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Abstract

Optimal transport (OT) theory has been used
in machine learning to study and characterize
maps that can push-forward efficiently a prob-
ability measure onto another. Recent works have
drawn inspiration from Brenier|s theorem, which
states that when the ground cost is the squared-
Euclidean distance, the “best” map to morph a
continuous measure in P(R?) into another must
be the gradient of a convex function. To exploit
that result, Makkuva et al.| (2020); [Korotin et al.
(2020) consider maps T' = V fy, where fy is an
input convex neural network (ICNN), as defined
by|Amos et al.|(2017), and fit § with SGD using
samples. Despite their mathematical elegance, fit-
ting OT maps with ICNNs raises many challenges,
due notably to the many constraints imposed on
0; the need to approximate the conjugate of fy; or
the limitation that they only work for the squared-
Euclidean cost. More generally, we question the
relevance of using Brenier/s result, which only ap-
plies to densities, to constrain the architecture of
candidate maps fitted on samples. Motivated by
these limitations, we propose a radically different
approach to estimating OT maps: Given a cost ¢
and a reference measure p, we introduce a regu-
larizer, the Monge gap M (7T') of a map T'. That
gap quantifies how far a map 7" deviates from the
ideal properties we expect from a c-OT map. In
practice, we drop all architecture requirements
for T and simply minimize a distance (e.g., the
Sinkhorn divergence) between T4 and v, reg-
ularized by M¢(T). We study M¢ and show
how our simple pipeline significantly outperforms
other baselines in practice.
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1. Introduction

At the core of many machine learning challenges lies the
problem of learning a map 7' : R? — R? that is able to
push-forward a probability measure p into another, v, i.e.,
Tt = v. If one were given paired samples (x;,y;), the
task would amount to a simple regression, easily solved by
minimizing an averaged risk ¢(7'(x;),y;). In many applica-
tions, however, only unmatched samples (x1, . .., X, ) from
wand (y1,...,¥m) from v are provided, requiring a distri-
butional approach to estimate 7. When the input measure
1 is simple and closed-form (e.g. Gaussian, or uniform),
likelihood-based methods can be used, notably normalizing
flows (Rezende and Mohamed, [2015)), GANs (Goodfellow
et al.| 2014) or even diffusion models (Song et al.| 2020).

Optimal Transport and the Brenier Story. When both
measures are complex and can only be accessed through
samples, finding a good map 7" poses extra challenges. This
is the case, e.g., in domain adaptation (Courty et al.,[2016;
2017) or in genomics (Schiebinger et al.,[2019)). Optimal
transport (OT) theory (Santambrogio, 2015)) has emerged
as a prime contender for that task (Peyré and Cuturi, [2019).
We focus in this work on neural OT solvers, where 1" is
parameterized as a neural network. That area has been
largely shaped by Brenier’s theorem, which states that when
the cost is the squared-Euclidean distance, OT maps should
follow the gradients of a convex potential. Leveraging that
result/Makkuva et al.[(2020); Korotin et al.[(2020) provided
a blueprint to use input convex neural networks (ICNN)
for OT estimation, which was later exploited in various
applications, notably genomics Bunne et al.| (2021).

On the limitations of ICNNs for OT. While the the-
ory motivating ICNN solvers for OT is compelling, their
practical implementation runs into many challenges (Ko
rotin et al.| [2021): some of their parameters must be non-
negative, initialization them, although the subject of ongoing
research (Korotin et al., [2020; Bunne et al., [2022a)), is still
poorly understood, and training them requires approximat-
ing a convex conjugate with a min-max formulation (Amos),
2022). On a more fundamental level, the ICNN approach
may not be as sound as it seems: while Brenier| (1987))’s
argument is valid when the input measure p is a density,
that result does not hold for sample measures. One might
therefore question the relevance of imposing the double re-
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quirement that a candidate map be the gradient of a convex
potential. For general costs c, these requirements are equiva-
lent to a c-concavity constraint that is even more intractable
when trying to generalize ICNNs to other costs (Rezende
and Racanierel 20215 Cohen et al.,|2021)). We question the
need for such constraints, as also done, for instance for score
functions in score-based models (Saremi, [2019)).

Contributions. We propose a new approach to estimate
OT maps, sturdy and generic enough to work for any cost c.

* Rather than imposing architecture choices to mimic OT
maps, we make no assumption on 7" and, instead, intro-
duce a regularizer which quantifies whether 7" agrees with
the theoretical properties needed for 7" to be an OT map.

* The Monge gap regularizer M uses a reference measure
p (that need not be necesseraly equal to p), and is the
difference between the expectation of ¢(X,T(X)), X ~
p, and the c-Wasserstein distance between p and T'p.

* We show that the Monge gap characterizes the optimal-
ity of a map 7" between p and v. More formally, when
Ttu = v and the support Spt(p) C Spt(p), we show that
M(T') = 0iff T'is an optimal map.

* We show that M is convex when c(-,-) = || - — - [|3,
a property which is still valid when using a Sinkhorn
finite-sample estimator for the 2-Wasserstein distance.

* We propose two learning procedures to estimate Monge
maps using the Monge gap: (i) for general costs ¢, we sim-
ply add the Monge Gap of a vector field 7" to a fitting loss
measuring the difference between T4y and the true target
distribution v and (ii) when the cost satisfies the twist
condition, we take advantage of the structure induced by
such costs on the optimal map, and propose instead to
directly parameterize the gradient of the potential.

* We provide ample evidence on toy data, synthetic bench-
marks (Korotin et al.,[2021)) and single-cell data that our
regularized approach outperforms both ICNNs and vanilla
MLPs, but also works for other more exotic costs.

2. Background on optimal transport

Monge and Kantorovich formulation. We consider
throughout this work a compact subset 2 C R<, a con-
tinuous cost function ¢ : €2 x @ — R and two probabil-
ity distributions p, v € P(). The notation i € P(Q),
1 < Lg means that y is absolutely continuous w.r.t. the
Lebesgue measure. The Monge| problem consists of finding,
among all map 7" : Q0 — € that push-forward x4 onto v, that
which minimizes the averaged displacement cost:

[ et auc.

We call any solution to (I) a ¢-OT map between u and
v. Solving this problem is difficult: the constraint set is
not convex and can even be empty. Instead of transport

We(p,v) ;== inf

THp=v

maps, the Kantorovich| (1942} formulation of OT seeks for
couplings 7 € II(u, v), i.e., probability measures supported
on Q) x € that have p and v as respective marginals:

We(p,v) ;== min // cx,y)dr(x,y). (2)
)J Jaxa

mell(p,v

An optimal coupling 7* always exists. When Problem (TJ) is
feasible, both formulations coincide and 7* = (Id, T*)#p.

Primal-dual relationship. For any ¢ : @ — R, writing
¢y € Q — infy e(x,y) — p(x) its c-transform, one can
derive the Kantorovich dual:

We(p,v) = min_ [ odp+ [ ¢°dv. ()
p: Q=R [ Q

Taking an optimal dual potential ¢* (which always exists
under our assumptions on ) and ¢) and an optimal cou-
pling 7*, the complementary slackness reads: V(xo,yo) €
Spt(m*), ¢ (x0) + ¢*“(yo) = ¢(x0,¥0). Assume that ©*
is differentiable at x, which is true under mild assump-
tions, and that c is sub-differentiable w.r.t. the first variable.
Exploiting the definition of ¢*°:

(X0,¥0) € Spt(1™) & Vp*(x0) € d1c(x0,¥0).  (4)

Translation Invariant Costs. In particular, when ¢(x,y) =
h(x —y) with h : Q — R strictly convex, differentiable ev-
erywhere, then its gradient map can be inverted everywhere.
Indeed, one has (Vh)~!(x) = Vh*(x), with h* the convex
conjugate of h (Santambrogio, 2015, Box 1.12). Then, in
that specific case, the optimal map reads:

T* :x—x—Vh"oVp*(x). 5)

In particular, when h = 1| - |3 one recovers the Brenier
(1987) Theorem: T* = Id — ¢* = V f* where f* :=
11+ 3 = ¢* can be shown to be convex.

Entropic regularization. When both ;1 and v are instan-
tiated as samples, as usual in a machine learning context,
the [Kantorovich| (1942) Problem @ translates to a linear
program, whose objective can be smoothed out using en-
tropic regularization (Cuturi, [2013). For empirical measures
fin = L3 Oys O = %Z?:I dy, and £ > 0, we form
C = [¢(x4,y;)],; and set:

Wc,s(ﬂna lA’n) = F?élUnn <P7 C> - EH(P) ) (6)
where U,, = {P € R}, P1, = 11, , P71, = 11, } is
the Birkhoff polytope and H (P) = —>77._, P;; log(Pi;)
the entropy. As € goes to 0, one recovers the classical OT
problem, namely W, o = W,.. In addition to resulting in
better computational and statistical performance (Genevay
et al.l 2018; Mena and Niles-Weed, 2019; (Chizat et al.|
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2020), entropic regularization also results in a strongly con-
vex problem, with a unique solution, making W, . differ-
entiable everywhere in its inputs via (Danskin, |1967)’s the-
orem. Besides, one can define the Sinkhorn divergence
SC,E(/% V) = WC,E(/J" V) - % (WQE(Ma /.L) + WC,E(Va V))
(Ramdas et al., [2017; [Feydy et al., 2019} [Salimans et al.,
2018; |Genevay et al., 2019) which is, under some assump-
tions on c (see |[Feydy et al.| (2019, Theorem 1)), a valid
non-negative discrepancy measure between probability dis-
tributions. The quadratic cost satisfies theses assumptions
and we we note Wpz . and Syz . in that case.

3. The Monge Gap

We introduce in this section the Monge gap, a regularizer to
estimate optimal transport maps with any ground cost c.

Definition 3.1 (The Monge Gap). Given a cost ¢ and a
reference measure p € P, the Monge gap of a measurable
vector field T : €2 — € is defined as:

ME(T) = / e(x, T(x)) dp(x) — Walp. THp) . (7)

By definition of Eq. (I}, the Monge problem between p
and T'ip is feasible for any measure, notably discrete, since
there exists at least one map, 7" itself, that satisfies the push-
forward constraint. With this in mind, because the Monge
gap is simply the optimality gap of the Monge problem, one
can deduce immediately the following properties:

* For any vector field 7T, M;(T) > 0.
* T is a c-OT map between p and T'p < M (T) = 0.

Intuitively, the Monge gap M measures the gap between
the cost incurred when moving from p to T'fp using T, to
the optimal one (not necessarily T') realized by a c-OT map
T*. See Figure|I|for a simple illustration.

3.1. Estimation from Samples.

In practice, we estimate the Monge gap using i.i.d. sam-
ples xi,...,x, from p. Given the empirical measures
pn =+ L3 1 Ox, and THp, = lz? 1 07(x;)> We sim-
ply con51der the plug-in estimator M7 (T'), which is a
consistent estimator of M¢(7"). The proof of the following

Prop. [3.2]can be found in Appendlx
Proposition 3.2. Almost surely, M (T) — M(T).
Evaluating the Monge gap M5 (T') requires solving an

OT problem. To alleviate computational issues, we use an
entropic regularization £ > 0, as introduced in Eq. (6):

MG (T) =213 e(x;, T(x:)) = Wee (pn: Thpn) - (8)
=1

$3-

Figure 1. Sketch of the Monge Gap M}, (T) instantiated with the
euclidean cost c(+,-) = || - — - ||2, Where p,, is a discrete measure
supported on four points Because the OT map T* between pn,

Monge gap here is positive, and equal to differences in lengths that
amount to (a 4 b)/4 in the plot.

The estimator in Eq. (8), while being far more effective to
compute, retains many of the appealing properties of the
unregularized Monge gap:

* Choosing € = 0, one recovers M$ (7'

e Fore > 0, onehas/\/lf) .

=M (T).
(T') > 0 (see Appendix [A.3).

Moreover, entropic regularization makes this estimator is
differentiable everywhere in its inputs. See § for more
insights on the Monge gap gradient.

3.2. Relation to Cyclical Monotonicity.

To gain intuition about what M; quantifies, we introduce
the notion of cyclical monotonicity. Recall that a set I' C
0 x Qis ¢-CM if for any n € N, any set {x1,...,X, } X
{y1,.+¥n} C I and permutation o € S,, one has:

n n
Z C(Xia yl) < Z C(Xi, YG'(Z)) .
1=1 =1

Setting y; := T'(x;), the Monge gap estimator using permu-
tations (Peyré and Cuturi, 2019} Proposition 2.1) is:

n
1
- § c Xza
n

i=1

can therefore be interpreted as a quantification of
the violation of the cyclical monotonicity of the set
I := Spt((Id,T)fp), measured on sampled points
{(x1,T(X1)), s -y (X, T(%5))} C I'. Under the assump-
tions made on ¢ and (2, the cyclical monotonicity of that
set is equivalent to the optimality of 7', see (Santambrogio,
2015l Theorem 1.38, Theorem 1.49).

n

1
- iaT o(i)) s
grel}sn ngc(x (Xo(i))
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No Monge Gap Monge Gap: c(x,y) =|x—yl|2

Monge Gap: c(x, y) = = |x — y|}2

Monge Gap: c(x,y) =1|x — y|3

Figure 2. Fitting of transport maps between measures i, v in dimension d = 2, with the same fitting loss A = W . but Monge gap My,
instantiated with various costs c¢. We also fit an MLP without Monge gap, minimizing only the fitting loss. For ¢(x,y) = |[|x — y/|2,
we use the method for generic costs directly parameterizing Ty as an MLP and using Amc = 5. For strictly convex costs
c(x,y) = 2= llx — ylli:3 and c(x,y) = 3||x — y]|3. we use the method for costs with structure Accordingly, we parameterize
Ty =13 — Vh* o Fy with an MLP Fy and penalize lack of conservativity with C,,. Moreover, we use Amc = 1 and Acons = 0.01.

3.3. Properties of the Monge Gap.

When the Monge gap w.r.t. p of a map 7' is zero, then it will
also be zero on any measure whose support is contained in
that of p. This is a crucial property of our regularizer and a
natural extension of (Brenier, [1987)’s result for the 65 cost,
which states that a map is optimal between p onto T'fp, if
and only if it is the gradient of a convex potential; assuming
that is true, that map will therefore move optimally any
measure whose support is contained in that of p. The proof
of the following Prop. [3.3|can be found in Appendix[A.2]

Proposition 3.3. Let y,v € P(Q) such that Spt(u) C
Spt(p), and a map T' s.t. T = v. Then M5(T) = 0
implies that T is a c-OT map between i and v.

The Quadratic Case. We now focus on the Monge gap
when ¢(-,-) = 3| - — - |13, abbreviated as M2. We study
the properties of Mg and its empirical (entropic) counter-
part M%mg, fore > 0, on Lo(p) and Lo(p,,) respectively.
Notably, they share the same appealing regularity properties.
Proposition 3.4. Both M, and M3 _ for any e > 0, are
convex, sub-additive and positively homogeneous.

Proof. We start by studying M%m . since it can be reformu-
lated as a matrix input function. Indeed, it only depends
on T via its values on the support of p,,, namely x1, ..., X,.
Therefore, we write t; := T'(x;) and study:

T(T) = %HX - TH%‘ - Wég,a(ﬁnva) )

where X, T € R™*? contain observations x; and t; re-
spectively, stored as rows, and pr is the discrete measure
supported on the t;. Expanding the squares yields:

r(T) = max (T, (P — 11,) X) +cH(P)  (9)

As a maximum of affine function, r is then convex, sub-
addtitive and positively homogeneous in T, so is M%n . in

T. We extendit to Mf, using Prop. See Appendix
O

Insights of Prop.[3.4]are twofold. First, the convexity sup-
ports using M% as a regularizer to gain Monge optimality.
Furthermore, if p < L4, by Brenier|(1987)’s Theorem, M,%
is zero only on the set {F' |3 f : 1 — Rconvexs.t. F' =
Vf, p —p-p-}. Therefore, /\/lf) behaves like a norm “up to
the gradient of the convex functions”.

Proposition 3.5. For any v € P(Q2), we note C(vy) :=
2 (A (B, [XX )2 Then, M2 and M2

Pn €

spectively C(p) and C(py,) Lispchitz continuous.

are re-

Proof. We study the lipschitzness of the affine function over
which maximization is performed in Equation (9). It allows

to deduce the lipschitzness of r w.r.t. || - || =, hence of Mi .
w.rt. || - [|L,(p,)- We then extend it to M2 w.rt. || - ||, ()
using consistency Prop.[3.2] See Appendix [A.3] O

Since C(p) > 2 ()\maX(Covp[X]))l/z, Prop. provides
insights about the choice of the reference measure p. It
exhibits the expected trade-off w.r.t. Prop. [3.3} by choosing
a bigger p, we trade the regularity of ./\/li.

4. Learning with the Monge Gap

We show how the Monge gap can be used to learn approxi-
mately c-optimal parameterized maps, for any c.

4.1. Using directly the Monge gap as a regularizer.

We seek to learn a c-OT map between u, v € P(2). The
Monge Prob. (1)) has two parts: (i) fitting the marginal con-
straint 71 = v, while (ii) minimizing the averaged c-cost
of this displacement, i.e. achieving the c-optimality.

The Weaknesses of Naive Dualization. Because of the
difficulty of handling the constraints in (i), previous works
have simply proposed to dualize that constraint, through a
regularizer (Lu et al.l 2020; Xie et al.|[2019; Bousquet et al.}
2017; |Balaji et al.l [2020). This consists, for simplicity, in



The Monge Gap

introducing a fitting loss defined through any divergence A
and a Lagrange multiplier \; then solving:

T:H%}EIM)‘A(TW’ V)-I-/C(X,T(X))du(x) . (10)

fitting
c-optimality

Prob. (I0) coincides with the OT Prob. (I)) only if A — +oo.
Furthermore, suppose that a minimizer T’ of Prob. (I0)
exists, then we can show that T, is optimal between p and
Ttu. On the other hand, Gazdieva et al.| (2022, Theorem
1.) states that Th\#u # v and this bias increases drastically
as \ decreases, so as we focus on the minimization of the
displacement cost. Therefore, we have an intrinsic trade-
off that prevents us from jointly: (i) fitting the marginal
constraint while (ii) achieving the c-optimality.

The Monge gap as a debiased displacement cost. On the
other hand, the Monge gap is a regularizer that can handle
the c-optimality constraint elegantly. Provided that c-OT

maps exist and Spt(p) D Spt(u), the solutions of:
min_ L(T) := A(THp,v) + MG(T) (11)

T:R4d—R4 —_———— N

fitting c-optimality
are exactly those ¢-OT maps. Indeed, £(T") > 0 with equal-
ity i.f.£. A(T4p,v) = 0 and MS(T) = 0, i.e. Tfp = v and
T is optimal between p and T} = v using Proposition @]
For this reason, /\/lf) can be seen as a “debiased” displace-

ment cost that is O only when c-optimality is observed.

Monge gap-based learning. Introducing a family of param-
eterized maps {7y }gcre and a regularization weight Avig,
we can recover approximate c-OT maps by solving:

min £(0) := ATy, v) + e MG(Tp) . (12)

The introduction of Ay is purely related to practical consid-
erations: balancing each objective function term and hence
stabilizing training. In theory and according to the above
discussion, any Ay > 0 allows recovering a ¢-OT map.
Usually, one can simply set A = W, and A\yig = 1, so
that A and Ay M, are naturally homogeneous. Therefore,
AMG 18 easy to tune by construction.

4.2. Handling Costs with Structure.

Adapting the Map’s Parametrization. The method de-
scribed in § 1] can be refined when the cost introduces
structure in the optimal map. As recalled in § [2, when
¢(x,y) = h(x — y) with h strictly convex, one has:

T* :x —x— Vh" o Vp*(x) (13)

where * is a dual potential. Accordingly, we can adapt the
map’s parameterization, introducing a parametrized vector
field Fy to model directly the dual potential gradient V*:

Ty :x—x— Vh" o Fy(x). (14)

No Monge gap

Figure 3. Fitting of transport maps between synthetic measures on
the 2-sphere. In both cases, we parameterize the map as Ty =
Fy/||Fol|2 where Fp is an MLP, and we use A = Wz _ as fitting
loss. On the upper plot, we do not use any regularize, while on the
lower plot, we regularize with the Monge gap instantiated for the
geodesic cost ¢(x,y) = arccos(x ' y) and use Amg = 1.

This case includes notably all h = %H -|[5 with p > 1 and ¢

s.t. % + % = 1, for which h* = %H |14

Penalizing Lack of Conservativity. By construction, Fjy
intends to mimic a conservative vector field (i.e. a gradient
field) V*. To leverage this conservativity prior, we could
impose the parameterization Fy = V fy. However, this hard
gradient constraint can make training unstable and is one
of the reasons why ICNNSs are challenging to train (Saremil
2019; Richter-Powell et al., 2021} |[Amosl, [2022)). Instead,
we use a regularization to penalize a lack of conservativ-
ity (Chao et al., [2023)). Introducing a reference measure p
and considering a differentiable F, the regularizer penalizes
the asymmetry of the jacobian Jacx F' for x ~ p:

Co(F) =Ex~, [|[Jacx F — Jack F||3] . (15)

It can be estimated efficiently using the |Hutchinson| (1990)
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Figure 4. Fitting of a transport map T to predict the responses of cell populations to cancer treatments on 4i (upper plot) and scRNA
(lower plot) datasets, providing respectively 34 and 9 treatment responses. For each profiling technology and each treatment, we compare
the predictions provided by our method to those of the baselines listed in[6.1] We measure predictive performance using the Sinkhorn
divergence between a batch of unseen (test) treated cells and a batch of unseen control cells mapped with 7', namely S 2, (T8 prtest, Veest )s
see§ and Appendixfor details. Each scatter plot displays points z; = (x;,y; ) Where y; is the divergence obtained by our method
and x; that of the other baseline on all treatments. A point below the diagonal y = x refers to an experiment in which our methods
outperform the baseline. We assign a color to each treatment and plot five runs, along with their mean (the brighter point). For a given
color, a higher variability of points along the x axis means that our method is more stable than the baseline, and vice versa.

trace estimator, which turns pointwise Jacobians to point-
wise Jacobian vector products (JVPs) and vector Jacobian
products (VIPs). See Appendix [B|for details about this esti-
mation procedure. Combining the parametrization trick and
the conservativity regularizer, we then seek to solve:

min£(0) := A((Ig — VA" o Fp)tu,v)
OcRp (16)
+ )\MG M;(Id — Vh* e} Fe) + )\cons CP(FQ)

Note that the Monge gap and the conservative regularizer are
not applied to the same vector field. While M is applied
to Ty := I — Vh* o Fy, C, is evaluated on Fjy, to mimic
the gradient of a dual potential V*. Since ¢* can always
be taken c-concave (Santambrogiol [2015] Remark 1.13), Fy
can be thought as a soft Input c-concave Gradient Network.

Remark. We emphasize that the main ingredient of our
method is the Monge gap. The conservative regularizer is,
in theory, not necessary: using Acons = 0 and any Ayjg > 0
in Prob. (T6) is enough to recover a ¢-OT map. We propose
to use it to stabilize training and reach better local minimas.
We test its influence in detail in the Experiments section [6]

5. Related works

Neural OT map estimation. As recalled in the introduc-
tion, duality theory can guide the choice of neural OT archi-
tectures, using c-concavity. This motivates naturally ICNNs

for the quadratic cost, but also more general c-concave neu-
ral potentials. These approaches are, however, fairly difficult
to train and parameterize in practice. |[Fan et al.| (2020) and
propose an alternative approach, conceptually similar to a
Wasserstein GAN (Arjovsky et al., 2017), where a Lagrange
multiplier f is introduced in the Monge formulation defined
in Eq. (I) to account for the marginal constraint Ty = v.
This results in a saddle point problem sup ; infr £(f, T),
trading off two terms, a displacement cost, and a fitting loss
error. The goal is then to make that displacement cost small
while reaching a fitting loss as close as possible to zero. The
proper trade-off between the two terms is, however, difficult
to get right: the displacement cost cannot be minimized to
zero (that term represents the “traveled” distance to go from
source to target), and its scale will interfere with that the
fitting loss (which should be, ideally, close to 0). By con-
trast, in our approach, both the fitting loss and the Monge
gap (which can be interpreted as a “debiased” displacement
cost) should be close to 0. In that sense, the Monge gap is
truly a regularizer and not a displacement cost.

Beyond maps. The Kantorovitch formulation can also
be reformulated as a saddle point problem, by relaxing
7 € I(p,v) tow € II(p) and introducing a Lagrange
multiplier for the second marginal constraint. A recent
line of work proposes to directly estimate non-deterministic
parameterized couplings mp € II(u), modeling my(y|x)
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Figure 5. Performances of our models and baselines on estimating the ground-truth Monge maps 7™ between each pair of Gaussian
mixtures y, v in dimension d €{2,4,8,...,256} of the Korotin et al.| (2021)’s benchmark. We report both the unexplained variance
LYV(T) (left) and the Sinkhorn divergence S, e (T'8p, v) (right) of the fitted map 7". We average the results over 5 trainings.

via ”one to many” stochastic maps (Yang and Uhler, 2019;
Korotin et al., [2022; |Asadulaev et al., |2022). More pre-
cisely, for a latent space Z, take v € P(Z) and a stochastic
map T, : Q@ x Z — Q, if x ~ p, then for any z ~ ~,
(x,Tr,(x,2)) ~ mp € (). Imposing deterministic cou-
plings mg = (14, Tp)fu, we recover the saddle point Monge
problem of [Fan et al.|(2020), which is why we only consider
Fan et al.| (2020) as a baseline in our experiments.

6. Experiments

We evaluate the ability of our method to recover OT maps
between both synthetic (§6.2]6.3) and real (§6.4) datasets.

6.1. Experimental Setting.

Using the Monge gap in practice. The monge_gap, along
with a MapEstimator to estimate OT maps, are imple-
mented in the OTT-JAX (Cuturi et al., 2022 packageﬂ

Reference measure. Choosing the reference measure p is
the first step in our construction. We provide preliminary
experiments in Appendix [C|to investigate the influence of p.
We settle in practice on the simplest choice of setting p =
and leave other choices for future research.

Our models. We quote our models using this terminology:

* The prefix refers to the map’s parameterization.
vanilla-MLP indicates that we directly parameter-
ize the map with an MLP and solve Prob. @, with
algorithm[l] strcut-MLP indicates that we use
the parameterization trick and solve Prob. (16), see
algorithm[2] The latter works for strictly convex costs.

* The suffix refers to the employed regularizers. We add

"https://github.com/ott-jax/ott

+ M, to the name when we use the Monge gap, and +C;,
when we use the conservative regularizer.

For strictly convex costs ¢(x,y) = h(x — y), such as the
quadratic cost, we use st ruct-MLP + M, + C, by de-
fault. For generic costs, we use vanilla-MLP + M;
With or without regularizers, we fit our models with A =
W@’E. We adapt Bunne et al.| (2022a)) to define both
Gaussian (for the quadratic cost) and Identity initialization
schemes for our neural transport maps (see Appendix [D.2).
See Appendix [D|for other details about hyperparameters.

Metrics. To measure the predictive performances of an
estimator 7" of T*, we rely on (i) the Sinkhorn Divergence
between the target and the fitted target measures, namely
Sez. (v, Ttp) and, when T* is known, (i) the £y unex-
plained variance percentage (Makkuva et al., 2020), (Ko
rotin et al., 2020), (Korotin et al., [2021) defined as:

E,(IT(X) — T (X)]I3]
Var, (X)

LIV(T) :=100 - (17)

S 02, (v, Tﬁu) quantifies the generative power of the method
as a valid divergence between the reconstructed and the
actual target. For all experiments, we use ¢ = 0.1. Instead,
L’gV(T) quantifies not only this generative power but the
Monge optimality, measuring the deviation of T from T*.
This deviation is normalized by the variance of v, so that the
constant baseline Ty = E, [V] provides LYV (Tp) = 100%.

Baselines. We compare our methods to (i) a
vanilla-MLP fitted without regularization, (ii) the ICNN
neural dual formulation with Gaussian initializer (Bunne
et al.,[2022a)), (iii) an MLP trained via the saddle point prob-
lem (Fan et al.,[2020), (iv) the entropic map (Pooladian and
Niles-Weed, [2021)) and (v) the constant map Ty = E,[Y].
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Figure 6. Heatmaps showing the influence of Mi and C,, on the performances of our model st ruct -MLP —|—./\/l§ + C, on tow tasks:
(left) learning the known Monge map between the Korotin et al.|(2021) benchmark pair of dimension d = 32 and (right) predict the

responses of cells populations to abexinostat drug with scRNAseq data. It corresponds to 1 of the 9 scRNAseq datasets considered in
For each task, we report the performances induced by each pair of regularization weights (Ama, Acons) 0on a regular grid. For the
benchmark pair, since the Monge map is known, we measure performances using the unexplained variance. For the single-cell data, we
use the Sinkhorn divergence between a batch of unseen treated cells and a batch of unseen control cells mapped with the fitted map.

6.2. Synthetic Data.

Eg costs. We evaluate both § and § methods on
(€8)p,q>1 costs, see Figure For ¢(x,y) = [[x — y||2, We
obtain a "needle” alignment (without crossing lines) because
c is a distance: this is known as the Monge Mather shorten-
ing principle Villani| (2009, Chap. 8). Thus, the Monge gap
allows to recover of OT maps when c is a distance.

Costs on the sphere. We consider measures supported on
the 2-sphere along with ¢(x,y) = arccos(x "y), see Figure
El Since c is the geodesic distance, we still observe the
Monge Mather shortening principle (see above paragraph),
which assesses the c-optimality of the fitted map.

6.3. High Dimensional Benchmark Pairs.

Experimental setting. To assess that our method allows us
to recover Monge maps, we use the ICNN based
(2021)’s benchmark, providing pairs of Gaussians
mixtures p, v in dimension {2, 4,8, ..., 256}, with known
Monge map for the squared Euclidean cost. We fix Acons =
0.01, then A\yig = 1 for d < 16 and A\ = 10 for d > 32.
See § [6.3]for details on the influence of hyperparameters.

Results. are shown on Figure[5] A vanilla-MLP exhibits
good generative power but, as expected, does not learn the
Monge map 7*. Our method performs uniformly better for
d > 16. For d > 64, the|Fan et al.| (2020) estimator yields
poor results, worse than the constant baseline. The ICNNs
provide unstable and moderate performances, despite the
[Bunne et al.| (20224)’s Gaussian initializer, highlighting the
difficulty of their training, even when the ground truth is
explicitly known as the gradient of an ICNN.

6.4. Single-Cell Genomics.

Experimental setting. Predicting the response of cells
to a perturbation is a central question in biology. In this
context, feature descriptions of control and treated cells can
be treated as probability measures p and v, and perturbation
fitted as a transport map T. Following (]Schiebinger et al.l,
, the use of OT theory to recover this map 1" has
been used (Bunne et al., [2022b}; 2021} 20224} [Liibeck et al.,
[2022; [Eyring et all, 2022). We predict responses of cell

populations to cancer treatments (perturbations) using the

proteomic dataset used in (Bunne et al.|2021)), consisting of
two melanoma cell lines. Patient data is analyzed using (i) 4i

2018), and scRNA sequencing 2009).
For each profiling technology, the response to respectively
(1) 34 and (ii) 9 treatments are provided. As in (Bunne et al.|
[2021)), (i) training is performed with the quadratic cost, in
the data space for the 4i data and in a latent space learned by
the scGen autoencoder for the scRNA data
and (ii) both evaluations are carried in data space, selecting
the top 50 marker genes for sScRNA data using the scanpy
package. We fix Acons = 0.01, then set
Avic = 1 for 4i data and Ayjg = 10 for scRNA data. See
[6:3] for details on the influence of hyperparameters.

Results are shown on Figure [d] On both 4i and scRNA
data, our method gives the best prediction among all mod-
els. These results also show that standard MLPs trained
without regularization should not be discarded as a poor
contenders since they perform consistently better than IC-
NNs. We believe this illustrates the rigidity of the ICNN
architecture (Korotin et al., 2021} [Amos| 2022)).
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Figure 7. Ablation study on single-cell genomic data. On all 4i (upper plot) and scRNAseq (lower plot) datasets, we evaluate the effect
of: (i) the parameterization trick, (ii) the Monge gap Mi, and (iii) the conservative regularizer C,, (see Prob. (I6)). The plot structure
is the same as Figure[d] and we still evaluate each model using the Sinkhorn divergence between a batch of unseen treated cells and a
batch of unseen control cells mapped with 7T". We average the results over five runs. We remind the terminology of our models: the prefix
vanilla-MLP indicates that we directly parameterize the map with an MLP (see Prob. (I12))), while st ruct-MLP indicates that we
use the parameterization trick (see Prob. (I6)); we then add the employed regularizers to the name of the model.

6.5. Ablation Study.

We study the influence of each component of our models.
In particular, we investigate the effect of each regularizer
on real data to interpret the performance gains w.r.t. the
baselines (especially ICNNs) shown in Figure

Influence of M? and C,,. We assess the impact of M?
and C,, on the two following tasks: (i) learning the Monge
map between the [Korotin et al.[|(2021) benchmark pair of
dimension d = 32 and (ii) predict the responses of cells
populations to abexinostat drug with scRNAseq data. For
each task, we report the performances induced by each pair
of regularization weights (Ama, Acons) On a regular grid.
Results are shown in Figure@ First, on both tasks, the Ay
regime providing the best performances is wide and corre-
sponds to Ay € [1,10]. This aligns with the discussion
led in §4.T)and highlights that Anic is, by construction, easy
to tune. However, the regularizers’ influence on each task
is very different. On the Korotin et al.|(2021)’s benchmark,
where the ground truth is explicitly known as the gradient of
a convex potential, both /\/li and C,, improve performance.
However, on single-cell genomic data, performances only
improve as we give greater importance to the Monge gap.

Ablation Study on Single-Cell Genomic Data. We con-
duct an ablation study of our models on single-cell genomic
data. Results are shown in Figure [/l The performances
with and without C,, are globally aligned. Therefore, it first
shows that the performance gains visible in Figure [] are

obtained thanks to the Monge gap. These results thus differ
from those obtained on the [Korotin et al.| (2021)’s bench-
mark, where C,, clearly helps since we explicitly target the
gradient of a convex function. Therefore, while it helps with
synthetic data, it is unclear whether leveraging the conserva-
tivity prior systematically helps with real data. This aspect
explains, in particular, the poor performance of approaches
parameterizing Ty = V fy with fy ICNN on real data since
they explicitly enforce the ”gradient of a convex function”
constraint. This is why we believe regularized approaches
like ours make more sense in the finite sample regime and
when Monge optimality is only a modeling assumption be-
cause we can adjust the weight given to each constraint. As
a result, we hope the Monge gap and the learning paradigms
we provide will facilitate the use of OT maps on real data.

Conclusion. In this paper, we provide a novel strategy to
train optimal transport maps. Our approach is grounded
on regularization rather than on constraints. We provide a
regularizer, the Monge gap, with many favorable properties:
lower-bounded by 0 and 0 when the property is observed,
with a scale (as a difference between averaged distances)
comparable to that of a fitting loss. That regularizer allows a
more efficient trade-off to train maps that should be OT-like
rather than exactly conforming to OT theory, so it facilitates
the use of OT maps on real data. Furthermore, it adapts
to any cost ¢ but requires defining a reference measure p.
An interesting direction lies in developing adaptive ways to
define that measure, linking it to data measures of interest.
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A. Proofs.
A.1. Proof of Proposition
Let a measurable 7' : Q — Q and X1, ..., X, ~iid P-

RHS. For X ~ p, since  is compact and ¢ is continuous, ¢(X,T(X)) is bounded hence integrable, so
LS e(xi, T(x;)) — [ e(x,T(x)) dp(x) almost surely.

LHS. Since 2 is compact, T" is bounded so for any bounded and continuous f : @ — Rand X ~ p, foT(X) is well defined
and bounded so integrable. Afterwards, one can simply adapt the proof of the almost sure weak convergence of empirical
measure based on the strong law of large numbers to show that, almost surely, 7'45,, — T'#p weakly. See for instance
(Le Galll Theorem 10.4.1). Therefore, almost surely, both p,, — p and T'fp,, — T'§p weakly, so since c is continuous and §2
is compact, it almost surely holds that W (p,,, T#p,) — We.(p, Ttp) (Santambrogiol 2015, Theorem 1.51).

A.2. Proof of 3.3

Let T', p, v as described and suppose that M¢(T") = 0. Then, (Id, T')§p is an optimal coupling between p and T'fp. Since
the cost ¢ is continuous, Spt ((Id, T')#p) is a c-cyclically monotone (¢c-CM) set by virtue of (Santambrogiol {2015}, Theorem
1.38). Because Spt(u) C Spt(p), one has Spt ((Id, T)4x) C Spt ((Id, T)fp). Since the ¢-CM property is defined for
sets, one has that Spt ((Id, T')4u) is also ¢-CM. Moreover, since 2 is compact, ¢ is uniformly continuous and bounded.
Hence, cyclical monotonicity of its support implies that the coupling (Id, 7)#x is optimal between its marginals thanks to
(Santambrogio, 2015, Theorem 1.49). Therefore, T is a c-OT map from u to v.

A.3. On the Positivity of M5

e

Recall that

Mgn,e (T) = %Z C(Xi7 T(Xz)) - Wc,a(ﬁnv Tﬁﬁn)
=1

PeU,

%Z c(xi,T(x;)) — min (C,P) — ¢H(P)

with C = [e(x;, T'(x;)]1<i,j<n- For any coupling P € U,, since —cH(P) = —¢ szzl P;;log(P;;) < 0, one has:
(P,C) — eH(P) < (P,C)
As a result, applying minimization on both sides yields that W, . (5, T85n) < We 0(pn, T#pr), and therefore:

MS (T) > M o(T) = ME (T) > 0.

Pnse Pns Pn

A.4. Proof of 3.4

We start by studying M,an.s since it can be reformulated as a matrix input function. Indeed, it only depends on 7T’ via its
values on the support of j,,, namely Xy, ..., X,,. Therefore, we write t; := T'(x;) and study:

T(T) = ﬁ”x - TH%‘ - WZ%,E(ﬁn7pT) )

where X, T € R"*9 contain observations x; and t; respectively, stored as rows, and pr is the discrete measure supported
on the t;.
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Since C = [$|x; — .Forany P € Uy,:

6ill2) 1< i<

P)= > Pyllx; —ti

ij=1
=Y Pylxills+ > Pijllells —2 > Pijlxity)
i,j=1 i,j=1 i,j=1
- Z HXIHQ ZPU + Z ||t ”2 ZPU -2 Z ZPUszTJk
i,j=1k=1
= I3 xil3+ 2 Z It 13— 2ZZTMZP”XW
i=1 k=1 j=1 i=1

= 1IXI% + %HYHF —2(T,PTX)

Afterwards, we get:
r(T) = 51X = T = Wez o (pn, pr)
= 5,[IX = T} — min (C,P) —H(P)

= <T X) — min —(T,P'X) —cH(P)

PcU,
= T,(P—-11,)"X)—cH(P
&@X( ( 21,) X) —eH(P)
= max rp(T)
PeU,

where rp : T — (T, (P — 11,) ' X) —eH(P).

Each rp is affine, so r is convex, sub-additive and positively homogeneous as a maximum of affine functions. By
construction, for all vector field T, Mf, E(T) =r(T);so M%n . naturally enjoys these properties. Afterwards, since these
properties are preserved under pointwise convergence, we extend the result to ./\/lf) using Proposition

A.5. Proof of

We first study the lipschitzness of M%ma w.rt. || - [|£,(5,)» Which remains to study the lipschitzness of 7 w.r.t. || - || p. Then,
to study the lipschitzness of r, we study the lipschitzness of each rp. As an affine map induced by the matrix (P — %In)TX,
each rp is ||(P — 11,,) " X||op-Lipschitz continuous. Moreover, one has:

(P —L11,) " Xllop < |(P = 21,) T[lop X lop (18)
< (IPllop + 2 nllop) 1 X [lop (19)
= 2|IX][op (20)

where [T8] follows from the sub-multiplicativity of the operator norm, [I9| from the triangular inequality and 20| from the
fact that since P € U,,, ||P||op = <. Indeed, one can write P = 1 Q with Q a bi-stochastic matrix. Then, Q' Q is also a
bi-stochastic matrix, s0 Amax(Q " Q) = 1. Therefore, [|Q|lop = 1 and ||P||op = by homogeneity.

Afterwards, each rp is %HXHOP—LipSChitZ continuous, so is r. Indeed, for any T, T/ € R"*<, one has:

|7(T) — r(T)| = | max 7p(T) — max rp(T)|

PeU, PEU,
< . /
= pax |rp(T) —rp(T")] (21

< 2| X]lop I T = T'||

14
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Now, let’s reformulate the Lipschitz constant and deduce the Lipschitzness of Mi . from the Lipschitzness of 7. Reminding
that X is the matrix containing the x; as rows, one has:

n 1/2
1/2 1/2
LIXop = & (Amax (X7X))"* = (m (;inx: )) = (Amax (Ep, [XXT])) " (22)
i=1

Similarly, for two vector fields T, 7" : Q — €, since T is the matrix containing the t; = T'(x;) as rows and similarly for
T', one has:

n 1/2
LT - T = (iZ I7(x:) T’(x»n%) = T~ 'l age) 23)
=1

Therefore, combining Equations (22)) and 23] Equation (21)) can be reformulated as:
[r(T) = r(T)] < 2| X]lop | T = T'||
1/2
& M, (1) = M, (D) < 2 (e (B, [XXT1)" T = Tll1a5) 24

C(pn)

which proves the C(p,,)— Lipschitz continuity of of M%WE.

We now extend the result to M?2. First, it almost surely holds that limy, -, o0 |7 — 1"\ £,(5,) = IT —T"|| L, (»)- Then, since

1/2

A — Anax(A) is anorm on S (R), it is in particular continuous, 0 is A — (Amax(A))/~. Afterwards, since for each
/2

n>0,E; [XXT] €8] (R), limyioo (Amax(Es, [XXT])) " = Amax(E,[XXT])) /2 almost surely. Then, passing
to the limit in Equation (24) with ¢ = 0 leads:

/ 1/2 !
IM(T) = ME(T')] < 2 (B XX D)2 T = T 10

C(p)

which proves the C(p)— Lipschitz continuity of of M2

B. Reminders and Details on the Conservative Regularizer.

In this section, we remind the definition of the conservative regularizer and detail its efficient estimation procedure based on
the [Hutchinson| (1990) trace estimator.

Theoretical Motivations. First of all, let’s remind the theoretical considerations behind the definition of this conservativity
regularizer. By the Poincaré’s lemma (Lang, Theorem 4.1, Chap. V), on a star-shaped domain 2 C R4, any closed
differential form is exact. Namely, any differentiable vector field whose Jacobian is symmetric on 2 is a gradient field, i.e.
for any differentiable F' :  — Q:

Vx € Q, JacyF = Jac) F < 3f :RY S R, st. F=Vf.

Introducing a reference measure p € P(£2) and considering a differentiable vector field F' : Q@ — (, the regularizer hence
penalizes the asymmetry of Jacy F' on the support of p:

Co(F) =Ex., [|[Jacx F — Jack F||3] . (25)

The regularizer F' — C,(F) is convex on differentiable vector fields. Indeed, for any x € Spt(p), the functional
F — ||JacxF —J aCI F||3 is convex as the composition of a linear operator and a convex function, so the convexity of C,
follows from linearity of the expectation.
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Efficient Estimation. Similar to the Monge gap, we use an empirical estimator for C;, (F'). However, for large dimension
d, computing the full Jacobian Jacx F' might be too costly. We use instead the [Hutchinson| (1990) trace estimator, which
turns pointwise Jacobians to pointwise Jacobian vector products (JVPs) and vector Jacobian products (VIPs). Indeed, for
any A € R¥?, using the fact that I; = Eyxr(0.1,)[V'V "], one has:

Tr(A) = Tr(A L)

= Tr(AEy. no1,)[VV'])

= TY(EVNN 0 Id)[A VVT])

=Eyn(o1)[TH(AVV T
=Evon(o)[Tr(V AV)]

=Evno1nV AV]

Therefore, applying the above formula inside the expectation defining the conservative regularizer, one has:

Co(F) =Ex~, [|Jacx F — Jack F||3]

—EXNP [Tr ((Jacx F — Jack) (JacXF—Jac§))]
[Evonoa [V (Jacx F — Jack) " (Jacx F — Jack)V]]
=Ex~p [Evenor) [[Jacx FV — Jack V|[3]]

= E(x,v)~peN(0,14) [HJaCXFV - JaCXVHQ}

=Ex~,

Using samples X1, ..., X, ~iid pand yi, ..., v, ~ii.a N(0,1), its empirical counterpart translates to

n m

1

Cps, (F) = — ;; |Jacx, F'vj — Jacx, F ' v,||3
. (26)
1 . .
= S S 5w e v) — IR (E) kv
i=1 j=1

where jvp and v jp denote respectively the Jacobian Vector Product and Vector Jacobian Product operators. Using the
JAX framework (Bradbury et al., [2018)), these operations can be carried out using the jax.vjp and jax. jvp primitives.
Consequently, the [Hutchinson| (1990) trace estimator replaces the calculation of the full jacobians Jacy, F' and J acLF
in each x;, by the calculation of m jvp and vjp. We need to choose m < d to gain computational efficiency. Indeed,
computing the full Jacobians Jacy, F' and Jac,, F'T requires the computation of respectively d JVPs and VJPs, instantiated
along the vectors of the canonical basis of R%.

C. Additional Experiments.

C.1. Analysis of the Monge gap’s Influence on Learning Dynamics.

In this section, we study the effect of the Monge gap on the learning dynamic induced by the optimization of Prob. (T2). We
remind it here, along with the goal we seek to achieve with each term of the loss:

min £(9) = A(Tgﬁ,u, V) + Amc M;(Tg) .
OERP — ~———

fitting c-optimality

Assume from now that ¢ and A are differentiable and let ¢ > 0. The above optimization problem can be solved by sampling
batches fi,,, U, P, and considering stochastic gradients, i.e. gradients of the estimated loss:

En(e) = A(TGﬁﬂm ﬁn) + AMa Mz",e(TO)
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Monge gap’s Influence on the Gradient Flow of L. The effect of the fitting loss A is clear: using gradient steps with
VoA(Tpfin, Un) will push the mapped source measure Tpfii to be as close as possible to the target measure v. Then,
to better understand the effect of the Monge gap, we take a closer look at the gradient of the entropic empirical Monge
gap: Vo M$ .(Ty). Since € > 0, the optimal transport plan P between p,, and Tpfpy, is unique, so We o (pn, Toipn) is
d1fferent1able in its inputs thanks to the |Danskin| (1967) (see §|Z|) Especially, one can differentiate everywhere w.r.t. 6:

VoWee(pn, Tolipn) = Y P5Voc(xi, To(x;))

i,j=1

Afterwards, 6 — M5 _(Tp) is differentiable and its gradient reads:

VoM, (Ty) = Z (£6i; — P5;) Voe(xi, To(x;))

One can notice that the magnitude of the gradient increases as P¢ deviates from the identity coupling %In which sends each
x; to Tp(x;). More precisely, since P¢ € U,,, Vi, j, 0 < pPs; < 1/n, so:

(1/n)éi; —P5; >0 if i=j

(1/n)é;; — PE <0 if i#j
Using gradient steps with VoM (Tp) will therefore drive the Tp(x;) to make P as close as possible to the
identity coupling by: decreasing the cost on the diagonal c(x;,Ty(x;)) while increasing the cost off the diagonal
c(xi,Tp(x5)), @ # j. We will therefore aim for the permutation giving the optimal assignment between {x1,...,X,}

and {Ty(x1), ..., Tp(x,)} for cost ¢ to be the identity. This is equivalent to reaching the cyclical monotonicity of the set
{x1,.... xn} x {Tp(x1), ..., To(xy)}, which is in line with the discussion in §[3.2]

An experiment showing this dynamic on synthetic data in dimension d = 2 is provided in Figure We use A = W@;s and
the Monge gap instantiated with the cost ¢(x, y) = [|x — y||2 and p = p1. We observe the effect of the Monge gap on the
fitting: as the optimization proceeds, the assignment induced by Ty tends to respect the Monge Mather shortening principle
to get an assignment without crossing lines since c is a distance.

t=100 t=500 t=5,000
\ o | = -
’5;, ?h‘ @ %& * \' ‘&%’ .\\3 8 v “& @ ‘%
+e : & = %& @ ‘Y o 2 s @ 5 & F
£ m“:s@ﬁg k. * x;au} &"k oy ;z’z‘&

e U v ®  TofuU

Figure 8. Transport map (75, )+>o along the gradient flow of the loss £(60) = Wz (Tofu,v) + Ama M}, (Tp) to fit an optimal map for
cost ¢(x,y) = ||x — y||2 between two synthetic measures p and v. We use Amc = 1. Ty is directly parametrized as an MLP. We report
three timestamps of the optimization at iterations 100, 500, and 10, 000.

Fitting With and Without Monge gap. We now investigate the evolution of A(Tp4i,,) and M5 _(T}) throughout the
iterations, in the cases where we solve Prob. (I2) with and without using the Monge gap, i.e. with )\MG > 0 and Amg = 0.
To study this dynamic, we plot the evolution of A(Tpffi,,) and M, -(Ty) when fitting, with and without Monge gap, a map
between the high-dimensional |Korotin et al.|(2021))’s benchmark pair of dimension d = 128. We remind that the Monge
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map T, for the quadratic cost, between these two measures is known, so when using the Monge gap, we then instantiate it
with the cost ¢(x,y) = 1|x — y||3 to recover this Monge map. Moreover, we use Ay = 1, p = pand A = Wiz .. To
focus on the effect of the Monge gap, we use the model: vanilla-MLP +M?), i.e., we parameterize the map directly with
an MLP and don’t use the conservative regularizer. Since 7 is known in that setting, we also report unexplained variance
LYV (Ty) (see Eq. (T7)), to quantify the deviation to 7* during training in both cases. Finally, we compute the metrics on
8, 192 unseen samples and average them across five runs.

The results are shown in Figure[9] When we fit with the Monge gap, both A(Ty#ji,) and M, -(Tp) are close to 0 at the
end of training, which is in line with the discussion led in § Moreover, ﬁgv (T)p) is also close to 0, so we effectively
fit the Monge map T*. However, when we fit without the Monge gap, A (Tt i, ) is close to 0 but both M, .(Ty) and
LYV (Tp) are high. The growth of M .(Tp) and LYV (Tp) shows that when we train without Monge gap, although the
fitting loss is decreasing, LYV (T}) increases throughout iterations. We then fit an arbitrary push-forward between the source
and the target measure, that has no reason to be c-optimal.

Note that in both cases, the Monge gap is small at initialization. This is because we initialize the neural map with the affine
transport between the Gaussian approximations of the source and the target measures (see § [D.2)), which is an optimal map,
thus having a small Monge gap. Indeed, at initialization, we have Ty, ~ Tap : x — Ax + b with A € S:{ (R). Thus
Tp, = Vap where a1, : x = x" Ax + b x is convex because A € S (R) so M2 _(Tp,) ~ 0. Furthermore, the
Monge gap is not strictly equal to O at the end of the training because of the addition of the entropic regularization.

Fitting loss: A(Tg#u, v) Monge gap: M2(Te) Unexplained variance: £5V(Ty)
6x 10! e ; 2 4x10t
—— Fitting with M
el . 5
—— Fitting without M | ;5 1 107
4x 10!
2 x 10!
3x 10!
2x10*
10+
101,
(‘) 20600 40600 60(500 80600 100‘000 (‘) 20600 40600 60600 80(‘)00 10dOOO 6 20600 40600 60600 80600 100‘000
Number of iterations Number of iterations Number of iterations

Figure 9. Learning dynamics when fitting a map, with and without Monge gap, between the high-dimensional [Korotin et al.|(2021)’s
benchmark pair 4, v of dimension d = 128. More precisely, we optimize the loss £(0) = Wy .(Tofu,v) + Ame M}, (Ty) with
Amc = 0 and g = 1 separately. In both cases, we report the values of A(Tyti,), MS _(Tp) and LYY (Tp) throughout iterations.

Pne
We compute the metrics on 8, 192 unseen samples and average them across five runs.

C.2. Preliminary Analysis of the Reference Measure’s Influence.

In this section, we provide a preliminary analysis of the influence of the choice of reference measure p when we seek to fit a
c-OT map between two measures u, . Recall that by virtue of Prop. we can choose any reference measure p such that
Spt(p) D Spt(u). We then study the evolution of performances when p is chosen more or less independently of x while
retaining the constraint Spt(p) D Spt(u), on both synthetic data and single-cell genomic data.

Synthetic Data. We first test the influence of p in a simple case, for synthetic measures in dimension d = 2. We fit
an OT map T for the cost ¢(x,y) = [[x — y||2, using the Monge gap instantiated for this cost M. We test several p
verifying Spt(p) D Spt(x) of different variance and shape, including p = p. For each fitting, we use A = Wz . and

Amc = 1. We measure performances using S@’E(TA f1ttest , Vtest) the Sinkhorn divergence between a batch of unseen source
samples mapped by the fitted map and a batch of unseen target samples. Results are shown in Figure [0} We obtain similar
performances for this simple low-dimensional task by choosing different reasonable p, more or less close to (.
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Figure 10. Influence of the reference measure p when fitting an OT map between two synthetic measures p, v for the cost ¢(x,y) =
|l|lx — y||2, using the Monge gap induced by that cost ./\/l;. We estimate a map T for four different reference measures p satisfying
Spt(p) D Spt(u) and compare the results. The reference measure we test are: (i) p = p, (i) p = U([—1.5, 1.5] x [—0.75,0.75]), (iii)
p = U(B(0,2.25)) and (iv) p = N(0,0.75). For each fitting, we use Wi . as the fitting loss and Avic = 1, and we plot the Sinkhorn

divergence Sz (T, v) computed on 8, 192 unseen samples.

Single-Cell Genomic Data. We then analyze the reference measure’s influence on transport map fitting to predict the
responses of cell populations to cancer treatments on the 4i and scRNA datasets considered in §[6.4] of respective dimension
d = 42 and d = 50. We test p = p and three other reference measures, defined in a more or less adaptive way w.r.t. p. In
this case of real, high-dimensional data, we use reference measures built from estimates of the source measure moments. For
each dataset, we start by sampling a batch /i, of n = 2,048 samples from the source measure and compute m, , X, ; the
empirical mean and covariance. We then test p to be a Gaussian centered in the empirical mean m,, and whose covariance
matrix is:

(i) the identity, i.e. pstana = N (M, , 1a);
(ii) the diagonal of the empirical covariance, i.e. pgiag = N (my,,, diag(X,,))s

(iii) the full empirical covariance, i.e. pran = N (mp,,, Xp,,)-

Note that for all datasets, diag(XZ ;ln) < 14, SO pstand 1S the ” largest ” reference measure. We compare the predictions each
reference measure provides for each profiling technology and treatment. To focus on the influence of the reference measure
on the Monge gap, we use the model: vanilla—MLPJr/\/l[z,, i.e., we parameterize the map directly with an MLP and don’t
use the conservative regularizer. In all cases, we use A = Wz . and Ay = 1. We measure predictive performance using

the Sinkhorn djvergence between a batch of unseen (test) treated cells and a batch of unseen control cells mapped with T,
namely S@e (T'H st Vtest ) and average the results over five runs.

The results are shown in Figure[TT] On 4i data, we observe the expected dynamic: the more the reference measure is chosen
adaptively to the source measure i, the better the performance. More precisely, we obtain the best performances with p = p,
then pea1, Pdiag and pstand. On scRNAseq data, p = p gives the best performance, then pgqi1, pdiag and pstana give similar
performances since X, is closer to 1, in this case, so these three reference measures candidates are close.

This experiment shows that the reference measure might influence performances on real and high-dimensional data.
Moreover, the choice p = u seems to systematically give the best performances. On the other hand, as we observe that the
more p is chosen adaptively to p, the better the performances, an exciting line of work would be to dynamically adapt p, as a
function of p, during training, linking it to data measures of interest.
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Figure 11. Fitting of a transport map T to predict the responses of cell populations to cancer treatments on 4i (upper plot) and scRNA
(lower plot) datasets, with several reference measures. We test p = w and three other reference measures chosen more or less adaptively
to . For each profiling technology and each treatment, we compare the predictions provided by the model vanilla-MLP —|—./\/l,2, with
each reference measure candidate p. We measure predictive performance using the Sinkhorn divergence between a batch of unseen (test)
treated cells and a batch of unseen control cells mapped with T, namely S 2, E(T Hittest, Vtest ). The plot structure is similar to Figure
Figure[d We refer the reader to its caption for clear instructions on how to read it.

C.3. Additional Experiments on the 2-Sphere.

To show that the Monge gap can be used to fit an OT map for any cost on any domain, we use it for synthetic measures
supported on 2 = R% | N S2. On this domain, we use ¢(x,y) = —log(x "y). We can verify that this cost is a distance on
Q. While positivity, symmetry, and separation are clear, let’s show the triangular inequality.

First, let us remark that for any a, b € €, since ||allz = ||b||2 = 1, onehasa’b = 1 — 1||a — b||3. Therefore:
x'y+x'z—(x"y)(x"z)
=1—5lx—yl3+1-3lx—z)3 - 1 - lx -yl - 3lx —z2[l3)
=1 lx - yl3lx - zll3
>0

The last inequality follows from ||x — y||3 = 2(1 — x'y) < 2since 0 < x'y < 1 because x,y € (2 and similarly,
|lx — 2||3 < 2. Therefore, one has:

xTy+xz> (xy)(x"2)
=
=

—log(x'y +x"2z) < —log(x"y) — log(x'z)
c(x,y +2) < c(x,y) + c(x,2)

The results are shown in Figure[I2} The difference between fitting with and without the Monge gap is visually clear. Since
c is a distance, the OT map should exhibit the Monge Mather shortening principle, so we should observe an assignment
without crossing lines. This is the case for the map fitted with the Monge gap. However, when we fit without the Monge gap,
the unique mode of the source measure is split into two parts, and each part is sent to the farthest of the two modes of the
target measure. Therefore, we do observe crossing lines.
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Monge gap: ¢(x,y) = —log(xTy) No Monge gap

Figure 12. Fitting of 2 transport map between synthetic measures supported on Ri+ N S2. For the left figure, we use the Monge gap
instantiated cost ¢(x,y) = — log(x"y) along with A = 1 while we do not use regularizer for the left figure. In both cases, we

parameterize the map as Ty = Fy /|| Fy ||2 where Fy is an MLP and use Wz _ as fitting loss.

D. Numerical Details.
D.1. Using the Monge gap in practice.

The monge_gap function is implemented in the OTT-JAX (Cuturi et al.,[2022) package. We also provide aMapEstimator
solver to fit ¢-OT maps, for an arbitrary cost function ¢. The user simply needs to instantiate the solver with a fitting loss A
and a cost function c, then it approximates a c-OT map.

D.2. Initializer Schemes.

Let Fp : R? — R%, 6 € RP, an MLP. For any affine map Ta 1, : x € R? — Ax+b with A € R¥*? b € R4, it is simple to
choose 0y such that Fy, ~ T'a 1. One can initialize the feedforward weights randomly with relatively low variance and add
a residual layer from the input layer to the output layer with parameters (A, b). This approach is described in Figure

* IdentityInit. For generic costs, we directly parameterize Ty as an MLP, so we initialize with a residual layer
parameterizing the identity. For structured costs ¢(x,y) = h(x —y), since we parameterize Ty = I; — Vh* o Fj
with Fy an MLP, one typically has that for any x¢ € R4 close to 0, Vh*(xg) = 0. Thus, in this case, we don’t need
to use a residual layer but initializing the feedforward weights randomly with a low variance provides Fp, ~ 0 so
Ty, =1q — Vh* o Fy, = 14.

* GaussianInit. This initializer uses the closed form of the OT map between Gaussian measures for the quadratic cost,
which is affine. We denote Ty the affine OT map between the Gaussian approximations of p and v. First, we estimate TN
from samples, forming empirical means and covariances (m,,, X4, ) and (mg, , X5, ):

. 1/2
. -1/2 (w1/2 1/2 —1/2
Ty :x s 25 (zﬂn £, =5/ ) =2 (x = my,) +mo, 27)
Square roots and inverse square roots of PSD matrices are computed with the OTT-JAX (Cuturi et al., [2022) implementa-
tion of the Higham| (1997) algorithm. If we parameterize the map directly with an MLP, we then initialize Ty, ~ Ts. If
we use the parameterigation trick, since we use the quadratic cost, one has Ty = I; — Fj because Vh* = I;. Then, we
initialize Fy, ~ I — T, so that Ty, ~ T).
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Figure 13. Initialization scheme to match affine maps applied to a 3 hidden layers MLP. We initialize the feedforward weights using the
Glorot and Bengio| (2010) initialization technique and add a residual layer matching the targeted affine map.

D.3. Algorithms.
In this section, we provide the algorithms corresponding to each proposed method.

* The algorithm[l|corresponds to the vanilla-MLP+M{ method detailed in § 1] that works for generic costs. It
solves Prob. (T2).

* The algorithm[corresponds to the st ruct -MLP+M{, + C, method detailed in § [f.2] that works for strictly convex
costs inducing structure in the OT map, and using the conservative regularizer. It solves Prob. (T6).

Algorithm 1 The vanilla-MLP+.M; method for OT map estimation with generic costs.

Data. Source p, target v and reference measure p; cost function c; regularization weight Ay ; entropic regularization
strength ¢; learning rate n; batch size n; number of iterations Kjiers; and an MLP Ty to model the OT map.
Results. Estimated OT map Ty.
Initialization. Tp, < GaussianInit ifc= |- — | else IdentityInit (see §.
For k =1, ..., Kiters do:
* Sample batches fi,,, 7, pn-
e Compute A(Tytfin, V).
* Compute M5 _(Tp) by running Sinkhorn(pn, Tolipn, ¢, €) (see Eq. (8)).
o Lo(0) < A(Tobfin, o) + Auc MS, (Ty)
« Update 6 to minimize £, (6).

D.4. Fixed hyperparameters across experiments.

Entropic regularization. Whenever we run the Sinkhorn algorithm on a cost matrix C, we set € = 0.01 - mean(C). The
only case where we use a different ¢ value is for evaluation, when we compute the Sinkhorn divergence S 12 ¢ for which we
set e = (0.1 across all experiments. We use the OTT—JAX (Cuturi et al.| 2022) implementation of the Sinkhorn algorithm.
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Algorithm 2 The st ruct -MLP+M$, + C, method for OT map estimation with strictly convex costs.

Data. Source u, target v and reference measure p; cost function ¢(-,-) = h(- — -) with h strictly convex; regularization
weights Ayvia, Acons; entropic regularization strength ; number of Hutchinson vectors m; learning rate 7; batch size n;
number of iterations Kjcrs; and an MLP Fy to model the dual potential gradient, s.t. Ty =I5 — Vh* o Fj.
Results. Estimated OT map Tg =1I;—Vh*o Fg.
Initialization. Initialize Fy, s.t. Ty, < GaussianInit ifc=1[|-— |3 else IdentityInit (see §[D.2).
For k =1, ..., Kiters do:

* Sample batches fi,,, Uy, pr, and Hutchison vectors vy, ..., v, ~ N(0,1).

» Compute A((Ig — Vh* o Fp)#fin, Up).

* Compute M5 _(I; — Vh* o Fy) by running Sinkhorn(py, (Ig — VA* o Fy)ipn, ¢, €) (see Eq. (8)).

» Compute C;, (Fp) by computing the vip(Fp)(x;, v;) and jvp(Fy)(x;, v;), for each point x; in the batch p,, and

each Hutchison vectors v; (see Eq. (26)).

* Ln(0) < A((Ia = VR™ 0 Fy)tfin, ) + Amc M

Pn €

(Ig — VRh* o Fy) + Acons Cs,, (Fp).
« Update 6 to minimize £, (6).

Number of Hutchsinon vectors. Whenever we use the conservative regularizer, the number of hutchinson vectors m is
fixed to the upper integer part of 20% of the dimension d.

ICNNs. All ICNNS s are trained with the NeuralDualSolver of OTT—-JAX which implements the Bunne et al.|(2022a)’s
Gaussian initializer and hence the induced specific architecture, using quadratic potentials injected in the first hidden vector.
Furthermore, as suggested by [Makkuva et al.|(2020) and used in/Bunne et al.| (2021} 2022a):

* To represent discontinuous transport maps, it uses ReLu as activation function.

* It relaxes the positivity constraint on the feedforward weights W7 of the ICNN gy s.t. Ty = V gy with the penalty:

R(0) = Y |max(—W,0)||% (28)

Wieo

MLPs. All MLPs use vanilla fully connected layers. To train MLPs within the Fan et al.| (2020) saddle point problem, we
follow their choice of using the PRelu activation function for both the Lagrange multiplier f and the map 7". For all our
MLPs, we use the GeLu activation (Hendrycks and Gimpel, 2016).

Calibration of NN sizes. As the employed ICNN architecture uses (i) linear residual layers from the input layer to each
hidden layer and (ii) specific layers designed for Gaussian and identity initializers scheme, if we fix the number of layers
and hidden units, they naturally have more parameters than the MLP with same number of layers and hidden units. In
particular, the layers suited to the initializers scheme are quadratic in the input, so the difference in parameters explodes as
the dimension increases. For instance, for data in dimension d = 64, an ICNN with hidden layer sizes [128, 64, 64] has
33,345 parameters, while an MLP with same hidden layer sizes and a residual layer from input layer to output layer for
Gaussian initialization (see § has 24,896 parameters. Thus, the ICNN has about 33% more parameters than the MLP.
To mitigate this difference, for each experiment where we use both an ICNN and an MLP, we first fix the ICNN size, then
we use an MLP with the same number of layers but we adapt the number of hidden units on each of its layers to match the
number of parameters up to 1%. In the previous example, this leads to an MLP with hidden layer sizes [146, 82, 82] which
leads to 33,662 parameters.

D.5. Synthetic Data

¢4 costs. We train all MLPs with Wz _ as fitting loss. For ¢(x,y) = [|x — y||2, we parametrize T as an MLP and use
Avc = 5. For ¢(x,y) = 7= [|x — y[l: and ¢(x,y) = 3|x — y||3, we parametrize Ty = I; — Vh* o F with an MLP Fy
and add conservativity regularizer C,,. We use Ay = 1 and Acons = 0.01 in both cases. All MLPs are initialized with the
Identity initializer and have hidden layer sizes [128, 64, 64]. They are trained with ADAM (Kingma and Ba, 2014) for
Kiters = 10,000 iterations with a learning rate n = 0.01 and a batch size n = 1024.
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Costs on the sphere. We parameterize the maps with Ty = ”}‘fﬁ where Fy is an MLP. We train the MLPs with Wzg, .

as fitting loss and set Ayrq = 1 for both ¢(x,y) = arccos(x ' y) and ¢(x,y) = —log(x"y). All MLPs have hidden layer
sizes [128, 64, 64] and are initialized with the Identity initializer. They are trained with ADAM for Kjers = 10,000
iterations with a learning rate 7 = 0.01 and a batch size n = 1024.

D.6. Korotin Benchmark

Evaluation. We compute both the Sinkhorn divergence Sz . (T'#u, v) and the unexplained variance LYV (T') to evaluate
the models on 8, 192 unseen samples from the source and the target measures.

ICNNs. We initialize the ICNNs using the Gaussian initializer scheme instantiated on 4, 096 samples. We optimize them
using ADAM for ;ters = 100, 000 and Kipneriters = 10, with a learning rate n = 10~* a batch size n = 1024. For all
experiments, we us ICNNs with hidden layer sizes [max(2d, 128), max(d, 64), max(d, 64)] where d is the dimension of the
data. Note that we use the ICNN architecture provided by (Bunne et al.}2022a), Section 4), which is not the one used for
11, ¥o. This slightly mitigates the bias favoring ICNN-based methods induced by the benchmark pair design.

Our MLPs. We initialize the MLPs testing both Gaussian and Identity initializer scheme instantiated on 4, 096 samples.
We also test the Identity initializer because it generalizes to generic costs. We train MLPs with W,z _ as fitting loss. When
using regularization, we set \yig = 1 and A¢ons = 0.01 for d < 64, and A\yig = 10 and Acops = 0.1 for d > 128. With
or without regularizations, we train the MLPs for Kjie;s = 100, 000 iterations with a batch size n = 1024 and the Adam
optimizer. For d < 64 we use a learning rate 7 = 0.01, along with a polynomial schedule of power p = 1.5 to decrease it to
10~°. For d > 64 we change the initial learning rate to 7 = 0.001 but keep the same polynomial schedule. When using the
Gaussian initializer scheme, we instantiate it on 4, 096 samples. We set the hidden layer sizes size according to the size of
the ICNN .

Saddle Point Problem Fan et al.|(2020) MLPs. We train the saddle point problem (Fan et al.,[2020) with two MLPs of
hidden layer sizes adapted to the ICNN ones. We optimize them using ADAM for Kjtes = 100,000 and Kipper iters = 10,
with a batch size n = 1024 and a learning rate = 10~%, which is the learning rate mostly used in their experiments. For
the dimensions d > 64, we did not succeed in tuning the learning rate to improve the performance.

Entropic map. We train the entropic map using 8, 192 from the source and the target measures and using ¢ = 0.01 -
mean(C) where C is the cost matrix.

D.7. Single Cell Genomics

Evaluation. For each dataset, we perform a 60%-40% train-test split on both conrol and treated cells, and evaluate the
models on the 40% of unseen control and treated cells. We perform such a strong train-test split because the datasets are
unbalanced: they contain fewer treated cells than control cells. As we evaluate the performances with S ¢2,- Which is a
distributional metric, we need a number of test samples high enough to make this quantity meaningful. To counteract this
unbalancedness, Bunne et al.| (2021)) makes a 80%-20% train-test split but concatenates the training and treated cells for
evaluation. We do not follow this strategy to evaluate the models only on unseen treated cells.

MLPs. We train all MLPs with Wz _ as fitting loss. When using regularization, we set Amig = 1 and Acons = 0.01 for
the 4i data, and A\yyg = 10 and Acopns = 0.1 for the scRNA data. With or without regularizations, we train the MLPs for
Kiters = 10,000 iterations with a batch size n = 512 and the ADAM optimizer (Kingma and Bal 2014} using a learning
rate = 0.001, along with a polynomial schedule of power p = 1.5 to decrease it to 10~°. When using regularization, we
initialize with the Gaussian initailizer scheme trained on half of the training set. We set the hidden layer sizes according to
the ones of the ICNNs.

ICNNs. We use the Gaussian initializer scheme trained on half of the training set. We train the ICNNs using ADAM and
learning rate n = 10~*. [Bunne et al.| (2021) optimize the ICNNs on Kjters = 100,000 and Kinner_iters = 10, with a batch
size n = 256. On the other hand, since we use a batch size n = 512 for our models and it is a fundamental hyperparameter
whose increase can drastically improve performances, especially in OT based models, we adpat the batch size while keeping
the same number of epochs: we train the ICNNs on Kjers = 50,000 and Kipner_iters = 10 with B = 512. We initialize
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ICNNs with Gaussian initializer (Bunne et al., 2022a)) using half of the training set. For all experiments, we use ICNNs with
hidden layer sizes [128, 128, 64, 64].
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