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Abstract001

Agents that bridge language understanding and002
tool execution are increasingly tasked with car-003
rying out user intent in open-ended environ-004
ments. However, ambiguous or infeasible user005
instructions frequently lead to incorrect tool in-006
vocations, system failures, and degraded user007
experience. Existing clarification approaches008
operate in unstructured token spaces and rely009
on general-purpose uncertainty estimation, re-010
sulting in over-clarification and inefficient ques-011
tion selection. We propose Argus, an infor-012
mation theoretic approach that leverages struc-013
tured tool argument domains to resolve am-014
biguous tool calls through principled clarifi-015
cation. By operating directly on tool argu-016
ment spaces rather than arbitrary text, Argus017
combines exploration-exploitation optimiza-018
tion with regret minimization to strategically019
select clarifying questions that maximize infor-020
mation gain while minimizing user interaction021
burden. To evaluate clarification strategies in022
realistic scenarios, we develop ClarifyBench,023
which uniquely combines dynamic user simula-024
tion with multi-turn conversational progression025
across five domains, addressing critical gaps026
in existing static evaluation approaches. Ex-027
periments demonstrate that Argus outperforms028
prior clarification strategies by 25% in task suc-029
cess while reducing unnecessary clarification030
upto 40%, significantly enhancing user satisfac-031
tion through reduced interaction burden. 1032

1 Introduction033

Tool-calling agents are AI systems that extend large034

language models (LLMs) with the ability to au-035

tonomously invoke external APIs and tools based036

on structured function definitions, enabling interac-037

tion with databases, web services, and software ap-038

plications (Schick et al., 2023). For instance, a user039

requesting "book me a flight to Paris" requires the040

agent to disambiguate departure city, travel dates,041
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Figure 1: Clarifying questions improve certainty in the agen-
tic systems by reducing multidimensional tool argument space.
Argus uses an information theoretic approach involving the
Expected Value of Perfect Information (EVPI), and ∆ Regret
for optimal question selection.

budget constraints, and airline preferences before 042

invoking booking APIs. These agents have been 043

successfully deployed across diverse domains in- 044

cluding travel planning, document processing, fi- 045

nance, vehicle control, and drug discovery (Xie 046

et al., 2024; Mathur et al., 2024; Yu et al., 2024; 047

Huang et al., 2024; Liu et al., 2024). However, 048

their effectiveness is fundamentally limited by am- 049

biguous or incomplete user instructions that lead to 050

incorrect tool invocations, failed transactions, and 051

degraded user experience—problems that become 052

increasingly critical as these systems handle more 053

complex, high-stakes tasks. 054

Ambiguity in user requests poses unique chal- 055

lenges for tool-calling agents, where imprecise in- 056

terpretation can cascade into costly execution er- 057

rors (Wang et al., 2024; Vijayvargiya et al., 2025). 058

User ambiguity manifests through vague task spec- 059

ifications ("find me a good restaurant"), incom- 060

plete parameters ("book a meeting for tomorrow"), 061

or implicit assumptions about system capabilities 062

(Wang et al., 2025). The structured nature of 063

tool schemas—with their specific parameter types, 064
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constraints, and interdependencies—amplifies this065

challenge, as a single ambiguous user query of-066

ten maps to multiple valid API configurations with067

vastly different outcomes (Bandlamudi et al., 2025).068

For example, "cancel my subscription" could ap-069

ply to multiple services, cancellation types (pause070

vs. permanent), or effective dates, each requiring071

different API calls with distinct consequences.072

Existing disambiguation approaches suffer from073

fundamental limitations in tool-calling contexts.074

Due to their next-token prediction training, LLMs075

often hallucinate missing arguments when faced076

with incomplete information, leading to incor-077

rect tool invocations (Wang et al., 2024). Cur-078

rent methods operate primarily in unstructured lan-079

guage spaces—generating clarifying questions as080

arbitrary text sequences through prompting strate-081

gies—rather than leveraging the structured con-082

straints and dependencies that define tool schemas083

(Kobalczyk et al., 2025; Zhang et al., 2024). While084

prompting improvements can enhance question085

phrasing, they cannot fundamentally address the086

core limitation: without explicit modeling of087

parameter relationships, importance hierarchies,088

and feasibility constraints, agents lack principled089

criteria for determining which questions to ask090

and when to stop asking them. This results in091

over-clarification of low-impact details, under-092

clarification of critical missing information, and093

inability to distinguish feasible from infeasible re-094

quests. For instance, when a user requests "book095

a hotel in New York", optimal disambiguation re-096

quires understanding both parameter uncertainty097

(check-in dates are unspecified) and task criticality098

(wrong dates cause booking failure, while room099

amenities minimally impact success); insights that100

emerge from tool schema structure rather than lan-101

guage patterns, as motivated by Figure 1.102

Main Results. To address these limitations,103

we introduce Argus, an information-theoretic ap-104

proach that quantifies parameter space uncertainty105

and importance of clarification targets simultane-106

ously to enable principled disambiguation. Argus107

leverages three key insights: (1) tool schema en-108

code structured relationships that language-space109

approaches are unable to capture, leading to pre-110

cise uncertainty quantification over parameter do-111

mains rather than arbitrary text generation; (2),112

information-theoretic measures combined with re-113

gret minimization provide optimal stopping cri-114

teria, ensuring clarification targets high-value in-115

formation while minimizing user burden; and116

(3), exploration-exploitation optimization balances 117

known parameter importance with discovery of un- 118

explored disambiguation opportunities, preventing 119

premature question stopping while avoiding over- 120

clarification. This principled foundation naturally 121

handles various disambiguation challenges, from 122

parameter ambiguity to constraint feasibility, with- 123

out requiring separate heuristics for each case. To 124

systematically evaluate such comprehensive disam- 125

biguation capabilities, we introduce ClarifyBench, 126

the first benchmark designed specifically for in- 127

teractive tool-calling disambiguation, featuring dy- 128

namic user simulation that can respond to clarifying 129

questions and engage in multi-turn task progres- 130

sion. Unlike existing static evaluation approaches, 131

ClarifyBench captures the full complexity of re- 132

alistic human-agent interaction across diverse tool- 133

calling scenarios. 134

Our key contributions include: 135

• Argus: A novel principled approach that 136

leverages structured tool argument domains to 137

quantify uncertainty and task impact, combin- 138

ing information-theoretic measures (Expected 139

Value of Perfect Information), regret mini- 140

mization, and exploration-exploitation opti- 141

mization (UCB scores) to enable optimal clar- 142

ification strategies. 143

• ClarifyBench: First comprehensive bench- 144

mark designed specifically for tool-calling dis- 145

ambiguation, featuring dynamic LLM-based 146

user simulation capable of multi-turn conver- 147

sational progression and realistic task continu- 148

ation across diverse domains – document edit- 149

ing, vehicle control, stock trading, travel book- 150

ing, and file system. 151

• Empirical validation: Through extensive ex- 152

periments with realistic user simulations, we 153

demonstrate that Argus achieves upto 25% 154

absolute improvement in task success rate 155

while reducing unnecessary clarification by 156

40% compared to existing approaches, with 157

consistent performance gains across explicit, 158

ambiguous, and infeasible query types. 159

2 Related Work 160

The challenge of resolving ambiguity in user in- 161

teraction with LLMs through clarifying questions 162

has gained increasing attention, particularly in tool- 163

calling contexts. Early approaches to clarification 164

focused on general dialogue systems, developing 165
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ranking-based methods for question selection (Rao166

and Daumé III, 2018; Xu et al., 2019) and Seq2Seq167

generation (Deng et al., 2022). Recent work has168

specifically addressed ambiguity in tool-calling169

scenarios: Ask-before-Plan introduces proactive170

planning agents that predict clarification needs and171

collect information before execution (Zhang et al.,172

2024), while Active Task Disambiguation frames173

the problem through Bayesian Experimental De-174

sign to maximize information gain from clarifying175

questions (Kobalczyk et al., 2025). Zhang and176

Choi propose intent-similarity based uncertainty177

estimation to determine when clarification is ben-178

eficial across various NLP tasks (Zhang and Choi,179

2023). Related efforts explore implicit intention un-180

derstanding in language agents (Qian et al., 2024)181

and proactive dialogue systems that can handle182

ambiguous queries through goal planning (Deng183

et al., 2023). However, these approaches primarily184

operate in the general language space without lever-185

aging the structured nature of tool schemas. Unlike186

previous work that relies on token-space reason-187

ing or task-agnostic uncertainty estimation, Argus188

directly quantifies uncertainty over structured tool189

argument domains, enabling principled question190

selection that combines information-theoretic mea-191

sures with domain-specific constraints.192

3 ClarifyBench193

The evaluation of clarification strategies in tool-194

calling agents requires benchmarks that capture the195

complexity of real-world user interactions, partic-196

ularly when dealing with ambiguous or infeasible197

requests. To address this need, we introduce Clar-198

ifyBench, a comprehensive benchmark designed199

to evaluate clarification strategies across diverse200

domains and query types. As shown in Table 1, ex-201

isting benchmarks exhibit critical limitations: many202

lack support for ambiguous and infeasible queries203

entirely, while those that include such scenarios are204

limited in scope or domain coverage. Moreover,205

most benchmarks rely on static evaluation and lack206

dynamic user simulation capabilities essential for207

evaluating interactive clarification strategies.208

ClarifyBench addresses these limitations209

through dynamic user simulation enabling realistic210

multi-turn interactions, comprehensive query types211

(normal, ambiguous, and infeasible), and multi-212

domain coverage across five distinct domains. Fig-213

ure 2 illustrates the benchmark design: a user sim-214

ulator conducts multi-turn interactions with tool-215

User Simulator

Tool-calling Agent

Ground-truth
Tool Call

Evaluation

Vehicle Control Travel Documents

File System Stocks

Initial Query
User Intent Prompt
Follow-up requests

Explicit Requests

Ambiguous Requests

Infeasible Requests

Query Types

User-Agent
Interaction

Tool Call

Tool use

Tools

Domains

API 

Figure 2: ClarifyBench enables comprehensive evaluation
of agent clarification strategies by simulating normal, am-
biguous, and infeasible user queries across five domains. A
dynamic user simulator conducts multi-turn interactions with
tool-equipped LLM agents, with evaluation based on align-
ment with ground truth agent tool calls.

equipped LLM agents, simulating genuine con- 216

versational progression where users naturally fol- 217

low up with related requests after clarification ex- 218

changes. Evaluation compares ground truth tool 219

calls with agent-generated actions, providing ro- 220

bust assessment of clarification effectiveness across 221

realistic scenarios. 222

3.1 Benchmark Design 223

ClarifyBench encompasses five diverse domains 224

that reflect real-world tool-calling scenarios: docu- 225

ment processing, vehicle management, stock trad- 226

ing, travel planning, and file system management. 227

These domains were selected to represent varying 228

levels of complexity, different types of argument 229

structures, and distinct sources of ambiguity that 230

agents encounter in practice. Table 2 gives a sta- 231

tistical summary of the benchmark. Each sample 232

in ClarifyBench is represented as a tuple: (user 233

query, user intent, follow-up queries, ground truth 234

tool call, domain). 235

The benchmark includes three distinct query 236

types that systematically evaluate different as- 237

pects of clarification: 1. Explicit Queries: Well- 238

specified requests that provide sufficient informa- 239

tion for direct tool execution, serving as baseline 240

performance indicators. 2. Ambiguous Queries: 241

Requests with missing or unclear parameters that 242

require clarification to determine the appropriate 243

tool calls and arguments. 3. Infeasible Queries: 244

Requests which if executed at face value would gen- 245

erate errors due to invalid parameters, conflicting 246

constraints, or impossible conditions. 247
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Benchmark
Dynamic User

Simulation
Ambiguous

Queries
Infeasible
Queries

Multi-turn
Requests

Tool Domains Number of Tools

AgentBoard (Ma et al., 2024) ✗ ✗ ✗ ✗ Information Retrieval, Manipulation 50

τ -bench ✓ ✗ ✗ ✓ Retail, Airlines 24

MMAU (Yin et al., 2024) ✗ ✗ ✗ ✗ RapidAPI Tools 364

ToolSandbox (Lu et al., 2024) ✓ ✗ ✗ ✓ Personal Assistant 34

Ask-Before-Plan (Zhang et al., 2024) ✓ ✓ ✓ ✗ Travel 6

BFCL-v3 (Yan et al., 2024) ✗ ✓ ✗ ✓ Vehicle Control, Stocks, Travel, File System 129

ClarifyBench ✓ ✓ ✓ ✓ Documents, Vehicle Control, Stocks, Travel, File System 92

Table 1: Comparison of ClarifyBench with existing tool-calling benchmarks.

Metric Doc Vehicle Stocks Travel Files All

Total Samples 133 126 126 117 121 623

Number of Tools 18 22 19 15 18 92

Avg # of Tool Calls 2.3 3.2 4.1 3.7 4.2 3.5

Explicit Queries 50 50 49 50 43 242

Ambiguous Queries 48 44 49 48 44 233

Infeasible Queries 35 32 28 19 34 148

Avg # of Follow-up 2.2 2.8 2.9 3.1 3.2 2.8

Table 2: Statistical summary of ClarifyBench.

3.2 Benchmark Construction248

Data Sources. ClarifyBench draws from two pri-249

mary sources to ensure diversity and realism. First,250

we extract successfully executed tool calls from the251

DocPilot (Mathur et al., 2024), which provides real252

user interactions in document processing scenarios.253

Second, we leverage the Berkeley Function Calling254

Leaderboard (BFCL-v3) (Yan et al., 2024), which255

offers data across multiple domains: vehicle con-256

trol, stock trading, travel planning, and file system257

management.258

Data Augmentation. To create the comprehen-259

sive set of query types required for clarification260

evaluation, we employ systematic data augmenta-261

tion techniques. We process DocPilot dataset by262

anonymizing user metadata, replacing specific file263

names and domain terms in tool calls with LLM-264

generated substitutes to ensure generalizability, fol-265

lowed by PII removal. For ambiguous queries,266

we randomly select upto 3 arguments from suc-267

cessful tool calls and obfuscate them, then prompt268

GPT-4o to generate five alternative user queries269

that omit the obfuscated information. We also gen-270

erate user intent prompts using in-context learning271

examples to capture the original tool call seman-272

tics. For infeasible queries, we design handwritten273

rules based on common API errors to create tool274

calls that would generate failures, followed by a275

similar LLM-based query augmentation process.276

We process BFCL-v3 using existing explicit and277

ambiguous parameter queries from the benchmark,278

ensuring sample independence by removing cases279

with secondary API dependencies. We apply rule-280

based validation and LLM judgment (via in-context 281

learning) to identify and exclude such cases. For re- 282

tained samples, we strip secondary API utterances 283

and tool calls from ground truth annotations. User 284

intent prompts are generated through LLM process- 285

ing, and infeasible queries are constructed using 286

domain-specific rules, mirroring the DocPilot data 287

strategy. 288

Human Validation. To ensure quality and nat- 289

uralness, a human annotator evaluates all LLM- 290

generated queries using three criteria: (A) natural- 291

ness of language, (B) faithfulness to expected tool 292

calls including all required details while exclud- 293

ing obfuscated parameters, and (C) for infeasible 294

queries, presence of error-inducing requirements. 295

The annotator selects one optimal query per sample 296

from the five generated alternatives. 297

4 Argus 298

Figure 3 illustrates Argus, an information-theoretic 299

disambiguation technique that leverages structured 300

tool argument spaces to resolve ambiguous tool 301

calls through targeted clarification. Argus inte- 302

grates into the standard Plan-Act-Observe cycle 303

of tool-based agents, operating between planning 304

and action execution to ensure high-confidence tool 305

calls. Tool-based agents operate in sequential steps 306

consisting of Reasoning/Planning, Action, and Ob- 307

servation. Argus enhances this cycle by introduc- 308

ing a disambiguation phase: following initial rea- 309

soning and planning, candidate interpretations are 310

generated, then disambiguated through Argus if un- 311

certainty exceeds thresholds, before returning final 312

observations to the user. 313

Preliminaries: Tool Argument Domains. At 314

the core of Argus lies the structured nature of 315

tool argument spaces, which we model as do- 316

mains with explicit constraints and interdependen- 317

cies. Each tool argument ai,j for tool ti has an 318

associated domain Dti(ai,j) defining its valid val- 319

ues, analogous to function domains in mathematics. 320

These domains can be finite (e.g., file permissions: 321
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Figure 3: Argus: (➊) Given a user query, an LLM reasons to generate a plan and tool calls with potential
uncertain parameters. These tool calls undergo (➋) uncertainty quantification to determine if clarification is needed.
When uncertainty exists, the agent uses an LLM to produce (➌) candidate clarifying questions, and scores them
using (➍) information-theoretic principles (EVPI and Regret Reduction), selecting the optimal question via UCB
based exploration-exploitation. The tool call’s interpretation is updated based on user-response to the clarifying
question (➎), and given no further uncertainty, is executed ➏.

read, write, execute) or infinite (e.g., file paths),322

and often exhibit dynamic constraints based on323

system state or other arguments. Effective clar-324

ifying questions strategically reduce this multidi-325

mensional argument space by constraining multiple326

domains simultaneously. This structured approach327

enables Argus to quantify uncertainty precisely328

over argument domains rather than operating in un-329

structured token space, leading to more principled330

and efficient disambiguation.331

4.1 Uncertainty Quantification Framework332

4.1.1 Candidate Interpretation Generation333

The agentic system prompts the LLM to gener-334

ate candidate interpretations of user queries as se-335

quences of tool calls, with specific instructions to336

use <UNK> tokens for arguments where relevant337

context is absent. Given a query q, the system338

generates:339

[(ti,ai)|i = 1, 2, ..., n] (1)340

where ti represents the tool name and ai is the341

set of arguments. Generated tool calls are executed342

sequentially until an ambiguous tool call (contain-343

ing <UNK> tokens) is encountered, as executed tool344

calls may provide context that resolves subsequent345

argument specifications.346

4.1.2 Domain-Informed Uncertainty 347

Calculation 348

Tool call uncertainty is assessed based on argument 349

domain constraints. The probability of certainty pc 350

for each argument is defined as: 351

pc(ai,j) =


1.0, if explicit

1
|Dti (ai,j)|

, if 1 ≤ |Dti(a)| <∞
ϵ, if |D′

ti(a)| → ∞
(2) 352

where Dti(ai,j) is the domain of argument ai,j 353

for tool ti, and ϵ is a small positive constant. The 354

overall certainty of tool call ti is calculated as: 355

H(ti) =
m∏
j=1

pc(ai,j) (3) 356

4.2 Information-Theoretic Clarification 357

Generation 358

4.2.1 Candidate Question Generation 359

Argus generates clarification questions for uncer- 360

tain tool calls by prompting an LLM with conversa- 361

tional context (including observations and original 362

query), tool argument definitions, and domain de- 363

scriptions. Additionally, it prompts the LLM to 364

identify the set of target arguments the question is 365

expected to resolve. The set of candidate clarifi- 366

cation questions is defined as Q = {(qk, ti, Ak) | 367

k = 1, 2, . . . , l}, where qk is the question text, ti 368
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is the candidate tool call, and Ak ⊆ ai represents369

the subset of arguments targeted by question qk.370

4.2.2 Expected Value of Perfect Information371

(EVPI)372

The disambiguation problem involves decision-373

making under uncertainty. We adopt the Expected374

Value of Perfect Information framework (Raiffa375

and Schlaifer, 2000) to quantify the potential value376

of acquiring additional information through user377

clarification. EVPI measures the expected improve-378

ment in decision quality from obtaining perfect379

information before making decisions. For our dis-380

ambiguation system,381

EVPI(qk, ti) = H(ti)− Er∼R(qk)[H(ti|r)] (4)382

where H(ti) represents current uncertainty of tool383

call ti, and H(ti|r) is the expected posterior uncer-384

tainty after receiving response r ∈ R(qk), the set385

of responses.386

4.2.3 Argument Importance and Regret387

Minimization388

Not all arguments carry equal weight in determin-389

ing tool call effectiveness. Critical arguments may390

significantly impact computational efficiency, re-391

sult quality, or system safety, while others may have392

acceptable defaults. To account for varying argu-393

ment importance, we introduce a regret-based for-394

mulation, inspired by (Loomes and Sugden, 1982)395

that models the expected loss from proceeding with396

uncertain values. Regret associated with a tool call397

is defined as:398

Regret(ti) =
m∑
j=1

wi,j · (1− pc(ai,j)) (5)399

where wi,j ∈ [0, 1] represents the importance400

weight assigned to argument ai,j , and (1−pc(ai,j))401

captures argument uncertainty. We calculate ex-402

pected reduction in regret:403

∆Regret(qk) = Regret(ti)−Er∼R(qk)[Regret(ti|r)]
(6)404

This formulation prioritizes questions addressing405

high-importance arguments with significant uncer-406

tainty. Importance can be user-defined or empiri-407

cally derived from historical performance.408

4.3 Exploration-Exploitation Trade-off in409

Question Selection410

The sequential clarification process presents an411

exploration-exploitation dilemma. We adopt an412

Upper Confidence Bound approach to balance ex- 413

ploiting known high-value questions with exploring 414

potentially valuable clarifications. The UCB score 415

for candidate question qk is: 416

UCB(qk) = S(qk) + c

√
log(N + 1)

nk + 1
(7) 417

where S(qk) = EVPI(qk) + ∆Regret(qk) com- 418

bines information gain and regret reduction, c con- 419

trols exploration-exploitation balance, N is total 420

clarifications made, and nk is the frequency of ar- 421

guments targeted by qk. 422

A dynamic threshold mechanism determines 423

when to terminate clarification: 424

τ = τ0 + α ·N (8) 425

where τ0 is the initial threshold and α controls 426

threshold increase rate. The system selects ques- 427

tions with highest UCB scores exceeding this 428

threshold, naturally encoding diminishing returns 429

in information gathering. 430

4.4 Response Processing and Belief Update 431

Upon receiving response r to question qk, beliefs 432

about the target tool call are updated by refining 433

affected argument domains: 434

D′
ti(a) =

{
Dti(a) ∩ fupdate(a, r), if a ∈ Ak

Dti(a), otherwise
(9) 435

where fupdate(a, r) extracts domain constraints 436

from the response. Uncertainty values are recalcu- 437

lated based on updated domains: 438

p′c(a) =

{
1

|D′
ti
(a)| , if 1 ≤ |D′

ti(a)| <∞

ϵ, if |D′
ti(a)| → ∞

(10) 439

Termination. The clarification process termi- 440

nates when initial uncertainty falls below a fixed 441

threshold, no questions achieve the UCB thresh- 442

old, or the maximum number of questions ns is 443

exceeded. 444

Error Recovery. When tool execution fails, 445

the system uses the failure context as an obser- 446

vation to either fix the failure, or determine if it 447

can be clarified from the user, generating error- 448

specific clarification questions incorporating both 449

the candidate interpretation and error message: 450

qerror = ferror(t
∗,a∗, error) 451
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LLM Baseline ClarifyBench - Ambiguous ClarifyBench - Explicit ClarifyBench - Infeasible

Success ↑ TMR ↑ PMR ↑ Avg #Q ↓ Success ↑ TMR ↑ PMR ↑ Avg #Q ↓ Success ↑ TMR ↑ PMR ↑ Avg #Q ↓
L

L
aM

a
3.

1
8B Control 32.22 37.50 34.20 0.00 38.04 40.39 39.96 0.00 22.67 34.20 26.34 0.00

ProCOT 36.91 47.30 40.10 3.55 41.19 44.12 42.88 2.05 32.98 33.10 31.45 3.74
Active Task Disambig. 33.45 44.50 34.11 3.10 44.10 46.10 44.76 2.10 29.72 35.50 33.65 1.09
Ask before Plan 40.47 49.80 44.77 2.90 48.01 47.13 50.12 2.00 36.89 37.80 35.89 2.20
Argus (Ours) 44.67 51.25 48.57 2.12 47.85 50.47 49.43 1.70 40.22 40.65 39.33 1.95

G
PT

-4
o

Control 48.50 65.12 52.54 0.00 66.45 67.59 64.07 0.00 37.87 61.33 40.90 0.00
ProCOT 58.69 68.18 59.80 3.50 68.12 70.30 68.75 2.89 57.82 63.70 60.12 3.73
Active Task Disambig. 58.73 64.82 60.12 3.90 64.87 67.12 65.33 3.27 49.44 60.50 50.23 1.80
Ask before Plan 60.22 69.56 61.25 3.20 70.11 74.35 71.00 2.51 54.18 64.22 61.45 2.78
Argus (Ours) 64.54 73.20 68.05 2.30 70.56 76.50 75.13 1.23 60.52 69.45 67.90 2.17

Table 3: Comparison of Argus with baselines on ClarifyBench. Best and second best results are highlighted. Argus
maximizes tool call correctness while mitigating potential interaction fatigue.

Ablation Success Rate TMR PMR Avg #Q

Argus 44.23 47.36 45.71 1.92

✗EVPI 42.01 46.83 42.56 2.02

✗∆ Regret 41.78 45.94 43.44 1.95

✗Exploration Term 42.23 44.52 43.54 1.91

✗Dynamic Threshold 44.19 47.04 45.61 2.23

Table 4: Ablation results showing the impact of removing
individual components. ✗indicates ablation.

Figure 4: Comparison of token usage vs. time taken. Argus
achieves high efficiency and performance simultaneously.

5 Experiments452

5.1 Baselines453

All baselines are built on top of a common Re-454

Act agent for comparability. We evaluate Argus455

against the following baselines: Control Baseline456

is a standard ReAct agent with no specific interven-457

tion for tool-calling disambiguation. Control base-458

line cannot interact with the user outside of receiv-459

ing queries and delivering results. ProCOT (Deng460

et al., 2023) uses ProActive Chain-of-Thought rea-461

soning to think through potential ambiguities be-462

fore tool execution. Active Task Disambiguation463

(Kobalczyk et al., 2025) generates multiple candi-464

date interpretations and asks questions based on465

variance in responses. Ask-Before-Plan (Zhang 466

et al., 2024) instructs agents to ask clarifying ques- 467

tions before planning tool execution. We use GPT- 468

4o and LlaMa 3.1 (8B) (Grattafiori et al., 2024) for 469

all baselines. 470

5.2 Metrics 471

We evaluate performance based on the follow- 472

ing metrics: Success Rate (%): The percentage 473

of simulations with complete tool and parameter 474

match with ground truth. Tool Match Rate (TMR, 475

%): The average percentage of correctly identified 476

tools across simulations. Parameter Match Rate 477

(PMR, %): The average percentage of correctly 478

specified parameters across simulations. Average 479

Number of Questions (Avg #Q): The mean num- 480

ber of clarifying questions asked per simulation. 481

For Success Rate, TMR, and PMR, higher values 482

indicate better performance, while lower Avg #Q 483

values are preferable. 484

6 Results 485

Main Results. Table 3 compares Argus with rele- 486

vant baselines on ClarifyBench, implemented with 487

both LLaMa-3.1-8B-Instruct and GPT-4o as the 488

base LLMs, with GPT-4o serving as the user simu- 489

lator in both scenarios. Argus demonstrates supe- 490

rior performance across all evaluation dimensions, 491

achieving the highest success rates in every sce- 492

nario. This highlights Argus’ ability to understand 493

user intent through principled, proactive disam- 494

biguation strategies. The control baseline, which 495

lacks the ability to interact with users through ques- 496

tions, shows the lowest performance across all sce- 497

narios despite having an Average Question count of 498

0.00. This stark performance gap emphasizes the 499

fundamental necessity of clarification in ambigu- 500

ous user interactions. Notably, when comparing 501

7



across model scales, performance with the more502

powerful GPT-4o shows substantial improvements503

over LLaMa-3.1, with Argus maintaining its supe-504

riority regardless of the underlying model capac-505

ity. ClarifyBench Explicit functions as an upper506

bound for performance since all required details507

are already present in user queries. Consequently,508

we observe higher success rates, TMR, and PMR509

across all systems in this scenario. Despite this510

inherent advantage in the task setup, Argus still511

outperforms other approaches while maintaining512

lower question counts, demonstrating its efficiency513

even when queries contain relatively complete in-514

formation. Prompting-based question-answering515

baselines like ProCOT and Ask-before-Plan ex-516

hibit a critical limitation: they ask substantially517

more questions on average without achieving pro-518

portional improvements in success metrics. This519

inefficiency underscores the necessity for princi-520

pled uncertainty estimation and strategic disam-521

biguation as proposed in Argus. We observe that522

Active-task-Disambiguation asks fewer questions523

for infeasible queries, demonstrating how it is not524

particularly suitable for dynamic tool execution en-525

vironments where incorrect parameters may cause526

errors. This limitation becomes apparent in its sig-527

nificantly lower success rates for infeasible queries528

compared to Argus. Meanwhile, ProCOT which529

is a promp based CoT reasoning baseline, exhibits530

the highest Average Question count for infeasible531

queries, as it defaults to asking users for clarifica-532

tion rather than attempting to debug errors inde-533

pendently. This behavior increases user interaction534

burden without necessarily resolving the underly-535

ing issues.536

Ablation Study. We ablate different components537

from Argus to understand their impact on over-538

all performance. Table 4 presents results using539

LLaMa3.1-8B as the base LLM, with metrics aver-540

aged across the three query splits. To ablate EVPI,541

∆ Regret, and the Exploration term, we replace542

them with a constant denoting their theoretical543

maximum value. To ablate Dynamic Threshold,544

we set α = 0. Results show that removing EVPI,545

∆ Regret, or the Exploration term causes notice-546

able drops in overall performance, confirming their547

importance in Argus’s question selection strategy.548

Most interestingly, ablating the Dynamic Threshold549

causes a significant increase in the average num-550

ber of questions asked without substantially affect-551

ing success rates, demonstrating its crucial role in552

making Argus more interaction-efficient without553

Figure 5: Evolution of question selection metrics used by
Argis during interactive user simulations.

compromising effectiveness. 554

Efficiency. Fig. 4 plots all five methods on a 555

two-dimensional time vs. token-usage plane, with 556

bubble area proportional to end-task performance. 557

ProCOT and Ask-before-Plan—both chaining- 558

based reasoning baselines—incur the highest token 559

counts due to their repeated, lengthy text reason- 560

ing steps, placing them in the “Token Intensive” 561

quadrant despite strong success rates. Active Task 562

Disambiguation falls into the “Time Intensive” re- 563

gion: it generates multiple candidate completions 564

per query to estimate uncertainty and issues clarifi- 565

cation questions, driving up runtime even though 566

it economizes on tokens. By contrast, Control re- 567

mains fast but achieves only modest performance. 568

In contrast, Argus balances token use and latency, 569

while achieving superior task performance. 570

Evolution. Fig 5 refects Argus’ question selection 571

metrics over steps. The first questions have a lower 572

UCB value, owing to N = 0, with UCB value 573

peaking subsequently and then reducing steadily, 574

demonstrating the diminishing value of asking 575

questions. 576

7 Conclusion 577

We introduce Argus, a principled information- 578

theoretic approach to disambiguate tool-augmented 579

agentic queries through uncertainty quantification. 580

By operating directly on structured tool argument 581

domains rather than unstructured token spaces, 582

Argus combines information-theoretic measures 583

with regret minimization to optimize question se- 584

lection. Extensive experiments on ClarifyBench 585

demonstrate that Argus significantly outperforms 586

existing clarification strategies diverse query types 587

and domains, achieving higher task success and 588

reducing unnecessary clarification. 589

8



8 Limitations590

Despite Argus’s strong performance, several lim-591

itations should be acknowledged. First, our ap-592

proach assumes the availability of well-defined593

tool schemas, and user-defined importance scores594

with explicitly structured argument domains, which595

may not always be available for complex or rapidly596

evolving APIs. Second, while our information-597

theoretic approach performs well within the tested598

domains, it may face challenges in extremely high-599

dimensional argument spaces where calculating600

expected values becomes computationally inten-601

sive. Third, ClarifyBench, while more realistic602

than previous benchmarks, still represents a simula-603

tion of user behavior and may not fully capture the604

diversity and complexity of real-world human re-605

sponses. Additionally, our current implementation606

relies on existing foundation models for natural607

language processing, inheriting any biases or limi-608

tations present in these underlying models.609

9 Ethics Statement610

Our research does not use any personally identifi-611

able information (PII) and all datasets employed612

in this work are used in accordance with their re-613

spective licenses (Apache 2.0). Argus is designed614

primarily for deployment in collaborative AI assis-615

tance contexts where resolving ambiguity enhances616

productivity and user experience while minimiz-617

ing unnecessary interaction. The system’s core ap-618

proach of reducing clarification questions through619

principled uncertainty estimation promotes more620

equitable access to AI assistance by respecting621

users’ time and cognitive resources. While Argus622

significantly reduces interaction burden, we rec-623

ommend appropriate transparency about system624

limitations and human oversight when deploying625

in sensitive contexts. Furthermore, we encourage626

ongoing evaluation to ensure that question selec-627

tion patterns do not reflect or amplify biases present628

in underlying models or training data.629
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A Algorithmic Formulation 755

Algorithms 1–4 represent a formal algorithmic sum- 756

marization of our method. 757

B Theoretical Analysis of Argus Question 758

Scoring 759

B.1 Component Bounds 760

We derive theoretical bounds for each component 761

of the UCB scoring function to establish the range 762

of possible values and convergence properties. 763

B.1.1 EVPI and Regret Reduction Bounds 764

Theorem B.1 The Expected Value of Perfect Infor- 765

mation satisfies 0 ≤ EVPI(qk) ≤ 1. 766

Proof B.1.1 By definition, EVPI measures the dif-
ference between expected utility under perfect infor-
mation and expected utility under current beliefs:

EVPI(qk) = Eθ[max
a

U(a, θ)]−max
a

Eθ[U(a, θ)]

The lower bound follows from Jensen’s inequal- 767

ity: since maxa Eθ[U(a, θ)] ≤ Eθ[maxa U(a, θ)], 768

we have EVPI(qk) ≥ 0. 769

For the upper bound, assume utilities are nor- 770

malized to [0, 1]. Then Eθ[maxa U(a, θ)] ≤ 1 and 771

maxa Eθ[U(a, θ)] ≥ 0, yielding EVPI(qk) ≤ 1. 772

Theorem B.2 The regret reduction satisfies 0 ≤ 773

∆Regret(qk) ≤ 1. 774

Proof B.2.1 Regret reduction measures the de- 775

crease in worst-case regret from asking question 776

qk. Since asking questions cannot increase regret, 777

∆Regret(qk) ≥ 0. The maximum reduction occurs 778

when uncertainty is completely resolved, bounded 779

by the initial regret which is at most 1 under nor- 780

malized utilities. 781

B.1.2 UCB Exploration Term Bounds 782

The exploration component c
√

log(N+1)
nk+1 exhibits 783

different behaviors in extreme cases: 784

Case 1: Never asked (nk = 0):

c

√
log(N + 1)

1
= c

√
log(N + 1)

Case 2: Always asked (nk = N ):

c

√
log(N + 1)

N + 1
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Algorithm 1 Multi-Request Simulation Process

1: procedure EXECUTESIMULATION(S) ▷ S represents the simulation scenario
2: Initialize agent A, environment E , user model U
3: R ← {r0, r1, . . . , rn} ▷ Request sequence
4: C ← ∅ ▷ Conversation history
5: for each request ri ∈ R do
6: Ti ← ∅ ▷ Turn sequence for request i
7: qcurrent ← ri ▷ Current query state
8: clarification_count← 0
9: while clarification_count < τmax and not terminated do

10: response← A(qcurrent, C)
11: if response ∈ Φsuccess then ▷ Successful completion
12: Record completion in Ti
13: break
14: else if response ∈ Φclarification then ▷ Needs clarification
15: clarification← U(response.question,S)
16: if clarification = ⊥ then ▷ User cannot provide clarification
17: Record incomplete in Ti
18: break
19: end if
20: qcurrent ← Enrich(ri, clarification)
21: clarification_count← clarification_count+ 1
22: else
23: Record failure in Ti
24: break
25: end if
26: end while
27: C ← C ∪ Ti
28: end for
29: evaluation← Evaluate(C,S.ground_truth)
30: return {C, evaluation}
31: end procedure
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Algorithm 2 Argus
1: procedure ARGUS(query, context) ▷ ReAct paradigm: Reason-Act-Observe + Argus
2: Ω← context.observations ▷ Observational memory
3: step← 0
4: while step < σmax and not terminated do ▷ REASON PHASE: Generate action hypothesis
5: θ ← Reason(query,Ω) ▷ Chain of thought
6: α← SelectAction(θ,Aavailable) ▷ Proposed action

▷ DISAMBIGUATE PHASE: Resolve parameter uncertainty
7: ξ ← AssessUncertainty(α) ▷ Uncertainty measure
8: if ξ < δthreshold then ▷ High uncertainty detected
9: qclarification ← Disambiguation(α, query)

10: return {status : clarification, question : qclarification}
11: end if

▷ ACT PHASE: Execute selected action
12: ρ← Execute(α, E) ▷ Action execution result

▷ ERROR RECOVERY PHASE

13: if ρ ∈ Eerror then
14: recovery ← RecoveryStrategy(ρ, query, context)
15: if recovery.type = clarification then
16: return {status : error_clarification, question : recovery.question}
17: else
18: Ω← Ω ∪ {recovery.observation}
19: continue
20: end if
21: end if

▷ COMPLETION CHECK

22: if α = final_answer then
23: return {status : completed, result : α.answer}
24: end if

▷ OBSERVE PHASE: Update memory
25: Ω← Ω ∪ {ρ.observation}
26: step← step+ 1
27: end while
28: return {status : completed, result : ”max_steps_reached”}
29: end procedure
30: procedure REASON(query,Ω) ▷ Deliberative reasoning over available information
31: knowledge←

⋃
i ωi where ωi ∈ Ω

32: θ ← IntegrateInformation(query, knowledge,Kbackground)
33: return θ ▷ Coherent reasoning chain
34: end procedure
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Algorithm 3 Parameter Disambiguation: Top-Level Procedure

1: procedure DISAMBIGUATION(α, query)
2: Ξ← {} ▷ Parameter uncertainty mapping
3: for each parameter pj ∈ α.parameters do
4: ξj ←MeasureUncertainty(pj , α.tool)
5: ωj ← GetImportance(pj , α.tool)
6: Ξ[pj ]← {ξj , ωj}
7: end for
8: ξoverall ←

∑
j ωj · ξj/

∑
j ωj

9: if ξoverall ≥ δthreshold then
10: return {needs_clarification : false, certainty : ξoverall}
11: end if
12: Qcandidates ← GenerateCandidates(query, α,Ξ)
13: M← {}
14: for each question qk ∈ Qcandidates do
15: M[qk].evpi← EV PI(qk, α)
16: M[qk].regret← RegretReduction(qk, α)
17: M[qk].exploration← ExplorationBonus(qk)
18: end for
19: q∗ ← argmaxqk CompositeScore(M[qk])
20: if q∗ ̸= ⊥ then
21: return {needs_clarification : true, question : q∗, certainty : ξoverall}
22: else
23: return {needs_clarification : false, certainty : ξoverall}
24: end if
25: end procedure

Algorithm 4 MeasureUncertainty

1: procedure MEASUREUNCERTAINTY(parameter, tool)
2: value← parameter.value
3: domain← GetDomain(parameter, tool)
4: if value = ⊥ or value = unknown then
5: return 1.0
6: end if
7: switch (domain.type)
8: case finite_set:
9: return DomainUncertainty(value, domain.values)

10: case continuous_range:
11: return RangeUncertainty(value, domain.bounds)
12: case context_dependent:
13: return ContextualUncertainty(value, domain, Ccurrent)
14: default:
15: return BaselineUncertainty(value)
16: end switch
17: end procedure
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As N → ∞, the second case approaches 0,785

while the first grows as c
√
logN .786

B.1.3 Combined UCB Score Bounds787

Theorem B.3 The total UCB score satisfies:788

0 ≤ UCB(qk) ≤ 2 + c
√

log(N + 1)789

Proof B.3.1 The lower bound follows from non-790

negativity of all components. For the upper bound:791

UCB(qk) = EVPI(qk) + ∆Regret(qk)792

+ c

√
log(N + 1)

nk + 1
793

Using the bounds from previous theorems and794

the maximum exploration term when nk = 0:795

UCB(qk) ≤ 1 + 1 + c
√

log(N + 1)796

= 2 + c
√
log(N + 1)797

B.2 Dynamic Threshold Justification798

The linear threshold form τ = τ0 + α ·N captures799

the intuition of diminishing returns in information800

gathering:801

Early stages (N small): τ ≈ τ0, providing a low802

threshold that encourages exploration when little is803

known about question values.804

Later stages (N large): τ grows linearly, creat-805

ing a higher bar for questions as the system accu-806

mulates knowledge and marginal information value807

decreases.808

Relationship to score bounds: Given that UCB809

scores are bounded by 2+c
√

log(N + 1), a reason-810

able choice of α should ensure the threshold grows811

slower than the maximum possible score, maintain-812

ing a non-zero probability of asking questions. This813

suggests α = O(
√
logN/N) to balance between814

being too permissive (asking too many questions)815

and too restrictive (missing valuable clarifications).816

Optimality intuition: Under a simple cost
model where each question costs c1 and each unit
of remaining regret costs c2, the optimal threshold
approximately satisfies:

τ∗(N) ≈ c1
c2

+ µS(N)

where µS(N) is the expected score of a random817

question. Since µS(N) typically decreases with N818

(as high-value questions are asked first), a linear819

increase in τ can approximate this optimal policy.820

B.3 Parameter Selection Guidelines 821

B.3.1 Exploration Coefficient c 822

From multi-armed bandit theory, the optimal explo- 823

ration coefficient scales as c∗ = O(
√
logK) where 824

K is the number of potential questions. In practice: 825

• Small c (< 0.5): Heavy exploitation, may miss 826

valuable unexplored questions 827

• Large c (> 2.0): Heavy exploration, asks 828

many low-value questions 829

• Recommended range: c ∈ [0.5, 1.5] bal- 830

ances exploration-exploitation effectively 831

B.3.2 Threshold Parameters 832

Initial threshold τ0: Should be set relative to typi- 833

cal EVPI/regret scales: 834

• Too low: Asks questions with minimal infor- 835

mation value 836

• Too high: Misses valuable early clarifications 837

• Recommended: τ0 ∈ [1.0, 2.0] for normal- 838

ized utilities 839

Growth rate α: Controls how aggressively the 840

system reduces question-asking over time: 841

• Empirically effective range: α ∈ [0.1, 0.3] 842

• Lower values: More questions, higher infor- 843

mation gain, increased user burden 844

• Higher values: Fewer questions, faster termi- 845

nation, potential information loss 846

Trade-off considerations: The choice of (τ0, α) 847

should reflect the relative costs of asking questions 848

versus making decisions under uncertainty. Appli- 849

cations with high decision stakes should use lower 850

α values to gather more information, while time- 851

sensitive applications should increase α to reduce 852

clarification overhead. 853

C Implementation Details 854

C.1 Computational Resources 855

Table 5 summarizes the computational budget for 856

our experiments.

GPU VRAM (GB) GPU Hours Purpose
RTX A6000 48 24 LLaMa3.1-8B Inference

Table 5: Compute budget

857
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C.2 Hyperparameters858

For the Argus framework, we set exploration-859

exploitation parameter c = 0.8, base threshold860

τ = 0.6, and decay rate α = 0.15. The system was861

configured with862

C.2.1 ReAct Agent Prompts863

Reasoning Prompt This prompt is used in the864

main reasoning phase of the ReAct agent to decide865

which tool to use next based on the current state of866

the conversation.867
868

You are an AI assistant helping with a869
user request.870

SYSTEM CONTEXT:871
You have access to the following tool872

domain:873
{plugin_descriptions}874
Request: {request}875
Previous observations:876
{obs_text}877
Available tools:878
{tool_registry.get_tool_descriptions ()}879
Think step by step about what tool to880

use next. Consider the plugin881
context above to understand the882
capabilities available to you. If883
you have enough information to884
provide a final answer , use the885
final_answer tool.886

Respond in JSON format:887
{888
"reasoning ": "Your step -by-step thinking889

",890
"tool_call ": {891
"tool_name ": "name_of_tool",892
"arguments ": {893
"arg1": "value1",894
"arg2": "value2"895
}896
}897
}898899

Error Recovery Prompt Used when a tool exe-900

cution fails to determine if the error can be resolved901

automatically.902
903

You are helping fix a failed tool call.904
Original Request: {request}905
Tool Information:906
{tool_info or f"Tool: {tool_name }"}907
Error Details:908
{error_result.message}909
Based on the error and tool information ,910

can you suggest how to fix this?911
Respond in JSON format:912
{913
"can_fix ": true/false ,914
"reasoning ": "explanation of what went915

wrong and how to fix it",916
"suggested_action ": "retry_with_changes"917

or "different_tool" or "918
need_clarification",919

"observation ": "observation to add to920
context for next reasoning step"921

}922

If you cannot determine a fix from the 923
available information , set can_fix 924
to false. 925926

C.2.2 Question Generation Prompts for Argus 927

Used to generate clarification questions when there 928

is uncertainty about tool arguments. 929
930

You are an AI assistant that helps users 931
by understanding their queries and 932

executing tool calls. 933
{conversation_history}Original user 934

query: 935
"{ user_query }" 936
Based on the query , I've determined that 937

the following tool calls are needed 938
, but some arguments are uncertain: 939

Tool Calls: 940
{tool_calls} 941
Detailed Tool Documentation: 942
{tool_documentation} 943
Uncertain Arguments: 944
{uncertain_args} 945
Your task is to generate clarification 946

questions that would help resolve 947
the uncertainty about specific 948
arguments. 949

Instructions: 950
951

Generate questions that are clear , 952
specific , and directly address the 953
uncertain arguments 954

Each question should target one or more 955
specific arguments 956

Questions should be conversational and 957
easy for a user to understand 958

For each question , specify which tool 959
and argument(s) it aims to clarify. 960

Generate 5 diverse questions. 961
Keep in mind the the arguments you wish 962

to clarify , their domains etc. 963
964

Return your response as a JSON object 965
with the following structure: 966

{ 967
"questions ": [ 968
{ 969
"question ": "A clear question to ask the 970

user", 971
"target_args ": [[" tool_name", "arg_name 972

"], [" tool_name", "other_arg_name "]] 973
} 974
// ... 5 total questions 975
] 976
} 977
Ensure that each question targets at 978

least one uncertain argument. 979980

C.2.3 User Simulator 981

The simulator takes a language model provider, 982

ground truth data, and user intent as inputs. It main- 983

tains the conversation state and ensures responses 984

are consistent with the user’s information. The core 985

of the simulation lies in two prompt templates that 986

instruct a language model to act as a user: 987
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988
You are simulating a user who is989

interacting with an AI assistant.990
Original query: "{self.original_query }"991
User 's intent for the CURRENT request: {992

self.user_intent}993
Information needed for the CURRENT994

request (do not reveal future995
intentions):996

{current_turn_ground_truth}997
Additional context:998
{self.context}999
The AI assistant has asked the following1000

specific question:1001
"{ question }"1002
Generate a realistic user response to1003

this SPECIFIC question. The response1004
should:1005

1006
Be natural and conversational1007
ONLY provide information that directly1008

answers the specific question asked1009
NOT mention any future requests or1010

intentions the user might have1011
ONLY focus on the current task , not on1012

future tasks1013
Be concise and to the point1014

1015
IMPORTANT: Never reveal future1016

intentions. Respond ONLY to the1017
specific question asked.1018

NEVER BREAK CHARACTER. DO NOT THINK OUT1019
LOUD. Respond directly as the user1020
would:10211022

This template ensures the simulator provides nat-1023

ural, conversational responses that only address1024

the specific question without revealing future in-1025

tentions. For generating follow-up requests, the1026

simulator uses this template:1027
1028

You are simulating a user who is1029
interacting with an AI assistant.1030

Original query: "{self.original_query }"1031
User 's intent: {self.user_intent}1032
Previous conversation:1033
{formatted_history}1034
Based on the conversation so far and the1035

user 's intent , decide if the user1036
would have a follow -up request.1037

Consider:1038
1039

Has everything the user wanted been1040
accomplished?1041

Is there a logical next step the user1042
might want to take?1043

Has the agent clearly indicated that1044
they 've completed all necessary1045
tasks?1046

1047
If you believe the user would have a1048

follow -up request , provide it in a1049
natural , conversational way.1050

If you believe the conversation is1051
complete , respond with "1052
CONVERSATION_COMPLETE ".1053

NEVER BREAK CHARACTER , DO NOT THINK!1054
Decision:10551056

This template helps the simulator determine 1057

whether to generate a follow-up request based on 1058

the conversation context and predefined potential 1059

follow-ups. The User Simulator isolates ground 1060

truth information for each conversation turn, en- 1061

suring only relevant information is revealed at ap- 1062

propriate times. It tracks the original query, user 1063

intent, ground truth for tool calls, completed tool 1064

calls, potential follow-up queries, and the current 1065

conversation turn. By providing consistent, realis- 1066

tic user responses, the simulator allows for repro- 1067

ducible evaluation of clarification strategies across 1068

multiple scenarios. 1069

D Benchmark Details 1070

D.1 Benchmark Domains 1071

This appendix describes the key characteristics of 1072

each API domain used in our experiments, detailing 1073

their initialization parameters, state management, 1074

and tool specifications. 1075

Gorilla File System Plugin (GFS). The Gorilla 1076

File System API simulates a UNIX-like file system 1077

with a hierarchical directory structure. It maintains 1078

state through: 1079

• Directory structure with nested files and sub- 1080

directories 1081

• Current working directory pointer 1082

• Each file contains content as strings 1083

The plugin provides 18 tools implementing com- 1084

mon file system operations such as navigation, file 1085

creation, modification, and content manipulation. 1086

Each tool supports parameters relevant to file sys- 1087

tem operations, such as file names, directory paths, 1088

and content strings. Table 10 provides detailed 1089

information about these tools and their parameter 1090

domains. 1091

The GFS plugin’s domains depend heavily on 1092

the current state of the file system. Domain updates 1093

revolve primarily around available files and direc- 1094

tories in the current working directory, as outlined 1095

in Table 11. 1096

Document Processing. The Document API sim- 1097

ulates operations for PDF document manipulation. 1098

Its state consists of: 1099

• Number of pages in the current document 1100

• PDF filename metadata 1101
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• Operation-specific context for page-based op-1102

erations1103

The plugin provides 18 document manipulation1104

tools including conversion, annotation, redaction,1105

and page manipulation functions. Parameters in-1106

clude page numbers, text content, formatting op-1107

tions, and file paths. Table 7 details the tools and1108

their parameter domains.1109

Domain updates in the Document Plugin focus1110

on page numbers and ranges, adapting dynamically1111

to changes in document length when pages are1112

added or deleted, as shown in Table 11.1113

Vehicle Control. The Vehicle Control API simu-1114

lates an automotive control system with:1115

• Engine state (running or stopped)1116

• Door lock status for each door1117

• Fuel level (ranging from 0 to 50 gallons)1118

• Battery voltage1119

• Climate control settings1120

• Brake systems (pedal position and parking1121

brake)1122

• Lighting systems1123

• Navigation state1124

This plugin implements 24 vehicle control tools1125

that manipulate different aspects of the vehicle,1126

including engine operations, door management, cli-1127

mate control, lighting, braking systems, and navi-1128

gation. Table 9 details the specific tools and their1129

parameter domains.1130

Vehicle Control domain updates primarily con-1131

cern contextual constraints such as brake pedal po-1132

sition for engine start, door states, and fuel level1133

requirements, as referenced in Table 11.1134

Travel. The Travel API simulates a travel book-1135

ing and management system with:1136

• Credit card registry and balances1137

• Flight booking records1138

• User information (first name, last name)1139

• Budget limits1140

• Available routes with pricing data1141

The plugin provides 15 tools for travel-related 1142

operations, including flight bookings, credit card 1143

management, budget settings, and travel informa- 1144

tion queries. Table 6 details these tools and their 1145

parameter domains. 1146

Domain updates in the Travel Plugin focus on 1147

available credit cards, booking IDs, and airport 1148

codes for valid routes, as detailed in Table 11. 1149

Trading Bot. The Trading Bot simulates a stock 1150

trading platform with: 1151

• Account information and balance 1152

• Order records (pending, completed, can- 1153

celled) 1154

• Stock data with prices and metrics 1155

• Watchlist of stocks 1156

• Transaction history 1157

• Market status (open/closed) 1158

This plugin provides 19 trading tools for account 1159

management, order placement, stock information 1160

retrieval, and market analysis. Table 8 lists the 1161

specific tools and their parameter domains. 1162

Trading Plugin domain updates primarily in- 1163

volve available stocks, watchlist items, and order 1164

IDs, adapting to user actions like placing orders or 1165

modifying watchlists, as referenced in Table 11. 1166

All plugins follow a consistent pattern for state 1167

initialization through configuration objects, domain 1168

updates based on state changes, and parameter val- 1169

idation. The dynamic nature of these domains 1170

presents particular challenges for language model 1171

interactions, as valid parameter values continuously 1172

evolve during conversations based on system state 1173

changes. 1174

D.2 Human Annotation 1175

We employed two graduate student annotators, 1176

aged 22-25. The annotators were proficient in En- 1177

glish, and have proficiency in Python (relevant to 1178

test tool calls). The annotators were fairly compen- 1179

sated at the standard Graduate Assistant hourly rate, 1180

following their respective graduate school policies. 1181

Fig 6 shows a summary of the annotator guidelines. 1182

D.3 Tool Call Corruption Heuristics 1183

We handcrafted rues to corrupt validated tool calls 1184

in the ground truth data, to construct ClarifyBench- 1185

Infeasible. 1186
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Tool Name Argument Description Domain Type Domain Values Data Dep. Required Importance

get_budget_fiscal_year
lastModifiedAfter Date filter for fiscal years string Any date string N N 0.5

includeRemoved Include removed fiscal years string Any string N N 0.5

register_credit_card

card_number Credit card number string Any card number N Y 0.9
expiration_date Card expiration (MM/YYYY) string MM/YYYY format N Y 0.8
cardholder_name Name on card string Any name string N Y 0.8
card_verification_number CVV code numeric_range [100, 999] N Y 0.8

get_flight_cost

travel_from Departure airport code string* 3-letter codes Y Y 0.9
travel_to Arrival airport code string* 3-letter codes Y Y 0.9
travel_date Travel date string YYYY-MM-DD N Y 0.9
travel_class Seat class finite [economy, business, first] N Y 0.8

get_credit_card_balance card_id Credit card identifier string* Card ID list Y Y 0.9

book_flight

card_id Payment card ID string* Card ID list Y Y 0.9
travel_date Travel date string YYYY-MM-DD N Y 0.9
travel_from Departure airport string* Airport codes Y Y 0.9
travel_to Arrival airport string* Airport codes Y Y 0.9
travel_class Seat class finite [economy, business, first] N Y 0.8
travel_cost Flight cost numeric_range [0, 10000] N Y 0.9

retrieve_invoice
booking_id Booking identifier string* Booking ID list Y N 0.9
insurance_id Insurance identifier string* Insurance ID list Y N 0.7

list_all_airports No arguments

cancel_booking booking_id Booking to cancel string* Booking ID list Y Y 0.9

compute_exchange_rate

base_currency Source currency finite [USD, RMB, EUR, JPY, GBP, CAD, AUD, INR, RUB, BRL, MXN] N Y 0.9
target_currency Target currency finite [USD, RMB, EUR, JPY, GBP, CAD, AUD, INR, RUB, BRL, MXN] N Y 0.9
value Amount to convert numeric_range [0, 1000000] N Y 0.9

verify_traveler_information

first_name Traveler’s first name string Any name N Y 0.9
last_name Traveler’s last name string Any name N Y 0.9
date_of_birth Birth date string YYYY-MM-DD N Y 0.9
passport_number Passport number string Any passport ID N Y 0.9

set_budget_limit budget_limit Budget limit in USD numeric_range [0, 10000] N Y 0.9

get_nearest_airport_by_city location City name finite [Rivermist, Stonebrook, ...] N Y 0.9

purchase_insurance

insurance_type Type of insurance finite [basic, premium, deluxe] N Y 0.8
booking_id Booking identifier string* Booking ID list Y Y 0.9
insurance_cost Insurance cost numeric_range [0, 1000] N Y 0.9
card_id Payment card ID string* Card ID list Y Y 0.9

contact_customer_support
booking_id Booking reference string* Booking ID list Y Y 0.9
message Support message string Any message text N Y 0.9

get_all_credit_cards No arguments

Table 6: Travel Plugin API: Complete Tool and Argument Specification with Domain Dependencies
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Tool Name Argument Description Domain Type Domain Values Data Dep. Required Importance

duplicate output_filename Name of duplicate file string Any filename N Y 0.8

rename output_filename New filename string Any filename N Y 0.8

search object_name Search term/object string Any search term N Y 0.9

count_pages No arguments

compress_file output_filename Compressed output name string Any filename N N 0.6

convert

format Target format finite [pptx, doc, png, jpeg, tiff] N Y 0.9
output_filename Output filename string Any filename N Y 0.7
zip Zip output files boolean [true, false] N N 0.4

add_comment

page_num Page number numeric_range* [1, num_pages] Y Y 0.9
coordinates Comment position [x,y] list [x, y] coordinates N Y 0.6
font_size Font size (points) numeric_range [8, 72] N Y 0.5

redact_page_range
start Start page (inclusive) numeric_range* [1, num_pages] Y Y 0.9
end End page (inclusive) numeric_range* [1, num_pages] Y Y 0.9

redact_text

start Start page numeric_range* [1, num_pages] Y Y 0.9
end End page numeric_range* [1, num_pages] Y Y 0.9
object_name Text to redact (list) list List of text strings N Y 0.9
overwrite Overwrite original boolean [true, false] N Y 0.7
output_pathname Output filename string Any filename N N 0.7

highlight_text

start Start page numeric_range* [1, num_pages] Y Y 0.9
end End page numeric_range* [1, num_pages] Y Y 0.9
object_name Text to highlight (list) list List of text strings N Y 0.9
overwrite Overwrite original boolean [true, false] N Y 0.7
output_pathname Output filename string Any filename N N 0.7

underline_text

start Start page numeric_range* [1, num_pages] Y Y 0.9
end End page numeric_range* [1, num_pages] Y Y 0.9
object_name Text to underline (list) list List of text strings N Y 0.9
overwrite Overwrite original boolean [true, false] N Y 0.7
output_pathname Output filename string Any filename N N 0.7

extract_pages

start Start page numeric_range* [1, num_pages] Y Y 0.9
end End page numeric_range* [1, num_pages] Y Y 0.9
overwrite Overwrite original boolean [true, false] N Y 0.7
output_pathname Output filename string Any filename N N 0.7

delete_page

page_num Page to delete numeric_range* [1, num_pages] Y Y 0.9
overwrite Overwrite original boolean [true, false] N Y 0.7
output_pathname Output filename string Any filename N N 0.7

delete_page_range

start Start page numeric_range* [1, num_pages] Y Y 0.9
end End page numeric_range* [1, num_pages] Y Y 0.9
overwrite Overwrite original boolean [true, false] N Y 0.7
output_pathname Output filename string Any filename N N 0.7

add_signature

page_num Page for signature numeric_range* [1, num_pages] Y Y 0.9
position Signature position finite [top-left, top-middle, ...] N Y 0.7
overwrite Overwrite original boolean [true, false] N Y 0.7
output_pathname Output filename string Any filename N N 0.7

add_page_with_text

text_content Page text content string Any text content N Y 0.9
font_size Text font size numeric_range [8, 72] N Y 0.6
page_num Insert position numeric_range* [1, num_pages+1] Y Y 0.8

add_watermark
watermark_text Watermark text string Any text N Y 0.9
transparency Transparency level numeric_range [0.0, 1.0] N Y 0.6

add_password password PDF password string Any password string N Y 0.9

Table 7: Document Plugin API: Complete Tool and Argument Specification with Domain Dependencies
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Tool Name Argument Description Domain Type Domain Values Data Dep. Required Importance

get_current_time No arguments

update_market_status current_time_str Time in HH:MM AM/PM string HH:MM AM/PM format N Y 0.8

get_symbol_by_name name Company name string Any company name N Y 0.9

get_stock_info symbol Stock symbol string* Available stock symbols Y Y 0.9

get_order_details order_id Order identifier numeric_range* Existing order IDs Y Y 0.9

cancel_order order_id Order to cancel numeric_range* Existing order IDs Y Y 0.9

place_order

order_type Buy or Sell finite [Buy, Sell] N Y 0.9
symbol Stock symbol string* Available stocks Y Y 0.9
price Price per share numeric_range [0.01, 10000.0] N Y 0.8
amount Number of shares numeric_range [1, 10000] N Y 0.8

make_transaction
xact_type Transaction type finite [deposit, withdrawal] N Y 0.9
amount Transaction amount numeric_range [0.01, 1000000.0] N Y 0.9

get_account_info No arguments

fund_account amount Funding amount numeric_range [0.01, 1000000.0] N Y 0.9

remove_stock_from_watchlist symbol Stock to remove string* Watchlist stocks Y Y 0.9

get_watchlist No arguments

get_order_history No arguments

get_transaction_history
start_date Start date filter string YYYY-MM-DD format N N 0.7
end_date End date filter string YYYY-MM-DD format N N 0.7

update_stock_price
symbol Stock symbol string* Available stocks Y Y 0.9
new_price New stock price numeric_range [0.01, 10000.0] N Y 0.9

get_available_stocks sector Market sector finite [Technology, Automobile, Healthcare, Finance, Energy] N Y 0.8

filter_stocks_by_price

stocks Stock list to filter list List of stock symbols N Y 0.9
min_price Minimum price numeric_range [0.01, 10000.0] N Y 0.8
max_price Maximum price numeric_range [0.01, 10000.0] N Y 0.8

add_to_watchlist stock Stock to add string* Available stocks Y Y 0.9

notify_price_change
stocks Stocks to monitor list List of stock symbols N Y 0.9
threshold Change threshold (%) numeric_range [0.01, 100.0] N Y 0.8

Table 8: Trading Plugin API: Complete Tool and Argument Specification with Domain Dependencies

Tool Name Argument Description Domain Type Domain Values Data Dep. Required Importance

startEngine ignitionMode Engine ignition mode finite [START, STOP] N Y 0.9

fillFuelTank fuelAmount Fuel to add (gallons) numeric_range* [0, 50-current_fuel] Y Y 0.8

lockDoors
unlock Lock or unlock boolean [true, false] N Y 0.8
door Doors to operate list* [driver, passenger, rear_left, rear_right] Y Y 0.9

adjustClimateControl

temperature Target temperature numeric_range [-10, 50] N Y 0.8
unit Temperature unit finite [celsius, fahrenheit] N N 0.6
fanSpeed Fan speed (0-100) numeric_range [0, 100] N N 0.6
mode Climate mode finite [auto, cool, heat, defrost] N N 0.7

get_outside_temperature_from_google No arguments

get_outside_temperature_from_weather_com No arguments

setHeadlights mode Headlight mode finite [on, off, auto] N Y 0.8

displayCarStatus option Status display option finite [fuel, battery, doors, climate, headlights, parkingBrake, brakePedal, engine] N Y 0.8

activateParkingBrake mode Brake mode finite [engage, release] N Y 0.8

pressBrakePedal pedalPosition Pedal position (0-1) numeric_range [0, 1] N Y 0.8

releaseBrakePedal No arguments

setCruiseControl

speed Cruise speed (mph) finite* [0, 5, 10, ..., 120] Y Y 0.8
activate Activate cruise boolean* [true, false] Y Y 0.8
distanceToNextVehicle Following distance (m) numeric_range [0, 1000] N Y 0.7

get_current_speed No arguments

display_log messages Log messages list List of strings N Y 0.7

estimate_drive_feasibility_by_mileage distance Distance in miles numeric_range [0, 10000] N Y 0.8

liter_to_gallon liter Liters to convert numeric_range [0, 1000] N Y 0.6

gallon_to_liter gallon Gallons to convert numeric_range [0, 1000] N Y 0.6

estimate_distance
cityA First city zipcode finite [83214, 74532, 56108, ...] N Y 0.8
cityB Second city zipcode finite [83214, 74532, 56108, ...] N Y 0.8

get_zipcode_based_on_city city City name finite [Rivermist, Stonebrook, ...] N Y 0.8

set_navigation destination Destination address string Street, city, state format N Y 0.8

check_tire_pressure No arguments

find_nearest_tire_shop No arguments

Table 9: Vehicle Control Plugin API: Complete Tool and Argument Specification with Domain Dependencies
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Tool Name Argument Description Domain Type Domain Values Data Dep. Required Importance

pwd No arguments

ls a Show hidden files boolean [true, false] N N 0.3

cd folder Directory to change to string* Available directories + [.., /] Y Y 0.9

mkdir dir_name New directory name string Any valid directory name N Y 0.8

touch file_name New file name string Any valid filename N Y 0.8

echo
content Text content string Any text string N Y 0.9
file_name Output file (optional) string Any filename N N 0.7

cat file_name File to display string* Available files Y Y 0.9

find
path Search starting point string Any path N N 0.6
name Search pattern string Any search pattern N N 0.8

wc
file_name File to count string* Available files Y Y 0.9
mode Count mode finite [l, w, c] N N 0.6

sort file_name File to sort string* Available files Y Y 0.9

grep
file_name File to search string* Available files Y Y 0.9
pattern Search pattern string Any text pattern N Y 0.9

du human_readable Human readable format boolean [true, false] N N 0.4

tail
file_name File to display string* Available files Y Y 0.9
lines Number of lines numeric_range [1, 100] N N 0.5

diff
file_name1 First file string* Available files Y Y 0.9
file_name2 Second file string* Available files Y Y 0.9

mv
source Source file/directory string* Available items Y Y 0.9
destination Destination name string* Available items + new names Y Y 0.9

rm file_name File/directory to remove string* Available items Y Y 0.9

rmdir dir_name Directory to remove string* Available directories Y Y 0.9

cp
source Source file/directory string* Available items Y Y 0.9
destination Destination name string* Available items + new names Y Y 0.9

Table 10: File System Plugin API: Complete Tool and Argument Specification with Domain Dependencies
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Plugin Update Trigger Dynamic Domain Updates Affected Operations

Travel
Credit card registration Card IDs → available payment methods book_flight,

get_credit_card_balance,
purchase_insurance

Flight booking Booking IDs → cancellable/retrievable
bookings

cancel_booking, re-
trieve_invoice, con-
tact_customer_support

Budget setting Budget limits → financial constraints All cost-related operations

Route updates Airport codes → valid travel routes get_flight_cost,
book_flight

Document
Page operations Page count → valid page numbers All page-specific opera-

tions

Document loading Total pages → range constraints add_comment,
delete_page, etc.

Cache invalidation State changes → domain refresh Page-changing operations

Trading
Order placement Order IDs → manageable orders get_order_details, can-

cel_order

Stock updates Available stocks → tradeable symbols place_order,
get_stock_info

Watchlist changes Watchlist → removable stocks remove_stock_from_watchlist

Vehicle
Fuel level changes Current fuel → addable amount fillFuelTank

Door state changes Door status → operable doors lockDoors

Engine state Running/stopped → cruise control avail-
ability

setCruiseControl

File System
Directory navigation Current contents → available items cd, cat, mv, cp, rm

File operations File list → operable files File-specific operations

Directory changes Directory list → navigable paths cd, rmdir

State synchronization FS changes → domain cache invalida-
tion

All state-changing opera-
tions

Table 11: Dynamic Domain Update Rules and Triggers Across Plugin System
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GorillaFileSystem For the file system API, we1187

implemented four primary corruption strategies:1188

• Invalid File Name Corruption targeting func-1189

tions like mkdir, touch, and cat by inserting1190

forbidden characters (e.g., |, /, \, ?);1191

• Path Traversal Corruption for cd, mv, cp, and1192

find operations by inserting relative paths1193

(../) or absolute paths (/root/);1194

• Non-existent Files Corruption for file opera-1195

tion functions by generating random names or1196

modifying existing names;1197

• Duplicate Creation Corruption for mkdir and1198

touch operations by using existing file/direc-1199

tory names.1200

DocumentPlugin For the document manipula-1201

tion API, we implemented three corruption strate-1202

gies:1203

• Invalid Page Range Corruption for functions1204

like add_comment and delete_page by set-1205

ting zero/negative values or exceeding total1206

pages;1207

• Invalid Formats Corruption for convert oper-1208

ations by using unsupported formats or partial1209

strings;1210

• Out of Range Values Corruption for param-1211

eters like font_size and transparency by1212

exceeding min/max bounds or using negative1213

values.1214

VehicleControlAPI For the vehicle control API,1215

we focused on two corruption categories:1216

• Invalid Ranges Corruption for functions like1217

fillFuelTank and adjustClimateControl1218

by exceeding capacity or using negative val-1219

ues;1220

• Invalid Enums Corruption for operations like1221

startEngine and setHeadlights by supply-1222

ing wrong enum values or case mismatches.1223

TravelAPI For the travel booking API, we im-1224

plemented three corruption strategies:1225

• Financial Constraints Corruption for func-1226

tions like book_flight by exceeding avail-1227

able balance or using negative values;1228

• Invalid Routes Corruption for route param- 1229

eters by using non-existent airport codes or 1230

identical from/to locations; 1231

• Non-existent Booking Corruption for func- 1232

tions like cancel_booking by generating ran- 1233

dom non-existent IDs. 1234

TradingBot For the stock trading API, we imple- 1235

mented three corruption strategies: 1236

• Invalid Symbols Corruption for functions like 1237

get_stock_info by using non-existent sym- 1238

bols or malformed formats; 1239

• Financial Validation Corruption for 1240

place_order and related functions by using 1241

negative values or amounts exceeding account 1242

balance; 1243

• Order State Conflicts Corruption for 1244

cancel_order operations by referencing 1245

completed orders or using malformed order 1246

IDs. 1247
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Human Annotation Guidelines  
Objective: 
 Annotators must evaluate five LLM-generated queries per sample. Each query is scored on three 
dimensions: (A) Naturalness of language, (B) Faithfulness to the expected tool call, and (C) 
Executability/Validity. Additionally, annotators must check for removal of Personally Identifiable 
Information (PII), assess tool call feasibility, and select one optimal query per sample. 

 

Evaluation Rubric 

Criterion Score 5 Score 4 Score 3 Score 2 Score 1 

A. 
Naturalness 

Fully fluent, 
natural, 
human-like 

Minor 
awkwardness 
or stiffness 

Understandable 
but robotic 

Clearly 
awkward or 
difficult to 
read 

Unintelligible or 
nonsensical 

B. 
Faithfulness 

Perfect match 
to expected 
tool call; all 
required 
arguments 
present 

Mostly aligned; 
minor phrasing 
or parameter 
issues 

Some omissions 
or hallucinations; 
core logic intact 

Major 
deviations 
from 
expected 
tool 
behavior 

Entirely 
incorrect or 
misleading tool 
structure 

C. 
Executability 

Fully 
executable; 
properly 
structured 
and valid 

Executes with 
minor issues or 
missing 
defaults 

Partially 
executable with 
moderate 
corrections 
needed 

Major issues 
preventing 
execution 

Unexecutable 
or contradicts 
tool logic/API 

 

Required Checks 

● PII Removal: Ensure no personal identifiers (names, emails, phone numbers, IDs) are present 
Flag these queries for further processing. 
 

● Tool Call Validation: If feasible, simulate or run tool calls to confirm validity and argument 
correctness. 
 

● Error Identification: Mark and annotate any queries with logical inconsistencies, invalid 
parameters, or unsupported constraints. 
 

Figure 6: Summary of instructions given to human annotators.
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