods in
aligning with human preference while maintain-
ing properness.

1. Introduction
The theory of proper scoring rules is well established for
elicitation of numerical information, such as the probability
of a random state (McCarthy, 1956; Savage, 1971), the
mean of a distribution (Abernethy & Frongillo, 2012), and
is widely used in practice (Danz et al., 2022; Hossain &
Okui, 2013; Möbius et al., 2022). Proper scoring rules
score the quality of a probabilistic prediction by comparing
to the ground truth random state. By scoring a strategic
agent, proper scoring rules are mechanisms that incentivize
truthful prediction. Information Elicitation is an important
area of research that has recent practical importance due to
the reliance of data-driven algorithms and AI systems on
high-quality input.

For example, in peer grading, students report predictions
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about their peers’ homework correctness (the random state).
The instructor spot-checks homework submissions and re-
veals the ground truth correctness. The student’s prediction
is then scored in comparison to the ground truth. A scoring
rule is proper (a.k.a. truthful) if, from the peer’s perspec-
tive, truthfully reporting her belief about the correctness
maximizes expected score.

The recent development of large language models (LLM)
has enabled the evaluation of textual information. Textual re-
ports encode richer information than numerical predictions.
For peer grading, answering open-ended review questions fa-
cilitates the students’ learning process better than checking
pre-specified numerical rubrics. One approach to incentivize
high-quality textual review from students is to score peer
reviews by querying LLM to compare student reviews with
the ground truth instructor review. Studies on language-
model-generated evaluation systems, i.e., LLM-as-Judge
(Zheng et al., 2023; Fu et al., 2024), have demonstrated that
language models often align closely with human judgments
when scoring text quality.

In sensitive applications, language-model-generated eval-
uations offer scalability but lack provable guarantees such
as truthfulness, leaving them vulnerable to strategic ma-
nipulation. For example, when language models score peer
reviews, fabricated comments may receive a higher expected
score (Wu & Hartline, 2024). To address this issue, Wu &
Hartline (2024) propose a reduction from textual elicitation
problem to numerical elicitation problem. Wu & Hartline
(2024) views a language model as an oracle accepting sum-
marization and question-answering queries, where summa-
rization identifies a scoring rubric with states for elicitation,
and question-answering maps text to numerical reports and
states. By implementing any numerical scoring rule over the
identified space of rubrics, the scoring mechanism inherits
provable properness when the language oracle is perfect and
achieves adversarial robustness when the language oracle
has errors. However, the scoring rules might not be aligned
with preferences.

The goal of our paper is to align a provably proper textual
proper scoring rule with preferences, e.g. human preferences.
With the reduction framework in Wu & Hartline (2024), we
optimize proper scoring rules to align with an exogenously
given score that reflects a preference or a scoring rubric. For
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the peer grading application, we align the scoring rule to
two reference scores: 1) the instructor score of peer reviews,
and 2) the LLM-Judge score, by quering LLM to compare
a peer review with the ground truth. While neither of these
reference scores are proper, our optimization framework
converts the reference scores into a proper score.

Our Aligned Scoring Rule (ASR) is simple, provably truth-
ful, and interpretable. We minimize the Mean Squared
Error (MSE) of ASR with the reference score. We optimize
over the space of separate scoring rules, which applies a
single-dimensional scoring rule to each summary point and
averages across single-dimensional scores. The hypothesis
space induces a convex optimization problem with efficient
algorithms. The separate scoring rules allow us to inter-
pret and identify the important rubric points from reference
scores, by the convexity of each single-dimensional scoring
rule.

We evaluate our Aligned Scoring Rule (ASR) on peer grad-
ing datasets. Results show that ASR fits the reference scores
effectively and outperforms baselines. We first present the
result of a linear regression that predicts the reference scores
from ASR. The regression gives almost the identity func-
tion, showing our ASR aligns identically with reference
scores. Then we present the MSE and the Pearson correla-
tion between ASR and the reference score, in comparison
with baseline methods including the best constant score
and the method proposed in Wu & Hartline (2024). Our
ASR outperforms baseline methods in both metrics. Finally,
we show the interpretability of ASR by a case demonstra-
tion, where ASR identifies reasonably important and non-
important rubric points for scoring.

Roadmap Section 2 introduces the preliminaries of infor-
mation elicitation and proper scoring rules, including the
model of numerical elicitation in Section 2.1 and textual elic-
itation in Section 2.2. Section 3 presents the reduction from
textual elicitation to numerical elicitation. Section 3.1 pro-
vides provable guarantees to the reduction and Section 3.2
defines our optimization problem. Section 4 describes the
implementation of the language oracles in reduction. Sec-
tion 5 presents our empirical evaluations. Section 5.1 and
Section 5.2 introduces our dataset and baselines for compar-
ison. Section 5.3 compares the alignment performance of
our ASR with baselines. Figure 5 shows an example of the
optimal ASR.

1.1. Related Work
Textual Elicitation Several recent papers design scoring
mechanisms to elicit textual information from language
models. Kimpara et al. (2023) models LLM as a distribu-
tion that generates independent and identical (i.i.d.) textual
samples. The paper designs a scoring rule that scores the
distribution with access to samples, to incentivize a truthful

report of the distribution, while our work directly scores
the quality of a text. Lu et al. (2024) designs truthful peer
prediction mechanisms that score text without ground truth,
by comparing the textual report of multiple peers. Wu &
Hartline (2024) designs proper scoring rules that score text
with ground truth. The main goal of Lu et al. (2024); Wu
& Hartline (2024) is truthfulness (a.k.a. properness), which
does not consider optimization. On the contrary, our work
optimizes over the space of proper scoring rules for align-
ment.

Grading with LLMs Recent work studies the use
of LLMs in grading textual reports from students.
Kwiatkowski et al. (2019) studies grading via similarity
between the vector embedding of the student report and
ground truth. They show that the vector embedding ap-
proach works well for simple binary questions, but not for
multiple-choice and more complex questions. Schneider
et al. (2023) prompts a language model to compare student
reports to ground truth, which is shown to have low Pear-
son correlation with instructor scores. Instead of directly
prompting, our approach identifies scoring rubrics and op-
timizes for alignment while maintaining properness, thus
having more favorable results.

Automated Mechanism Design and Differentiable Eco-
nomics Automated mechanism design (AMD) is the use
of computational techniques to search for good mechanisms
on specific problem instances. The earliest works in this area
use linear programming (Conitzer & Sandholm, 2003a;b;
Sandholm et al., 2007; Conitzer & Sandholm, 2004); oth-
ers frame the problem in terms of learning theory, where
the goal is to choose a high-performing mechanism from
some class given access to samples from the type distri-
bution (Roughgarden & Schrijvers, 2016; Morgenstern &
Roughgarden, 2016; 2015; Balcan et al., 2008; Feldman
et al., 2014; Hsu et al., 2016; Balcan et al., 2016; 2018b;a).
A body of work sometimes called “differentiable economics”
applies the tools of modern deep learning to learn good
mechanisms, either using neural networks as general func-
tion approximators (Dütting et al., 2024), or using specially-
designed architectures which guarantee strategyproofness in
single-agent (Shen et al., 2019; Dütting et al., 2024; Curry
et al., 2024) and multi-agent settings (Curry et al., 2022;
Duan et al., 2023; Wang et al., 2024).

Like early work on AMD, the current work also solves
a convex optimization problem (minimize loss subject to
properness constraints), and like the learning-theoretic work,
we minimize expected loss from a relatively small number
of samples. Given the ability to collect or synthesize more
training data, applying the flexible function approximators
of differentiable economics to our setting could be a promis-
ing direction for future work.

Optimization of Scoring Rules There is an extensive lit-
erature that characterizes proper scoring rules for numerical
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elicitation (McCarthy, 1956; Savage, 1971). Recently, a
line of literature works on the optimization of scoring rules
subject to normalization constraints such as boundedness.
Li et al. (2022) optimizes to incentivize a binary effort in
peer grading, where a peer either exerts effort to refine her
posterior belief or not. As a generalization, Hartline et al.
(2023) considers incentivizing a multi-dimensional effort.
Our paper adopts the computation framework of the optimal
scoring rule in Li et al. (2022). Additionally, Neyman et al.
(2021) incentivizes sequential and discrete effort, Papired-
dygari & Waggoner (2022) connects proper scoring rules to
contract theory, Chen & Yu (2021) considers robust scoring
rule design that relaxes the knowledge of the prior of the
designer, and Chen et al. (2023) designs optimal scoring
rules in the online setting where the information structure
and the cost of signals are unknown.

2. Preliminaries
This section introduces the preliminaries of information
elicitation and scoring rules we use.

2.1. Numerical Elicitation

The goal of the principal (mechanism designer) is to elicit
numerical reports on the quality over n explicit rubric points,
represented by states θ = (θ1, . . . , θn) where each θi ∈
[0, 1]. The state space is Θ = [0, 1]n. For example, in
peer grading, the rubric consists of Statement Correctness,
Proof Correctness, and Clarity. A state being 1 means the
highest quality on that rubric point. The agent holds a
multi-dimensional belief q ∈ ∆([0, 1]n) over the n states.
The principal asks the agent to report the marginal means
r = (r1, . . . , rn) from the report space R = [0, 1]n.

The agent is scored by a scoring rule S : R × Θ → [0, 1]
comparing the reported marginal means r and the realized
state θ. A scoring rule is proper if the expected score is
maximized when the agent reports the true marginal means
of the state. From the agent’s subjective perspective, the
scoring rule incentivizes the agent to truthfully report the
believed marginal means to maximize their expected score.

Definition 2.1 (Properness). A scoring rule is proper for
eliciting the marginal means, if for any belief distribution
q ∈ ∆([0, 1]n) with mean µq, and any deviation report
r ∈ [0, 1]n,

Eθ∼q [S(µq,θ)] ≥ Eθ∼q [S(r,θ)] .

A scoring rule is ϵ-approximately proper if for any belief
distribution q ∈ ∆([0, 1]n) with mean µq , and any deviation
report r ∈ [0, 1]n,

Eθ∼q [S(µq,θ)] ≥ Eθ∼q [S(r,θ)]− ϵ.

Before reporting the belief, the agent holds a prior belief
with marginal means p ∈ [0, 1]n, the empirical frequency of

the ground truth in samples. The agent learns and refines the
belief by receiving a signal s ∈ S correlated with the ground
truth state. The signal generation follows an information
structure, a joint distribution ∆(Θ× S) over the state space
and the signal space. Upon receiving the signal, the agent
Bayesian updates to a posterior belief q ∈ ∆([0, 1]n).

2.2. Textual Elicitation

Text conveys implicit information rather than explicitly
listed rubric points in numerical elicitation. Textual ground
truth indicates a set of m summary points. The reported
summary points can be represented by an m-dimensional
binary vector θ = (θ1, . . . , θm), where θi ∈ {0, 1} for each
i. State θi = 1 or 0 means “agree” or “disagree” on the
corresponding point. For example, in a peer review of an
induction homework in an algorithm class, the summary
points in the textual ground truth review contain θ1 the cor-
rectness of the hypothesis, θ2 the base case, and θ3, θ4 two
details about some particular induction step. A reported text
can express uncertainty on each state, e.g. “the base case is
likely correct” as 70% probability that θ2 = 1 for base case.

In our peer grading dataset, we observe that textual reports
either express a state being 0 or 1, or have no information.
Thus, we restrict our attention to proper scoring rules with
report space ri = {0, 1,⊥} for each i. We write pi as the
empirical frequency of θi = 1 in our dataset. Assump-
tion 2.2 interprets an uncertain report of ⊥ as the prior pi.

Assumption 2.2 (Know-it-or-not). In the peer grading
dataset, the agent’s posterior belief distribution qi is either
0, 1, or the prior pi.

Assumption 2.2 restricts the space of proper scoring rules to
scoring rules for report space R = {0, 1,⊥}.

Definition 2.3 (Scoring Rules for Know-it-or-not Re-
ports). Given the prior distributions p, a scoring rule
Sp : {0, 1,⊥}m × {0, 1,⊥}m → [0, 1] for know-it-or-
not reports is proper if there exists a proper scoring rule
S : [0, 1]m × {0, 1}m → [0, 1], such that

Sp(r,θ) = S(r̃p(r),θ),

where r̃p maps a report to the probabilistic belief, particu-
larly, ⊥ to the prior:

r̃p(ri) =

{
ri if ri ∈ {0, 1}
pi else, when ri = ⊥.

A scoring rule for multi-dimensional summary points can
be defined from single-dimensional scoring rules and multi-
dimensional aggregations.

Single-Dimensional Scoring Rule We introduce the V-
shaped scoring rule and the single-dimensional scoring rule
for know-it-or-not reports here.
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The V-shaped scoring rule is introduced in Li et al. (2022)
as the optimal scoring rule that incentivizes a binary effort,
when the agent can choose to exert effort and update her
belief from prior to posterior. Wu & Hartline (2024) tests
aggregations over the V-shaped scoring rule. The V-shaped
scoring rule partitions the report space into a ternary space:
a report higher than the prior mean, lower than the prior
mean, or the prior mean p. Figure 1 depicts a V-shaped
scoring rule with p < 1

2 .
Definition 2.4 (V-shaped Scoring Rule). Given prior mean
p ∈ [0, 1], a V-shaped scoring rule S : [0, 1]×[0, 1] → [0, 1

2 ]
is defined by

Sp(r, θ) =


1
2 − 1

2 · θ−p
1−p if r < p

1
2 + 1

2 · θ−p
1−p if r > p

1
2 else

When p ∈ ( 12 , 1], the score is symmetric, i.e. Sp(r, θ) =
S1−p(1− r, 1− θ).

0

1

1/2

10 prior p

S(1, 0)

S(0, 0)

S(0, 1)

S(1, 1)

state; belief

sc
or

e

Figure 1. The V-shaped scoring rule, the optimal scoring rule in
Li et al. (2022). The x axis plots the state space, while the y-axis
plots the score. Once fixing a report, the expected score is a linear
line in both the realized state and the mean of the ground truth
distribution. The line from S(0, 0) to S(0, 1) is the score for a
report r < p below prior. From S(1, 0) to S(1, 1) is the score for
a report r > p. Reporting the prior always gets a score of 1/2 (the
dotted line). The V-shaped upper envelope of the two linear lines
forms the expected score of a truthful agent.

A single-dimensional scoring rule for know-it-or-not re-
ports can be characterized by nine values: S(r, θ) for
r ∈ {0, 1,⊥} and θ ∈ {0, 1}. The definition of proper-
ness simplifies to Definition 2.5. A V-shaped scoring rule
is a special case of a single-dimensional scoring rule for
know-it-or-not reports, where the score of reporting ⊥ is
fixed at 1

2 . Figure 2 presents a graphical illustration of such
a scoring rule.
Definition 2.5. Given prior p, a single-dimensional scoring
rule for know-it-or-not reports is proper if

S(θ, θ) ≥ S(r, θ), ∀θ ∈ {0, 1},∀r ∈ {0, 1,⊥}
Eθ∼p [S(⊥, θ)] ≥ Eθ∼p [S(r, θ)] , ∀r ∈ {0, 1,⊥}

Multi-Dimensional Aggregations A multi-dimensional
aggregation operates over single dimensional scoring rules
and preserves properness.

0
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Figure 2. An example of a single-dimensional scoring rule for
know-it-or-not reports. Each report in the ternary space corre-
sponds to a linear line. The scoring rule can be depicted by three
linear lines. Properness requires that, when the belief (or, equiv-
alently, the ground truth) is r, the line with the highest expected
score is on the line corresponding to report r.

Definition 2.6. Given single dimensional scoring rules
S1, . . . , Sm where each Si : [0, 1]× [0, 1] → [0, 1], a multi-
dimensional scoring rule S : [0, 1]m × [0, 1]m → [0, 1] is
aggregated from S1, . . . , Sm if 1) S is proper, and 2) there
exists aggregation function A such that

S(r1, . . . , rn; ·) = A
(
S1(r1; ·), . . . , Sn(rn; ·)

)
.

We introduce two aggregations, the separate aggregation
and the max-over-separate (M) aggregation.

We optimize over the space of separate scoring rules (Li
et al., 2022). Wu & Hartline (2024) also tests the averaged
V-shaped scoring rule (AV).

Definition 2.7. Given scoring rules S1, . . . , Sm, a separate
scoring rule is the weighed average S =

∑
i∈[m] wiSi, with

weights w1, . . . , wm such that
∑

i∈[m] wi = 1.

The max-over-separate scoring rule scores an agent by the
dimension on which the agent has the highest expected
score. It can be implemented by asking the agent to pick
her favorite dimension and score on that dimension. Wu
& Hartline (2024) tests the max-over-separate V-shaped
scoring rule (MV), the optimal scoring rule in the multi-
dimensional report. We will compare our Aligned Scoring
Rule with the MV scoring rule.

Definition 2.8 (Max-Over-Separate). Given scoring rules
S1, . . . , Sm, a max-over-separate scoring rule is

S(r,θ) = Si(ri, θi), where i = argmax
i′

Eθi′ [Si′(ri′ , θi′)] .

3. Aligned Scoring Rule: Algorithm
In this section, we present our design of Aligned Scoring
Rule (ASR), which reduces textual elicitation to numeri-
cal elicitation and optimizes for human alignment in peer
grading. Section 3.1 list the provable properness guarantees
of the reduction from Wu & Hartline (2024). Section 3.2
describes our optimization method for alignment.
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Following Wu & Hartline (2024), we model the language
model as an oracle accepting Summarization and Question-
Answering queries, which are fundamental natural language
processing tasks (Bar-Haim et al., 2020; Clark et al., 2019;
Rajpurkar et al., 2016). The Summarization oracle out-
puts a list of summary points from a list of texts. The
Question-Answering oracle identifies whether a text agrees
or disagrees with a summary point.

Summarization OS , summarizes a list of textual report
into summary points.

Input A list of texts T1, . . . ,TN .
Output A list [t1, . . . ,tm] of all summary points

from texts.

Question-Answering OA determines whether a text
agrees or disagrees with a summary point, or is not
applicable.

Input One text T and a summary point t.
Output Output “disagree” 0, “agree” 1, or “NA” ⊥.

We describe ElicitationGPT from Wu & Hartline (2024) here.
Following Assumption 2.2, we map a report ⊥ to the prior
report, the empirical frequency of a summary point. The
clustered nature of the peer grading application enables the
identification of the empirical frequency. The dataset is
partitioned in advance into clusters. Each cluster contains
N peer grading tasks, where the homework submission are
all from the same assignment, thus applicable to the same
set of grading rubrics.

Input

• A cluster of N ground truth reviews {I1, . . . ,IN} on
submissions to the same homework assignment.

• One reported review Rk on the kth submission.

• A proper scoring rule S for know-it-or-know beliefs.

We will write the identified states and reports by the lan-
guage oracle as θ̂ and r̂, respectively.

Algorithm (ElicitationGPT)

• (Summarization) Summarize instructor reviews into
summary points.

{t1, . . . ,tm} = OS({Ii}i∈[N ]).

• (Question-Answering) Map truth Ii to state space.

For each instructor review j ∈ [N ] and each summary
point i ∈ [m], θji = OA(Ij ,ti).

Calculate the prior of each state pi =
1
N

∑
j θ

j
i .

• (Question-Answering) Map the review to report space.

For each summary point i ∈ [m], r̂i = OA(Rk,ti).

• Apply proper scoring rule for know-it-or-not reports.

Output Sp(r,θ
k)1.

3.1. Provable Properness

We list the provable property of the reduction here, including
the case that the language oracle makes errors and adversar-
ial robustness.

The correctness of summarization OS does not affect the
truthfulness of ElicitationGPT. To see this, even when OS

identifies the wrong summary points, ElicitationGPT is still
proper as long as OA correctly identifies the numerical states
and reports corresponding to the summaries. We assume
OA is perfect on the ground truth side, as the ground truth
reviews often clearly state opinions on summary points.

When the language oracle OA is non-inverting on the report
side, ElicitationGPT is proper.

Definition 3.1 (Non-inverting OA). The question-
answering oracle for know-it-or-not beliefs is non-inverting
if the probability of inverting the report is strictly less than
1
2 , i.e. Pr[r̂i ̸= ri|R] ≤ 1

2 for any i and any R.

Theorem 3.2 (Wu & Hartline 2024). If the question-
answering oracle for know-it-or-not beliefs is non-inverting
for reports, ElicitationGPT is proper.

Without any assumptions on the error of the language oracle,
the reduction above has adversarial robustness.

Theorem 3.3 (Wu & Hartline 2024). If the agent has no
information, the highest expected score she can achieve is
at most by saying ⊥ (i.e. “I don’t know”).

3.2. Optimization for Alignment

While ElicitationGPT presents a framework for reducing tex-
tual elicitation to numerical elicitation, not all proper scoring
rules align well with the instructor preferences. Thus, our
Aligned Scoring Rule (ASR) optimizes over a space of sep-
arate scoring rules and selects the one that aligns best with
the reference score, i.e., the instructor score of a peer review.
Our optimization framework follows the computation of
optimal scoring rule in Li et al. (2022). Our Aligned scoring
rule can be viewed as a truthful proxy of the instructor score.

Fixing summary points {t1, . . . ,tm} and prior p, our opti-
mization objective minimizes the mean squared error (MSE)
between ElicitationGPT score and the reference score (e.g.
instructor score). Our optimization problem is shown in

1Note that the ground truth may have ⊥ in our implementation.
In such a case, we score the student by the expected score where
the binary state is drawn from the prior.
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Program 1 with s normalized to [0, 1].

min
{S}i∈[m]

E(r,θ,s)

[
(S(r,θ)− s)

2
]

(1)

s.t. S is proper
S(·, ·) ∈ [0, 1]

We optimize over the space of separate scoring rules, the
sum of single-dimensional proper scoring rules {Si}i∈[m]

for know-it-or-not reports. A separate scoring rule is simple
and interpretable, where the convexity of single-dimensional
scores can identify the importance of each dimension. We
present a case study of the interpretability in Section 5.4.
Program 2 shows the simplified optimization problem for
separate scoring rules. The properness constraint follows
properness for know-it-or-not reports in Definition 2.5.

min
{Si}i∈[m]

E(r,θ,s)


 ∑

i∈[m]

Si(ri, θi)− s

2
 (2)

s.t. for any dimension i, (Properness)
for any ri ∈ {0, 1,⊥}

Si(θi, θi) ≥ Si(ri, θi),∀θi ∈ {0, 1}
Eθi∼pi

[Si(⊥, θi)] ≥ Eθi∼pi
[Si(ri, θi)]∑

i∈[m]
Si(ri, θi) ∈ [0, 1],∀r,θ

(Boundedness)

Our optimization problem with separate scoring rules is
convex. Note that the same formulation may not be convex
for other spaces of multi-dimensional scoring rules, e.g.
max-over-separate scoring rules.

Corollary 3.4. Optimization problem 2 is convex.

To see Corollary 3.4, note that for each dimension, we have
six variables: Si(ri, θi) for ri ∈ {0, 1,⊥} and θi ∈ {0, 1}.
Both our objective and constraints are convex in the vari-
ables. Since optimization problem 2 is convex, we optimize
with the gradient descent algorithm over samples.

4. Implementation of Language Oracles
We describe our implementation of the language oracle here.

4.1. Summarization Oracle

The implementation of the summarization oracle includes
three steps: summarizing instructor reviews, preparing neg-
ative/positive statement pairs from reviews, and clustering
negative/positive statement pairs. Note that instead of di-
rectly clustering summary statements by similar meanings,
for each statement from the reviews, we concatenate the
statement with another of the opposite meaning to prepare a

pair of negative/positive statements. The negative/positive
statement pairs improve the robustness of LLM clustering.
When each summary point consists of negative/positive
statement pairs, the semantic meaning of each state can
be viewed as neutral, avoiding opposite statements being
identified as different states for elicitation.

Input A list of N instructor reviews [I1, . . . ,IN ].

Output A list [tj ]j∈m of summary points from reviews.

Implementation We provide a toy prompt with each step
below. The real prompts we use are listed in Appendix A.

• Summarize each instructor review into summary points.

Toy prompt: Carefully read the entire review comment.
Extract all evaluative statements from the review. These
should be comments that assess the quality, strengths,
weaknesses, and suggestions. Ignore purely descriptive
or meaningless statements. Ignore statements purely
about specific scores and ratings. Create an indexed
list of these evaluative statements.

• Transform each statement into negative/positive pairs.
Toy prompt: You are tasked with creating opposite
evaluative statements for a given list of evaluative
statements. For each statement provided, you need
to create a new statement that has the same content but
expresses the opposite emotion or sentiment.

• Cluster the negative/positive pairs of summary points.
The semantic meaning of each cluster is identified as
the dimension for elicitation, [tj ]j∈[m].

Toy prompt: You will be given a list of opinion pairs,
where each pair consists of a positive opinion and its
corresponding negative opinion. Your task is to analyze
these pairs and cluster them based on similarity.

4.2. Question-Answering Oracle

We directly query LLM to identify whether a review R is
positive or negative for a summary point t.

Input One review R and a summary point t.

Output Positive (1), negative (0), or NA (⊥).

Implementation We provide an toy prompt below. The real
prompt we use are listed in Appendix A.

Toy prompt: Your task is to infer which of the given pos-
itive/negative opinions is correct based on the provided
review comment. For each opinion pair, carefully read and
understand both the positive and negative opinions. Con-
clude whether the review supports the positive, the negative,
or neither opinion.
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5. Empirical Evaluation
We describe our dataset and evaluation metric in Section 5.1,
our reference scores used for alignment in Section 5.2, and
our experimental results in Section 5.3. We depict the
Aligned Scoring Rule (ASR) for one example homework
assignment in Section 5.4.

5.1. Dataset and Evaluation Metric

Dataset We present results from peer grading data in two
undergraduate algorithm classes. Our dataset includes 22
assignments in total.2 Each assignment has 6 to 8 homework
submissions. Each homework submission has one instructor
review (i.e. ground truth) and 6 to 8 peer reviews. Each peer
review has an instructor score in [0, 10].

Metric We report the Mean Squared Error, the Pearson
correlation coefficient, and the Spearman rank correlation
coefficient of our ASR compared with reference scores.

• MSE quantifies the average magnitude of prediction
errors.

• Pearson correlation assesses the strength of the lin-
ear relationship between predicted scores and refer-
ence scores, capturing whether the model correctly
preserves the relative ordering. A Pearson correlation
is in −1 to 1, where 0 means no correlation, 1 means
perfectly correlated, and −1 means perfectly negatively
correlated. A Pearson correlation > 0.4 is thought as a
moderate correlation, > 0.6 a strong correlation, and
> 0.8 very strong and almost linear.

• Spearman rank correlation assesses the correlation be-
tween two ranks. Similar as Pearson correlation, the
Spearman rank correlation is in [−1, 1], where 0 means
the two ranks are not correlated, 1 means identical rank-
ing, and −1 means reversed ranking. The assessment
of values are also the same as above.

5.2. Reference Score

We optimize for alignment with two reference scores, the
Instructor Score and the LLM-Judge Score.

Instructor Score Instructor score (i.e., human preference)
from our dataset.

LLM-Judge Score We query a language model to grade
the peer review against the instructor review based on
a given peer review scoring rubric.

There is a high correlation between the Instructor Score
and LLM-Judge score. Figure 3 presents the empirical joint

2Algorithm Class 1: 276 reviews by 23 peers on 89 submissions
across 12 assignments. Algorithm Class 2: 240 reviews by 24 peers
on 59 submissions across 10 assignments.

distribution of Instructor Score and LLM-Judge Score for all
data, with a Pearson correlation of 0.5540. The results show
that LLM-Judge score can serve as a substitute for the costly
and noisy instructor score, improving the scalability and the
robustness of the peer grading system, which is consistent
with previous studies of the LLM-as-Judge method, e.g.,
Zheng et al., 2023; Hackl et al., 2023, etc.

Note, the instructor and LLM-judge reference scores are not
proper and therefore might encourage peer reviewers to en-
gage in strategic behavior like guessing or adding irrelevant
statements (Wu & Hartline, 2024). Our method of aligning
a proper scoring rule to these references can be viewed as
converting these non-proper scores into proper ones.

Figure 3. Joint distribution (instructor score vs. LLM-Judge score)

5.3. Experimental Results

We present our experimental results in this section. First,
we show that a linear regression fitting the reference score
from our ASR results in a nearly-identity linear fit. We then
present the MSE and the Pearson correlation coefficients
and compare with baselines. We use the gemini-2.5 series
models for the LLM-Judge and the LLM oracles in our
experiments. Parameters and prompt details can be found
in Appendix A. We also tested the performance of GPT-4.1
as the LLM-Judge on the same prompt, with the results
detailed in Appendix B.

Nearly-Identity Linear Fit The first criterion to evaluate
the effectiveness of our approach is to examine whether
our ASR can effectively fit the original reference scores.
Figure 4 illustrates the joint empirical distribution of the
ASR scores and the reference scores, with a regression line
predicting the reference score s from the ASR score S. The
parameters of linear regression align closely with s = S.

Comparison with Baselines Our Aligned Scoring Rule
is compared against the following two baselines which are
all truthful:

1. Best Constant Score (Sconst). This method outputs the
best constant score for all reviews, which is the mean

7



(a) Instructor score vs. ASR
aligned with instructor score.

(b) LLM-Judge score vs. ASR
aligned with LLM-Judge score.

Figure 4. Reference Scores vs. ASR: The green dotted line repre-
sents the linear regression fitting reference score from ASR. On
both plots, the linear relationship is almost the identity function.

of the reference scores s in the training data D. The
constant score is weakly truthful.

Sconst(rT, θT) =
∑

(r,θ,s)∈D
s/|D|.

2. Non-aligned ElicitationGPT (EGPT). We compare
with the ElicitationGPT in Wu & Hartline (2024), which
is not aligned to a reference, particularly, the averaged
V-shaped scoring rule (AV) and the max-over-separate
V-shaped scoring rule (MV). In Wu & Hartline (2024),
the AV scoring rule is shown to align the best with in-
structor score. Note that the max-over-separate scoring
rule is not in our hypothesis space of separate scor-
ing rules, and does not induce a convex optimization
problem. 3

The performance of scores is evaluated along three metrics:
MSE, the Pearson correlation coefficient, and the Spearman
rank correlation coefficient. Our ASR aligns best with the
reference on all metrics.

5.4. Case Demonstration

We present an example of ASR in this section. Figure 5 visu-
alizes the single-dimensional scoring rules. The homework
assignment is on asymptotic analysis and is divided into
three parts A,B,C, each corresponding to the asymptotic
relationship between two functions. For each dimension,
we plot the V-shape scoring rule for this dimension.

3We evaluate Spearman correlation differently from Wu &
Hartline (2024). Wu & Hartline (2024) evaluate the ranking of
the same student’s averaged scores over all peer reviews in a class,
becausre the ElicitationGPT scores are not optimized and aligned
in the same scale as reference scores. We evaluate each individual
peer review’s ranking, as our score is aligned.

(a) Reference: Instructor Score
Method Squared Loss Pearson Corr Spearman Corr
ASR 1.730 0.717 0.622
Constant 3.741 N/A N/A
EGPT (AV) 9.541 0.294 0.301
EGPT (MV) 18.360 0.213 0.207

(b) Reference: LLM-Judge Score
Method Squared Loss Pearson Corr Spearman Corr
ASR 2.003 0.705 0.658
Constant 4.136 N/A N/A
EGPT (AV) 7.053 0.328 0.338
EGPT (MV) 17.069 0.246 0.226

Table 1. Comparison with baselines.

Figure 5. The visualization of ASR on one assignment in the algo-
rithm class using instructor score as the reference. The score of
r = ⊥ for each dimension has been shifted to zero.

From the plot, we can observe the dimensions that are not
important for scoring, where the scoring line is almost linear,
meaning the score does not depend on the report but only
on the state. For example, we observe that the dimensions
for clarity are less important, e.g., “part A details are clear”
and “submission well-structured”.

We also identify important dimensions, where the two linear
scoring lines form a more strongly convex function. We
observe that summary points on details related to overall
correctness are more important, e.g., “Algorithm logic is
correct”, “solution omits details”, Dim 4 “Part B is correct”,
and “Part A is sound”.

In general, we observe that our ASR when learning Instruc-
tor Score assign more convex V-shape scoring rule to the
content that is commonly considered to be more important.
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A. Implementation Details
In this section, we provide a detailed description of how
we implement our methods and conduct the experiments,
including the prompts and other parameters for LLM calls,
the numerical solution to the convex optimization problem,
as well as the pre/post-processing of human feedback.

A.1. LLM Calls

We use the gemini-2.5 series models as the LLM oracles in
our experiments. Specifically, we experiment with gemini-
2.5-flash-preview-04-17 for all tasks other than clustering
the negative/potitive pairs. For clustering, we employed
gemini-2.5-pro-preview-05-06 due to its proficiency in
handling long contexts. While calling LLMs, we set the
temperature to 0, the “thinking” feature disabled, and maxi-
mum output token 8192. Next, we will provide a detailed
description of each prompt used.

A.1.1. SUMMARIZATION ORACLE

The implementation of the summarization oracle includes
three steps: summarizing instructor review, preparing neg-
ative/positive statement pairs from reviews, and clustering
negative/positive statement pairs.

Summarizing Instructor Review
You are an AI assistant specializing in analyzing assignment reviews. Your
task is to extract all evaluative points from a given review comment.
<review comment>REVIEW COMMENT</review comment>
Please follow these steps to analyze the review comment:
1. Carefully read the entire review comment.
2. Extract all evaluative statements from the review. These should be
comments that assess the quality, strengths, weaknesses, and suggestions.
Ignore purely descriptive or meaningless statements. Ignore statements
purely about specific scores and ratings.
3. Create an indexed list of these evaluative statements. Each entry should
be a single sentence in a single line containing a distinct evaluation from
the review.
- You should clearly convey the sentiment behind an evaluative statement.
4. After creating the indexed list. Split and Rewrite each evaluative
statement into several abstract and concise statements, abandoning the
specific expression.
- Make your entry abstract and concise.
- Always use ”part A / B / C” in the output to refer parts, even if the input
says ”part a / b / c” or ”part 1 / 2 / 3”.
- If an evaluative statement contains comments on multiple distinct aspects,
they need to be listed as multiple entries.
Example: ”I like the overall idea, but authors need to revise the presenta-
tion and experiments” have 3 different aspects, ”The overall idea is good”,
”The presentation need revision”, and ”The experiments need revision”.
Example: ”Part A is correct and part B is wrong” have 2 different aspects,
”Part A is correct”, and ”Part B is wrong”.
- Ignore the unimportant positive parts of negative statements and the
unimportant negative parts of positive statements.
- Each new entry inherits the index of the original entry, even if there are
duplicate indexes.
Your output should be structured as follows:
<numbered entries>[List your numbered entries here, one per
line]</numbered entries>
<rewrited entries>[Rewrite each entry into an abstract and concise state-
ment]</rewrited entries>

Preparing Negative/Positive Statement Pair
You are tasked with creating opposite evaluative statements for a given
list of evaluative statements. For each statement provided, you need to
create a new statement that has the same content but expresses the opposite
emotion or sentiment.
In addition, you also need to output whether the sentiment of the original
statement is positive or negative.
Guidelines for creating opposite evaluative statements:
1. Maintain the same subject matter and key elements of the original
statement.
2. Change the emotional tone or sentiment to its opposite (e.g., positive to
negative, approval to disapproval).
3. Use similar language structure when possible, but modify words to
reflect the opposite sentiment.
4. Ensure the new statement is coherent and makes sense in isolation.
5. Make the new statement as concise as possible.
Here is the list of evaluative statements:
<evaluative statements>
EVALUATIVE STATEMENTS
</evaluative statements>
For each statement in the list, create an opposite version following the
guidelines above. Present your results in the following format:
<result 1>
<original>[Original evaluative statement]</original>
<sentiment>[Sentiment of the original evaluative state-
ment]</sentiment>
<opposite>[Your created opposite evaluative statement]</opposite>
</result 1>
<result 2>
...
</result 2>
...
Ensure that each opposite statement accurately reflects a reversal of senti-
ment while maintaining the core content of the original statement.
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Clustering Statement Pairs
You will be given a list of opinion pairs, where each pair consists of a
positive opinion and its corresponding negative opinion. Your task is to
analyze these pairs and cluster them based on similarity. Follow these
steps:
1. First, read the list of opinion pairs provided:
<opinion pairs>OPINION PAIRS</opinion pairs>
2. Next, cluster the unique pairs based on their similarity in topic or theme
in <clustering> tag. Pairs in the same cluster should address roughly the
same aspects of the subject matter. Follow these steps:
1) You need to first draft a set of cluster descriptions in the <draft> tag.
Each cluster description must be specific:
- You should cluster opinion pairs discussing different parts in different
clusters.
- The description should clearly indicate the target of evaluation, avoiding
terms like ”overall” or ”assignment” and instead using ”the proof,” ”part
A,” or ”the answer.”
- The description should clearly specify the evaluation criteria, avoiding
terms like ”quality” and instead using ”correctness,” ”clarity,” or ”detail.”
2) Then, based on these descriptions, analyze the following aspects in the
<analysis> tag:
- Splitting and merging clusters: Merge clusters that are redundant. Split
clusters that contain more than one parts or aspects.
- New clusters: Look for opinions that are not covered by any existing
cluster. Create a new cluster when at least two opinions fit it, and ignore
any lone opinion that cannot be grouped.
- Specificity check: Ensure each cluster description includes specific eval-
uation criteria, rather than vague terms.
- Limit the number of clusters: Ensure the total number of clusters is
between 10 and 12.
3) After completing this analysis, redefine the cluster descriptions based
on your findings and repeat the entire process.
4) Perform this iteration a total of four times, wrapping the results of each
iteration inside <epoch i> tags, where i represents the iteration number.
You should follow this output format:
<clustering>
<epoch 1>
<draft>[Your draft cluster descriptions]</draft>
<analysis>[Your analysis here]</analysis>
</epoch 1>
<epoch 2>
...
</epoch 2>
...
</clustering>
3. Complete your final cluster descriptions. For each cluster, generate an
opinion pair as the cluster representative.
- Ensure the opinion pair discusses exactly the core idea of the cluster
description.
- The opinion pair should be brief and omit details.
- Do not use ”need” or ”need not” in your opinion pair. Instead, express
what was done or what was failed to be done.
- Ensure the positive opinion and the negative opinion present exact oppos-
ing views.
- It is not necessary to summarize all content. Focus only on evaluating the
most important aspect, and avoid using ”and” to connect different aspects.
- Avoid using extreme words such as ”excellent” and ”awful.”
You should follow this output format:
<clusters>
<cluster 1>
<description>[The description of the cluster]</description>
<representative>[Positive opinion] [Negative opin-
ion]</representative>
</cluster 1>
<cluster 2>
...
</cluster 2>
...
</clusters>

A.1.2. QUESTION-ANSWERING ORACLE

We directly query LLM to identify whether the review R is
positive or negative for the summary point t.

Input One review R and a summary point t.

Output Positive (1), negative (0), or NA (⊥).

Question-Answering Oracle
You are an AI assistant specializing in analyzing assignment reviews. Your
task is to infer which of the given positive/negative opinions is correct
based on the provided review comment. You will be given two inputs:
<review comment>REVIEW COMMENT</review comment>
<opinion pairs>OPINION PAIRS</opinion pairs>
The review comment is the text of the review that you need to analyze. The
opinion pairs consist of several lines, each containing a positive evaluation
and its corresponding negative evaluation.
For each opinion pair, follow these steps to analyze and conclude in
<result> tag:
1. Reprint the index of the opinion pair in <index> tag.
2. Copy the text of the opinion pair in <opinion pair> tag.
3. Carefully read and understand both the positive and negative opinions.
4. List all possibly relevant statements in the comment one by one in
the <statements> tag. For each relevant statement, determine whether it
supports the positive opinion, the negative opinion, or neither, and specify
whether the support is explicit or partial.
- Focus on the original meaning of the statement and avoid speculation as
much as possible.
Example: The correctness of the assignment refers to the accuracy of the
final answer and does not include the reasoning process.
Example: The correctness of the proof / claim does not affect the correct-
ness of the answer.
Example: The wrong proof / answer / reasoning does not affect clarity.
5. Apply the following rules to determine the final conclusion in the
<rubric> tag:
- If only one direction is supported, classify as that direction, even if it is
only partially supported.
- If their are conflicts, classify as the direction with stronger support.
- If no statement is relevant to the opinion pair, classify as ”Neither”. Avoid
selecting ”Neither” whenever possible.
- At the end of the rubric, explicitly state you choose ”Positive”, ”Negative”,
or ”Neither”.
6. Restate your choice of whether the review supports the positive, the
negative, or neither in the <conclusion> tag.
- Only contain ”Positive”, ”Negative”, or ”Neither” in the tag! Do not use
words like ”Correct”, ”Incorrect”, ”Clear”, ”Unclear”.
Present your analysis and conclusion for each opinion pair in the following
format:
<result>
<index>[The index of the input opinion pair here]</index>
<opinion pair>[Copy the input opinion pair here]</opinion pair>
<statements>
Statement: [Statement 1]
Analysis: [Analysis for Statement 1]
Statement: [Statement 2]
Analysis: [Analysis for Statement 2]
...
</statement>
<rubric>[Apply the rubric here]</rubric>
<conclusion>[Positive / Negative / Neither]</conclusion>
</result>
<result>...</result>
...

12



A.1.3. LLM SCORE

LLM Score
You are an AI assistant specializing in educational assessment. Your task
is to evaluate a peer review of a course assignment by comparing it to an
instructor’s review of the same assignment. You will analyze the alignment
between the two reviews and assign a score from 0 to 10.
First, you will be given the instructor’s review first and then the peer
review to be evaluated.
To evaluate the peer review, follow these steps:
1. Identify the points in the instructor’s review in the <evalua-
tion process> tag. Express the same aspect across different parts as
separate points. For each point in the instructor’s review:
1) Reprint the text of this point from the instructor’s review.
2) Judge whether the content of this point is subjective or objective.
- Objective content includes factual assessments, such as the correctness of
the assignment or proofs. - Subjective content includes aspects like clarity
or style.
3) Identify the importance of this point:
- Give more weight to critical elements like the correctness of the assign-
ment or proofs.
- Consider subjective elements and minor discrepancies less impactful on
the overall score.
4) Extract all relevant text of this point from the peer review.
5) Assess the following aspects:
a. Content: Does the peer review cover the same main topics of this key
point? b. Accuracy: Are the peer reviewer’s observations and critiques
accurate when compared to the instructor’s key point? c. Depth: Does the
peer review provide an appropriate level of detail and insight?
6) Judge the overall quality of the peer review on this point.
2. According to your evaluation, offer a comprehensive assessment of this
peer review in the <assessment> tag, supported by justification.
- highlighting the alignments or misalignments between the peer review
and the instructor’s review.
- Taking into account both the importance of each key point and the degree
of alignment.
3. After the assessment, first provide your reasoning, then assign a score
from 0 to 10 based on the rubric, enclosed in the <scoring> tag.
- 0-1: Totally wrong or meaningless review: The review is irrelevant,
incoherent, or shows a complete misunderstanding of the material.
- 2-3: Poor review: The review demonstrates significant factual inaccura-
cies or fails to address essential key points.
- 4-6: Somewhat valuable review: The review contains clear errors or omis-
sions, but partially aligns with the instructor’s review on some important
points.
- 7-9: Good review: The review largely aligns with the instructor’s review
on key points, with only minor inaccuracies or omissions.
- 10: Exceptional review: The review is highly consistent with the instruc-
tor’s on both content and reasoning, with minimal flaws.
4. Output your final score again in the <final score> tag, with only the
number.
Present your final evaluation in the following format:
<evaluation process>Point 1: [Description]
- Instructor’s review: [Reprint text of this point from the instructor’s
review]
- Objective/subjective: [Reasoning first to judge whether the content of
this point is subjective or objective]
- Importance: [Reasoning first to identify the importance of this point]
- Peer review: [Extract all relevant text of this point from the peer review]
- Assessment: [Assess the content, accuracy, and depth in detail]
- Quality: [Judge the quality of the peer review in relation to this point]
Point 2: [Description] ...</evaluation process>
<assessment>[Your comprehensive assessment of this peer re-
view]</assessment><scoring>[Your reasoning and the score for the
peer review based on the rubric]</scoring><final score>[Output the
final score]</final score>
Here is your input:
<instructor review>INSTRUCTOR REVIEW</instructor review>

<peer review>PEER REVIEW</peer review>

B. Additional Results
This section presents experimental results that are omitted
from the main text.

B.1. LLM-Judge Scores Using GPT

In our primary experiments, we obtain LLM-judge scores
by querying the gemini-2.5-flash-preview-04-17 model to
assess each peer review against its corresponding instructor
review, according to a predefined scoring rubric.

To evaluate the robustness of this approach, we repeated the
procedure using GPT-4.1 with the same prompt, thereby
constructing a GPT-based LLM-judge. The resulting scores
are shown in Figure 6. LLM-Judge with GPT shows a lower
consistency with the instructor score.

Figure 6. Joint distribution (instructor score vs. LLM-Judge score
using GPT-4.1)

Figure 7 presents the same linear regression fitting the ref-
erence score from our ASR. The regression line remains
almost identical.
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(a) Instructor score vs. ASR
aligned with instructor score.

(b) LLM-Judge score using
GPT-4.1 vs. ASR aligned with
LLM-Judge score.

Figure 7. Reference Scores vs. ASR: The green dotted line repre-
sents the linear regression fitting reference score from ASR. On
both plots, the linear relationship is almost an identity function.
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