9\6

©

Argus: Disambiguating User Queries for Tool-Calling Agents via

Uncertainty Quantification

Anonymous ACL submission

Abstract

Agents that bridge language understanding and
tool execution are increasingly tasked with car-
rying out user intent in open-ended environ-
ments. However, ambiguous or infeasible user
instructions frequently lead to incorrect tool in-
vocations, system failures, and degraded user
experience. Existing clarification approaches
operate in unstructured token spaces and rely
on general-purpose uncertainty estimation, re-
sulting in over-clarification and inefficient ques-
tion selection. We propose Argus, an infor-
mation theoretic approach that leverages struc-
tured tool argument domains to resolve am-
biguous tool calls through principled clarifi-
cation. By operating directly on tool argu-
ment spaces rather than arbitrary text, Argus
combines exploration-exploitation optimiza-
tion with regret minimization to strategically
select clarifying questions that maximize infor-
mation gain while minimizing user interaction
burden. To evaluate clarification strategies in
realistic scenarios, we develop ClarifyBench,
which uniquely combines dynamic user simula-
tion with multi-turn conversational progression
across five domains, addressing critical gaps
in existing static evaluation approaches. Ex-
periments demonstrate that Argus outperforms
prior clarification strategies by 25% in task suc-
cess while reducing unnecessary clarification
upto 40%, significantly enhancing user satisfac-
tion through reduced interaction burden. '

1 Introduction

Tool-calling agents are Al systems that extend large
language models (LLMs) with the ability to au-
tonomously invoke external APIs and tools based
on structured function definitions, enabling interac-
tion with databases, web services, and software ap-
plications (Schick et al., 2023). For instance, a user
requesting "book me a flight to Paris" requires the
agent to disambiguate departure city, travel dates,

'Code and data will be released on acceptance

¥ tool_A(Arg1=7?,Arg2=7?,Arg3=?,Arg4="?)

Arg 15 Arg2 Yoyt 01
@ EVPI=0.6
A Regret=0.5
e ——
QT—‘_‘——_ Q2
EVPI=0.9
[) o A Regret=0.9
Q2 “ o
B @ EVPI=0.4
A Regret = 0.6
\‘ ‘ J\\ J

Optimal clarifying
questions condense large
domains, and prioritize
important arguments.

f N
Q3

. ->Domain Space: the set of values an
> Argumentimportance () argument is allowed to take.

Figure 1: Clarifying questions improve certainty in the agen-
tic systems by reducing multidimensional tool argument space.
Argus uses an information theoretic approach involving the
Expected Value of Perfect Information (EVPI), and A Regret
for optimal question selection.

budget constraints, and airline preferences before
invoking booking APIs. These agents have been
successfully deployed across diverse domains in-
cluding travel planning, document processing, fi-
nance, vehicle control, and drug discovery (Xie
et al., 2024; Mathur et al., 2024; Yu et al., 2024,
Huang et al., 2024; Liu et al., 2024). However,
their effectiveness is fundamentally limited by am-
biguous or incomplete user instructions that lead to
incorrect tool invocations, failed transactions, and
degraded user experience—problems that become
increasingly critical as these systems handle more
complex, high-stakes tasks.

Ambiguity in user requests poses unique chal-
lenges for tool-calling agents, where imprecise in-
terpretation can cascade into costly execution er-
rors (Wang et al., 2024; Vijayvargiya et al., 2025).
User ambiguity manifests through vague task spec-
ifications ('find me a good restaurant"), incom-
plete parameters ("book a meeting for tomorrow"),
or implicit assumptions about system capabilities
(Wang et al., 2025). The structured nature of
tool schemas—with their specific parameter types,

constraints, and interdependencies—amplifies this
challenge, as a single ambiguous user query of-
ten maps to multiple valid API configurations with
vastly different outcomes (Bandlamudi et al., 2025).
For example, "cancel my subscription" could ap-
ply to multiple services, cancellation types (pause
vs. permanent), or effective dates, each requiring
different API calls with distinct consequences.

Existing disambiguation approaches suffer from
fundamental limitations in tool-calling contexts.
Due to their next-token prediction training, LL.Ms
often hallucinate missing arguments when faced
with incomplete information, leading to incor-
rect tool invocations (Wang et al., 2024). Cur-
rent methods operate primarily in unstructured lan-
guage spaces—generating clarifying questions as
arbitrary text sequences through prompting strate-
gies—rather than leveraging the structured con-
straints and dependencies that define tool schemas
(Kobalczyk et al., 2025; Zhang et al., 2024). While
prompting improvements can enhance question
phrasing, they cannot fundamentally address the
core limitation: without explicit modeling of
parameter relationships, importance hierarchies,
and feasibility constraints, agents lack principled
criteria for determining which questions to ask
and when to stop asking them. This results in
over-clarification of low-impact details, under-
clarification of critical missing information, and
inability to distinguish feasible from infeasible re-
quests. For instance, when a user requests "book
a hotel in New York", optimal disambiguation re-
quires understanding both parameter uncertainty
(check-in dates are unspecified) and task criticality
(wrong dates cause booking failure, while room
amenities minimally impact success); insights that
emerge from tool schema structure rather than lan-
guage patterns, as motivated by Figure 1.

Main Results. To address these limitations,
we introduce Argus, an information-theoretic ap-
proach that quantifies parameter space uncertainty
and importance of clarification targets simultane-
ously to enable principled disambiguation. Argus
leverages three key insights: (1) tool schema en-
code structured relationships that language-space
approaches are unable to capture, leading to pre-
cise uncertainty quantification over parameter do-
mains rather than arbitrary text generation; (2),
information-theoretic measures combined with re-
gret minimization provide optimal stopping cri-
teria, ensuring clarification targets high-value in-
formation while minimizing user burden; and

(3), exploration-exploitation optimization balances
known parameter importance with discovery of un-
explored disambiguation opportunities, preventing
premature question stopping while avoiding over-
clarification. This principled foundation naturally
handles various disambiguation challenges, from
parameter ambiguity to constraint feasibility, with-
out requiring separate heuristics for each case. To
systematically evaluate such comprehensive disam-
biguation capabilities, we introduce ClarifyBench,
the first benchmark designed specifically for in-
teractive tool-calling disambiguation, featuring dy-
namic user simulation that can respond to clarifying
questions and engage in multi-turn task progres-
sion. Unlike existing static evaluation approaches,
ClarifyBench captures the full complexity of re-
alistic human-agent interaction across diverse tool-
calling scenarios.
Our key contributions include:

* Argus: A novel principled approach that
leverages structured tool argument domains to
quantify uncertainty and task impact, combin-
ing information-theoretic measures (Expected
Value of Perfect Information), regret mini-
mization, and exploration-exploitation opti-
mization (UCB scores) to enable optimal clar-
ification strategies.

ClarifyBench: First comprehensive bench-
mark designed specifically for tool-calling dis-
ambiguation, featuring dynamic LLM-based
user simulation capable of multi-turn conver-
sational progression and realistic task continu-
ation across diverse domains — document edit-
ing, vehicle control, stock trading, travel book-
ing, and file system.

Empirical validation: Through extensive ex-
periments with realistic user simulations, we
demonstrate that Argus achieves upto 25%
absolute improvement in task success rate
while reducing unnecessary clarification by
40% compared to existing approaches, with
consistent performance gains across explicit,
ambiguous, and infeasible query types.

2 Related Work

The challenge of resolving ambiguity in user in-
teraction with LLMs through clarifying questions
has gained increasing attention, particularly in tool-
calling contexts. Early approaches to clarification
focused on general dialogue systems, developing

ranking-based methods for question selection (Rao
and Daumé III, 2018; Xu et al., 2019) and Seq2Seq
generation (Deng et al., 2022). Recent work has
specifically addressed ambiguity in tool-calling
scenarios: Ask-before-Plan introduces proactive
planning agents that predict clarification needs and
collect information before execution (Zhang et al.,
2024), while Active Task Disambiguation frames
the problem through Bayesian Experimental De-
sign to maximize information gain from clarifying
questions (Kobalczyk et al., 2025). Zhang and
Choi propose intent-similarity based uncertainty
estimation to determine when clarification is ben-
eficial across various NLP tasks (Zhang and Choi,
2023). Related efforts explore implicit intention un-
derstanding in language agents (Qian et al., 2024)
and proactive dialogue systems that can handle
ambiguous queries through goal planning (Deng
et al., 2023). However, these approaches primarily
operate in the general language space without lever-
aging the structured nature of tool schemas. Unlike
previous work that relies on token-space reason-
ing or task-agnostic uncertainty estimation, Argus
directly quantifies uncertainty over structured tool
argument domains, enabling principled question
selection that combines information-theoretic mea-
sures with domain-specific constraints.

3 ClarifyBench

The evaluation of clarification strategies in tool-
calling agents requires benchmarks that capture the
complexity of real-world user interactions, partic-
ularly when dealing with ambiguous or infeasible
requests. To address this need, we introduce Clar-
ifyBench, a comprehensive benchmark designed
to evaluate clarification strategies across diverse
domains and query types. As shown in Table 1, ex-
isting benchmarks exhibit critical limitations: many
lack support for ambiguous and infeasible queries
entirely, while those that include such scenarios are
limited in scope or domain coverage. Moreover,
most benchmarks rely on static evaluation and lack
dynamic user simulation capabilities essential for
evaluating interactive clarification strategies.
ClarifyBench addresses these limitations
through dynamic user simulation enabling realistic
multi-turn interactions, comprehensive query types
(normal, ambiguous, and infeasible), and multi-
domain coverage across five distinct domains. Fig-
ure 2 illustrates the benchmark design: a user sim-
ulator conducts multi-turn interactions with tool-

Query Types

Initial Query - — (g Exlicit Requests

User Intent Prompt
Follow-up requests

Ambiguous Requests

° Infeasible Requests

u

User-Agent
Interaction

File System

Figure 2: ClarifyBench enables comprehensive evaluation
of agent clarification strategies by simulating normal, am-
biguous, and infeasible user queries across five domains. A
dynamic user simulator conducts multi-turn interactions with
tool-equipped LLM agents, with evaluation based on align-
ment with ground truth agent tool calls.

equipped LLM agents, simulating genuine con-
versational progression where users naturally fol-
low up with related requests after clarification ex-
changes. Evaluation compares ground truth tool
calls with agent-generated actions, providing ro-
bust assessment of clarification effectiveness across
realistic scenarios.

3.1 Benchmark Design

ClarifyBench encompasses five diverse domains
that reflect real-world tool-calling scenarios: docu-
ment processing, vehicle management, stock trad-
ing, travel planning, and file system management.
These domains were selected to represent varying
levels of complexity, different types of argument
structures, and distinct sources of ambiguity that
agents encounter in practice. Table 2 gives a sta-
tistical summary of the benchmark. Each sample
in ClarifyBench is represented as a tuple: (user
query, user intent, follow-up queries, ground truth
tool call, domain).

The benchmark includes three distinct query
types that systematically evaluate different as-
pects of clarification: 1. Explicit Queries: Well-
specified requests that provide sufficient informa-
tion for direct tool execution, serving as baseline
performance indicators. 2. Ambiguous Queries:
Requests with missing or unclear parameters that
require clarification to determine the appropriate
tool calls and arguments. 3. Infeasible Queries:
Requests which if executed at face value would gen-
erate errors due to invalid parameters, conflicting
constraints, or impossible conditions.

Dynamic User Ambi Infeasibl

Multi-turn

Benchmark

Simulation Queries Queries

Tool Domains Number of Tools

Requests

AgentBoard (Ma et al., 2024) X X X
7-bench v X X
MMAU (Yin et al., 2024) X X X
ToolSandbox (Lu et al., 2024) v X X
Ask-Before-Plan (Zhang et al., 2024) v v v
BFCL-v3 (Yan et al., 2024) X v X
ClarifyBench v v v

X

NN %X N % N

Information Retrieval, Manipulation 50
Retail, Airlines 24
Rapid API Tools 364
Personal Assistant 34
Travel 6

129
Documents, Vehicle Control, Stocks, Travel, File System 92

Vehicle Control, Stocks, Travel, File System

Table 1: Comparison of ClarifyBench with existing tool-calling benchmarks.

Metric Doc Vehicle Stocks Travel Files All

Total Samples 133 126 126 117 121 623
Number of Tools 18 22 19 15 18 92
Avg # of Tool Calls 2.3 32 4.1 3.7 42 35
Explicit Queries 50 50 49 50 43 242
Ambiguous Queries 48 44 49 48 44 233
Infeasible Queries 35 32 28 19 34
22 2.8 2.9 3.1 32

Avg # of Follow-up 2.8

Table 2: Statistical summary of ClarifyBench.

3.2 Benchmark Construction

Data Sources. ClarifyBench draws from two pri-
mary sources to ensure diversity and realism. First,
we extract successfully executed tool calls from the
DocPilot (Mathur et al., 2024), which provides real
user interactions in document processing scenarios.
Second, we leverage the Berkeley Function Calling
Leaderboard (BFCL-v3) (Yan et al., 2024), which
offers data across multiple domains: vehicle con-
trol, stock trading, travel planning, and file system
management.

Data Augmentation. To create the comprehen-
sive set of query types required for clarification
evaluation, we employ systematic data augmenta-
tion techniques. We process DocPilot dataset by
anonymizing user metadata, replacing specific file
names and domain terms in tool calls with LLM-
generated substitutes to ensure generalizability, fol-
lowed by PII removal. For ambiguous queries,
we randomly select upto 3 arguments from suc-
cessful tool calls and obfuscate them, then prompt
GPT-40 to generate five alternative user queries
that omit the obfuscated information. We also gen-
erate user intent prompts using in-context learning
examples to capture the original tool call seman-
tics. For infeasible queries, we design handwritten
rules based on common API errors to create tool
calls that would generate failures, followed by a
similar LLM-based query augmentation process.
We process BFCL-v3 using existing explicit and
ambiguous parameter queries from the benchmark,
ensuring sample independence by removing cases
with secondary API dependencies. We apply rule-

based validation and LLM judgment (via in-context
learning) to identify and exclude such cases. For re-
tained samples, we strip secondary API utterances
and tool calls from ground truth annotations. User
intent prompts are generated through LLM process-
ing, and infeasible queries are constructed using
domain-specific rules, mirroring the DocPilot data
strategy.

Human Validation. To ensure quality and nat-
uralness, a human annotator evaluates all LLM-
generated queries using three criteria: (A) natural-
ness of language, (B) faithfulness to expected tool
calls including all required details while exclud-
ing obfuscated parameters, and (C) for infeasible
queries, presence of error-inducing requirements.
The annotator selects one optimal query per sample
from the five generated alternatives.

4 Argus

Figure 3 illustrates Argus, an information-theoretic
disambiguation technique that leverages structured
tool argument spaces to resolve ambiguous tool
calls through targeted clarification. Argus inte-
grates into the standard Plan-Act-Observe cycle
of tool-based agents, operating between planning
and action execution to ensure high-confidence tool
calls. Tool-based agents operate in sequential steps
consisting of Reasoning/Planning, Action, and Ob-
servation. Argus enhances this cycle by introduc-
ing a disambiguation phase: following initial rea-
soning and planning, candidate interpretations are
generated, then disambiguated through Argus if un-
certainty exceeds thresholds, before returning final
observations to the user.

Preliminaries: Tool Argument Domains. At
the core of Argus lies the structured nature of
tool argument spaces, which we model as do-
mains with explicit constraints and interdependen-
cies. Each tool argument a; ; for tool ¢; has an
associated domain Dy, (a; j) defining its valid val-
ues, analogous to function domains in mathematics.
These domains can be finite (e.g., file permissions:

— LLM _o Plan —»

User Query

& 9

Tool Call Interpretation 2
tool_A(argl, <UNK>))

tool_B(arg2, <UNK>, arg3) Uncertainty

a Quantification Certain

Update
Interpretation

Functional Relations
@-+b

4 Tool Execution
¢ @

45 -

Expected Value of Perfect Information Regret
EVPI(ge) = Hictoro(tis Ax) — Ereentqn) [Hater (11, Ak)] (b Ax

LM —— _ I

Information-Theoretic Clarification Selection

Reduction
— Em () [RegTet gy (£, Ak 1)

ARegret(qr) = Regrety,rore)

Upper Confidence Bound Exploration-Exploitation

flog(¥ +1
UOB(@) = (EVPI(0) + ARegretae) + E(V +1)

e
lmax

Argument Domain
Charecterization

% |

T -
C T=T0+a-N

<T

ute tool

~

7

Figure 3: @ Argus: (@) Given a user query, an LLM reasons to generate a plan and tool calls with potential
uncertain parameters. These tool calls undergo (@) uncertainty quantification to determine if clarification is needed.
When uncertainty exists, the agent uses an LLM to produce (®) candidate clarifying questions, and scores them
using (@) information-theoretic principles (EVPI and Regret Reduction), selecting the optimal question via UCB
based exploration-exploitation. The tool call’s interpretation is updated based on user-response to the clarifying
question (@), and given no further uncertainty, is executed ©.

read,write, execute) or infinite (e.g., file paths),
and often exhibit dynamic constraints based on
system state or other arguments. Effective clar-
ifying questions strategically reduce this multidi-
mensional argument space by constraining multiple
domains simultaneously. This structured approach
enables Argus to quantify uncertainty precisely
over argument domains rather than operating in un-
structured token space, leading to more principled
and efficient disambiguation.

4.1 Uncertainty Quantification Framework
4.1.1 Candidate Interpretation Generation

The agentic system prompts the LLM to gener-
ate candidate interpretations of user queries as se-
quences of tool calls, with specific instructions to
use <UNK> tokens for arguments where relevant
context is absent. Given a query ¢, the system
generates:

[<t17az)|7': 1727777‘] (1

where t¢; represents the tool name and a; is the
set of arguments. Generated tool calls are executed
sequentially until an ambiguous tool call (contain-
ing <UNK> tokens) is encountered, as executed tool
calls may provide context that resolves subsequent
argument specifications.

4.1.2 Domain-Informed Uncertainty
Calculation

Tool call uncertainty is assessed based on argument
domain constraints. The probability of certainty p.
for each argument is defined as:

1.0, if explicit
pelaig) = § ey 1< 1Dn(a)] < oo
€, if D}, (a)| — oo

2

where Dy, (a; j) is the domain of argument a;

for tool ¢;, and € is a small positive constant. The
overall certainty of tool call ¢; is calculated as:

H(t;) = [[pelaiy) 3)
j=1

4.2 Information-Theoretic Clarification
Generation

4.2.1 Candidate Question Generation

Argus generates clarification questions for uncer-
tain tool calls by prompting an LLM with conversa-
tional context (including observations and original
query), tool argument definitions, and domain de-
scriptions. Additionally, it prompts the LLM to
identify the set of target arguments the question is
expected to resolve. The set of candidate clarifi-
cation questions is defined as Q = {(qx, ti, Ax) |
k=1,2,...,1}, where g is the question text, ¢;

is the candidate tool call, and A; C a; represents
the subset of arguments targeted by question gj.

4.2.2 Expected Value of Perfect Information
(EVPI)

The disambiguation problem involves decision-
making under uncertainty. We adopt the Expected
Value of Perfect Information framework (Raiffa
and Schlaifer, 2000) to quantify the potential value
of acquiring additional information through user
clarification. EVPI measures the expected improve-
ment in decision quality from obtaining perfect
information before making decisions. For our dis-
ambiguation system,

EVPI(qy, ti) = H(t;) — Eporqq,) [H (ti]r)] @)

where H (t;) represents current uncertainty of tool
call t;, and H (¢;|r) is the expected posterior uncer-
tainty after receiving response r € R(qy), the set
of responses.

4.2.3 Argument Importance and Regret
Minimization

Not all arguments carry equal weight in determin-
ing tool call effectiveness. Critical arguments may
significantly impact computational efficiency, re-
sult quality, or system safety, while others may have
acceptable defaults. To account for varying argu-
ment importance, we introduce a regret-based for-
mulation, inspired by (Loomes and Sugden, 1982)
that models the expected loss from proceeding with
uncertain values. Regret associated with a tool call
is defined as:

Regret(t;) = Z wij - (1 =pelaig) (5)
j=1

where w;; € [0,1] represents the importance
weight assigned to argument a; ;, and (1 —p.(a; ;))
captures argument uncertainty. We calculate ex-
pected reduction in regret:

ARegret(qi) = Regret(t;)—E, (g,) [Regret(t;|r)]
(6)
This formulation prioritizes questions addressing
high-importance arguments with significant uncer-
tainty. Importance can be user-defined or empiri-
cally derived from historical performance.

4.3 Exploration-Exploitation Trade-off in
Question Selection

The sequential clarification process presents an
exploration-exploitation dilemma. We adopt an

Upper Confidence Bound approach to balance ex-
ploiting known high-value questions with exploring
potentially valuable clarifications. The UCB score
for candidate question gy, is:

log(N + 1)

B(a) —
UCB(qx) = S(qx) + ¢ P

(M

where S(qx) = EVPI(qx) + ARegret(gx) com-
bines information gain and regret reduction, ¢ con-
trols exploration-exploitation balance, N is total
clarifications made, and ny, is the frequency of ar-
guments targeted by gy.

A dynamic threshold mechanism determines
when to terminate clarification:

r=mn+a N (®)

where 7 is the initial threshold and « controls
threshold increase rate. The system selects ques-
tions with highest UCB scores exceeding this
threshold, naturally encoding diminishing returns
in information gathering.

4.4 Response Processing and Belief Update

Upon receiving response 7 to question gy, beliefs
about the target tool call are updated by refining
affected argument domains:

D;(a) = Dy (a) N fupdate(aﬂ“), ifa € Ay
1 Dy, (a), otherwise
9

where fypdate(a,) extracts domain constraints
from the response. Uncertainty values are recalcu-
lated based on updated domains:

if 1< Dy (a)] < oo

1
Pela) = {'Dfi(“" (10)

€, if D}, (a)| — oo

Termination. The clarification process termi-
nates when initial uncertainty falls below a fixed
threshold, no questions achieve the UCB thresh-
old, or the maximum number of questions n; is
exceeded.

Error Recovery. When tool execution fails,
the system uses the failure context as an obser-
vation to either fix the failure, or determine if it
can be clarified from the user, generating error-
specific clarification questions incorporating both
the candidate interpretation and error message:
Gerror = ferror(t*a a*, error)

ClarifyBench - Ambiguous

ClarifyBench - Explicit

ClarifyBench - Infeasible

LLM Baseline
SuccessT TMRT PMR1T Avg#Q | Success? TMR?T PMR1T Avg#Q | Successt? TMRT PMR1T Avg#Q |

2 Control 32.22 37.50 34.20 0.00 38.04 40.39 39.96 0.00 22.67 3420 26.34 0.00
- ProCOT 36.91 4730 40.10 3.55 41.19 4412 42.88 2.05 32.98 33.10 3145 3.74
r;‘ Active Task Disambig. 3345 4450 34.11 3.10 44.10 46.10 44.76 2.10 29.72 3550 33.65 1.09
E: Ask before Plan 40.47 49.80 44.77 2.90 48.01 47.13 50.12 2.00 36.89 37.80 3589 2.20
~ Argus (Ours) 44.67 51.25 4857 2.12 47.85 5047 4943 1.70 40.22 40.65 39.33 1.95

Control 48.50 65.12 52.54 0.00 66.45 67.59 64.07 0.00 37.87 61.33 40.90 0.00
2 ProCOT 58.69 68.18 59.80 3.50 68.12 7030 68.75 2.89 57.82 63.70 60.12 3.73
EI_ Active Task Disambig. 58.73 64.82 60.12 3.90 64.87 67.12 6533 327 49.44 60.50 50.23 1.80
© Ask before Plan 60.22 69.56 61.25 3.20 70.11 7435 71.00 2.51 54.18 64.22 61.45 2.78

Argus (Ours) 64.54 7320 68.05 2.30 70.56 76.50 75.13 1.23 60.52 69.45 67.90 2.17

Table 3: Comparison of Argus with baselines on ClarifyBench.

Best and second best results are highlighted. Argus

maximizes tool call correctness while mitigating potential interaction fatigue.

Ablation Success Rate TMR PMR Avg #Q
Argus 44.23 4736 4571 192
XEVPIL 42.01 46.83 42.56 2.02
XA Regret 41.78 4594 4344 195
XExploration Term 42.23 4452 4354 1091
XDynamic Threshold 44.19 47.04 45.61 223

Table 4: Ablation results showing the impact of removing
individual components. Xindicates ablation.

110 @)
ask Before Plan
100 Orofor
EY
Oactive Task Disambiguation
& 80
B
2
s
b
R
o
£
IS
50 ‘rgis
40
01 Ocontrol

5000 10000 15000
Token Usage

20000 25000

Figure 4: Comparison of token usage vs. time taken. Argus
achieves high efficiency and performance simultaneously.

5 Experiments

5.1 Baselines

All baselines are built on top of a common Re-
Act agent for comparability. We evaluate Argus
against the following baselines: Control Baseline
is a standard ReAct agent with no specific interven-
tion for tool-calling disambiguation. Control base-
line cannot interact with the user outside of receiv-
ing queries and delivering results. ProCOT (Deng
et al., 2023) uses ProActive Chain-of-Thought rea-
soning to think through potential ambiguities be-
fore tool execution. Active Task Disambiguation
(Kobalczyk et al., 2025) generates multiple candi-
date interpretations and asks questions based on

variance in responses. Ask-Before-Plan (Zhang
et al., 2024) instructs agents to ask clarifying ques-
tions before planning tool execution. We use GPT-
40 and LlaMa 3.1 (8B) (Grattafiori et al., 2024) for
all baselines.

5.2 Metrics

We evaluate performance based on the follow-
ing metrics: Success Rate (%): The percentage
of simulations with complete tool and parameter
match with ground truth. Tool Match Rate (TMR,
%): The average percentage of correctly identified
tools across simulations. Parameter Match Rate
(PMR, %): The average percentage of correctly
specified parameters across simulations. Average
Number of Questions (Avg #Q): The mean num-
ber of clarifying questions asked per simulation.
For Success Rate, TMR, and PMR, higher values
indicate better performance, while lower Avg #Q
values are preferable.

6 Results

Main Results. Table 3 compares Argus with rele-
vant baselines on ClarifyBench, implemented with
both LLaMa-3.1-8B-Instruct and GPT-4o0 as the
base LLMs, with GPT-40 serving as the user simu-
lator in both scenarios. Argus demonstrates supe-
rior performance across all evaluation dimensions,
achieving the highest success rates in every sce-
nario. This highlights Argus’ ability to understand
user intent through principled, proactive disam-
biguation strategies. The control baseline, which
lacks the ability to interact with users through ques-
tions, shows the lowest performance across all sce-
narios despite having an Average Question count of
0.00. This stark performance gap emphasizes the
fundamental necessity of clarification in ambigu-
ous user interactions. Notably, when comparing

across model scales, performance with the more
powerful GPT-40 shows substantial improvements
over LLaMa-3.1, with Argus maintaining its supe-
riority regardless of the underlying model capac-
ity. ClarifyBench Explicit functions as an upper
bound for performance since all required details
are already present in user queries. Consequently,
we observe higher success rates, TMR, and PMR
across all systems in this scenario. Despite this
inherent advantage in the task setup, Argus still
outperforms other approaches while maintaining
lower question counts, demonstrating its efficiency
even when queries contain relatively complete in-
formation. Prompting-based question-answering
baselines like ProCOT and Ask-before-Plan ex-
hibit a critical limitation: they ask substantially
more questions on average without achieving pro-
portional improvements in success metrics. This
inefficiency underscores the necessity for princi-
pled uncertainty estimation and strategic disam-
biguation as proposed in Argus. We observe that
Active-task-Disambiguation asks fewer questions
for infeasible queries, demonstrating how it is not
particularly suitable for dynamic tool execution en-
vironments where incorrect parameters may cause
errors. This limitation becomes apparent in its sig-
nificantly lower success rates for infeasible queries
compared to Argus. Meanwhile, ProCOT which
is a promp based CoT reasoning baseline, exhibits
the highest Average Question count for infeasible
queries, as it defaults to asking users for clarifica-
tion rather than attempting to debug errors inde-
pendently. This behavior increases user interaction
burden without necessarily resolving the underly-
ing issues.

Ablation Study. We ablate different components
from Argus to understand their impact on over-
all performance. Table 4 presents results using
LLaMa3.1-8B as the base LLM, with metrics aver-
aged across the three query splits. To ablate EVPI,
A Regret, and the Exploration term, we replace
them with a constant denoting their theoretical
maximum value. To ablate Dynamic Threshold,
we set « = 0. Results show that removing EVPI,
A Regret, or the Exploration term causes notice-
able drops in overall performance, confirming their
importance in Argus’s question selection strategy.
Most interestingly, ablating the Dynamic Threshold
causes a significant increase in the average num-
ber of questions asked without substantially affect-
ing success rates, demonstrating its crucial role in
making Argus more interaction-efficient without

Metric Value

Question Number

Figure 5: Evolution of question selection metrics used by
Argis during interactive user simulations.

compromising effectiveness.

Efficiency. Fig. 4 plots all five methods on a
two-dimensional time vs. token-usage plane, with
bubble area proportional to end-task performance.
ProCOT and Ask-before-Plan—both chaining-
based reasoning baselines—incur the highest token
counts due to their repeated, lengthy text reason-
ing steps, placing them in the “Token Intensive”
quadrant despite strong success rates. Active Task
Disambiguation falls into the “Time Intensive” re-
gion: it generates multiple candidate completions
per query to estimate uncertainty and issues clarifi-
cation questions, driving up runtime even though
it economizes on tokens. By contrast, Control re-
mains fast but achieves only modest performance.
In contrast, Argus balances token use and latency,
while achieving superior task performance.
Evolution. Fig 5 refects Argus’ question selection
metrics over steps. The first questions have a lower
UCB value, owing to N = 0, with UCB value
peaking subsequently and then reducing steadily,
demonstrating the diminishing value of asking
questions.

7 Conclusion

We introduce Argus, a principled information-
theoretic approach to disambiguate tool-augmented
agentic queries through uncertainty quantification.
By operating directly on structured tool argument
domains rather than unstructured token spaces,
Argus combines information-theoretic measures
with regret minimization to optimize question se-
lection. Extensive experiments on ClarifyBench
demonstrate that Argus significantly outperforms
existing clarification strategies diverse query types
and domains, achieving higher task success and
reducing unnecessary clarification.

8 Limitations

Despite Argus’s strong performance, several lim-
itations should be acknowledged. First, our ap-
proach assumes the availability of well-defined
tool schemas, and user-defined importance scores
with explicitly structured argument domains, which
may not always be available for complex or rapidly
evolving APIs. Second, while our information-
theoretic approach performs well within the tested
domains, it may face challenges in extremely high-
dimensional argument spaces where calculating
expected values becomes computationally inten-
sive. Third, ClarifyBench, while more realistic
than previous benchmarks, still represents a simula-
tion of user behavior and may not fully capture the
diversity and complexity of real-world human re-
sponses. Additionally, our current implementation
relies on existing foundation models for natural
language processing, inheriting any biases or limi-
tations present in these underlying models.

9 [Ethics Statement

Our research does not use any personally identifi-
able information (PII) and all datasets employed
in this work are used in accordance with their re-
spective licenses (Apache 2.0). Argus is designed
primarily for deployment in collaborative Al assis-
tance contexts where resolving ambiguity enhances
productivity and user experience while minimiz-
ing unnecessary interaction. The system’s core ap-
proach of reducing clarification questions through
principled uncertainty estimation promotes more
equitable access to Al assistance by respecting
users’ time and cognitive resources. While Argus
significantly reduces interaction burden, we rec-
ommend appropriate transparency about system
limitations and human oversight when deploying
in sensitive contexts. Furthermore, we encourage
ongoing evaluation to ensure that question selec-
tion patterns do not reflect or amplify biases present
in underlying models or training data.

References

Jayachandu Bandlamudi, Ritwik Chaudhuri, Neelamad-
hav Gantayat, Kushal Mukherjee, Prerna Agarwal,
Renuka Sindhgatta, and Sameep Mehta. 2025. A
framework for testing and adapting rest apis as llm
tools.

Yang Deng, Wenqiang Lei, Wenxuan Zhang, Wai Lam,
and Tat-Seng Chua. 2022. Pacific: towards proac-
tive conversational question answering over tabu-

lar and textual data in finance.
arXiv:2210.08817.

arXiv preprint

Yang Deng, Lizi Liao, Liang Chen, Hongru Wang,
Wengiang Lei, and Tat-Seng Chua. 2023. Prompt-
ing and evaluating large language models for proac-
tive dialogues: Clarification, target-guided, and non-
collaboration. Preprint, arXiv:2305.13626.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Kung-Hsiang Huang, Akshara Prabhakar, Sidharth
Dhawan, Yixin Mao, Huan Wang, Silvio Savarese,
Caiming Xiong, Philippe Laban, and Chien-Sheng
Wu. 2024. Crmarena: Understanding the capacity of
Ilm agents to perform professional crm tasks in realis-
tic environments. arXiv preprint arXiv:2411.02305.

Katarzyna Kobalczyk, Nicolas Astorga, Tennison
Liu, and Mihaela van der Schaar. 2025. Active
task disambiguation with llms. arXiv preprint
arXiv:2502.04485.

Sizhe Liu, Yizhou Lu, Siyu Chen, Xiyang Hu, Jieyu
Zhao, Yingzhou Lu, and Yue Zhao. 2024. Drugagent:
Automating ai-aided drug discovery programming
through Ilm multi-agent collaboration. arXiv preprint
arXiv:2411.15692.

Graham Loomes and Robert Sugden. 1982. Regret the-
ory: An alternative theory of rational choice under un-
certainty. The economic journal, 92(368):805-824.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Au-
mayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma,
Mengyu Li, Guoli Yin, and 1 others. 2024. Toolsand-
box: A stateful, conversational, interactive evalua-

tion benchmark for llm tool use capabilities. arXiv
preprint arXiv:2408.04682.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An analyt-
ical evaluation board of multi-turn llm agents. arXiv
preprint arXiv:2401.13178.

Puneet Mathur, Alexa Siu, Varun Manjunatha, and Tong
Sun. 2024. Docpilot: Copilot for automating pdf
edit workflows in documents. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), pages 232-246.

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng,
Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou, Yankai
Lin, Zhiyuan Liu, and 1 others. 2024. Tell me
more! towards implicit user intention understand-
ing of language model driven agents. arXiv preprint
arXiv:2402.09205.

https://arxiv.org/abs/2504.15546
https://arxiv.org/abs/2504.15546
https://arxiv.org/abs/2504.15546
https://arxiv.org/abs/2504.15546
https://arxiv.org/abs/2504.15546
https://arxiv.org/abs/2305.13626
https://arxiv.org/abs/2305.13626
https://arxiv.org/abs/2305.13626
https://arxiv.org/abs/2305.13626
https://arxiv.org/abs/2305.13626
https://arxiv.org/abs/2305.13626
https://arxiv.org/abs/2305.13626
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Howard Raiffa and Robert Schlaifer. 2000. Applied
statistical decision theory. John Wiley & Sons.

Sudha Rao and Hal Daumé III. 2018. Learning to ask
good questions: Ranking clarification questions using
neural expected value of perfect information. arXiv
preprint arXiv:1805.04655.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36:68539-68551.

Sanidhya Vijayvargiya, Xuhui Zhou, Akhila Yerukola,
Maarten Sap, and Graham Neubig. 2025. Interactive
agents to overcome ambiguity in software engineer-
ing.

Chenyu Wang, Weixin Luo, Sixun Dong, Xiaohua Xuan,
Zhengxin Li, Lin Ma, and Shenghua Gao. 2025.

Wenxuan Wang, Juluan Shi, Chaozheng Wang, Cheryl
Lee, Youliang Yuan, Jen-tse Huang, and Michael R
Lyu. 2024. Learning to ask: When Ilms meet unclear
instruction. arXiv preprint arXiv:2409.00557.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu,
Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. 2024. Travelplanner: A benchmark for real-
world planning with language agents. arXiv preprint
arXiv:2402.01622.

Jingjing Xu, Yuechen Wang, Duyu Tang, Nan Duan,
Pengcheng Yang, Qi Zeng, Ming Zhou, and Xu Sun.
2019. Asking clarification questions in knowledge-
based question answering. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing

(EMNLP-1JCNLP), pages 1618-1629.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji,
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. 2024. Berkeley function calling
leaderboard. https://gorilla.cs.berkeley.
edu/blogs/8_berkeley_function_calling_
leaderboard. html.

Guoli Yin, Haoping Bai, Shuang Ma, Feng Nan, Yan-
chao Sun, Zhaoyang Xu, Shen Ma, Jiarui Lu, Xiang
Kong, Aonan Zhang, and 1 others. 2024. Mmau: A
holistic benchmark of agent capabilities across di-
verse domains. arXiv preprint arXiv:2407.18961.

Yangyang Yu, Haohang Li, Zhi Chen, Yuechen Jiang,
Yang Li, Denghui Zhang, Rong Liu, Jordan W Su-
chow, and Khaldoun Khashanah. 2024. Finmem: A
performance-enhanced llm trading agent with layered
memory and character design. In Proceedings of the
AAAI Symposium Series, volume 3, pages 595-597.

Michael JQ Zhang and Eunsol Choi. 2023. Clarify when
necessary: Resolving ambiguity through interaction
with lms. arXiv preprint arXiv:2311.09469.

Xuan Zhang, Yang Deng, Zifeng Ren, See Kiong Ng,
and Tat-Seng Chua. 2024. Ask-before-plan: Proac-
tive language agents for real-world planning. In Find-
ings of the Association for Computational Linguistics:

EMNLP 2024, pages 10836—-10863.
A Algorithmic Formulation

Algorithms 1-4 represent a formal algorithmic sum-
marization of our method.

B Theoretical Analysis of Argus Question
Scoring

B.1 Component Bounds

We derive theoretical bounds for each component
of the UCB scoring function to establish the range
of possible values and convergence properties.

B.1.1 EVPI and Regret Reduction Bounds

Theorem B.1 The Expected Value of Perfect Infor-
mation satisfies 0 < EVPI(qx) < 1.

Proof B.1.1 By definition, EVPI measures the dif-
ference between expected utility under perfect infor-
mation and expected utility under current beliefs:

EVPI(qr) = Eg [méix U(a,0)] — max Ep[U(a,0)]

The lower bound follows from Jensen’s inequal-
ity: since max, Ey[U(a,0)] < Eg[max, Ul(a,0)],
we have EVPI(qi) > 0.

For the upper bound, assume utilities are nor-

malized to [0, 1]. Then Eg[max, U(a,0)] < 1 and
max, Eg[U(a,8)] > 0, yielding EVPI(qi) < 1.
Theorem B.2 The regret reduction satisfies 0 <
ARegret(q;,) < 1.
Proof B.2.1 Regret reduction measures the de-
crease in worst-case regret from asking question
qx. Since asking questions cannot increase regret,
ARegret(qy,) > 0. The maximum reduction occurs
when uncertainty is completely resolved, bounded
by the initial regret which is at most I under nor-
malized utilities.

B.1.2 UCB Exploration Term Bounds

The exploration component ¢/ losWV+D) exhibits
np+1
different behaviors in extreme cases:

Case 1: Never asked (n; = 0):

log(N +1

Og(l—i_) = c/log(N +1)
Case 2: Always asked (n;, = N):

log(N +1)
N +1

https://arxiv.org/abs/2502.13069
https://arxiv.org/abs/2502.13069
https://arxiv.org/abs/2502.13069
https://arxiv.org/abs/2502.13069
https://arxiv.org/abs/2502.13069
https://arxiv.org/abs/2401.10727
https://arxiv.org/abs/2401.10727
https://arxiv.org/abs/2401.10727
https://arxiv.org/abs/2401.10727
https://arxiv.org/abs/2401.10727
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html

Algorithm 1 Multi-Request Simulation Process

1: procedure EXECUTESIMULATION(S) > S represents the simulation scenario
2 Initialize agent A, environment &, user model U
3 R« {ro,m1,...,rn} > Request sequence
4 C+ 10 > Conversation history
5: for each request r; € R do
6 Ti< 0 > Turn sequence for request ¢
7 Qeurrent < Ti > Current query state
8 clarification_count < 0
o: while clari fication_count < Ty, and not terminated do

10 response < A(qeurrent,C)

11: if response € P4y ccess then > Successful completion
12: Record completion in 7;

13: break

14: else if response € @ qrification then > Needs clarification
15: clarification < U(response.question,S)

16: if clarification = L then > User cannot provide clarification
17: Record incomplete in 7;

18: break

19: end if

20: Qeurrent < Enrich(r;, clarification)

21: clarification_count < clarification_count + 1

22: else

23: Record failure in 7;

24: break

25: end if

26: end while

27: C+CUT;

28: end for

29: evaluation < Evaluate(C,S.ground_truth)

30: return {C, evaluation}

31: end procedure

11

Algorithm 2 Argus

1: procedure ARGUS(query, context) > ReAct paradigm: Reason-Act-Observe + Argus
2 Q < context.observations > Observational memory
3: step <0
4: while step < 0,4, and not terminated do > REASON PHASE: Generate action hypothesis
5 0 + Reason(query,) &> Chain of thought
6 a < Select Action(0, Aavailabie) > Proposed action
> DISAMBIGUATE PHASE: Resolve parameter uncertainty
7: & < AssessUncertainty(«) > Uncertainty measure
8 if £ < d¢hreshoid then > High uncertainty detected
: Qelarification < Disambiguation(a, query)
10: return {status : clarification, question : qearification }
11: end if
> ACT PHASE: Execute selected action
12: p < Execute(a, &) > Action execution result
> ERROR RECOVERY PHASE
13: if p € E.ror then
14: recovery <« RecoveryStrategy(p, query, context)
15: if recovery.type = clari fication then
16: return {status : error_clarification, question : recovery.question}
17: else
18: Q « QU {recovery.observation}
19: continue
20: end if
21: end if
> COMPLETION CHECK
22: if @ = final_answer then
23: return {status : completed, result : c.answer}
24: end if
> OBSERVE PHASE: Update memory
25: 0« QU {p.observation}
26: step < step + 1
27: end while
28: return {status : completed, result : "max_steps_reached’}
29: end procedure
30: procedure REASON(query, {2) > Deliberative reasoning over available information
31: knowledge «+ |J; w; where w; € 2
32: 0 < Integrateln formation(query, knowledge, Kpackground)
33: return 6 > Coherent reasoning chain

34: end procedure

12

Algorithm 3 Parameter Disambiguation: Top-Level Procedure

1: procedure DISAMBIGUATION(«, query)

2 E«{} > Parameter uncertainty mapping
3 for each parameter p; € a.parameters do

4: &j < MeasureUncertainty(p;, a.tool)

5: w; + GetImportance(pj, a.tool)

6 Elpj] < {& wi}

7 end for

8 Soverall Zj wj - Ej/ Zj Wi

9 if Soverall = 5threshald then

10: return {needs_clarification : false,certainty : &pperall }
11: end if

12: Qcandidates < GenerateCandidates(query, o, 2)

13: M {}

14: for each question ¢ € Qcandidates A0

15: Mqi].evpi < EV PI(q, &)

16: Mlqx].regret < RegretReduction(qy, o)

17: M |qyx].exploration < Exploration Bonus(qy)

18: end for

19: ¢* < arg max,, CompositeScore(M|qy])
20: if ¢* # | then
21: return {needs_clarification : true, question : q*, certainty : operail
22: else
23: return {needs_clarification : false,certainty : &operall }
24: end if

25: end procedure

Algorithm 4 MeasureUncertainty

1: procedure MEASUREUNCERTAINTY (parameter, tool)

2 value <+ parameter.value

3 domain < GetDomain(parameter,tool)

4 if value = L or value = unknown then

5: return 1.0

6 end if

7 switch (domain.type)

8 case finite_set:

9 return DomainUncertainty(value, domain.values)
10: case continuous_range:
11: return RangeUncertainty(value, domain.bounds)
12: case context_dependent:
13: return ContextualUncertainty(value, domain, Ceyrrent)
14: default:
15: return BaselineUncertainty(value)
16: end switch

17: end procedure

13

As N — oo, the second case approaches 0,
while the first grows as c/log N.

B.1.3 Combined UCB Score Bounds
Theorem B.3 The total UCB score satisfies:

0 < UCB(qx) <2+ cy/log(N +1)
Proof B.3.1 The lower bound follows from non-
negativity of all components. For the upper bound:

UCB(qi) = EVPI(q) + ARegret(qy)

log(N +1)
ng + 1

Using the bounds from previous theorems and
the maximum exploration term when ny, = 0:

UCB(qr) <1414 cy/log(N +1)

=2+ cy/log(N +1)

B.2 Dynamic Threshold Justification

The linear threshold form 7 = 79 + o - N captures
the intuition of diminishing returns in information
gathering:

Early stages (N small): 7 ~ 79, providing a low
threshold that encourages exploration when little is
known about question values.

Later stages (IV large): 7 grows linearly, creat-
ing a higher bar for questions as the system accu-
mulates knowledge and marginal information value
decreases.

Relationship to score bounds: Given that UCB
scores are bounded by 2+c+/log(N + 1), areason-
able choice of « should ensure the threshold grows
slower than the maximum possible score, maintain-
ing a non-zero probability of asking questions. This
suggests & = O(y/log N/N) to balance between
being too permissive (asking too many questions)
and too restrictive (missing valuable clarifications).

Optimality intuition: Under a simple cost
model where each question costs c¢; and each unit
of remaining regret costs ¢z, the optimal threshold
approximately satisfies:

% C
(N) ~ é + ps(N)

where ug(N) is the expected score of a random
question. Since u5(N) typically decreases with N
(as high-value questions are asked first), a linear
increase in 7 can approximate this optimal policy.

14

B.3 Parameter Selection Guidelines

B.3.1 Exploration Coefficient c

From multi-armed bandit theory, the optimal explo-
ration coefficient scales as ¢* = O(y/log K) where
K is the number of potential questions. In practice:

* Small ¢ (< 0.5): Heavy exploitation, may miss
valuable unexplored questions

* Large c (> 2.0): Heavy exploration, asks
many low-value questions

* Recommended range: ¢ € [0.5,1.5] bal-
ances exploration-exploitation effectively

B.3.2 Threshold Parameters

Initial threshold 7y: Should be set relative to typi-
cal EVPl/regret scales:

* Too low: Asks questions with minimal infor-
mation value

* Too high: Misses valuable early clarifications

* Recommended: 7y € [1.0,2.0] for normal-
ized utilities

Growth rate «: Controls how aggressively the
system reduces question-asking over time:

 Empirically effective range: o € [0.1,0.3]

* Lower values: More questions, higher infor-
mation gain, increased user burden

* Higher values: Fewer questions, faster termi-
nation, potential information loss

Trade-off considerations: The choice of (79, @)
should reflect the relative costs of asking questions
versus making decisions under uncertainty. Appli-
cations with high decision stakes should use lower
« values to gather more information, while time-
sensitive applications should increase « to reduce
clarification overhead.

C Implementation Details

C.1 Computational Resources

Table 5 summarizes the computational budget for
our experiments.

GPU
RTX A6000

VRAM (GB)
48

GPU Hours
24

Purpose
LLaMa3.1-8B Inference

Table 5: Compute budget

C.2 Hyperparameters

For the Argus framework, we set exploration-
exploitation parameter ¢ = 0.8, base threshold
7 = 0.6, and decay rate o = 0.15. The system was
configured with

C.2.1 ReAct Agent Prompts

Reasoning Prompt This prompt is used in the
main reasoning phase of the ReAct agent to decide
which tool to use next based on the current state of
the conversation.

You are an AI assistant helping with a
user request.

SYSTEM CONTEXT:

You have access to the following tool
domain:

{plugin_descriptions}

Request: {request}

Previous observations:

{obs_text}

Available tools:

{tool_registry.get_tool_descriptions()}

Think step by step about what tool to
use next. Consider the plugin
context above to understand the
capabilities available to you.
you have enough information to
provide a final answer, use the
final_answer tool.

Respond in JSON format:

{

"reasoning":

n

If

"Your step-by-step thinking

,
"tool_call":
"tool_name":
"arguments”:
"argl”: "valuel”,
"arg2": "value2"”

"name_of_tool",

(SSRGS

Error Recovery Prompt Used when a tool exe-
cution fails to determine if the error can be resolved
automatically.

You are helping fix a failed tool call.
Original Request: {request}
Tool Information:
{tool_info or f"Tool:
Error Details:
{error_result.message}
Based on the error and tool information,
can you suggest how to fix this?
Respond in JSON format:
{
"can_fix": true/false,
"reasoning”: "explanation of what went
wrong and how to fix it",
"suggested_action”: "retry_with_changes”
or "different_tool” or "
need_clarification”,
"observation"”: "observation to add to
context for next reasoning step”

{tool_namel}"}

}

15

If you cannot determine a fix from the
available information, set can_fix
to false.

C.2.2 Question Generation Prompts for Argus

Used to generate clarification questions when there
is uncertainty about tool arguments.

You are an AI assistant that helps users
by understanding their queries and
executing tool calls.

{conversation_history}Original user
query:

"{user_query}"

Based on the query, I've determined that

the following tool calls are needed
, but some arguments are uncertain:

Tool Calls:

{tool_calls}

Detailed Tool Documentation:

{tool_documentation}

Uncertain Arguments:

{uncertain_args}

Your task is to generate clarification
gquestions that would help resolve
the uncertainty about specific
arguments.

Instructions:

Generate questions that are clear,
specific, and directly address the
uncertain arguments

Each question should target one or more
specific arguments

Questions should be conversational and
easy for a user to understand

For each question, specify which tool
and argument(s) it aims to clarify.

Generate 5 diverse questions.

Keep in mind the the arguments you wish
to clarify, their domains etc.

Return your response as a JSON object
with the following structure:

"questions”: [

"question”: "A clear question to ask the
user",

"target_args": [["tool_name”, "arg_name
"1, ["tool_name"”, "other_arg_name"]]

}

// 5 total questions

]

}

Ensure that each question targets at
least one uncertain argument.

C.2.3 User Simulator

The simulator takes a language model provider,
ground truth data, and user intent as inputs. It main-
tains the conversation state and ensures responses
are consistent with the user’s information. The core
of the simulation lies in two prompt templates that
instruct a language model to act as a user:

You are simulating a user who is
interacting with an AI assistant.
Original query: "{self.original_query}"
User's intent for the CURRENT request:

self.user_intent}

Information needed for the CURRENT
request (do not reveal future
intentions):

{current_turn_ground_truth?}

Additional context:

{self.context}

The AI assistant has asked the following

specific question:

"{question}”

Generate a realistic user response to
this SPECIFIC question. The response

should:

{

Be natural and conversational

ONLY provide information that directly
answers the specific question asked

NOT mention any future requests or
intentions the user might have

ONLY focus on the current task, not on
future tasks

Be concise and to the point

IMPORTANT: Never reveal future
intentions. Respond ONLY to the
specific question asked.

NEVER BREAK CHARACTER. DO NOT THINK OUT
LOUD. Respond directly as the user
would:

This template ensures the simulator provides nat-
ural, conversational responses that only address
the specific question without revealing future in-
tentions. For generating follow-up requests, the
simulator uses this template:

You are simulating a user who is
interacting with an AI assistant.
Original query: "{self.original_query}"”

User's intent: {self.user_intent}
Previous conversation:
{formatted_history}
Based on the conversation so far and the
user's intent, decide if the user
would have a follow-up request.
Consider:

Has everything the user wanted been
accomplished?

Is there a logical next step the user
might want to take?

Has the agent clearly indicated that
they 've completed all necessary
tasks?

If you believe the user would have a
follow-up request, provide it in a
natural, conversational way.

If you believe the conversation
complete, respond with "
CONVERSATION_COMPLETE".

NEVER BREAK CHARACTER, DO NOT THINK!

Decision:

is

16

This template helps the simulator determine
whether to generate a follow-up request based on
the conversation context and predefined potential
follow-ups. The User Simulator isolates ground
truth information for each conversation turn, en-
suring only relevant information is revealed at ap-
propriate times. It tracks the original query, user
intent, ground truth for tool calls, completed tool
calls, potential follow-up queries, and the current
conversation turn. By providing consistent, realis-
tic user responses, the simulator allows for repro-
ducible evaluation of clarification strategies across
multiple scenarios.

D Benchmark Details

D.1 Benchmark Domains

This appendix describes the key characteristics of
each API domain used in our experiments, detailing
their initialization parameters, state management,
and tool specifications.

Gorilla File System Plugin (GFS). The Gorilla
File System API simulates a UNIX-like file system
with a hierarchical directory structure. It maintains
state through:

* Directory structure with nested files and sub-
directories

* Current working directory pointer
* Each file contains content as strings

The plugin provides 18 tools implementing com-
mon file system operations such as navigation, file
creation, modification, and content manipulation.
Each tool supports parameters relevant to file sys-
tem operations, such as file names, directory paths,
and content strings. Table 10 provides detailed
information about these tools and their parameter
domains.

The GFS plugin’s domains depend heavily on
the current state of the file system. Domain updates
revolve primarily around available files and direc-
tories in the current working directory, as outlined
in Table 11.

Document Processing. The Document API sim-
ulates operations for PDF document manipulation.
Its state consists of:

* Number of pages in the current document

e PDF filename metadata

* Operation-specific context for page-based op-
erations

The plugin provides 18 document manipulation
tools including conversion, annotation, redaction,
and page manipulation functions. Parameters in-
clude page numbers, text content, formatting op-
tions, and file paths. Table 7 details the tools and
their parameter domains.

Domain updates in the Document Plugin focus
on page numbers and ranges, adapting dynamically
to changes in document length when pages are
added or deleted, as shown in Table 11.

Vehicle Control. The Vehicle Control API simu-
lates an automotive control system with:

* Engine state (running or stopped)

* Door lock status for each door

¢ Fuel level (ranging from 0 to 50 gallons)
* Battery voltage

 Climate control settings

* Brake systems (pedal position and parking
brake)

* Lighting systems
» Navigation state

This plugin implements 24 vehicle control tools
that manipulate different aspects of the vehicle,
including engine operations, door management, cli-
mate control, lighting, braking systems, and navi-
gation. Table 9 details the specific tools and their
parameter domains.

Vehicle Control domain updates primarily con-
cern contextual constraints such as brake pedal po-
sition for engine start, door states, and fuel level
requirements, as referenced in Table 11.

Travel. The Travel API simulates a travel book-
ing and management system with:

* Credit card registry and balances

* Flight booking records

e User information (first name, last name)
* Budget limits

* Available routes with pricing data

17

The plugin provides 15 tools for travel-related
operations, including flight bookings, credit card
management, budget settings, and travel informa-
tion queries. Table 6 details these tools and their
parameter domains.

Domain updates in the Travel Plugin focus on
available credit cards, booking IDs, and airport
codes for valid routes, as detailed in Table 11.

Trading Bot. The Trading Bot simulates a stock
trading platform with:

¢ Account information and balance

* Order records (pending, completed, can-
celled)

 Stock data with prices and metrics
* Watchlist of stocks

* Transaction history

* Market status (open/closed)

This plugin provides 19 trading tools for account
management, order placement, stock information
retrieval, and market analysis. Table 8 lists the
specific tools and their parameter domains.

Trading Plugin domain updates primarily in-
volve available stocks, watchlist items, and order
IDs, adapting to user actions like placing orders or
modifying watchlists, as referenced in Table 11.

All plugins follow a consistent pattern for state
initialization through configuration objects, domain
updates based on state changes, and parameter val-
idation. The dynamic nature of these domains
presents particular challenges for language model
interactions, as valid parameter values continuously
evolve during conversations based on system state
changes.

D.2 Human Annotation

We employed two graduate student annotators,
aged 22-25. The annotators were proficient in En-
glish, and have proficiency in Python (relevant to
test tool calls). The annotators were fairly compen-
sated at the standard Graduate Assistant hourly rate,
following their respective graduate school policies.
Fig 6 shows a summary of the annotator guidelines.

D.3 Tool Call Corruption Heuristics

We handcrafted rues to corrupt validated tool calls
in the ground truth data, to construct ClarifyBench-
Infeasible.

Tool Name ‘ Argument ‘ Description ‘ Domain Type Domain Values ‘ Data Dep. ‘ Required ‘ Importance
. lastModifiedAfter Date filter for fiscal years string Any date string N N 0.5
get_budget_fiscal_year . .
includeRemoved Include removed fiscal years | string Any string N N 0.5
card_number Credit card number string Any card number N 0.9
. N expiration_date Card expiration (MM/YYYY) | string MM/YYYY format N
register_credit_card)
cardholder_name Name on card string Any name string N
card_verification_number | CVV code numeric_range | [100, 999] N
travel_from Departure airport code string*® 3-letter codes 0.9
. travel_to Arrival airport code string* 3-letter codes 0.9
get_flight_cost .
travel_date Travel date string YYYY-MM-DD N 0.9
travel_class Seat class finite [economy, business, first] N
get_credit_card_balance card_id Credit card identifier string*® Card ID list ‘ ‘ 0.9
card_id Payment card ID string* Card ID list 0.9
travel_date Travel date string YYYY-MM-DD N 0.9
. travel_from Departure airport string* Airport codes 0.9
book_flight
travel_to Arrival airport string* Airport codes 0.9
travel_class Seat class finite [economy, business, first] N
travel_cost Flight cost numeric_range | [0, 10000] N 0.9
. L booking_id Booking identifier string® Booking ID list N 0.9
retrieve_invoice L i R
insurance_id Insurance identifier string® Insurance ID list N
list_all_airports ‘ No arguments
cancel_booking | booking_id | Booking to cancel | string | Booking ID list \ \ | 09
base_currency Source currency finite [USD, RMB, EUR, JPY, GBP, CAD, AUD, INR, RUB, BRL, MXN] N 0.9
compute_exchange_rate target_currency Target currency finite [USD, RMB, EUR, JPY, GBP, CAD, AUD, INR, RUB, BRL, MXN] N 0.9
value Amount to convert numeric_range | [0, 1000000] N 0.9
first_name Traveler’s first name string Any name N 0.9
. . . last_name Traveler’s last name string Any name N 0.9
verify_traveler_information
date_of _birth Birth date string YYYY-MM-DD N 0.9
passport_number Passport number string Any passport ID N 0.9
set_budget_limit | budget_1imit | Budget timit in USD | numeric_range | [0, 10000} | ~ | | 09
get_nearest_airport_by_city ‘ location ‘ City name ‘ finite ‘ [Rivermist, Stonebrook, ...] ‘ N ‘ ‘ 0.9
insurance_type Type of insurance finite [basic, premium, deluxe] N
. booking_id Booking identifier string* Booking ID list 0.9
purchase_insurance X
insurance_cost Insurance cost numeric_range | [0, 1000] N 0.9
card_id Payment card ID string™® Card ID list 0.9
booking_id Booking reference string® Booking ID list 0.9
contact_customer_support)
message Support message string Any message text N 0.9

get_all_credit_cards

No arguments

Table 6: Travel Plugin API: Complete Tool and Argument Specification with Domain Dependencies

18

Tool Name ‘ Argument ‘ Description ‘ Domain Type ‘ Domain Values Data Dep. ‘ Required Importance
duplicate ‘ output_filename ‘ Name of duplicate file ‘ string ‘ Any filename ‘ N ‘ ‘
rename ‘ output_filename ‘ New filename ‘ string ‘ Any filename ‘ N
search ‘ object_name ‘ Search term/object ‘ string ‘ Any search term ‘ N 0.9
count_pages ‘ No arguments
compress_file ‘ output_filename ‘ Compressed output name ‘ string ‘ Any filename ‘ N 0.6

format Target format finite [pptx, doc, png, jpeg, tiff] N 0.9
convert output_filename | Output filename string Any filename N

zip Zip output files boolean [true, false] N 0.4

page_num Page number numeric_range* | [1, num_pages] 0.9
add_comment coordinates Comment position [x,y] | list [, y] coordinates N 0.6

font_size Font size (points) numeric_range | [8, 72] N 0.5

start Start page (inclusive) numeric_range* | [1, num_pages] 0.9
redact_page_range X . .

end End page (inclusive) numeric_range* | [1, num_pages] 0.9

start Start page numeric_range* | [1, num_pages] 0.9

end End page numeric_range* | [1, num_pages] 0.9
redact_text object_name Text to redact (list) list List of text strings N 0.9

overwrite Overwrite original boolean [true, false] N

output_pathname | Output filename string Any filename N

start Start page numeric_range* | [1, num_pages] 0.9

end End page numeric_range* | [1, num_pages] 0.9
highlight_text object_name Text to highlight (list) list List of text strings N 0.9

overwrite Overwrite original boolean [true, false] N

output_pathname | Output filename string Any filename N

start Start page numeric_range* | [1, num_pages] 0.9

end End page numeric_range* | [1, num_pages] 0.9
underline_text object_name Text to underline (list) list List of text strings N 0.9

overwrite Overwrite original boolean [true, false] N

output_pathname | Output filename string Any filename N

start Start page numeric_range* | [1, num_pages] 0.9

end End page numeric_range* | [1, num_pages 0.9
extract_pages P g o =k [R pages]

overwrite Overwrite original boolean [true, false] N

output_pathname | Output filename string Any filename N

page_num Page to delete numeric_range* | [1, num_pages] 0.9
delete_page overwrite Overwrite original boolean [true, false] N

output_pathname | Output filename string Any filename N

start Start page numeric_range* | [1, num_pages] 0.9

end End page numeric_range* | [1, num_pages] 0.9
delete_page_range . ..

overwrite Overwrite original boolean [true, false] N

output_pathname | Output filename string Any filename N

page_num Page for signature numeric_range* | [1, num_pages] 0.9

. position Signature position finite [top-left, top-middle, ...] N

add_signature . .

overwrite Overwrite original boolean [true, false] N

output_pathname | Output filename string Any filename N

text_content Page text content string Any text content N 0.9
add_page_with_text | font_size Text font size numeric_range | [8, 72] N 0.6

page_num Insert position numeric_range* | [1, num_pages+1]

watermark_text | Watermark text string Any text N 0.9
add_watermark .

transparency Transparency level numeric_range | [0.0, 1.0] N 0.6
add_password ‘ password ‘ PDF password ‘ string ‘ Any password string ‘ N 0.9

Table 7: Document Plugin API: Complete Tool and Argument Specification with Domain Dependencies

19

Tool Name Argument

‘ Description

‘ Domain Type ‘ Domain Values

‘Data Dep. Required Importance

get_current_time ‘

No arguments

update_market_status ‘ current_time_str ‘ Time in HH:MM AM/PM ‘ string ‘ HH:MM AM/PM format ‘ N ‘ ‘
get_symbol_by_name ‘ name ‘ Company name ‘ string ‘ Any company name ‘ N ‘ ‘ 0.9
get_stock_info ‘ symbol ‘ Stock symbol ‘ string* ‘ Available stock symbols ‘ ‘ ‘ 0.9
get_order_details ‘ order_id ‘ Order identifier ‘ numeric_range* ‘ Existing order IDs ‘ ‘ ‘ 0.9
cancel_order ‘ order_id ‘ Order to cancel ‘ numeric_range* ‘ Existing order IDs ‘ ‘ ‘ 0.9
order_type Buy or Sell finite [Buy, Sell] N 0.9
symbol Stock symbol string*® Available stocks 0.9
place_order X X
price Price per share numeric_range | [0.01, 10000.0] N
amount Number of shares numeric_range | [1, 10000] N
. xact_type Transaction type finite [deposit, withdrawal] N 0.9
make_transaction X X .
amount Transaction amount numeric_range | [0.01, 1000000.0] N 0.9
get_account_info ‘ No arguments
fund_account ‘ amount ‘ Funding amount ‘ numeric_range ‘ [0.01, 1000000.0] ‘ N ‘ ‘ 0.9
remove_stock_from_watchlist ‘ symbol ‘ Stock to remove ‘ string® ‘ Watchlist stocks ‘ ‘ ‘ 0.9
get_watchlist ‘ No arguments
get_order_history ‘ No arguments
. . start_date Start date filter string YYYY-MM-DD format N
get_transaction_history
end_date End date filter string YYYY-MM-DD format N
. symbol Stock symbol string*® Available stocks 0.9
update_stock_price K X
new_price New stock price numeric_range | [0.01, 10000.0] N 0.9
get_available_stocks sector Market sector finite [Technology, Automobile, Healthcare, Finance, Energy] N
stocks Stock list to filter list List of stock symbols N 0.9
filter_stocks_by_price min_price Minimum price numeric_range | [0.01, 10000.0] N
max_price Maximum price numeric_range | [0.01, 10000.0] N
add_to_watchlist stock Stock to add string*® Available stocks ‘ ‘ 0.9
.) stocks Stocks to monitor list List of stock symbols N 0.9
notify_price_change X
threshold Change threshold (%) numeric_range | [0.01, 100.0] N

Table 8: Trading Plugin API: Complete Tool and Argument Specification with Domain Dependencies

Tool Name Argument ‘ Description ‘ Domain Type ‘ Domain Values ‘ Data Dep. ‘ Required Importance
startEngine | igni tiontode | Engine ignition mode | finite | [START, STOP] | N | 09
fillFuelTank ‘ fuelAmount ‘ Fuel to add (gallons) ‘ numeric_range* ‘ [0, 50-current_fuel] ‘ ‘ ‘
Lockb unlock Lock or unlock boolean [true, false] N
ockDoors
door Doors to operate list* [driver, passenger, rear_left, rear_right] 0.9
temperature Target temperature | numeric_range | [-10, 50] N
diustClinateControl unit Temperature unit finite [celsius, fahrenheit] N 0.6
adjustClimateContro .
fanSpeed Fan speed (0-100) numeric_range | [0, 100] N 0.6
mode Climate mode finite [auto, cool, heat, defrost] N
get_outside_temperature_from_google ‘ No arguments
get_outside_temperature_from_weather_com ‘ No arguments
setHeadlights ‘ mode ‘ Headlight mode ‘ finite ‘ [on, off, auto] ‘ N ‘ ‘
displayCarStatus ‘ option ‘ Status display option ‘ finite ‘ [fuel, battery, doors, climate, headlights, parkingBrake, brakePedal, engine] ‘ N ‘ ‘
activateParkingBrake ‘mode ‘ Brake mode ‘ finite ‘ [engage, release] ‘ N ‘ ‘
pressBrakePedal ‘ pedalPosition ‘ Pedal position (0-1) ‘ numeric_range ‘ [0,1] ‘ N ‘ ‘
releaseBrakePedal | No arguments
speed Cruise speed (mph) | finite* [0,5, 10, ..., 120]
setCruiseControl activate Activate cruise boolean* [true, false]
distanceToNextVehicle | Following distance (m) | numeric_range | [0, 1000] N
get_current_speed | No arguments
display_log | messages | Log messages [st | List of strings | ~ | |
estinate_drive_feasibility by mileage | distance | Distance inmiles | numeric_range | [0, 10000] | ~ | |
liter_to_gallon [Liter | Liters to convert | numeric_range | 10, 1000] | ~ | | o6
gallon_to_liter ‘gallon ‘Gullons to convert ‘numeric_range ‘ [0, 1000] ‘ N ‘ ‘ 0.6
Cinatedist cityA First city zipcode finite [83214, 74532, 56108, ... N
estimate_distance
cityB Second city zipcode | finite [83214, 74532, 56108, .. N
get_zipcode_based_on_city ‘ city ‘ City name ‘ finite ‘ [Rivermist, Stonebrook, ...] ‘ N ‘ ‘
set_navigation | destination | Destination address | string | Street, city, state format | ~ | |

check_tire_pressure ‘

No arguments

find_nearest_tire_shop ‘

No arguments

Table 9: Vehicle Control Plugin API: Complete Tool and Argument Specification with Domain Dependencies

20

Tool Name ‘ Argument

‘ Description

‘ Domain Type Domain Values

‘ Data Dep. ‘ Required ‘ Importance

pwd ‘ No arguments
1s ‘ a ‘ Show hidden files ‘ boolean ‘ [true, false] ‘ N ‘ N ‘ 0.3
cd ‘ folder ‘ Directory to change to ‘ string*® ‘ Available directories + [.., /] ‘ ‘ ‘ 0.9
mkdir ‘ dir_name ‘ New directory name ‘ string ‘ Any valid directory name ‘ N ‘ ‘
touch ‘ file_name ‘ New file name ‘ string ‘ Any valid filename ‘ N ‘ ‘
h content Text content string Any text string N 0.9
echo
file_name Output file (optional) string Any filename N N
cat ‘ file_name ‘ File to display ‘ string*® ‘ Available files ‘ ‘ ‘ 0.9
find path Search starting point string Any path N N 0.6
in
name Search pattern string Any search pattern N N
file_name File to count string* Available files 0.9
we
mode Count mode finite [1, w, c] N N 0.6
sort ‘ file_name ‘ File to sort ‘ string*® ‘ Available files ‘ ‘ ‘ 0.9
file_name File to search string* Available files 0.9
grep
pattern Search pattern string Any text pattern 0.9
du ‘ human_readable ‘ Human readable format ‘ boolean ‘ [true, false] ‘ ‘ N ‘ 0.4
tail file_name File to display string* Available files 0.9
ai
lines Number of lines numeric_range | [1, 100] N N 0.5
diff file_namel First file string* Available files 0.9
i
file_name2 Second file string* Available files 0.9
source Source file/directory string* Available items 0.9
mv
destination Destination name string*® Available items + new names 0.9
rm ‘ file_name ‘ File/directory to remove ‘ string* ‘ Available items ‘ ‘ ‘ 0.9
rmdir ‘ dir_name ‘ Directory to remove ‘ string*® ‘ Available directories ‘ ‘ ‘ 0.9
source Source file/directory string* Available items 0.9
cp
destination Destination name string*® Available items + new names 0.9

Table 10: File System Plugin API: Complete Tool and Argument Specification with Domain Dependencies

21

Plugin

Update Trigger

Dynamic Domain Updates

Affected Operations

Travel

Credit card registration

Flight booking

Budget setting
Route updates

Card IDs — available payment methods

Booking IDs — cancellable/retrievable
bookings

Budget limits — financial constraints

Airport codes — valid travel routes

book_flight,
get_credit_card_balance,
purchase_insurance
cancel_booking, re-
trieve_invoice, con-
tact_customer_support
All cost-related operations

get_flight_cost,
book_flight

Document

Page operations

Document loading

Cache invalidation

Page count — valid page numbers

Total pages — range constraints

State changes — domain refresh

All page-specific opera-
tions

add_comment,
delete_page, etc.

Page-changing operations

Trading

Order placement

Stock updates

Watchlist changes

Order IDs — manageable orders

Available stocks — tradeable symbols

Watchlist — removable stocks

get_order_details,
cel_order

can-

place_order,
get_stock_info

remove_stock_from_watchlist

Vehicle

Fuel level changes
Door state changes

Engine state

Current fuel — addable amount
Door status — operable doors

Running/stopped — cruise control avail-
ability

fillFuel Tank
lockDoors

setCruiseControl

File System

Directory navigation
File operations
Directory changes

State synchronization

Current contents — available items
File list — operable files
Directory list — navigable paths

FS changes — domain cache invalida-
tion

cd, cat, mv, cp, rm
File-specific operations
cd, rmdir

All state-changing opera-
tions

Table 11: Dynamic Domain Update Rules and Triggers Across Plugin System

22

GorillaFileSystem For the file system API, we
implemented four primary corruption strategies:

* Invalid File Name Corruption targeting func-
tions like mkdir, touch, and cat by inserting
forbidden characters (e.g., |, /, \, ?);

e Path Traversal Corruption for cd, mv, cp, and
find operations by inserting relative paths
(../) or absolute paths (/root/);

* Non-existent Files Corruption for file opera-
tion functions by generating random names or
modifying existing names;

* Duplicate Creation Corruption for mkdir and
touch operations by using existing file/direc-
tory names.

DocumentPlugin For the document manipula-
tion API, we implemented three corruption strate-
gies:

* Invalid Page Range Corruption for functions
like add_comment and delete_page by set-
ting zero/negative values or exceeding total

pages;

* Invalid Formats Corruption for convert oper-
ations by using unsupported formats or partial
strings;

Out of Range Values Corruption for param-
eters like font_size and transparency by
exceeding min/max bounds or using negative
values.

VehicleControlAPI For the vehicle control API,
we focused on two corruption categories:

* Invalid Ranges Corruption for functions like
fillFuelTank and adjustClimateControl
by exceeding capacity or using negative val-
ues;

* Invalid Enums Corruption for operations like
startEngine and setHeadlights by supply-
ing wrong enum values or case mismatches.

Travel API For the travel booking API, we im-
plemented three corruption strategies:

* Financial Constraints Corruption for func-
tions like book_flight by exceeding avail-
able balance or using negative values;

23

* Invalid Routes Corruption for route param-
eters by using non-existent airport codes or
identical from/to locations;

* Non-existent Booking Corruption for func-
tions like cancel_booking by generating ran-
dom non-existent IDs.

TradingBot For the stock trading API, we imple-
mented three corruption strategies:

* Invalid Symbols Corruption for functions like
get_stock_info by using non-existent sym-
bols or malformed formats;

 Financial Validation = Corruption for
place_order and related functions by using
negative values or amounts exceeding account
balance;

* Order State Conflicts Corruption for
cancel_order operations by referencing
completed orders or using malformed order
IDs.

Human Annotation Guidelines

Objective:

Annotators must evaluate five LLM-generated queries per sample. Each query is scored on three
dimensions: (A) Naturalness of language, (B) Faithfulness to the expected tool call, and (C)
Executability/Validity. Additionally, annotators must check for removal of Personally Identifiable
Information (PII), assess tool call feasibility, and select one optimal query per sample.

Evaluation Rubric

Criterion

A.
Naturalness

B.
Faithfulness

C.
Executability

Score 5

Fully fluent,
natural,
human-like

Perfect match
to expected
tool call; all
required
arguments
present

Fully
executable;
properly
structured
and valid

Score 4

Minor
awkwardness
or stiffness

Mostly aligned;
minor phrasing
or parameter
issues

Executes with
minor issues or
missing
defaults

Score 3

Understandable
but robotic

Some omissions
or hallucinations;
core logic intact

Partially
executable with
moderate
corrections
needed

Score 2

Clearly
awkward or
difficult to
read

Major
deviations
from
expected
tool
behavior

Major issues
preventing
execution

Score 1

Unintelligible or
nonsensical

Entirely
incorrect or
misleading tool
structure

Unexecutable
or contradicts
tool logic/API

Required Checks

e Pll Removal: Ensure no personal identifiers (names, emails, phone numbers, IDs) are present
Flag these queries for further processing.

e Tool Call Validation: If feasible, simulate or run tool calls to confirm validity and argument
correctness.

e Error Identification: Mark and annotate any queries with logical inconsistencies, invalid
parameters, or unsupported constraints.

Figure 6: Summary of instructions given to human annotators.

24

	Introduction
	Related Work
	ClarifyBench
	Benchmark Design
	Benchmark Construction

	Argus
	Uncertainty Quantification Framework
	Candidate Interpretation Generation
	Domain-Informed Uncertainty Calculation

	Information-Theoretic Clarification Generation
	Candidate Question Generation
	Expected Value of Perfect Information (EVPI)
	Argument Importance and Regret Minimization

	Exploration-Exploitation Trade-off in Question Selection
	Response Processing and Belief Update

	Experiments
	Baselines
	Metrics

	Results
	Conclusion
	Limitations
	Ethics Statement
	Algorithmic Formulation
	Theoretical Analysis of Argus Question Scoring
	Component Bounds
	EVPI and Regret Reduction Bounds
	UCB Exploration Term Bounds
	Combined UCB Score Bounds

	Dynamic Threshold Justification
	Parameter Selection Guidelines
	Exploration Coefficient c
	Threshold Parameters

	Implementation Details
	Computational Resources
	Hyperparameters
	ReAct Agent Prompts
	Question Generation Prompts for Argus
	User Simulator

	Benchmark Details
	Benchmark Domains
	Human Annotation
	Tool Call Corruption Heuristics

