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ABSTRACT

Motivated by the predictable nature of real-life in data streams, we study online
regression when the learner has access to predictions about future examples. In
the extreme case, called transductive online learning, the sequence of examples is
revealed to the learner before the game begins. For this setting, we fully char-
acterize the minimax expected regret in terms of the fat-shattering dimension,
establishing a separation between transductive online regression and (adversar-
ial) online regression. Then, we generalize this setting by allowing for noisy or
imperfect predictions about future examples. Using our results for the transduc-
tive online setting, we develop an online learner whose minimax expected regret
matches the worst-case regret, improves smoothly with prediction quality, and sig-
nificantly outperforms the worst-case regret when future example predictions are
precise, achieving performance similar to the transductive online learner. This en-
ables learnability for previously unlearnable classes under predictable examples,
aligning with the broader learning-augmented model paradigm.

1 INTRODUCTION

Online learning is framed as a sequential game between a learner and an adversary. In each round,
the learner first makes a prediction after which the adversary evaluates the learner’s prediction,
typically by producing a ground-truth label. In contrast to the classical batch learning setting, where
one places distributional assumptions on the data-generating process, in online learning, we place
no assumptions on the data-generating process, even allowing the adversary to be adaptive to the
past actions of the learner. Due to its level of generality, online learning has received substantial
attention over the years. While online learning literature is too vast to review comprehensively, we
include a detailed discussion of the most relevant works in Appendix A.

In this work, we focus on online regression, where the learner’s predictions are measured via a
well-structured loss function ℓ(·, ·), e.g., the ℓ1 loss ℓ(y, ŷ) = |y − ŷ|. The online regression
problem is formally defined as the following T -round interactions between the learner A and the
adversary: In each round t ∈ [T ], the adversary picks a labeled example (xt, yt) from X × Y and
reveals the example xt to the learner. The learner then predicts ŷt based on historical observations
(x1, y1), . . . , (xt−1, yt−1) and the current example xt. Finally, the adversary reveals the actual label
yt to the learner, and the learner suffers loss ℓ(ŷt, yt). Given a function class F ⊂ YX , the goal of
the learner is to minimize the minimax expected regret

RA(T,F) := sup
(x1,...,xT )⊂X

sup
(y1,...,yT )⊂Y

(
EA

[
T∑

t=1

ℓ(At, yt)

]
− inf

f∈F

T∑
t=1

ℓ(f(xt), yt)

)
,

which is defined as the difference between the cumulative loss of the learner A and the cumulative
loss of the best function inF . We say that a function classF is online learnable if infA RA(T,F) =
o(T ), that is, there exists a learner who achieves average regret that is sublinear in T for all possible
choices of labeled examples given by the adversary.

Rakhlin et al. (2015a) showed that a combinatorial parameter called the sequential fat-shattering
dimension fully characterizes learnability – a class is online learnable if and only if its sequential fat
shattering dimension is finite. However, this result is discouraging given the restrictive nature of the
sequential fat shattering dimension. For instance, even simple function classes, such as functions
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with bounded variation in [0, 1], have infinite sequential fat-shattering dimensions, which means
that they are not online learnable. This challenge arises from worst-case scenarios, as the adversary
is allowed to choose any labeled example sequences, potentially adapting to the learner’s output.
In practice, however, data streams often exhibit predictable patterns, so the worst-case assumption
can be relaxed (Raman & Tewari, 2024). Given this intuition, we investigate online regression
with various levels of prior knowledge about the sequence of examples x1, . . . , xT . As motivation,
consider the following example.

Example 1.1. A smart building management system models energy consumption yt ∈ R as a func-
tion of features xt ∈ Rd, such as temperature and occupancy count, to estimate daily energy usage.
If predicted consumption significantly deviates from actual consumption yt, either underestimation
causes energy shortages or overestimation wastes resources, incurring a loss ℓ(yt, ŷt).

In practice, the system has prior knowledge of daily occupancy schedules and weather forecasts.
However, it does not know exactly the energy consumption yt due to variable factors such as occu-
pant behavior, equipment usage, or unexpected events. Thus, it predicts energy consumption based
on its knowledge of the sequence of examples x1 . . . xT , which forms an online regression problem.

Real-world scenarios, like the example above, have inspired recent research on learning-augmented
algorithms (Mitzenmacher & Vassilvitskii, 2020), which enhances the algorithm’s performance
using additional information about the problem instance given by machine-learned predictions.
For example, machine-learned predictions have been utilized to achieve more efficient data struc-
tures (Mitzenmacher, 2018; Lin et al., 2022; Fu et al., 2025), algorithms with faster runtimes (Dinitz
et al., 2021; Chen et al., 2022c; Davies et al., 2023), mechanisms with better accuracy-privacy trade-
offs (Khodak et al., 2023), streaming algorithms with better accuracy-space tradeoffs (Hsu et al.,
2019; Indyk et al., 2019; Jiang et al., 2020; Chen et al., 2022b;a; Li et al., 2023), and accuracy
guarantees beyond NP hardness (Ergun et al., 2022; Nguyen et al., 2023; Karthik C. S. et al., 2025).
A more detailed summary is deferred to Appendix A. Motivated by work on learning-augmented
algorithms, in this paper, we study the following question:

Can predictions about the future examples be used to get better-than-worst-case regret bounds for
online regression?

Rakhlin & Sridharan (2013) studied this question in the context of online linear optimization. Specif-
ically if the sequence encountered by the learner is described well by a known “predictable process”,
their algorithms enjoy tighter bounds as compared to the typical worst case bounds. Additionally,
their methods achieved the usual worst-case regret bounds if the sequence is not benign. More re-
cently, Raman & Tewari (2024) studied this question in the context of online classification. Their
proposed algorithm performs optimally when the predictions are nearly exact, while ensuring the
worst-case guarantee. Furthermore, they characterize the expected number of mistakes as a func-
tion of the quality of predictions, interpolating between instance and worst-case optimality. In this
work, we study this same question in the more general setting of online (non-parametric) regression.
We demonstrate that learning-augmented algorithms achieve better minimax expected regret com-
pared to the online learner under worst-case scenarios. We consider two settings where we apply
the learning-augmented framework: the transductive online regression setting where the learner has
full knowledge about the sequence of examples; and the online regression with predictions setting,
where the learner has access to a Predictor for future examples.

Transductive online learning. In transductive online learning, initially introduced by Ben-
David et al. (1997) and recently studied by Hanneke et al. (2024a), the entire sequence
of examples x1, . . . , xT picked by the adversary is revealed to the learner before the game
starts. In each round t ∈ [T ], the learner makes a prediction ŷt using the information from
(x1, y1), . . . , (xt, yt), xt+1, . . . , xT . Lastly, the adversary reveals the actual label yt to the learner,
and the learner suffers a loss. In many situations, however, we do not have full access to the exam-
ples x1, . . . , xT . This motivates a generalization where the learner has access to potentially noisy
predictions of future examples.

Online regression with predictions. In online learning with predictions (Raman & Tewari, 2024),
the learner has access to a Predictor P , which observes the past examples x1, . . . , xt and predicts
future examples. In each round t ∈ [T ], the learner A queries the Predictor and receives potentially
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noisy predictions x̂t+1, . . . , x̂T . The learner A then makes a prediction ŷt based on the current ex-
ample xt, the predictions x̂t+1, . . . , x̂t, and the previous labeled-examples (x1, y1), . . . (xt−1, yt−1).
We allow the Predictor to be adaptive, which means that can change its predictions about future ex-
amples based on the current example xt. We quantify the performance of a Predictor P using two
metrics: the zero-one metric that counts the number of times its prediction of the next example is
wrong and the ε-ball metric that counts the number of times its prediction of the next example is
sufficiently far away from the true next example with respect to some metric of interest.

1.1 OUR RESULTS

In this work, we seek to understand how the regret scales as a function of the quality of the predic-
tions. In particular, under what circumstances can we do better than the worst-case regret? Motivated
by this question, we provide the following result for transductive online regression.
Theorem 1.2 (Transductive online regression, informal statement for Theorem 3.1). A function
class F ⊆ [0, 1]X is transductive online learnable under the ℓ1-loss if and only if its fat-shattering
dimension is finite.

This result establishes a separation between transductive online regression and online regression for
function classes with finite fat-shattering dimensions but infinite sequential fat-shattering dimen-
sions, e.g., the class of functions with bounded variations. Specifically, any function classes with
infinite sequential fat-shattering dimension is not online learnable due to the lower bound in Rakhlin
et al. (2015a), but can be transductive online learnable if it has finite fat-shattering dimension. As a
corollary of Theorem 1.2, we get that while the class of functions with V -bounded variations is not
online learning, it is transductive online learnable with minimax regret scaling like Õ(

√
V T ).

Motivated by scenarios where having full access to x1, . . . , xT is unrealistic, our second result
studies online regression with predictions, where instead of having access to x1, . . . , xT , the learner
has black-box access to a Predictor P and a transductive online learner B. In this more general
setting, we give an online transductive learner whose minimax expected regret can be written a
function of the mistake-bound of P and interpolates between instance and worst-case optimality
depending on the quality of P’s predictions, (see Theorem 4.1 for a precise statement). Our learning
algorithm is consistent in that it has the same minimax expected regret as B when the predictions
are exact, and is robust in that it never has worse regret than the minimax optimal regret in the fully
adversarial online learning model.

We measure the mistake-bound of P with respect to two different metrics. The first is the zero-one
metric, which measures the expected number of incorrect predictions x̂t ̸= xt. As examples are
often noisy in real-world applications, perfectly predicting the next example is unlikely. As a result,
our second metric is the ε-ball metric, which measures the expected number of predictions that are
outside of the ε-ball of the actual example. To get a sense of how the minimax expected regret of our
learner scales with the mistake-bound of our Predictor, Corollary 1.3 provides upper bounds on the
minimax expected regret of our online learner for both mistake-bound guarantees for the Predictor.
Here, we omit the polylogarithmic factors in T .
Corollary 1.3 (Informal statement for online regression with predictions). Given a Predictor P and
a transductive online learner B with minimax expected regret Rtr

B (T,F):

• If P makes O (T p) mistakes under the zero-one metric, then for any function class F ⊆
[0, 1]X , there is an online learner A whose minimax expected regret under the ℓ1 loss is at
most

O (T p)Rtr
B
(
T 1−p,F

)
+

√
T log2 T .

• If P makes MP(ε, x1:T ) = O
(
Tp

εq

)
mistakes under the ε-ball metric, then for any Lhyp-

Lipschitz function class F ⊆ [0, 1]X , there is an online learnerA whose minimax expected
regret under the ℓ1 loss is at most

inf
ε>0

{
O
(
T p

εq

)
Rtr

B
(
εqT 1−p,F

)
+ εLlosLhyp · T +

√
T log2 T

}
.

Corollary 1.3 is a combination of Theorem 4.2 (minimax expected regret under the zero-one metric)
and Theorem 4.4 (minimax expected regret under the ε-ball metric). As a concrete example, we
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show that the function class with bounded variation is online learnable if the sequence of examples
is predictable under the zero-one metric, that is, the number of mistakes of the Predictor grows
sublinearly with the time horizon (see Corollary 4.5). In addition, we identify a subclass of functions
with bounded variation and a large Lipschitz constant (see Definition 4.6), such that it is not online
learnable under the worst case, but online learnable given a Predictor with small error rate under the
ε-ball metric. These results establish a separation between online regression with predictions and
online regression for various function classes. We note that our results answer the open question
in Section 4 of Raman & Tewari (2024) about the learnability of online regression under general
measures of predictability.

2 PRELIMINARIES

Let X denote the example space, let Y = [0, 1] denote the label space, let F ⊂ YX denote the
function class, and let ℓ(ŷ, y) = |ŷ − y| be the ℓ1-loss function (we consider a more general notion
of convex and Llos-Lipschitz loss function in the Appendix). Let T denote the length of the sequence
of examples. Let z1:T denote the sequence of items z1, . . . , zT . Let Õ (f) = f · polylog(f). Given
some event E , let 1E be the indicator function, which is 1 if E holds, and 0 otherwise. Next, we
introduce the formal definitions of the minimax expected regret and selected complexity measures.
The complete version is deferred to Appendix B.

2.1 ONLINE LEARNING

In the standard online learning setting, the game proceeds over T rounds of interactions between
the learner A and the adversary: In each round t ∈ [T ], the adversary picks a labeled example
(xt, yt) ∈ X×Y and reveals xt to the learner. The learner then produces a prediction ŷt and receives
the true label yt. Given a function class F ⊂ YX , the learner aims to minimize the expected regret,

Rol
A (T,F) := sup

x1:T∈XT

sup
y1:T∈YT

(
E

[
T∑

t=1

|A (xt)− yt|

]
− inf

h∈F

T∑
t=1

|h (xt)− yt|

)
,

where the expectation is over randomness of the learner. We say that a function class F is online
learnable if infA Rol

A (T,F) = o(T ). Rakhlin et al. (2015a) showed that, in the online setting, the
expected regret is controlled by the sequential fat-shattering dimension fatseqα (F). We defer the
formal definition and statement to Appendix B.

2.2 TRANSDUCTIVE ONLINE LEARNING.

In transductive online learning, unlike online learning, the adversary first reveals the entire sequence
of unlabeled examples x1, . . . , xT to the learner at the beginning. The interaction then proceeds
in T rounds: In each round, the learner predicts a label ŷt for the current example xt, using in-
formation from the past labeled examples (x1, y1), . . . , (xt, yt) and the future unlabeled examples
xt+1, . . . , xT . After the prediction, the adversary reveals the true label yt. For a transductive online
learner B, we define its minimax expected regret as

Rtr
B (T,F) := sup

x1:T∈XT

sup
y1:T∈YT

(
E

[
T∑

t=1

|Bx1:T
(xt)− yt|

]
− inf

h∈F

T∑
t=1

|h (xt)− yt|

)
,

where again the expectation is over the randomness of the learner. We say that a function class F
is transductive online learnable if infB Rol

B (T,F) = o(T ). In this paper, we characterize the learn-
ability of transductive online regression by the fat-shattering dimension, a scale-sensitive version of
the Vapnik-Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 1971), which is also used to
characterize PAC learnability (Alon et al., 1997).
Definition 2.1 (Fat-shattering dimension, (Alon et al., 1997)). A sequence x = x1:T is defined to
be α-shattered by F if there exists a sequence of real numbers y = y1:T such that for each binary
string σ ∈ {−1, 1}T , there is a function f ∈ F that satisfies

∀t ∈ [T ], σt · (f(xt)− yt) ≥ α/2.

Here, the sequence y is called the witness of shattering. Then, the fat-shattering dimension fatα(F)
is defined as the largest T such that F α-shatters a sequence x ⊂ X of length T . In addition,
fatα(F) =∞ if for every finite T , there is a sequence of length T that is α-shattered by F .
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2.3 ONLINE LEARNING WITH PREDICTIONS

Since in practice, the sequence of examples often follows predictable patterns, we study the setting
of online learning with predictions (Raman & Tewari, 2024). Here, the learner has access to a
Predictor P . P which predicts the sequence of examples x1, . . . xT adaptively: at each round t ∈
[T ], the adversary reveals the example xt to P , then P reports the predictions of the entire sequence
x̂1, . . . x̂T based on the past examples x1, . . . , xt. We assume that P predicts the entire sequence for
notational convenience, since it can set x̂c = xc for each c ∈ [t]. We denote the prediction of xt′ at
time t as P(x1:t)t′ . Given the predictions, the learner predicts a label ŷt for the current example xt,
using information from the past labeled examples (x1, y1), . . . , (xt, yt) and the predictions of future
examples x̂t+1, . . . , x̂T . Here, we consider the standard adversarial setting in online learning, where
the sequence of examples is not revealed to the learner in advance, and similarly, we measure the
minimax expected regret by Rol

A (T,F). In this paper, we show that given a Predictor P with specific
mistake-bounds, the minimax expected regret is characterized by the fat-shattering dimension but
not the sequential version, and thus separate this setting from the standard online learning setting.

3 MINIMAX EXPECTED REGRET FOR TRANSDUCTIVE ONLINE REGRESSION

In this section, we give near-matching upper and lower bounds on the minimax expected transductive
regret in terms of the fat-shattering dimension. Our main result is Theorem 3.1. Like the fully
adversarial online setting, our proof is non-constructive and relies on minimax arguments. To that
end, we also give an explicit a transductive online learner with sub-optimal regret based on the
multiplicative weights algorithm (MWA). We defer the discussion of this learner to Appendix C.1.
Theorem 3.1 (Minimax Expected Regret for Transductive Online Regression). For any function
class F ⊂ [0, 1]X and ℓ1-loss, we have the following bounds for the minimax expected regret of
transductive online learning:

Lower bound : inf
A

Rtr
A (T,F) ≥ sup

α

(α
4
·
√

T ·min{fatα(F), T}
)
.

Upper bound : inf
A

Rtr
A (T,F) ≤ 2T · inf

α≥0

(
4α+

12√
T

∫ 1

α

√
fatβ/4(F) · c log2

T

β
dβ

)
.

Our approach to prove an upper bound on the minimax expected regret extends from the randomized
learner framework in (Rakhlin et al., 2015a): Suppose thatQ is a weakly compact set of probability
measures on F , then in each round t, A selects a probability measure qt ∈ Q and outputs At =
ft(xt), where ft ∼ qt. We write At ∼ qt in the following for simplicity. Then, the minimax
expected regret is represented as a minimax value, which encrypts the interaction of the learner and
the adversary in each round:

inf
A

Rtr
A (T,F) = sup

x1:T

inf
q1∈Q

sup
y1∈Y

E
A1∼q1

· · · inf
qT∈Q

sup
yT∈Y

E
AT∼qT

 T∑
fT∼qT

ℓ (At, yt)− inf
f∈F

T∑
t=1

ℓ (f(xt), yt)

 .

Our key observation is that, since we have full access to x1:T , supx1:T
is written in front of the

minimax value in the above formula. Thus, we ultimately get an upper bound by the Rademacher
complexity, instead of the sequential Rademacher complexity in Rakhlin et al. (2015a). Then, apply-
ing the entropy bound in Theorem B.2 gives an upper bound in terms of the fat-shattering dimension.
We state the formal results in the following theorem.

For the lower bound, our proof is inspired by the hard instance for transductive online binary clas-
sification (Hanneke et al., 2023b), where they constructed the sequence of example by k copies of
sequence x∗

1, . . . , x
∗
d that is VC-shattered by the function class and then apply the anti-concentration

property of Rademacher variables. In our setting, we prove an equivalence expression of the ex-
pected regret formula to apply the definition of the fat-shattering dimension. The formal proofs are
defered to Appendix C.2 (upper bound) and Appendix C.3 (lower bound).

We note that the above upper bound is in terms of the fat-shattering dimension of F , as opposed to
the sequential fat-shattering dimension in the online setting. Thus, our rate is better since many func-
tion classes have a finite fat-shattering dimension but an infinite sequential fat-shattering dimension,
e.g., the class of functions with bounded variation.
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To get a better sense of how the upper bound in Theorem 3.1 scales with T , Corollary 3.2 instantiates
Theorem 3.1 with three concrete function classes: L-Lipschitz functions, k-fold aggregations, and
functions with V -bounded variation. We present formal definitions of these classes and the proof of
Corollary 3.2 in Appendix C.4.

Corollary 3.2 (Examples). Given a metric space X ⊂ Rn of finite diameter diam (X ), a function
class F ⊂ [0, 1]X , and the ℓ1-loss function, the following statements are true:

• Lipschitz functions: If all functions in F are Lhyp-Lipschitz, we have

Rtr(T,F) =


Õ
(√

Lhyp ·
√
T
)
, n = 1

Õ
(
Lhyp ·

√
T
)
, n = 2

Õ
(
Lhyp · T

n
n+1
)
, n ≥ 3

.

• k-fold aggregations: If F is defined by an aggregation mapping G(F1, . . . ,Fk), where G
commutes with shifts, and F1, . . . ,Fk ⊂ [0, 1]X are Lhyp-Lipschitz function classes, then
we have

Rtr(T,F) =


Õ
(√

k
√

Lhyp ·
√
T
)
, n = 1

Õ
(√

kLhyp ·
√
T
)
, n = 2

Õ
(√

kLhyp · T
n

n+1

)
, n ≥ 3

.

• Functions with bounded variation: If F is the set of all functions f : [0, 1] → [0, 1] with

total variation of at most V , then we have Rtr(T,F) = Õ
(√

V T
)

.

The upper bounds in our result demonstrate that all the function classes are transductive online
learnable under ℓ1-loss. Note that for Lipschitz classes, the above result does not essentially give
us a better rate for transductive online learning, since the sequential fat-shattering dimension of
Lipschitz classes are roughly equivalent to their fat-shattering dimension (Rakhlin et al., 2015b). In
contrast, the class of k-fold aggregations and the class of functions with bounded variation both have
infinite sequential fat-shattering dimension, so they are not online learnable in the worst case. For
these classes, our results establishes a separation between online learning and transductive online
learning.

4 MINIMAX EXPECTED REGRET BOUNDS FOR ONLINE REGRESSION WITH
PREDICTIONS

In this section, we consider the more general online regression with predictions setting. We construct
learning algorithms given black-box access to a Predictor P and a transductive online learner B. We
compute the minimax expected regret in terms of the quality of P and B.

We measure the performance of the Predictor P using two different metrics:

(1) Zero-one metric MP(x1:T ) which measures the expected number of incorrect predictions
x̂t ̸= xt, i.e., MP(x1:T ) := E

[∑T
t=2 1P(x1:t−1)t ̸=xt

]
.

(2) ε-ball metric MP(ε, x1:T ) which measures the expected number of times that the prediction
is outside the ε-ball: d(x̂t, xt) ≥ ε, where d is the metric on X , i.e., MP(ε, x1:T ) :=

E
[∑T

t=2 1d(P(x1:t−1)t,xt)≥ε

]
.

Our main result in this section is Theorem Theorem 4.1, which bounds the minimax expected regret
in terms of the mistake-bound of the Predictor and the regret of the transductive online learner. The
proof is in Appendix D and is constructive.

Theorem 4.1 (Online regression with predictions). For every function class F ⊂ YX , Predictor P ,
transductive online learner B and ℓ1-loss, there exists an online learner A such that for every data
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stream (x1, y1), . . . , (xT , yT ) given by the adversary, the minimax expected regret of A is at most

min

{
Rol(T,F)︸ ︷︷ ︸

(a)

, 2(MP(x1:T ) + 1)RB

(
T

MP(x1:T ) + 1
+ 1,F

)
︸ ︷︷ ︸

(b)

}
+ 2
√
T log T

In addition, if the functions in the class are Lhyp-Lipschitz, the minimax expected regret is also
upper bounded by

2(MP(ε, x1:T ) + 1)RB

(
T

MP(ε, x1:T ) + 1
+ 1,F

)
+ εLhyp · T︸ ︷︷ ︸

(c)

+2
√
T log T .

We highlight the implications of each error bound. Firstly, the expected error of our algorithm is
at most the worst-case error bound (a) in the online setting. Secondly, the bound (b) interpolates
between the worst-case minimax expected regret and the tranductive online minimax expected regret
as a function of MP(x1:T ), and when the Predictor is exact, i.e., MP(x1:T ) = 0, we get the same
error bound as in the transductive online setting up to constants. Lastly, the bound (c) relaxes the
bounds of the Predictor to the more general ε-ball metric. Given a Lipschitz function class, our
online learner has an expected regret sublinear in T if the Predictor has sufficiently small error
scales in terms of ε and T . In Section 4.1, we explicitly compute the rates in (b) and (c), giving
the sufficient conditions on the Predictors to achieve online learnability. Furthermore, we identify
a class of functions with bounded variations that are not online learnable in the worst case but
online learnable given desirable Predictors, and we highlight that existing Predictors suffice for the
sequence of examples x1:T defined by a linear dynamical system.

Overview of the algorithms. We give an overview of our online learners. Under the zero-one
metric MP(x1:T ), our online learner mainly follows from the construction in (Raman & Tewari,
2024) for online classification. We suppose that the prediction is incorrect at times t1, . . . tc ∈ [T ]
and correct at all other times. In the first algorithm, whenever P makes a mistake, the learner queries
its new sequence of predictions and starts a transductive online learner B to predict ŷt until the next
time P makes a mistake. This gives an error rate of roughly MP(x1:T ) ·Rtr

B (T,F).

However, a crucial drawback of this algorithm is that, when MP(x1:T ) is large (e.g., Ω(
√
T )),

the upper bound is suboptimal. To overcome this, in the second algorithm, we partition the time
duration [T ] to c equi-distant intervals and run a fresh copy of the first algorithm for each interval.
Then we run MWA using experts with all c ∈ [T − 1] as inputs. We show that the minimax
expected regret for each expert with input c is roughly (MP(x1:T ) + c) · Rtr

B
(
T
c ,F

)
, which is

2MP(x1:T ) · R̄tr
B

(
T

MP(x1:T ) ,F
)

for the expert with c = MP(x1:T ), thus MWA gives an minimax

expected regret having MP(x1:T ) as an interpolation factor and only loses an additive
√
T log2 T

factor, achieving better performance when MP(x1:T ) is large. Here, we assume that Rtr
B (T,F) is a

concave function, which can be extended to any sublinear functions by standard results.

Next, we extend the above algorithm for P with the ε-ball metric, which is specific for our re-
gression setting. Suppose that the prediction is outside the ε-ball at times t1, . . . tc ∈ [T ], i.e.,
d(P(x1:t−1)t, xt) ≥ ε for t ∈ {t1, . . . tc}, then we run a separate transductive online learner B for
each duration tj , tj + 1 . . . , tj+1 for j ∈ [c], i.e., we start a new instance whenever the prediction
is outside the ε-ball. Since the prediction is always inside the ε-ball between tj and tj+1, then if
the function class is L-Lipschitz, our error bound has an additional εLT factor. That is, the mini-
max expected regret is upper bounded by MP(ε, x1:T )R

tr
B (T,F) + εLlosLhyp · T . We note that

this algorithm can also be improved by the equi-distant partition of the time interval and MWA, as
discussed earlier which achieves better performance when MP(ε, x1:T ) is large.

The above online learners take ε as an input, so it is desirable to implement with an ε that gives
the optimal minimax expected regret. Then, if we know the explicit formula of the measure of
predictability MP(ε, x1:T ), we can first compute the optimal choice of ε and then implement the
algorithms. In contrast, when MP(ε, x1:T ) have a complicated structure that makes it impossible to
identify this ε, we can “guess” the optimal ε geometrically in the range of (0,poly(T )). That is, we
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run MWA using experts with all ε ∈ {2i, 2i < poly(T ), i ∈ Z} as inputs. This achieves the same
asymptotic bound as the optimal ε when MP(ε, x1:T ) has linear or polynomial dependency on ε,
ensuring the effectiveness of our algorithm in real-world applications. Next, we present the explicit
minimax expected regret under both metrics, representing the minimax expected regret as a function
of the mistake-bounds of the Predictor.

4.1 EXPLICIT BOUNDS ON THE MINIMAX EXPECTED REGRET

In this section, we provide sufficient conditions on the mistake-bound of the Predictor to enable
faster rates compared to online learning in the worst-case scenario. As a result, we identify function
classes that are online learnable with predictions but not online learnable otherwise.

Minimax regret under zero-one metric We first consider the minimax expected regret under
zero-one metric. Assuming that the Predictor has a rate of Õ (T p) where p < 1, the following theo-
rem derives the upper bound on the minimax expected regret. We defer the proof to Appendix D.3.

Theorem 4.2 (Zero-one metric). Let x1:T be a sequence of examples, let y1:T be a sequence of
labels, and let ℓ be the ℓ1-loss. Suppose that there is a Predictor that satisfies MP(x1:T ) = Õ (T p),
then for any function class F ⊂ [0, 1]X , there is an online learner A with minimax expected regret
at most Õ (T p)Rtr

B
(
T 1−p,F

)
+
√
T log2 T .

We remark that a Predictor satisfying the mistake-bound conditions in Theorem 4.2 is possible if,
for example, the sequence of examples xt ∈ Rn are generated by a noise-free linear dynamical
system (LDS) where system identification is possible in finite time. See Van Overschee & De Moor
(2012); Green & Moore (1986) for further discussion for sufficient conditions under which system
identification is possible.

As a Corollary, our next result shows that the minimax expected regret for the class of functions F∗

on [0, 1] with bounded variation is roughly T
1+p
2 , whose proof is deferred to Appendix D.4.

Corollary 4.3 (Function class with bounded variation, zero-one metric). LetF∗ be a set of functions
f : [0, 1]→ [0, 1] with total variation of at most V , let x1:T ⊂ [0, 1] be a sequence of examples, let
y1:T be a sequence of labels, and let ℓ be the ℓ1-loss. Suppose that there is a Predictor that satisfies
MP(x1:T ) = Õ (T p), then there is an online learner A with minimax expected regret satisfying

Rol(T,F∗) = Õ
(
T

1+p
2

)
. That is, F∗ is online learnable with predictions if p < 1.

We assume that there is a Predictor P that satisfies, for any sequence x1:T ⊂ X , its mistake-bound
is sublinear in T under the zero-one metric. Then the class of functions with bounded variation is
online learnable. This implies a gap between online regression with predictions and online regres-
sion in the worst-case scenario, since F∗ has an infinite sequential fat-shattering dimension, which
characterizes online learnability.

Minimax regret under ε-ball metric. Now, we compute the minimax expected regret under the
ε-ball metric. In the following theorem, we assume that the rate of Predictor is MP(ε, x1:T ) =

Õ
(
Tp

εq

)
, and we will specify the conditions for p and q to guarantee learnability later. The proof is

deferred to Appendix D.5.
Theorem 4.4 (ε-ball metric). Let x1:T be a sequence of examples, let y1:T be a sequence of labels,
and let ℓ be the ℓ1-loss. Suppose that there is a Predictor that satisfies MP(ε, x1:T ) = Õ

(
Tp

εq

)
,

then for any Lhyp-Lipschitz function class F ⊂ [0, 1]X , there is an online learner A with minimax
expected regret at most

inf
ε>0

{
Õ
(
T p

εq

)
Rtr

B
(
εqT 1−p,F

)
+ εLhyp · T +

√
T log2 T

}
.

Like before, we remark that a Predictor satisfying the conditions in Theorem 4.4 can be constructed,
if for example, the sequence of examples xt ∈ Rn are generated by a noise-less dynamical system
which need not be perfectly identifiable, but identifiable up to an error of ε in finite time (Jansson &
Wahlberg, 1998; Hazan et al., 2017).
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The next statement shows the minimax expected regret for the class of functions F∗ on [0, 1] with
bounded variation. The proof is deferred to Appendix D.6.
Corollary 4.5 (Function class with bounded variation, ε-ball metric). Let F∗ be a set of Lhyp-
Lipschitz f : [0, 1] → [0, 1] with total variation of at most V , let x1:T ⊂ [0, 1] be a sequence of
examples, let y1:T be a sequence of labels, and let ℓ be the ℓ1-loss. Suppose that there is a Predictor
that satisfies MP(ε, x1:T ) = Õ

(
Tp

εq

)
, then there is an online learner A with minimax expected

regret satisfying

Rol(T,F∗) = Õ
(
L

q
q+2

hyp · T
p+q+1
q+2

)
.

That is, if the length of sequence is chosen as T c polylog(T ) ≥ Lhyp for some constant c, then F∗

is online learnable with prediction if p+ cq < 1.

This result implies that the minimax expected regret of our algorithm scales with the quality of
the Predictor. Now, we construct a class of functions with bounded variation, such that it is not
online learnable in the worst case but online learnable given a good Predictor. Unfortunately, our
algorithm requires Lipschitzness of the function classes, and the sequential fat-shattering dimension
is equivalence to the fat-shattering dimension for Lipschitz classes up to negligible factors, so we do
not achieve better rates for general Lipschitz classes.

The key observation here is that the rate of the transductive online learner for functions with bounded
variation has no dependence on the Lipschitz factors (see Corollary C.9). Thus, if the error scale of
the Predictor is sufficiently small, e.g., the extreme case when MP(ε, x1:T ) = O (1), we get rid of
the Lipschitz dependence of the minimax expected regret of our algorithm. Then, we observe a gap
between online learning in the worst case and online learning with prediction for classes with large
Lipschitz constants. For instance, we consider the following class of ramp functions.
Definition 4.6 (Class of ramp functions). We define the class of ramp functions to consist of all
functions

fa,b(x) =


0 if 0 < x < a,
x−a
b−a if a ≤ x ≤ b,

1 if b < x < 1,

with 0 < a < b < 1 and b = a+ 1
M .

Note that by Theorem B.3 the minimax expected regret is roughly
√
LhypT =

√
MT in the online

setting, then suppose that the length of sequence T is chosen as T = M by the adversary, we have
no guarantee of the learnability of the function class in Definition 4.6 in the worst-case scenario.
However, suppose that we have a Predictor satisfying p+ q < 1, then by Corollary 4.5, the function
class is learnable with prediction using our online learners.

5 CONCLUSIONS

In this paper, we study the problem of online regression in both the transductive and learning-
augmented settings. In the transductive setting, we establish near-tight bounds on the minimax
expected regret under the ℓ1-loss, showing that it is characterized by the fat-shattering dimension
rather than the more restrictive sequential fat-shattering dimension. This separates transductive on-
line learnability with online learnability for several critical function classes. In the online regression
with predictions setting, we design algorithms whose regret adapts smoothly to the quality of the
Predictor, interpolating between the worst-case and the transductive regime. We identify sufficient
conditions on the Predictor that ensure the online learnability.

Our results provide a unified theoretical framework that separates these settings for online regression
and opens several directions for future work, including empirical validation of our methods and
further exploration of Predictors under general metrics. To complement our theoretical analysis,
we included in the Appendix experiments on specific function classes. These illustrate that having
prior information of the sequence of examples enables better empirical performance. While our
small-scale experiments highlight the potential practical gains of our framework, a more systematic
and large-scale empirical validation remains an important direction for future work. In addition,
extending our framework to accommodate Predictors under more general metrics could yield deeper
insights into the practical effectiveness of the learning-augmented online regression framework.
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A ADDITIONAL RELATED WORK

In this section, we review additional related work.

Algorithms with predictions. Machine learning models have achieved remarkable success across
a wide range of application domains, often delivering predictions and decisions of impressive qual-
ity in practice. However, despite these empirical advances, such models rarely come with prov-
ably correct worst-case guarantees, and can result in embarrassingly inaccurate predictions when
generalizing to previously unseen distributions (Szegedy et al., 2014). Learning-augmented algo-
rithms (Mitzenmacher & Vassilvitskii, 2020) combine predictive models with principled algorith-
mic design to achieve provable worst-case guarantees while still benefiting from the strengths of
data-driven approaches. The line of work most relevant to our setting is the direction of online algo-
rithms with predictions, which achieve better performance than information-theoretic limits (Anand
et al., 2021; 2022; Khodak et al., 2022; Antoniadis et al., 2023b). Specific applications include ski
rental (Purohit et al., 2018; Gollapudi & Panigrahi, 2019; Anand et al., 2020; Wang et al., 2020;
Wei & Zhang, 2020; Shin et al., 2023), scheduling, caching, and paging (Lattanzi et al., 2020;
Lykouris & Vassilvitskii, 2021; Scully et al., 2022), covering and packing (Bamas et al., 2020;
Im et al., 2021; Grigorescu et al., 2022; 2024), various geometric and graph objectives (Aamand
et al., 2022; Almanza et al., 2021; Azar et al., 2022; Jiang et al., 2022; Antoniadis et al., 2023a).
More recently, Eliás et al. (2024) proposed a model in which the Predictor can learn and adjust its
predictions dynamically based on the data observed during execution. This approach differs from
earlier work on learning-augmented online algorithms, where predictions are generated by machine
learning models trained solely on historical data and remain fixed, lacking adaptability to the cur-
rent input sequence. Eliás et al. (2024) examined several fundamental problems, such as caching
and scheduling, demonstrating that carefully designed adaptive Predictors can yield stronger per-
formance guarantees. We adopt a similar model established by (Raman & Tewari, 2024), where
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we assume our algorithms have black-box access to an external mechanism that produces predic-
tions about the examples, which evolve in response to the actual data encountered by the learning
algorithm.

Online classification. Motivated by applications such as spam filtering, image recognition, and
language modeling, online classification has a rich history in statistical learning theory. Building
on foundational concepts like the VC dimension (Vapnik & Chervonenkis, 1971) that characterize
learnability in batch settings, (Littlestone, 1987) introduced the Littlestone dimension to precisely
characterizes which binary hypothesis classes are online learnable in the realizable setting. This was
subsequently extended to agnostic learning (Ben-David et al., 2009) and multiclass settings with
finite and unbounded label spaces (Daniely et al., 2011; Hanneke et al., 2023a). More recently,
(Hanneke et al., 2023b; 2024b) developed the theory of transductive online classification, providing
performance guarantees for both binary and multiclass problems where the learner has access to the
entire unlabeled input sequence before making predictions.

Unfortunately, the Littlestone dimension is often regarded as an impossibility result, as it rules out
even simple classes such as threshold functions for online learning. This barrier is due to worst-case
analyses where an adversary can select any sequence of labeled examples, potentially adapting future
choices based on the previous learner choices. In practice, however, many data sequences are far
from adversarial and often exhibit regularity or structure that worst-case models fail to capture. For
example, when predicting short-term stock price movements, prices often follow temporal trends and
correlations that predictive models can exploit. Motivated by beyond-worst-case analyses of such
scenarios, Raman & Tewari (2024) explored online classification with predictive advice, showing
that learning-augmented algorithms can achieve improved performance given predictions about the
examples that need to be classified, complementing transductive frameworks.

Online regression. While online regression extends online classification to sequential predic-
tion with continuous outcomes, analyzing the complexity of the corresponding real-valued function
classes often requires different tools than in classification. The fat-shattering dimension (Alon et al.,
1997) generalizes the VC dimension to continuous-valued functions and plays a key role in bound-
ing sample complexity and learnability. Data-dependent capacity measures such as Rademacher
complexity (Bartlett & Mendelson, 2002) have been adapted to online settings through sequential
Rademacher complexity and sequential fat-shattering dimension (Rakhlin et al., 2010; 2015a), cap-
turing the difficulty of learning under adversarial data streams. More recent advances use generic
chaining and majorizing measures to tightly control worst-case sequential Rademacher complex-
ity (Block et al., 2021), establishing sharp uniform convergence and bounds that are robust to adver-
sarial data. However, these results share a common limitation: they provide worst-case guarantees
that often fail to capture improved performance on “easy” or structured data sequences.

Smoothed Online Learning. In addition to auxiliary predictions, smoothed analysis is another
framework for studying beyond-worst-case guarantees (Spielman & Teng, 2004; 2009). In the con-
text of online regression, smoothed analysis involves placing some distributional assumptions on the
data generation process. In particular, in each round, a smoothed adversary must choose and sample
from a distribution belonging to a sufficiently anti-concentrated family of distributions. This allows
one to go beyond the worst-case results in the fully adversarial model, where the adversary can pick
any sequence of examples.

In the past couple years, there have been flurry papers studying online learnability under a smoothed
adversary (Rakhlin et al., 2011; Haghtalab, 2018; Haghtalab et al., 2020; Block et al., 2022; Hagh-
talab et al., 2022; Blanchard, 2025; Blanchard & Kpotufe, 2025). We review the most relevant ones
here. In the context of binary classification, Haghtalab (2018) and Haghtalab et al. (2020) show
that this restriction on the adversary is enough for the VC dimension of a binary hypothesis class to
be sufficient for online learnability. Block et al. (2022) and Blanchard (2025) extend these results
to online regression and prove an analogous result – under a smoothed adversary, the fat-shattering
dimension is sufficient for online learnability. In both cases, these results show that by placing
some distributional assumptions on the input, online learning becomes as easy as batch learning.
In this paper, we show a similar phenomena without needing any distributional assumptions on the
examples, but given predictions about the future examples we will need to make predictions about.
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B COMPLEXITY MEASURES

This section introduces several measures that are used to characterize the complexity of various
function classes. We begin with the notions in the offline setting.

Offline setting. Given a function class F ⊂ YX , we introduce the classical notion of the covering
number, which defines the “effective” size of the function class on X . A set V ⊂ RT is an α-cover
on a sequence x = x1:T with respect to the ℓp norm if for each f ∈ F , there exist an item v1:T ∈ V
such that

∀t ∈ [T ],

(
1

T

T∑
t=1

|f(xt)− vt|p
)1/p

≤ α.

Similarly, a set V ⊂ RT is a α-cover on a sequence x = x1:T with respect to the ℓ∞ norm if for
each f ∈ F , there exist an item v1:T ∈ V such that

∀t ∈ [T ], |f(xt)− vt| ≤ α.

Then the covering number Np(T,F , x, α) of F on x is defined as the minimum size of the α-cover
with respect to the ℓp norm. It is known that Np(T,F , x, α) ≤ Nq(T,F , x, α) for 1 ≤ p ≤ q ≤
∞. In addition, we define the covering number Np(T,F , α) of F on the example space X as the
supremum of all choices of sequence x: Np(T,F , α) = supx⊂X Np(T,F , x, α).
Next, we introduce the fat-shattering dimension, which is a scale-sensitive version of the Vapnik-
Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 1971), and is used when the range of the
function class is a real interval, e.g. [0, 1]. We say that a sequence x = x1:T is α-shattered by F
if there exists a sequence of real numbers y = y1:T such that for each binary string σ ∈ {−1, 1}T ,
there is a function f ∈ F that satisfies

∀t ∈ [T ], σt · (f(xt)− yt) ≥ α/2.

Here, the sequence y is called the witness of shattering. Then, the fat-shattering dimension fatα(F)
is defined as the largest T such that F α-shatters a sequence x ⊂ X of length T . In addition,
fatα(F) =∞ if for every finite T there is a sequence of length T that is α-shattered by F . The next
statement upper bounds the α-covering number by the fat-shattering dimension.

Theorem B.1 (See Theorem 12.8 in (Anthony & Bartlett, 1999)). For any function class F ⊂
[0, 1]X and α > 0, we have

logN∞(T,F , α) ≤ fatα/4(F) · c log2
T

α
,

where c is some universal constant.

We then introduce the Rademacher complexity of a function class, which is closely related to the
fat-shattering dimension. Let σ1, . . . , σT be independent Rademacher random variables. We define
the Rademacher complexity of a function class F ⊂ [0, 1]X on an example sequence x1:T as

R(T,F , x) = E

[
sup
f∈F

1

T

T∑
t=1

σtf(xt)

]
.

Then, we define the Rademacher complexity asR(T,F) = supx1:T⊂X R(T,F , x). We state the en-
tropy bound on the Rademacher complexity in the following statement. Together with Theorem B.1,
it gives an upper bound on Rademacher complexity by the fat-shattering dimension, which is used
to characterize the learnability of tranductive online regression in later sections.

Theorem B.2 (See Theorem 12.4 in (Rakhlin & Sridharan, 2014)). For any sequence x1:T and
function class F ⊂ [0, 1]X , we have

R(T,F , x) ≤ inf
α≥0

(
4α+

12√
T

∫ 1

α

√
logN2(T,F , x, β)dβ

)
.
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Online setting. Unlike the offline setting with i.i.d. examples, the (adversarially) online learning
setting has a sequential dependence, which is not captured by the offline definitions. We begin
with the notion of the Littlestone tree (Littlestone, 1987; Rakhlin & Sridharan, 2014; Rakhlin et al.,
2015a; Raman & Tewari, 2024), which encrypts the sequentially dependence of the examples. A
X -valued Littlestone tree x of depth T is a complete binary tree of depth T , where the nodes are
labeled by examples x ∈ X and the outgoing edges to the left and right of the nodes are labeled by
−1 and 1 respectively. Given a binary string σ = (σ1, . . . , σT ) ∈ {−1, 1}T of depth T , we define a
path x(σ) induced by σ to be {(xi, σi)}Ti=1, where xi is the example labeling the node following the
prefix edges (σ1, . . . , σi−1) down the tree. For simplicity, we use xt(σ) to denote the example at the
t-th entry of a path x(σ), but we remark that xt(σ) depends only on the prefix path (σ1, . . . , σi−1).

Following this notion, we introduce the sequential version of the fat-shattering dimension. We say
that a X -valued Littlestone tree of depth T is α-shattered by a function class F ⊂ YX if there exists
a Y-valued tree y of depth T such that

∀σ ∈ {−1, 1}T , ∃f ∈ F , s.t. ∀t ∈ [T ], σt(f(xt(σ))− yt(σ)) ≥ α/2.

Here, the tree y is called the witness of shattering. Similar as the offline definition, the sequential
fat-shattering dimension fatseqα (F) is defined as the largest T such thatF α-shatters aX -valued tree
of depth T . In addition, fatseqα (F) = ∞ if for every finite T , there is a X -valued tree of depth T
that is α-shattered by F . The following statement shows that the minimax expected regret of online
learning is controlled by the sequential fat-shattering dimension.

Theorem B.3 (Online learning, see Proposition 9 in (Rakhlin et al., 2015a)). For any function class
F ⊂ [0, 1]X and Llos-Lipschitz and convex loss function ℓ, the minimax expected regret of online
learning satisfies

inf
A

Rol
A (T,F) ≤ 2LlosT · inf

α≥0

(
4α+

12√
T

∫ 1

α

√
fatseqβ/4(F) log

2eT

β
dβ

)
,

where the infimum is taken on all online learner A.

C MINIMAX REGRET OF TRANSDUCTIVE ONLINE REGRESSION

In this section, we provide additional discussions and missing proofs in Section 3.

C.1 TRANSDUCTIVE ONLINE LEARNER

In this section, we present a concrete learning algorithm based on the multiplicative weights algo-
rithm (MWA), which randomly samples the advice of K experts in an online manner. Since we
know the exact input sequence of examples x1:T , we define the K experts in MWA by the minimal
α-cover on x1:T with respect to the ℓ∞ norm. We remark that this construction does not match our
optimal upper bound on the minimax expected regret, but it provides intuitions on how we use the
knowledge of the sequence of examples: When we know x1:T , we can build a net with better cover-
age to apply canonical algorithms in online learning. Our transductive online learner is presented in
Algorithm 1. Next, we state the formal theorem for MWA.

Theorem C.1 (See e.g. Section 4 in (Cesa-Bianchi & Lugosi, 2006) and Theorem 2.1 in (Arora
et al., 2012)). Given K experts such that for each expert k ∈ K, the loss in each round t is ℓ(kt, yt),
suppose that the loss ranges from [0, 1], then there is a multiplicative weights algorithm Q with

minimax expected regret η =
√

8 logK
T that satisfies

E

[
T∑

t=1

ℓ(Q(xt), yt)

]
≤ inf

k∈[K]

(
T∑

t=1

ℓ(kt, yt)

)
+

√
T logK

2
.

The next theorem upper bounds the minimax expected regret of Algorithm 1.

Theorem C.2. For any function class F ⊂ [0, 1]X , Llos-Lipschitz loss function ℓ, set of examples
{x1, . . . , xT }, and sequence of labels y1, . . . , yT , the minimax expected regret of Algorithm 1 is
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Algorithm 1 Transductive Online Learner

1: Input: Function class F , time interval [T ], covering parameter α, sequence of examples x1:T

revealed at initialization, sequence of labels y1:T revealed sequentially
2: Output: Predictions to y1:T
3: Let V = {v1 . . . , vK} be the α-ℓ∞-cover on x1:T with minimum size
4: Define the expert k to be vk for each k ∈ [K]
5: for t ∈ [T ] do
6: Return: Prediction from MWA Q with the K experts {See Theorem C.1}
7: Reveal the actual label yt from the adversary and input into Q
8: end for

bounded by

inf
α>0

αLlosT +

√
T · fatα/4(F) · c log2 T

α

2

 ,

where c is a universal constant.

Proof. Let B be the learner in Algorithm 1. From the guarantee of MWA (see Theorem C.1), we
have

E

[
T∑

t=1

ℓ(B(xt), yt)

]
≤ inf

k∈[K]

(
T∑

t=1

ℓ(kt, yt)

)
+

√
T logK

2

= inf
vk∈V

(
T∑

t=1

ℓ(vkt , yt)

)
+

√
T logK

2
.

Recall that V is a α-cover of F on x1:T , then for each f ∈ F , there is a vk ∈ V such that |vkt −
f(xt)| < α for each t ∈ [T ]. Since the loss function is Llos-Lipschitz, we have

ℓ(vkt , yt) ≤ ℓ(f(xt), yt) + αLlos.

Summing over each t ∈ [T ] gives us
T∑

t=1

ℓ(vkt , yt) ≤
T∑

t=1

ℓ(f(xt), yt) + αLlosT.

Therefore, for each f ∈ F , we have

inf
vk∈V

(
T∑

t=1

ℓ(vkt , yt)

)
≤

T∑
t=1

ℓ(f(xt), yt) + αLlosT.

Taking the infimum across h on the RHS, we have

inf
vk∈V

(
T∑

t=1

ℓ(vkt , yt)

)
≤ inf

f∈F

(
T∑

t=1

ℓ(f(xt), yt)

)
+ αLlosT.

Then the expected loss satisfies

E

[
T∑

t=1

ℓ(B(xt), yt)

]
≤ inf

f∈F

(
T∑

t=1

ℓ(f(xt), yt)

)
+ αLlosT +

√
T logK

2
.

Therefore, by definition the minimax expected regret of B is at most

αLlosT +

√
T logK

2
.

Last, we note that K ≤ N∞(T,F , α) since we define the experts by a minimum α-cover F ′ on x1:T

(see the definitions in Appendix B). By Theorem B.1, we have

logN∞(T,F , α) ≤ fatα/4(F) · c log2
T

α
.
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Therefore, the minimax expected regret is at most

αLlosT +

√
T · fatα/4(F) · c log2 T

α

2
.

Our result then follows from the fact that the above equation holds for an arbitrary α.

C.2 PROOF OF THE UPPER BOUND IN THEOREM 3.1

Proof. Let ℓ′(ŷt, yt) be a subgradient of the function y → ℓ(·, yt) at yt. Then, since the loss function
is convex, we have

inf
A

Rtr
A (T,F) ≤ sup

x1:T

inf
q1∈Q

sup
y1∈Y

E
A1∼q1

· · · inf
qT∈Q

sup
yT∈Y

E
AT∼qT

[
sup
f∈F

T∑
t=1

ℓ′(At, yt) · (At − f(xt))

]
.

In addition, since the loss function satisfies the Lipschitz property, i.e., |ℓ′(At, yt)| < Llos, then we
have

inf
A

Rtr
A (T,F) ≤ sup

x1:T

inf
q1∈Q

sup
y1∈Y

E
A1∼q1

sup
s1∈[−L,L]

· · · inf
qT∈Q

sup
yT∈Y

E
AT∼qT

sup
sT∈[−L,L]

[
sup
f∈F

T∑
t=1

st · (At − f(xt))

]
.

Here, we write Llos as L for simplicity of notation. We then simplify the above upper bound as
follows since yt does not appear in the objective function

sup
x1:T

inf
q1∈Q

E
A1∼q1

sup
s1∈[−L,L]

· · · inf
qT∈Q

E
AT∼qT

sup
sT∈[−L,L]

[
sup
f∈F

T∑
t=1

st · (At − f(xt))

]
.

Next, since the family of probability measures Q contains the point distribution, we can write the
operator inf

qt∈Q
E

At∼qt
as inf

At∈[0,1]
. Similarly, let P denote the family of all possible distributions on

[−L,L], we can write sup
st∈[−L,L]

as sup
pt∈P

E
st∼pt

. Then, the upper bound is equivalent to

sup
x1:T

inf
A1∈[0,1]

sup
p1∈P

E
s1∼p1

· · · inf
AT∈[0,1]

sup
pT∈P

E
sT∼pT

[
T∑

t=1

st · At − inf
f∈F

T∑
t=1

st · f(xt)

]
.

Notice that E
st∼pt

[∑T
t=1 st · At − inff∈F

∑T
t=1 st · f(xt)

]
is concave in pT and convex in AT ,

then by the minimax theorem, we have

inf
AT∈[0,1]

sup
pT∈P

E
sT∼pT

[
T∑

t=1

st · At − inf
f∈F

T∑
t=1

st · f(xt)

]

= sup
pT∈P

inf
AT∈[0,1]

E
sT∼pT

[
T∑

t=1

st · At − inf
f∈F

T∑
t=1

st · f(xt)

]

=

T−1∑
t=1

st · At + sup
pT∈P

E
sT∼pT

[
inf

AT∈[0,1]
E

sT∼pT

sT · AT − inf
f∈F

T∑
t=1

st · f(xt)

]
.

Similarly, E
sT∼pT

[
infAT∈[0,1] E

sT∼pT

st · At − inff∈F
∑T

t=1 st · f(xt)

]
is concave in pT−1 and con-

vex in AT−1, then again by the minimax theorem, we have

sup
pT−1∈P

inf
AT−1∈[0,1]

E
sT−1∼pT−1

[
T−1∑
t=1

st · At + sup
pT∈P

E
sT∼pT

[
inf

AT∈[0,1]
E

sT∼pT

st · At − inf
f∈F

T∑
t=1

st · f(xt)

]]

= inf
AT−1∈[0,1]

sup
pT−1∈P

E
sT−1∼pT−1

[
T−1∑
t=1

st · At + sup
pT∈P

E
sT∼pT

[
inf

AT∈[0,1]
E

sT∼pT

st · At − inf
f∈F

T∑
t=1

st · f(xt)

]]
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=

T−2∑
t=1

st · At + sup
pT−1∈P

E
sT−1∼pT−1

sup
pT∈P

E
sT∼pT

[
T∑

t=T−1

inf
At∈[0,1]

E
st∼pt

st · At − inf
f∈F

T∑
t=1

st · f(xt)

]
.

Proceeding with this transformation, we have that the minimax expected regret is upper bounded by

sup
x1:T

sup
p1∈P

E
s1∼p1

· · · sup
pT∈P

E
sT∼pT

[
T∑

t=1

inf
At∈[0,1]

E
st∼pt

st · At − inf
f∈F

T∑
t=1

st · f(xt)

]
.

Replacing At by a potential suboptimal choice f(xt), we obtain an upper bound

sup
x1:T

sup
p1∈P

E
s1∼p1

· · · sup
pT∈P

E
sT∼pT

[
sup
f∈F

[
T∑

t=1

(
E

st∼pt

st − st

)
· f(xt)

]]

= sup
x1:T

sup
p1∈P

E
s1,s′1∼p1

· · · sup
pT∈P

E
sT ,s′T∼pT

[
sup
f∈F

[
T∑

t=1

(s′t − st) · f(xt)

]]
.

Since the objective function in the expectation is symmetric with respect to s′t and st, it equals to

sup
x1:T

sup
p1∈P

E
s1,s′1∼p1

E
σ1

· · · sup
pT∈P

E
sT ,s′T∼pT

E
σT

[
sup
f∈F

[
T∑

t=1

σt(s
′
t − st) · f(xt)

]]
,

where σt are Rademacher variables. Since st ∈ [−L,L], we obtain an upper bound

sup
x1:T

sup
s1∈[−2L,2L]

E
σ1

· · · sup
sT∈[−2L,2L]

E
σT

[
sup
f∈F

[
T∑

t=1

σtst · f(xt)

]]
.

Note that for each t ∈ [T ], the objective is convex in st, and so the supremum is achieved at the
endpoints, therefore, we have an upper bound

sup
x1:T

sup
s1∈{−2L,2L}

E
σ1

· · · sup
sT∈{−2L,2L}

E
σT

[
sup
f∈F

[
T∑

t=1

σtst · f(xt)

]]

= 2L · sup
x1:T

sup
s1∈{−1,1}

E
σ1

· · · sup
sT∈{−1,1}

E
σT

[
sup
f∈F

[
T∑

t=1

σtst · f(xt)

]]
.

Now, for an arbitrary function g : {±1} → R, we have that

sup
sT∈{−1,1}

E
σ
[g(sσ)] = sup

sT∈{−1,1}

1

2
g(s) + g(−s) = E

σ
[g(σ)].

Therefore, the above quantity equals to

2L · sup
x1:T

E
σ

[
sup
f∈F

[
T∑

t=1

σtf(xt)

]]
= 2LT · R(T,F),

which upper bounds the minimax expected regret by the Rademacher complexity. Combining The-
orem B.1 and Theorem B.2, we have the following entropy bound on the Rademacher complexity,
which is associated with the fat-shattering dimension.

R(T,F) ≤ inf
α≥0

(
4α+

12√
T

∫ 1

α

√
fatβ/4(F) · c log2

T

β
dβ

)
,

which gives our final result.

C.3 PROOF OF THE LOWER BOUND IN THEOREM 3.1

Proof. Our proof is inspired by the hard instance for transductive online binary classification
(Hanneke et al., 2023b), where they construct the sequence of example by k copies of sequence
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x∗
1, . . . , x

∗
d that is VC-shattered by the function class and then apply the anti-concentration property

of Rademacher variables.

We assume that the label space is [−1, 1] for simplicity of computation, which can be obtained by
linear transformation. First, we consider the case when fatα(F) = d < T , and we assume T = kd,
where k is an integer. Let {x1, . . . , xd} be a sequence α-shattered by F . We define the input
sequence of examples to be

x1
1, . . . , x

k
1 , x

1
2, . . . , x

k
2 , . . . x

1
d, . . . , x

k
d,

where x1
i = · · · = xk

i = xi for each i ∈ [d]. We define the sequence of labels by generating i.i.d.
random Rademacher variables, i.e., yt ∈ {−1, 1}. Fix an arbitrary transductive learning algorithm
A, by the probabilistic method, it suffices to lower bound

EA,y∼{−1,1}T

[
T∑

t=1

|A(xt)− yt| −min
f∈F

T∑
t=1

|f(xt)− yt|

]
.

First, note that we generate the random labels yt independently, and so

EA,y∼{−1,1}T

[
T∑

t=1

|A(xt)− yt|

]
= T.

Next, since we have |a− yt| = 1− ayt for any a ∈ [−1, 1] and yt ∈ [−1, 1], we have

EA,y∼{−1,1}T

[
min
f∈F

T∑
t=1

|f(xt)− yt|

]
= T − Ey∼{−1,1}T

[
max
f∈F

T∑
t=1

f(xt)yt

]
.

Therefore, we have

EA,y∼{−1,1}T

[
|A(x)− yt| −min

f∈F

T∑
t=1

|f(xt)− yt|

]
≥ Ey∼{−1,1}T

[
max
f∈F

T∑
t=1

f(xt)yt

]
.

Let {s1, . . . , sd} be the witness of α-shattering for set {x1, . . . , xd}. Since
Ey∼{−1,1}T

[∑T
t=1 yts⌈ t

k ⌉

]
= 0, the above quantity is equal to

Ey∼{−1,1}T

[
max
f∈F

T∑
t=1

yt(f(xt)− s⌈ t
k ⌉)

]
= Ey∼{−1,1}T

max
f∈F

d∑
i=1

k∑
j=1

yji (f(x
j
i )− si)

 .

Let σi := sign(
∑k

j=1 y
j
i ), which is the majority vote of the signs yji in block i. Then, the above

quantity is equal to

Ey∼{−1,1}T

max
f∈F

d∑
i=1

∣∣∣∣∣∣
k∑

j=1

yji

∣∣∣∣∣∣σi(f(xi)− si)

 .

Due to the definition of α-shattering, there exists a function f̄ ∈ F that satisfies σi(f̄(xi) − si) ≥
α/2 for each i ∈ [d], then we have

Ey∼{−1,1}T

max
f∈F

d∑
i=1

∣∣∣∣∣∣
k∑

j=1

yji

∣∣∣∣∣∣σi(f(xi)− si)

 ≥ Ey∼{−1,1}T

 d∑
i=1

∣∣∣∣∣∣
k∑

j=1

yji

∣∣∣∣∣∣σi(f̄(xi)− si)


≥ α

2
· Ey∼{−1,1}T

 d∑
i=1

∣∣∣∣∣∣
k∑

j=1

yji

∣∣∣∣∣∣


=
αd

2
· Ey∼{−1,1}k

∣∣∣∣∣∣
k∑

j=1

yji

∣∣∣∣∣∣
 .
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Then, by Khintchine’s inequality, we have

αd

2
· Ey∼{−1,1}k

∣∣∣∣∣∣
k∑

j=1

yji

∣∣∣∣∣∣
 ≥ αd

2
·
√

k

2
=

αd

2
·
√

T

2d
= α ·

√
T · fatα(F)

8
.

Recall that we assume T = kd, now, for a general T , we take T ′ = kd > T/2 and apply the same
analysis as above. Thus, we have

R(T,F) ≥ sup
α:fatα(F)<T

α

4
·
√
T · fatα(F)

Last, for fatα(F) ≥ T , we take the sequence of examples to be the set {x1, . . . , xT } α-shattered by
F with witness {s1, . . . , sT }. Then, by the definition of α-shattering, we have

Ey∼{−1,1}T

[
T∑

t=1

yt(f(xt)− st)

]
≥ αT

2
.

Therefore, we have
Rtr(T,F) ≥ sup

α

(α
4
·
√
T ·min{fatα(F), T}

)
.

C.4 APPLICATIONS TO FUNCTION CLASSES

In this section, we present additional explicit minimax expected regret for transductive online re-
gression for Lipschitz functions, k-fold aggregations, and functions with bounded variation.

Lipschitz function. We consider the class of Lhyp-Lipschitz functions. The next statement upper
bounds the fat-shattering dimension for such classes.
Theorem C.3. (See corollary 1 in (Gottlieb et al., 2014)) Let X be a metric space with diameter
diam (X ) and doubling dimension ddim (X ). For any function classF ⊂ [0, 1]X of Lhyp-Lipschitz
function and parameter α, we have

fatα(F) ≤
(
Lhyp · diam (X )

α

)ddim(X )

.

With the above upper bound, we provide the minimax expected regret for Lipschitz function classes
explicitly in the next statement. Here, we consider the dimension n and the diameter diam (X ) as
finite constants.
Corollary C.4 (Upper bound, Lipschitz function). Let X ⊂ Rn be a metric space of finite diameter
diam (X ). For any function class F ⊂ [0, 1]X of Lhyp-Lipschitz function and any Llos-Lipschitz
and convex loss function ℓ, the minimax expected regret of the transductive online regression satisfies

Rtr(T,F) =


Õ
(
Llos

√
Lhyp ·

√
T
)
, n = 1

Õ
(
LlosLhyp ·

√
T
)
, n = 2

Õ
(
LlosLhyp · T

n
n+1
)
, n ≥ 3

.

That is, the class of Lipschitz functions is transudctive online learnable.

Proof. By Theorem 3.1, the minimax expected regret is upper bounded by

2LlosT · inf
α≥0

(
4α+

12√
T

∫ 1

α

√
fatβ/4(F) · c log2

T

β
dβ

)
.

Then, since F is a class of Lhyp-Lipschitz function, by Lemma C.3 we have

fatα(F) ≤
(
Lhyp · diam (X )

α

)ddim(X )

,
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where ddim (X ) ≤ n is the doubling dimension for the metric space X ⊂ Rn. Then, for n = 1,
taking α = 1√

T
, the minimax expected regret is upper bounded by

O (Llos) ·

(
√
T +

√
TLhyp ·

∫ 1

1/
√
T

1

β1/2
·
√
c log

T

β
dβ

)
= Õ

(
Llos

√
Lhyp ·

√
T
)
.

Similarly, for n = 2, taking α = 1√
T

, the minimax expected regret is upper bounded by

O (Llos) ·

(
√
T + Lhyp

√
T ·
∫ 1

1/
√
T

1

β
·
√
c log

T

β
dβ

)
= Õ

(
LlosLhyp ·

√
T
)
.

Last, for n > 2, taking α =
Lhyp

T 1/n , the minimax expected regret is upper bounded by

O (Llos) ·
(
αT +

√
TL

n
2

hyp ·
∫ 1

α

1

β
n
2
·
√
c log

T

β
dβ

)
= O (Llos) · polylog(T ) ·

(
αT +

√
TL

n
2

hyp · α
1−n

2

)
= Õ

(
LlosLhyp · T

n
n+1
)
.

Thus, we show the desired result.

The above result does not essentially give us a better rate for transductive online learning, since the
sequential fat-shattering dimensions of Lipschitz classes are roughly equivalent to their fat-shattering
dimensions. Next, we present the results for k-fold aggregations, whose sequential fat-shattering
dimensions are infinite, yielding better rates for transductive online learning.

k-fold aggregations. We study the function class induced by k-fold aggregation, which is a map-
ping G : Rk → [0, 1]. Given k function classes F1, . . . ,Fk in R, the function class defined by G
is

G(F1, . . . ,Fk) := {x→ G(F1(x), . . . , Fk(x)) : Fκ ∈ Fκ,∀κ ∈ [k]}.
Let e be the all-one vector. The mapping G : Rk → [0, 1] commutes with shifts if

G(v)− r = G(v − r · e), ∀ v ∈ Rk, r ∈ R.

The above property is possessed by many natural aggregation mappings, including the maximum,
minimum, median, and mean. The next statement provides an upper bound on the fat-shattering
dimension of k-fold aggregations on general function classes.

Theorem C.5 (See Theorem 1 in (Attias & Kontorovich, 2024)). Given function classesF1, . . . ,Fk,
and an aggregation mapping G that commutes with shifts, we have

fatα(G(F1, . . . ,Fk)) ≤ cdα log2 dα,

where dα =
∑

κ∈[k] fatα(Fκ) and c is some universal constant.

Now, we compute the minimax expected regret for k-fold aggregations in Lipschitz function classes.
Here, we fix the range of function classes to [0, 1] for simplicity of calculation. Indeed, the results
hold for all Lipschitz functions with bounded ranges by linear transformation.

Corollary C.6 (Upper bound, k-fold aggregations). Let X ⊂ Rn be a metric space of finite diame-
ter diam (X ). For any bounded Lhyp-Lipschitz function classes F1, . . . ,Fk ⊂ [0, 1]X , aggregation
mapping G that commutes with shifts, and any Llos-Lipschitz and convex loss function ℓ, the mini-
max expected regret of the transductive online regression for G(F1, . . . ,Fk) satisfies

Rtr(T,G(F1, . . . ,Fk)) =


Õ
(√

kLlos

√
Lhyp ·

√
T
)
, n = 1

Õ
(√

kLlosLhyp ·
√
T
)
, n = 2

Õ
(√

kLlosLhyp · T
n

n+1

)
, n ≥ 3

.

That is, the class of k-fold aggregations on Lipschitz functions is transudctive online learnable.
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Proof. By Lemma C.3, we have for all κ ∈ [k],

fatα(Fκ) ≤
(
Lhyp · diam (X )

α

)ddim(X )

.

In addition, by Theorem C.5 we have

fatα(G(F1, . . . ,Fk)) ≤ Õ

(
k ·
(
Lhyp

α

)ddim(X )
)
.

Therefore, the upper bounds can be computed using the same analysis as in Corollary C.4.

Functions with bounded variation. We consider the class of functions with bounded variation.
Specifically, let F∗ be the set of all functions f : [0, 1] → [0, 1] with total variation of at most V .
Here, for a f ∈ F∗, we define its total variation as

TV(f) = sup
p∈P

np−1∑
i=0

|f(xi+1)− f(xi)|,

where the supremum is taken over the set P = {(x0, . . . , xnp
), 0 ≤ x1 ≤ · · · ≤ xnp

≤ 1}
of all partitions of [0, 1]. For a given parameter α > 0, we define the metric covering number
N (F∗, α, µ) as the smallest number of sets of radius α under metric µ whose union contains F∗.
We remark that this definition is different from our previous definition of a ℓp-covering number on
a sequence of example x. We introduce it to bound the fat-shattering dimension of the class of
bounded variation. Now, we investigate the covering number under L1(dP) metrics, where P is a
probability distribution on [0, 1]. The following statement provides an upper bound.
Theorem C.7 (See Theorem 1 in (Bartlett et al., 2006)). Let F∗ be the set of all functions f :
[0, 1]→ [0, 1] with total variation of at most V , we have

sup
P

log2N (F∗, α, L1(dP)) =
12V

α
.

The next statement upper bounds the fat-shattering dimension of F∗ by the covering number.
Theorem C.8 (See Theorem 2 in (Bartlett et al., 2006)). Let F∗ be the set of all functions f :
[0, 1]→ [0, 1] with total variation of at most V , we have

fat4α(F∗) ≤ 32 · sup
P

log2N (F∗, α, L1(dP)).

Note that the fat-shattering dimension of class of functions with bounded variation satisfies
fatα(F∗) = O

(
TV(f)

α

)
, leading to the minimax expected regret in the following theorem.

Corollary C.9 (Upper bound, bounded variation). Let F∗ be the set of all functions f : [0, 1] →
[0, 1] with total variation of at most V . Let ℓ be a Llos-Lipschitz loss function. The minimax
expected regret of the transductive online regression for F∗ under loss ℓ satisfies Rtr(T,F∗) =

Õ
(
Llos ·

√
V T
)

. That is, the class of functions with bounded variation on [0, 1] is transudctive
online learnable.

Proof. Combining Theorem C.7 and Theorem C.8, we have that the fat-shattering dimension of F∗

satisfies

fatα(F∗) = O
(
V

α

)
.

By Theorem 3.1, the minimax expected regret is upper bounded by

2LlosT · inf
α≥0

(
4α+

12√
T

∫ 1

α

√
fatβ/4(F) · c log2

T

β
dβ

)
.

Then, taking α = 1√
T

, the minimax expected regret is upper bounded by

O (Llos) ·

(
√
T +
√
V T ·

∫ 1

1/
√
T

1

β1/2
·
√
c log

T

β
dβ

)
= Õ

(
Llos ·

√
V T
)
.
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D MINIMAX REGRET FOR ONLINE REGRESSION WITH PREDICTIONS

In this section, we present the algorithms and missing proofs in Section 4.

D.1 ONLINE LEARNER UNDER ZERO-ONE METRIC

In this section, we quantify the performance of a Predictor P as the expected number of mistakes
that P makes, which is

MP(x1:T ) := E

[
T∑

t=2

1P(x1:t−1)t ̸=xt

]
,

where we use P(x1:t−1)1:T to denote its predictions x̂1:T given the previous examples x1:t−1, and
the expectation is taken only over the randomness ofP . We make assumptions about the consistency
and the laziness of the Predictor P (c.f, Section 2.2 in (Raman & Tewari, 2024)), which are defined
below.

Definition D.1 (Consistency). For every sequence x1:T ∈ X T and for each time t ∈ [T ], P is
consistent if its prediction x̂1:T

t satisfies P(x1:t)1:t = x1:t.

The assumption about consistency is natural, since we can hard code the prediction of x1:t to be the
input. Next, we introduce the definition of laziness.

Definition D.2 (Laziness). P is consistent if its prediction satisfies the following property. For every
sequence x1:T ∈ X T and for each time t ∈ [T ], if P(x1:t−1)t = xt, then P(x1:t) = P(x1:t−1).
That is, P does not change its prediction if it is correct.

The assumption about laziness is also mild, since non-lazy online Predictors can be converted into
lazy ones (Littlestone, 1989). Next, we introduce our online learner givenP , whose intuition follows
from (Raman & Tewari, 2024). Suppose that P makes mistakes at times t1, . . . tc ∈ [T ], due to the
assumption of laziness and consistency, the predictions of P between tj and tj+1 are correct and
unchanged for all j ∈ [c]. Thus, whenever we detect a mistake, we notify P and retrieve its new
sequence of predictions. Next, we initialize a new transductive online learner B with predicted future
inputs given by P and report its predicted label ŷt until the next time P makes a mistake. This gives
an error rate of roughly MP(x1:T ) ·Rtr

B (T,F). Our algorithm is presented in Algorithm 2.

Algorithm 2 Online Learner with Prediction

1: Input: Function class F , transductive online learner B, Predictor P , time interval [T ], sequence
of examples and labels (x, y)1:T revealed by the adversary sequentially

2: Output: to y1:T
3: i← 0
4: for t ∈ [T ] do
5: P makes prediction P(x1:t) such that P(x1:t)1:t = x1:t

6: if t = 1 or P(x1:t)t+1 ̸= xt+1 (i.e. P makes a mistake) then
7: i← i+ 1
8: Run a new transductive online learner Bi initialized with the sequence P(x1:t+1)t+1:T

9: end if
10: Return: Prediction ŷt by the current transductive online learner
11: Reveal the actual label yt and input into the current transductive online learner
12: end for

The next statement upper bounds the expected error of Algorithm 2.

Lemma D.3 (Analogous to Lemma 20 in (Raman & Tewari, 2024)). Given a Predictor P and an
transductive online learner B, for any function class F ⊂ YX , loss function ℓ, and data stream
(x1, y1), . . . , (xT , yT ), the minimax expected regret of Algorithm 2 is bounded by (MP(x1:T ) +
1)Rtr

B (T,F).

Proof. The proof is similar to (Raman & Tewari, 2024), we keep it here for completeness. LetA be
the learner in Algorithm 2. Let c be the random variable that denotes the total number of mistakes
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made by P , and let t1, . . . , tc be the random time points at which these errors occur. Without loss
of generality, we assume c > 0, since otherwise, due to the consistency and laziness of P (see
Definition D.1 and Definition D.2), P(x1:1) = x1:T for every t ∈ [T ]. Thus, we only run one
transductive online learner B1, and so the regret is at most Rtr

B (T,F).
Now, we partition the sequence of time points into disjoint intervals (t0, . . . , t1 − 1), (t1, . . . , t2 −
1), . . . , (tc, . . . , tc+1 − 1), where t0 := 1 and tc+1 − 1 := T . Fix an arbitrary i ∈ [c]. Due to
our algorithm construction, for each j ∈ {ti, . . . , ti+1 − 1}, we have P(x1:j)1:ti+1−1 = x1:ti+1−1.
Thus, the transductive online learner Bi is applied in the example stream

xti , . . . , xti+1−1,P(x1:ti)ti+1
, . . . ,P(x1:ti)tT .

Let hi ∈ argminf∈F
∑ti+1−1

t=ti
ℓ(f(xt), yt) be an optimal function for duration (ti, . . . , ti+1 − 1).

Let yit = yt for all ti ≤ t ≤ ti+1− 1 and yit = hi(P(x1:ti)t) for all t ≥ ti+1. Then, we observe that

inf
f∈F

T∑
ti

ℓ(f(P(x1:ti)t), y
i
t) =

ti+1−1∑
t=ti

ℓ(hi(xt), yt) = inf
f∈F

ti+1−1∑
t=ti

ℓ(f(xt), yt).

Next, we consider the hypothetical labeled stream

S = (xti , y
i
ti), . . . , (xti+1−1, y

i
ti+1−1), (P(x1:ti)ti+1 , y

i
ti+1

) . . . , (P(x1:ti)tT , y
i
T )

Then, from the definition of the minimax expected regret Rtr
B (T,F), the expected loss Bi has in the

stream S is at most

Rtr
B (T − ti +1,F) + inf

f∈F

T∑
ti

ℓ(f(P(x1:ti)t), y
i
t) = Rtr

B (T − ti +1,F) + inf
f∈F

ti+1−1∑
t=ti

ℓ(f(xt), yt).

Thus, A has loss at most Rtr
B (T,F) + inff∈F

∑ti+1−1
t=ti

ℓ(f(xt), yt) during (ti, ti+1 − 1) in expec-
tation. Then, we have

E

[
T∑

t=1

ℓ(At, h
∗(xt))

]
=

c∑
i=0

(
E

[
ti+1−1∑
t=ti

ℓ(At, h
∗(xt))

])

≤
c∑

i=0

(
Rtr

B (T,F) + inf
f∈F

ti+1−1∑
t=ti

ℓ(f(xt), yt)

)

≤ (c+ 1)Rtr
B (T,F) + inf

f∈F

T∑
t=1

ℓ(f(xt), yt),

where the expectation is only on the randomness of each Bi. Last, since E [c] = MP(x1:T ), taking
an outer expectation of the randomness of P , we show that the minimax expected regret of A is at
most (MP(x1:T ) + 1)Rtr

B (T,F).

A drawback of the above error bound is that, when MP(x1:T ) is large (e.g., Ω(
√
T )), the upper

bound is suboptimal. To overcome this, we partition the time duration [T ] to c equi-distant intervals
and run a fresh copy of Algorithm 2 for each interval. Then we run MWA using experts with all
c ∈ [T − 1] as inputs. We show that the minimax expected regret for each expert with input c is
roughly (MP(x1:T )+ c) · R̄tr

B
(
T
c ,F

)
, thus MWA gives our desired error bound that has MP(x1:T )

as an interpolation factor. We present the algorithm for each expert in Algorithm 3 and MWA in
Algorithm 4. Before introducing the error bound, we state a lemma that upper bounds a positive
sublinear function with countable domain by a concave sublinear function. We use this result to
upper bound the transductive online regret Rtr

B (T,F) by a concave sublinear function R̄tr
B (T,F).

Lemma D.4 (see Lemma 5.17 in (Ceccherini-Silberstein et al., 2017)). Let g : Z+ → R+ be a
positive sublinear function. Then g is bounded from above by a concave sublinear function ḡ :
R+ → R+.

Next, we compute the minimax expected regret of Algorithm 4.
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Algorithm 3 Expert(c)

1: Input: Learner A in Algorithm 2, number of pieces c, function class F , time interval [T ],
sequence of examples and labels (x, y)1:T revealed by the adversary sequentially

2: Output:Predictions to y1:T

3: Let t̃j = j
⌈

T
c+1

⌉
for each j ∈ [c], t̃0 = 0, and t̃c+1 = T

4: Obtain independent learner Aj from Algorithm 2 for each j ∈ [c]
5: j ← 0
6: for t ∈ [T ] do
7: if t = t̃j + 1 then
8: j ← j + 1
9: Run a new instanceAj initialized with time duration [t̃j +1, t̃j+1] {The Predictor P inAj

predicts the restricted sequence xt̃j+1:t̃j+1
}

10: end if
11: Return: Prediction ŷt by Aj

12: Reveal the actual label yt from the adversary and input into Aj

13: end for

Algorithm 4 Online Learner with Prediction

1: input: Function class F , time interval [T ], sequence of examples and labels (x, y)1:T revealed
by the adversary sequentially

2: Output:Predictions to y1:T
3: For each c ∈ [T − 1], let Expert(c) denote an instance of Algorithm 3 with input c
4: Obtain the prediction from MWA (see Theorem C.1) using {Expert(c)}c∈[T−1] over (x, y)1:T

Lemma D.5 (Analogous to bound(ii) in Theorem 16 in (Raman & Tewari, 2024)). Given a Predictor
P and an transductive online learner B, for any function class F ⊂ YX , Lipschitz and convex loss
function ℓ, and data stream (x1, y1), . . . , (xT , yT ), the minimax expected regret of Algorithm 4 is
bounded by

2(MP(x1:T ) + 1)R̄tr
B

(
T

MP(x1:T ) + 1
+ 1,F

)
+
√
T log T .

Proof. We note that it suffices to show that the minimax expected regret of the expert c is at most
(MP(x1:T ) + c + 1)R̄tr

B

(
T

c+1 + 1,F
)

for every c ∈ [T − 1], then by the guarantee of MWA (see
Theorem C.1), we have our desired upper bound taking c = ⌈MP(x1:T )⌉.

Now, we fix a c ∈ [T − 1]. Let t̃j = j
⌈

T
c+1

⌉
for each j ∈ [c], t̃0 = 0, and t̃c+1 = T . Let E denote

the expert with input c in Algorithm 3, then we have

E

[
T∑

i=1

ℓ(E(xt), yt)

]
= E

 c∑
j=0

t̃j+1∑
t=t̃j+1

ℓ(Aj(xt), yt)

 ,

where Aj is the learner with time duration [t̃j + 1, t̃j+1]. Let mi be the number of mistakes that
Predictor P makes in Aj . Then, by the bound in Lemma D.3, we have

E

[
T∑

i=1

ℓ(E(xt), yt)

]
≤ E

 c∑
j=1

(mj + 1)R̄tr
B (t̃j+1 − t̃j ,F) + inf

f∈F

t̃j+1∑
t=t̃j+1

ℓ(f(xt), yt)


≤ E

 c∑
j=1

(mj + 1)R̄tr
B (t̃j+1 − t̃j ,F)

+ inf
f∈F

T∑
t=1

ℓ(f(xt), yt).

Then, it suffices to bound the first term E
[∑c

j=1(mj + 1)R̄tr
B (t̃j+1 − t̃j ,F)

]
by (MP(x1:T )+ c+

1)R̄tr
B ( T

c+1 + 1,F). Note that R̄tr
B (T,F) is a concave function in T by our construction, then by

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Jensen’s inequality, we have

E

 c∑
j=1

(mj + 1)R̄tr
B (t̃j+1 − t̃j ,F)

 ≤ E

 c∑
j=1

(mj + 1)

 · R̄tr
B

(∑c
j=1(mj + 1)(t̃j+1 − t̃j)∑c

j=1(mj + 1)
,F

) .

Let M =
∑c

j=1 mj such that E [M ] = MP(x1:T ), then we have

∑c
j=1(mj + 1)(t̃j+1 − t̃j)∑c

j=1(mj + 1)
=

T +
∑c

j=1(mj)(t̃j+1 − t̃j)

M + c+ 1
=

T +
∑c

j=1 mj ·
⌈

T
c+1

⌉
M + c+ 1

,

where the last step follows from our definition of t̃j =
⌈

T
c+1

⌉
. Then, we have

∑c
j=1(mj + 1)(t̃j+1 − t̃j)∑c

j=1(mj + 1)
=

T +M ·
⌈

T
c+1

⌉
M + c+ 1

≤ T

c+ 1
+ 1.

Therefore, we have

E

 c∑
j=1

(mj + 1)R̄tr
B (t̃j+1 − t̃j ,F)

 ≤ E
[
(M + c+ 1) · R̄tr

B

(
T

c+ 1
+ 1,F

)]

= (MP(x1:T ) + c+ 1) · R̄tr
B

(
T

c+ 1
+ 1,F

)
.

This proves our desired bound.

D.2 ONLINE LEARNER UNDER ε-BALL METRIC

In this section, we quantify the performance of a Predictor P as the expected number of times that its
prediction P is outside the ε-ball of the real input xt. Consider a metric space (X ,d) of examples,
the ε-ball of a x ∈ X is B(x) := {x′ ∈ X ,d(x′, x) < ε}. Then, our ε-ball metric for the Predictor
is defined as

MP(ε, x1:T ) := E

[
T∑

t=2

1d(P(x1:t−1)t,xt)≥ε

]
,

where the expectation is taken only over the randomness of P . We extend the notion of laziness
from the previous sections in the sense of ε-ball.

Definition D.6 (Laziness). P is consistent if its prediction satisfies the following property. For
every sequence x1:T ∈ X T and for each time t ∈ [T ], if d(P(x1:t−1)t, xt) ≤ ε, then P(x1:t) =
P(x1:t−1). That is, P does not change its prediction if it is inside the ε-ball.

We extend Algorithm 2 to the new notion of predictability. Suppose that the prediction is outside
the ε-ball at times t1, . . . tc ∈ [T ], then we run a separate transductive online learner B for each
duration tj , . . . , tj+1 for j ∈ [c], i.e., we start a new instance whenever the prediction is outside
the ε-ball. Since the prediction is always inside the ε-ball between tj and tj+1, then if the function
class is L-Lipschitz, our error bound has an additional εLT factor. We present this algorithm in
Algorithm 5.

We upper bound the minimax expected regret of Algorithm 5 in the next lemma.

Lemma D.7. Given a Predictor P and an transductive online learner B, for any function
class F ⊂ YX of Lhyp-Lipschitz function, Llos-Lipschitz loss function ℓ, and data stream
(x1, y1), . . . , (xT , yT ), the minimax expected regret of Algorithm 5 is bounded by (MP(ε, x1:T ) +
1)Rtr

B (T,F) + εLlosLhyp · T .

Proof. This proof is extended from Lemma D.3. Let A be the learner in Algorithm 5. Let c be the
random variable denoting the total number of times that the prediction is outside the ε-ball, and let
t1, . . . , tc be the random time points at which these errors occur.
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Algorithm 5 Online Learner with Prediction

1: Input: function class F , transductive online learner B, Predictor P , time interval [T ], sequence
of examples and labels (x, y)1:T revealed by the adversary sequentially

2: Output: Predictions to y1:T
3: i← 0
4: for t ∈ [T ] do
5: P makes prediction P(x1:t) such that d(P(x1:t)l, xl) < ε for each l ∈ [t]
6: if t = 1 or d(P(x1:t)t+1, xt+1) ≥ ε (i.e. the prediction is outside the ε-ball) then
7: i← i+ 1
8: Run a new transductive online learner Bi initialized with the sequence P(x1:t+1)t+1:T

9: end if
10: Return: Prediction ŷt by the current transductive online learner
11: Reveal the actual label yt and input into the current transductive online learner
12: end for

First, we consider the case that c = 0, then due to the laziness of P (see Definition D.6), |P(x1:1)t−
xt| ≤ ε for every t ∈ [T ]. Thus, we only run one transductive online learner B1, and so we have

E

[
T∑

t=1

ℓ(At, yt)

]
= E

[
T∑

t=1

ℓ(B1(P(x1:1)t), yt)

]
≤ inf

f∈F

(
T∑

t=1

ℓ(f(P(x1:1)t), yt)

)
+Rtr

B (T,F).

Since we assume that F is a class of Lhyp-Lipschitz function, we have for each f ∈ F and t ∈ [T ],
|f(P(x1:1)t)− f(xt)| ≤ εLhyp. Additionally, since we also assume that the loss function is Llos-
Lipschitz, we have for each f ∈ F and t ∈ [T ], |ℓ(f(P(x1:1)t), yt) − ℓ(f(xt), yt)| ≤ εLlosLhyp.
Therefore, we have

inf
f∈F

(
T∑

t=1

ℓ(f(P(x1:1)t), yt)

)
≤ inf

f∈F

(
T∑

t=1

ℓ(f(xt), yt)

)
+ εLlosLhyp · T.

Thus, the minimax expected regret of A is at most Rtr
B (T,F) + εLlosLhyp · T .

Next, we consider the case that c > 0. We partition the sequence of time points into disjoint intervals
(t0, . . . , t1 − 1), (t1, . . . , t2 − 1), . . . , (tc, . . . , tc+1 − 1), where t0 := 1 and tc+1 − 1 := T . Fix
an arbitrary i ∈ [c]. By our algorithm construction, the transductive online learner Bi is applied in
the example stream P(x1:ti)ti , . . . ,P(x1:ti)tT . Let hi ∈ argminf∈F

∑ti+1−1
t=ti

ℓ(f(P(x1:ti)t), yt)

be an optimal function for duration (ti, . . . , ti+1 − 1). Let yit = yt for all ti ≤ t ≤ ti+1 − 1 and
yit = hi(P(x1:ti)t) for all t ≥ ti+1. Then we observe that

inf
f∈F

T∑
ti

ℓ(f(P(x1:ti)t), y
i
t) =

ti+1−1∑
t=ti

ℓ(hi(P(x1:ti)t), yt) = inf
f∈F

ti+1−1∑
t=ti

ℓ(f(P(x1:ti)t), yt).

Next, we consider the hypothetical labeled stream

S = (P(x1:ti)ti , y
i
ti+1

) . . . , (P(x1:ti)tT , y
i
T )

Then, from the definition of the minimax expected regret Rtr
B (T,F), the expected loss Bi has in the

stream S is at most

Rtr
B (T−ti+1,F)+ inf

f∈F

T∑
ti

ℓ(f(P(x1:ti)t), y
i
t) = Rtr

B (T−ti+1,F)+ inf
f∈F

ti+1−1∑
t=ti

ℓ(f(P(x1:ti)t), yt).

Now, since we use the same PredictorP during (ti, ti+1−1), which means that d(P(x1:ti)t, xt) ≤ ε
for every t ∈ (ti, ti+1 − 1). Then, by a similar Lipschitz argument, we have

inf
f∈F

(
ti+1−1∑
t=ti

ℓ(f(P(x1:ti)t), yt)

)
≤ inf

f∈F

(
ti+1−1∑
t=ti

ℓ(f(xt), yt)

)
+ εLlosLhyp · (ti+1 − ti).
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Therefore,A has loss at most Rtr
B (T,F)+inff∈F

(∑ti+1−1
t=ti

ℓ(f(xt), yt)
)
+εLlosLhyp ·(ti+1−ti)

during (ti, ti+1 − 1) in expectation. Then, we have

E

[
T∑

t=1

ℓ(At, h
∗(xt))

]
=

c∑
i=0

(
E

[
ti+1−1∑
t=ti

ℓ(At, h
∗(xt))

])

≤
c∑

i=0

(
Rtr

B (T,F) + inf
f∈F

(
ti+1−1∑
t=ti

ℓ(f(xt), yt)

)
+ εLlosLhyp · (ti+1 − ti)

)

≤ (c+ 1)Rtr
B (T,F) + inf

f∈F

(
T∑

t=1

ℓ(f(xt), yt)

)
+ εLlosLhypT,

where the expectation is only on the randomness of each Bi. Last, since E [c] = MP(ε, x1:T ), taking
an outer expectation of the randomness of P , we show that the minimax expected regret of A is at
most (MP(ε, x1:T ) + 1)Rtr

B (T,F) + εLlosLhypT .

Next, we extend Algorithm 4 under the notion of ε-ball metric, where we construct each expert by
the subroutine in Algorithm 5. The algorithm is presented in Algorithm 6.

Algorithm 6 Online Learner with Prediction

1: Input: function class F , time interval [T ], sequence of examples and labels (x, y)1:T revealed
by the adversary sequentially

2: Output: Predictions to y1:T
3: For each c ∈ [T − 1], let Expert(c) denote an instance of Algorithm 3 using the online learner

in Algorithm 5
4: Obtain the prediction from MWA (see Theorem C.1) using {Expert(c)}c∈[T−1] over (x, y)1:T

The following statement bounds the minimax expected regret of Algorithm 6.
Lemma D.8. Given a Predictor P and an transductive online learner B, for any function
class F ⊂ YX of Lhyp-Lipschitz function, Llos-Lipschitz loss function ℓ, and data stream
(x1, y1), . . . , (xT , yT ), the minimax expected regret of Algorithm 6 is bounded by

2(MP(ε, x1:T ) + 1)R̄tr
B

(
T

MP(ε, x1:T ) + 1
+ 1,F

)
+ εLlosLhyp · T +

√
T log T .

Proof. This proof is an extension of the proof of Lemma D.5. We note that it suffices to show that
the minimax expected regret of the expert c is at most (MP(ε, x1:T ) + c + 1)R̄tr

B

(
T

c+1 + 1,F
)
+

εLlosLhyp · T for every c ∈ [T − 1], then by the guarantee of MWA (see Theorem C.1), we have
our desired upper bound taking c = ⌈MP(ε, x1:T )⌉.

Now, we fix a c ∈ [T − 1]. Let t̃j = j
⌈

T
c+1

⌉
for each j ∈ [c], t̃0 = 0, and t̃c+1 = T . Let E denote

the expert with input c in Algorithm 3, then we have

E

[
T∑

i=1

ℓ(E(xt), yt)

]
= E

 c∑
j=0

t̃j+1∑
t=t̃j+1

ℓ(Aj(xt), yt)

 ,

where Aj is the learner with time duration [t̃j + 1, t̃j+1]. Let mi be the number of mistakes that
Predictor P makes in Aj . Then, by the bound in Lemma D.7, we have the expected loss of E is at
most

E

 c∑
j=1

(mj + 1)R̄tr
B (t̃j+1 − t̃j ,F) + inf

f∈F

 t̃j+1∑
t=t̃j+1

ℓ(f(xt), yt)

+ εLlosLhyp · (t̃j+1 − t̃j)


≤ E

 c∑
j=1

(mj + 1)R̄tr
B (t̃j+1 − t̃j ,F)

+ inf
f∈F

(
T∑

t=1

ℓ(f(xt), yt)

)
+ εLlosLhyp · T.
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From the analysis of Lemma D.5, we have

E

 c∑
j=1

(mj + 1)R̄tr
B (t̃j+1 − t̃j ,F)

 ≤ (MP(ε, x1:T ) + c+ 1)R̄tr
B (

T

c+ 1
+ 1,F),

which proves our desired bound.

D.3 PROOF OF THEOREM 4.2

Proof. By Lemma D.5, for any function classF ⊂ YX , loss function ℓ, and data stream (x1:T , y1:T ),
the minimax expected regret of Algorithm 4 is bounded by

2(MP(x1:T ) + 1)R̄tr
B

(
T

MP(x1:T ) + 1
+ 1,F

)
+

√
T log2 T .

Inputting MP(x1:T ) = Õ (T p) to the above bound gives us

Rol(T,F) = Õ (T p) R̄tr
B
(
T 1−p,F

)
+

√
T log2 T .

D.4 PROOF OF COROLLARY 4.3

Proof. By Corollary C.9, the minimax expected regret of the transductive online regression for F∗

satisfies Rtr(T,F∗) = Õ
(
Llos ·

√
V T
)

. Combining with the bound in Theorem 4.2, we upper
bound the minimax expected regret by

Õ
(
T p · Llos ·

√
V T 1−p

)
+

√
T log2 T = Õ

(
Llos · T

1+p
2

)
,

which proves our desired bound. Additionally, we assume that the sequence of examples is pre-
dictable in our setting, i.e., p < 1. Thus, the minimax expected regret of our algorithm is o(T ).

D.5 PROOF OF THEOREM 4.4

Proof. By Lemma D.8, for any function class F ⊂ YX of Lhyp-Lipschitz function, Llos-Lipschitz
and convex loss function ℓ, and data stream (x1, y1), . . . , (xT , yT ), the expected loss of Algorithm 6
is bounded by

2(MP(ε, x1:T ) + 1)R̄tr
B

(
T

MP(ε, x1:T ) + 1
+ 1,F

)
+ εLlosLhyp · T +

√
T log2 T .

Inputting MP(ε, x1:T ) = Õ
(
Tp

εq

)
to the above bound gives

Rol(T,F) = inf
ε>0

{
Õ
(
T p

εq

)
R̄tr

B
(
εqT 1−p,F

)
+ εLlosLhyp · T +

√
T log2 T

}
.

Thus, we finish the proof.

D.6 PROOF OF COROLLARY 4.5

Proof. By Corollary C.9, the minimax expected regret of the transductive online regression for F∗

satisfies Rtr(T,F∗) = Õ
(
Llos ·

√
V T
)

. Combining with the bound in Theorem 4.4, we upper
bound the minimax expected regret by

inf
ε>0

{
Õ

(
T

1+p
2

ε
q
2

· Llos

√
V

)
+ εLlosLhyp · T +

√
T log2 T

}
= Õ

(
LlosL

q
q+2

hyp · T
p+q+1
q+2

)
.

Suppose that Lhyp = Õ (T c) for some constant c, then we have Rol(T,F) = Õ
(
T

p+(c+1)q+1
q+2

)
, so

F∗ is learnable if p+ cq < 1.
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E EXPERIMENTS

In this section, we present experiments to justify our theoretical results. The experiments are con-
ducted using an Apple M2 CPU, with 16 GB RAM and 8 cores.

Experiment Setup. We generate the sequence of examples x1:T ⊂ Rd by a linear dynamical
system: xt+1 = Axt, where A ∈ Rd×d is a random stable matrix. We restrict each example to
having a support size c < d. In particular, we randomly select c indices from [d] and set xt(i) = 0
for all other indices and t ∈ [T ]. We also set the transition matrix A to have the same support as xt.
This construction captures the sparse nature of the sequence of examples in various applications. For
instance, in energy management (see Example 1.1), a list of variables xt ∈ Rd can affect the energy
consumption yt, however, in specific circumstances, only c of these variables have a significant
influence (e.g., the temperature may change by only a few during a month), so the others are set
to 0 in xt. In the experiment, we compare the accumulative loss in the transductive online setting,
where the learner knows the sequence of examples x1:T in advance, and the online setting, where the
learner does not have additional information. We show that the learner achieves better performance
in the transductive online setting.

We choose the ground-truth function class F to be all c-junta hyperplanes in Rd with coefficients
in {−1 + 0.4 · i, i ∈ [5]}. We consider the regression problem under the additive noise model, i.e.,
we choose the target function f∗ from F randomly and assign the label yt to each example xt by
f∗(xt) + gt, where gt ∈ N (0, 0.01) is random Gaussian noise, representing noisy measurements in
real-life scenarios. We evaluate the learner using the ℓ1-loss function: ℓ(y, ŷ) = |y − ŷ|. We choose
the parameters d = 8, c = 4, and T = 1000.

Methods. In the experiment, we implement the multiplicative weight algorithm (MWA), which
randomly samples the advice of K experts. For the baseline method, we set the experts as the
entire function class F , since the learner does not have information on x1:T in the online setting. In
contrast, in the transductive online setting, the learner observes x1:T in advance, and so it knows the
support {i1, . . . , ic} ⊂ [d] of xt. Thus, we implement MWA on the restricted function class, which
is a subset of F and has c-juntas being {i1, . . . , ic}. We compute the total ℓ1-loss of both methods
at all times t ∈ [T ]. We run 10 repetitions and plot the mean loss curve.

Results. As shown in Figure 1, MWA with the restricted net (red line) exhibits a much steeper
initial decline in cumulative loss compared to MWA on the entire net (blue line), indicating faster
convergence toward the ground-truth function. In addition, the restricted net consistently maintains
a lower error throughout all rounds, with the gap widening over time.

The experiment demonstrates that using the support information of the input sequence of examples
significantly improves learning outcomes. The result highlights the empirical separation between the
standard online setting and the transductive online setting: access to the example sequence allows
the learner to focus on a refined function class, thereby achieving lower regret in practice.
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Fig. 1: Comparison between the performance of MWA on the entire net and the restricted net. The
blue line is the entire net, and the red line is the restricted net.
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