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ABSTRACT

Recent studies on contrastive learning have achieved remarkable performance
solely by leveraging few labels in the context of medical image segmentation.
Existing methods mainly focus on instance discrimination and invariant mapping
(i.e., pulling positive samples closer and negative samples apart in the feature
space). However, they face three common pitfalls: (1) tailness: medical image data
usually follows an implicit long-tail class distribution. Blindly leveraging all pixels
in training hence can lead to the data imbalance issues, and cause deteriorated
performance; (2) consistency: it remains unclear whether a segmentation model
has learned meaningful and yet consistent anatomical features due to the intra-class
variations between different anatomical features; and (3) diversity: the intra-slice
correlations within the entire dataset have received significantly less attention. This
motivates us to seek a principled approach for strategically making use of the
dataset itself to discover similar yet distinct samples from different anatomical
views. In this paper, we introduce a novel semi-supervised medical image seg-
mentation framework termed Mine yOur owN Anatomy (MONA), and make three
contributions. First, prior work argues that every pixel equally matters to the model
training; we observe empirically that this alone is unlikely to define meaningful
anatomical features, mainly due to lacking the supervision signal. We show two
simple solutions towards learning invariances – through the use of stronger data
augmentations and nearest neighbors. Second, we construct a set of objectives that
encourage the model to be capable of decomposing medical images into a collection
of anatomical features in an unsupervised manner. Lastly, our extensive results on
three benchmark datasets with different labeled settings validate the effectiveness
of our proposed MONA which achieves new state-of-the-art under different labeled
settings. Perhaps most impressively, MONA trained with 10% labeled – for the first
time – outperforms the supervised counterpart on all three datasets. MONA makes
minimal assumptions on domain expertise, and hence constitutes a practical and
versatile solution in medical image analysis. Codes will be available to public.

1 INTRODUCTION

With the advent of deep learning, medical image segmentation has drawn great attention and substan-
tial research efforts in recent years. Traditional supervised training schemes coupled with large-scale
annotated data can engender remarkable performance. However, training with massive high-quality
annotated data is infeasible in clinical practice since a large amount of expert-annotated medical data
often incurs considerable clinical expertise and time. Under such a setting, this poses the question
of how models benefit from a large amount of unlabelled data during training. Recently emerged
methods based on contrastive learning (CL) significantly reduce the training cost by learning strong
visual representations in an unsupervised manner Wu et al. (2018b); Oord et al. (2018); Hjelm et al.
(2019); Chen et al. (2020a); He et al. (2020); Henaff (2020); Misra & Maaten (2020); Hadsell et al.
(2006); Grill et al. (2020); Chen et al. (2020b); Caron et al. (2020). A popular way of formulating
this idea is through imposing feature consistency to differently augmented views of the same image -
which treats each view as an individual instance.
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Figure 1: Examples of three benchmarks (i.e., ACDC, LiTS, MMWHS) with large intra-class
variances.

Despite great promise, the main technical challenges remain: (1) How far is CL from becoming a
principled framework for medical image segmentation? (2) Is there any better way to implicitly learn
some intrinsic properties from the original data (i.e., the inter-instance relationships and intra-instance
invariance)? (3) What will happen if models can only access a few labels in training?

To address the above challenges, we outline three principles below: (1) tailness: existing approaches
inevitably suffer from class collapse problems – wherein similar pairs from the same latent class
are assumed to have the same representation Arora et al. (2019); Chuang et al. (2020); Li et al.
(2021). This assumption, however, rarely holds for real-world clinical data. We observe that the
long-tail distribution problem has received increasing attention in the computer vision community
Kang et al. (2020); Zhu et al. (2014); Cui et al. (2019b); Yang & Xu (2020); Jiang et al. (2021). In
contrast, there have been a few prior long-tail works for medical image segmentation. For example, as
illustrated in Figure 1, most medical image images follow a Zipf long-tail distribution where various
anatomical features share very different class frequencies, which can result in worse performance;
(2) consistency: considering the scarcity of medical data in practice, augmentations are a widely
adopted pre-text task to learn meaningful representations. Intuitively, the anatomical features should
be semantically consistent across different transformations and deformations. Thus, it is important to
assess whether the model is robust to diverse views of anatomy; (3) diversity: recent work Zheng
et al. (2021); Azabou et al. (2021); Van Gansbeke et al. (2021) pointed out that going beyond simple
augmentations to create more diverse views can learn more discriminative anatomical features. At
the same time, this is particularly challenging to both introduce sufficient diversity and preserve the
anatomy of the original data, especially in data-scarce clinical scenarios. To deploy into the wild, we
need to quantify and address three research gaps from different anatomical views.

In this paper, we present Mine yOur owN Anatomy (MONA), a novel contrastive semi-supervised
medical segmentation framework, based on different anatomical views. The workflow of MONA is
illustrated in Figure 2. The key innovation in MONA is to seek diverse views (i.e., augmented/mined
views) of different samples whose anatomical features are homogeneous within the same class type,
while distinctive for different class types. We make the following contributions. First, we consider
the problem of tailness. An issue is that label classes within medical images typically exhibit a
long-tail distribution. Another one, technically more challenging, is the fact that there is only a few
labeled data and large quantities of unlabeled ones during training. Intuitively we would like to
sample more pixel-level representations from tail classes. Thus, we go beyond the naı̈ve setting of
instance discrimination in CL Chen et al. (2020a); He et al. (2020); Grill et al. (2020) by decomposing
images into diverse and yet consistent anatomical features, each belonging to different classes. In
particular, we propose to use pseudo labeling and knowledge distillation to learn better pixel-level
representations within multiple semantic classes in a training mini-batch. Considering performing
pixel-level CL with medical images is impractical for both memory cost and training time, we then
adopt active sampling strategies Liu et al. (2021) such as in-batch hard negative pixels, to better
discriminate the representations at a larger scale.

We further address the two other challenges: consistency and diversity. The success of the common CL
theme is mainly attributed to invariant mapping Hadsell et al. (2006) and instance discrimination Wu
et al. (2018b); Chen et al. (2020a). Starting from these two key aspects, we try to further improve the
segmentation quality. More specifically, we suggest that consistency to transformation (equivariance)
is an effective strategy to establish the invariances (i.e., anatomical features and shape variance) to
various image transformations. Furthermore, we investigate two ways to include diversity-promoting
views in sample generation. First, we incorporate a memory buffer to alleviate the demand for large
batch size, enabling much more efficient training without inhibiting segmentation quality. Second,

2



Under review as a conference paper at ICLR 2023

we leverage stronger augmentations and nearest neighbors to mine views as positive views for more
semantic similar contexts.

Extensive experiments are conducted on a variety of datasets and the latest CL frameworks (i.e.,
MoCo He et al. (2020), SimCLR Chen et al. (2020a), BYOL Grill et al. (2020), and ISD Tejankar
et al. (2021)), which consistently demonstrate the effectiveness of our proposed MONA. For example,
our MONA establishes the new state-of-the-art performance, compared to both the state-of-the-art
semi-supervised and fully-supervised approaches with 10% label ratio. We also present a systematic
evaluation for analyzing why our approach performs so well and how different factors contribute to the
final performance. We hope our findings will provide useful insights on medical image segmentation
to other researchers.

2 RELATED WORK

Medical image segmentation Medical image segmentation aims to assign a class label to each pixel
in an image, and plays a major role in real-world applications, such as assisting the radiologists for
better disease diagnosis and reduced cost. With sufficient annotated training data, significant progress
has been achieved with the introduction of Fully convolutional networks (FCN) Long et al. (2015)
and UNet Ronneberger et al. (2015). Follow-up works can be categorized into two main directions.
One direction is to improve modern segmentation network design. Many CNN-based Simonyan &
Zisserman (2014); He et al. (2016) and Transformer-like Vaswani et al. (2017); Dosovitskiy et al.
(2020) model variants Milletari et al. (2016); Chen et al. (2017); Alom et al. (2018); Oktay et al.
(2018); Chen et al. (2018); Wu et al. (2018a; 2019); Chen et al. (2021a); Cao et al. (2021); Xie et al.
(2021); Hatamizadeh et al. (2021); Valanarasu et al. (2021); Desai et al. (2021); Xu et al. (2021);
Xu et al.; Isensee et al. (2021); You et al. (2022a) have been proposed since then. For example,
some works Chen et al. (2017; 2018); Dai et al. (2017) proposed to use dilated/atrous/deformable
convolutions with larger receptive fields for more dense anatomical features. Other works Chen et al.
(2021a); Cao et al. (2021); Xie et al. (2021); Hatamizadeh et al. (2021); Valanarasu et al. (2021);
You et al. (2022a) include Transformer blocks to capture more long-range information, achieving the
impressive performance. A parallel direction is to select proper optimization strategies, by designing
loss functions to learn meaningful representations Lin et al. (2017b); Xue et al. (2019); Shi et al.
(2021). However, those methods assume access to a large, labeled dataset. This restrictive assumption
makes it challenging to deploy in most real-world clinical practices. In contrast, our MONA is more
robust as it leverages only a few labeled data and large quantities of unlabeled one in the learning
stage.

Semi-supervised learning (SSL) The goal in robust SSL is to improve the medical segmentation
performance by taking advantage of large amounts of unlabelled data during training. It can be
roughly categorized into three groups: (1) self-training by generating unreliable pseudo-labels for
performance gains, such as pseudo-label estimation Lee et al. (2013); Bai et al. (2017); Fan et al.
(2020); Chen et al. (2021b), model uncertainty Yu et al. (2019); Graham et al. (2019); Jungo & Reyes
(2019); Mehrtash et al. (2020); Zeng et al. (2019); Nair et al. (2020); Camarasa et al. (2020); Cao
et al. (2020), confidence estimation Blundell et al. (2015); Gal & Ghahramani (2016); Kendall & Gal
(2017), and noisy student Xie et al. (2020a); (2) consistency regularization Bortsova et al. (2019); Cui
et al. (2019a); Zhou et al. (2020); Fotedar et al. (2020); Fang & Li (2020) by integrating consistency
corresponding to different transformation, such as pi-model Sajjadi et al. (2016), co-training Qiao
et al. (2018); Zhou et al. (2019), and mean-teacher Tarvainen & Valpola (2017); Li et al. (2020b);
Reiß et al. (2021); (3) other training strategies such as adversarial training Zhang et al. (2017); Nie
et al. (2018); Zhang et al. (2018); Zheng et al. (2019); Li et al. (2020a); Valvano et al. (2021) and
entropy minimization Grandvalet & Bengio (2004). In contrast to these works, we do not explore
more advanced pseudo-labelling strategy to learn spatially structured representations. In this work,
we are the first to explore a novel direction for discovering distinctive and semantically consistent
anatomical features without image-level or region-level labels. Further, we expect that our findings
can be relevant for other medical image segmentation frameworks.

Contrastive learning CL has recently emerged as a promising paradigm for medical image seg-
mentation via exploiting abundant unlabeled data, leading to state-of-the-art results Chaitanya et al.
(2020); Xie et al. (2020b); You et al. (2021); Chaitanya et al. (2021); Hu et al. (2021); Xiang et al.
(2021); Zeng et al. (2021); You et al. (2022b). The high-level idea of CL is to pull closer the different
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(1) Relational Semi-supervised Pre-training (2) Anatomical Contrastive Reconstruction Fine-tuning

Figure 2: Overview of the MONA framework including two stages: (1) relational semi-supervised
pre-training, (2) our proposed anatomical contrastive reconstruction fine-tuning. Note that U and L
denote unlabeled and labeled data.

augmented views of the same instance but pushes apart all the other instances away. Intuitively,
differently augmented views of the same image are considered positives, while all the other im-
ages serve as negatives. The major difference between different CL-based frameworks lies in the
augmentation strategies to obtain positives and negatives. A few very recent studies Kang et al.
(2020); Jiang et al. (2021) confirm the superiority of CL of addressing imbalance issues in image
classification. Moreover, existing CL frameworks Chaitanya et al. (2020); You et al. (2021); Hu et al.
(2021) mainly focus on the instance level discrimination (i.e., different augmented views of the same
instance should have similar anatomical features or clustered around the class weights). However, we
argue that not all negative samples equally matter, and the above issues have not been explored from
the perspective of medical image segmentation, considering the class distributions in the medical
image are perspectives diverse and always exhibit long tails Galdran et al. (2021); Roy et al. (2022).
Inspired by the aforementioned, we address these two issues in medical image segmentation - two
appealing perspectives that still remain under-explored.

3 MINE YOUR OWN ANATOMY (MONA)

3.1 FRAMEWORK

Overview. We introduce our contrastive learning framework (See Figure 2), which includes (1)
relational semi-supervised pre-training, and (2) anatomical contrastive reconstruction fine-tuning.
The key idea is to seek diverse yet semantically consistent views whose anatomical features are
homogeneous within the same class type, while distinctive for different class types. In this paper,
our pre-training stage is built upon ISD Tejankar et al. (2021) - a competitive framework for image
classification. The main differences between ISD and MONA are: MONA is more tailored to medical
image segmentation, i.e., considering the dense nature of this problem both in global and local manner,
and can generalize well to those long-tail scenarios. Also, our principles are expected to apply to
other CL framework ((i.e., MoCo He et al. (2020), SimCLR Chen et al. (2020a), BYOL Grill et al.
(2020)). More detailed analysis can be found in the Appendix C.

Pre-training preliminary. Let (X,Y ) be our dataset, including training images x ∈ X and their
corresponding C-class segmentation labels y ∈ Y , where X is composed of N labeled and M
unlabeled slices. Note that, for brevity, y can be either sampled from Y or pseudo-labels. The student
and teacher networks F , parameterized by weights θ and ξ, each consist of a encoder E and a decoder
D (i.e., UNet Ronneberger et al. (2015)). Concretely, given a sample s from our unlabeled dataset,
we have two ways to generate views: (1) we formulate augmented views (i.e., x,x′) through two
different augmentation chains; and (2) we create d mined views (i.e., xr,i) by randomly selecting
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from the unlabeled dataset followed by additional augmentation.1 We then fed the augmented views
to both Fθ and Fξ , and the mined views to Fξ . Similar to Chaitanya et al. (2020), we adopt the global
and local instance discrimination strategies in the latent and output feature spaces.2 Specifically, the
encoders generate global features zg = Eθ(x), z′g = Eξ(x

′), and zr,g = Eξ(xr), which are then fed
into the nonlinear projection heads to obtain vg = hθ(zg), v′

g = hξ(z
′
g), and wg = hξ(zr,g). The

augmented embeddings from the student network are further projected into secondary space, i.e.,
ug = h′

θ(vg). We calculate similarities across mined views and augmented views from the student
and teacher in both global and local manners. Then a softmax function is applied to process the
calculated similarities, which models the relationship distributions:

sθ = log
exp

(
sim

(
u,w

)
/τθ

)∑k
j=1 exp

(
sim

(
u,wj

)
/τθ

) , sξ = log
exp

(
sim

(
v′,w

)
/τξ

)∑k
j=1 exp

(
sim

(
v′,wj

)
/τξ

) , (1)

where τθ and τξ are different temperature parameters, and sim(·, ·) denotes cosine similarity. The
unsupervised instance discrimination loss (i.e., Kullback-Leibler divergence KL) can be defined as:

Linst = KL(sθ||sξ). (2)

The parameters ξ of Fξ is updated as: ξ = tξ+(1−t)θ with t = 0.99 as a momentum hyperparameter.
In our pre-training stage, the total loss is the sum of global and local instance discrimination loss Linst
(on pseudo-labels), and supervised segmentation loss Lsup (i.e., equal combination of dice loss and
cross-entropy loss on ground-truth labels): Lgloabl

inst + Llocal
inst + Lsup.

Principles. As shown in Figure 2, the principles behind MONA (i.e., the second anatomical contrastive
reconstruction stage) aim to ensure tailness, consistency, and diversity. Concretely, tailness is for
actively sampling more tail class hard pixels; consistency ensures the feature invariances; and diversity
further encourages to discover more anatomical features in different images.

3.2 ANATOMICAL CONTRASTIVE RECONSTRUCTION

Tailness. Motivated by the observations (Figure 1), our primary cue is that medical images naturally
exhibit an imbalanced or long-tailed class distribution, wherein many class labels are associated with
only a few pixels. To generalize well on such imbalanced setting, we propose to use anatomical
contrastive formulation (ACF).
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Here we additionally attach the representation heads to
fuse the multi-scale features with the feature pyramid net-
work (FPN) Lin et al. (2017a) structure and generate the
m-dimensional representations with consecutive convo-
lutional layers. The high-level idea is that the features
should be very similar among the same class type, while
very dissimilar across different class types. Particularly
for long-tail medical data, a naı̈ve application of this idea
would require substantially computational resources pro-
portional to the square of the number of pixels within the
dataset, and naturally overemphasize the anatomy-rich
head classes and leaves the tail classes under-learned in
learning invariances, both of which suffer performance
drops.

To this end, we address this issue by actively sampling a
set of pixel-level anchor representations rq ∈ Rc

q (queries), pulling them closer to the class-averaged
mean of representations rc,+k within this class c (positive keys), and pushing away from representations
r−k ∈ Rc

k from other classes (negative keys). Formally, the contrastive loss is defined as:

Lcontrast =
∑
c∈C

∑
rq∼Rc

q

− log
exp(rq · rc,+k /τ)

exp(rq · rc,+k /τ) +
∑

r−k ∼Rc
k
exp(rq · r−k /τ)

, (3)

1Note that the subscript i is omitted for simplicity in following contexts.
2Here we omit details of local instance discrimination strategy for simplicity because the global and local

instance discrimination experimental setups are similar.
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where C denotes a set of all available classes for each mini-batch, and τ is a temperature hyperpa-
rameter. Suppose A is a collection including all pixel coordinates within x, these representations
are:

Rc
q=

⋃
[m,n]∈A

1(y[m,n]=c) r[m,n], Rc
k=

⋃
[m,n]∈A

1(y[m,n] ̸=c) r[m,n], rc,+k =
1

|Rc
q|

∑
rq∈Rc

q

rq . (4)

We then note that CL might benefit more, where the instance discrimination task is achieved by
incorporating more positive and negative pairs. However, naively unrolling CL to this setting is
impractical since it requires extra memory overheads that grow proportionally with the amount of
instance discrimination tasks. To this end, we adopt a random set (i.e., the mini-batch) of other images.
Intuitively, we would like to maximize the anatomical similarity between all the representations from
the query class, and analogously minimize all other class representations. We then create a graph
G to compute the pair-wise class relationship: G[p, q] =

(
rp,+k · rq,+k

)
,∀p, q ∈ C, and p ̸= q, where

G ∈ R|C|×|C|. Here finding the accurate decision boundary can be formulated mathematically by
normalizing the pair-wise relationships among all negative class representations via the softmax
operator. To address the challenge in imbalanced medical image data, we define the pseudo-label
(i.e., easy and hard queries) based on a defined threshold as follows:

Rc, easy
q =

⋃
rq∈Rc

q

1(ŷq > δθ)rq, Rc, hard
q =

⋃
rq∈Rc

q

1(ŷq ≤ δθ)rq, (5)

where ŷq is the cth-class pseudo-label corresponding to rq, and δθ is the user-defined threshold. For
further improvement in long-tail scenarios, we construct a class-aware memory bank He et al. (2020)
to store a fixed number of negative samples per class c.

Consistency.
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The proposed ACF is designed to address imbalanced issues,
but anatomical consistency remains to be weak in the long-tail
medical image setting since medical segmentation should be
robust to different tissue types which show different anatomical
variations. We hence construct a random image transforma-
tion T and define the equivariance loss on both labeled and
unlabeled data by measuring the feature consistency distance
between each original segmentation map and the segmentation
map generated from the transformed image:

Leqv(x, T (x)) =
∑
x∈X

KL (T (Fθ(x)),Fθ(T (x))) +KL (Fθ(T (x)), T (Fθ(x))) . (6)

Here we define T on both the input image x and Fθ(x), via the random transformations (i.e., affine,
intensity, and photo-metric augmentations), since the model should learn to be robust and invariant to
these transformations.

Diversity. Oversampling too many images from the random set would create extra memory overhead,
and more importantly, our finding also uncovers that a large number of random images might not
necessarily help impose additional invariances between neighboring samples since redundant images
might introduce additional noise during training (see the Appendix D). Therefore, we formulate our
insight as an auxiliary loss that regularizes the representations - keeping the anatomical contrastive
reconstruction task as the main force. In practice, we first search for K-nearest neighbors from the
first-in-first-out (FIFO) memory bank He et al. (2020), and then use the nearest neighbor loss Lnn
based on the Mean Squared Error (MSE), to exploit the inter-instance relationship.

Setup. The total loss Ltotal is the sum of contrastive loss Lcontrast (on both ground-truth labels
and pseudo-labels), equivariance loss Leqv (on both ground-truth labels and pseudo-labels), nearest
neighbors loss Lnn (on both ground-truth labels and pseudo-labels), unsupervised cross-entropy loss
Lunsup (on pseudo-labels) and supervised segmentation loss Lsup (on ground-truth labels): Lsup +
λ1Lcontrast+λ2Leqv+λ3Lunsup+λ4Lnn. See the Appendix D for an ablation study of hyperparameters.
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Table 1: Comparison of segmentation performance (DSC[%]/ASD[mm]) on ACDC and LiTS under
three labeled ratio settings (1%, 5%, 10%). The best results are indicated in bold.

ACDC LiTS
1% Labeled 5% Labeled 10% Labeled 1% Labeled 5% Labeled 10% Labeled

Method DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓
UNet-F Ronneberger et al. (2015) 89.9 0.621 89.9 0.621 89.9 0.621 68.2 16.9 68.2 16.9 68.2 16.9

UNet-L 14.5 19.3 51.7 13.1 74.4 2.20 57.0 34.6 60.4 30.4 61.6 28.3

EM Vu et al. (2019) 21.1 21.4 59.8 5.64 75.7 2.73 56.6 38.4 61.2 33.3 62.9 38.5
CCT Ouali et al. (2020) 30.9 28.2 59.1 10.1 75.9 3.60 52.4 52.3 60.6 48.7 63.8 31.2
DAN Zhang et al. (2017) 34.7 25.7 56.4 15.1 76.5 3.01 57.2 27.1 62.3 25.8 63.2 30.7
URPC Luo et al. (2021) 32.2 26.9 58.9 8.14 73.2 2.68 55.5 34.6 62.4 37.8 63.0 43.1
DCT Qiao et al. (2018) 36.0 24.2 58.5 10.8 78.1 2.64 57.6 38.5 60.8 34.4 61.9 31.7
ICT Verma et al. (2019) 35.8 21.3 59.0 4.59 75.1 0.898 58.3 32.2 60.1 39.1 62.5 32.4

MT Tarvainen & Valpola (2017) 36.8 19.6 58.3 11.2 80.1 2.33 56.7 34.3 61.9 40.0 63.3 26.2
UAMT Yu et al. (2019) 35.2 24.3 61.0 7.03 77.6 3.15 57.8 41.9 61.0 47.0 62.3 26.0
CPS Chen et al. (2021b) 37.1 30.0 61.0 2.92 78.8 3.41 57.7 39.6 62.1 36.0 64.0 23.6

GCL Chaitanya et al. (2020) 59.7 14.3 70.6 2.24 87.0 0.751 59.3 29.5 63.3 20.1 65.0 37.2
SCS Hu et al. (2021) 59.4 12.7 73.6 5.37 84.2 2.01 57.8 39.6 61.5 28.8 64.6 33.9

PLC Chaitanya et al. (2021) 58.8 15.1 70.6 2.67 87.3 1.34 56.6 41.6 62.7 26.1 68.2 16.9
•MONA (ours) 82.6 2.03 88.8 0.62 90.7 0.864 64.1 20.9 67.3 16.4 69.3 18.0

4 EXPERIMENTS

In this section, we evaluate our proposed MONA on three popular medical image segmentation datasets
under varying labeled ratio settings: the ACDC dataset Bernard et al. (2018), the LiTS dataset
Bilic et al. (2019), and the MMWHS dataset Zhuang & Shen (2016) (See Appendix B). Moreover,
to further validate our approach’s unsupervised imbalance handling ability, we consider a more
realistic and more challenging scenario, wherein the models would only have access to the extremely
limited labeled data (i.e., 1% labeled ratio) and large quantities of unlabeled one in training. For
all experiments, we follow the same training and testing protocol. See the Appendix A for more
implementation details used in the experiments.

4.1 MAIN RESULTS

We show the effectiveness of our method under three different label ratios (i.e., 1%, 5%, 10%). We
also compare MONA with various state-of-the-art SSL and fully-supervised methods on three datasets:
ACDC Bernard et al. (2018), LiTS Bilic et al. (2019), MMWHS Zhuang & Shen (2016). We choose
2D UNet Ronneberger et al. (2015) as backbone, and compare against SSL methods including UNet
trained with full/limited supervisions (UNet-F/UNet-L), EM Vu et al. (2019), CCT Ouali et al.
(2020), DAN Zhang et al. (2017), URPC Luo et al. (2021), DCT Qiao et al. (2018), ICT Verma et al.
(2019), MT Tarvainen & Valpola (2017), UAMT Yu et al. (2019), CPS Chen et al. (2021b), SCS Hu
et al. (2021), GCL Chaitanya et al. (2020), and PLC Chaitanya et al. (2021). We report quantitative
comparisons on ACDC and LiTS in Table 1, and average all our results over three independent runs.
(More results on MMWHS in the Appendix B.)

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

Figure 3: Visualization of segmentation results on ACDC with 5% label ratio. As is shown, MONA
consistently yields more accurate predictions and better boundary adherence compared to all other
SSL methods. Different anatomical classes are shown in different colors (RV:

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

; Myo:

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

; LV:

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

).
ACDC. We benchmark performances on ACDC with respect to different amounts of labeled ratios
(i.e., 1%, 5%, 10%). The following observations can be drawn: First, our proposed MONA significantly
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(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

Figure 4: Visualization of segmentation results on LiTS with 5% labeled ratio. As is shown, MONA
consistently produces sharp and accurate object boundaries compared to all other SSL methods.
Different anatomical classes are shown in different colors (Liver:

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

; Tumor:

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

).

outperforms all other SSL methods under three different label ratios. Especially, with only extremely
limited labeled data available (e.g., 1%), our method obtains massive gains of 82.6% and 2.03 in Dice
and ASD (i.e., dramatically improving the performance from 59.4% to 82.6%). Second, our method
achieves consistently improved performance, and performs better or on par with the fully-supervised
approach under all three different label ratios. In particular, MONA with limited labeled training data
available (e.g., 10%) – for the first time – surpasses the fully supervised counterparts. For example,
the best Dice score on ACDC rises from 89.9% to 90.7%. Third, as shown in Figure 3, we can see
the clear advantage of MONA, where the anatomical boundaries of different tissues are clearly more
pronounced such as RV and Myo regions. As seen, our method is capable of producing consistently
sharp and accurate object boundaries across various challenge scenarios.

LiTS. We then evaluate MONA on LiTS, using 1%, 5%, 10% labeled ratios. The results are summarized
in Table 1 and Figure 4. The conclusions we can draw are highly consistent with the above ACDC
case: First, at the different label ratios (i.e., 1%, 5%, 10%), MONA consistently outperforms all the
other SSL methods, which again demonstrates the effectiveness of learning representations for the
inter-class correlations and intra-class invariances under imbalanced class-distribution scenarios.
In particular, our MONA, trained on a 1% labeled ratio (i.e., extremely limited labels), dramatically
improves the previous best averaged Dice score from 59.3% to 64.1% by a large margin, and even
performs on par with previous SSL methods using 10% labeled ratio. Second, the most impressive
results come from MONA at 10% label ratio. To the best of our knowledge, this is the first time in
the literature that SSL schemes trained at 10% label ratio outperform the fully-supervised model by
1.1% improvements in Dice (i.e., from 68.2% to 69.3%). Third, as shown in Figure 4, we observe
that MONA is able to produce more accurate results compared to the previous best schemes.

Overall, we conclude that MONA provides robust performance on all the medical datasets we evaluated,
exceeding that of the fully-supervised baseline, and outperforming all other SSL methods.

4.2 ABLATION STUDY

In this subsection, we conduct comprehensive analyses to understand the inner workings of MONA on
ACDC under 5% labeled ratio. Note that for reproducibility, we report the average performance of
three independent runs with different random seeds. More results and details about our case study are
referred to the Appendix C and D.

Effects of Different Components. Our key observation is that it is crucial to build meaningful
anatomical representations for the inter-class correlations and intra-class invariances under imbalanced
class-distribution scenarios can further improve performance. Upon our choice of architecture, we
first consider a naı̈ve baseline (ISD). To validate this, we experiment with the key components in
MONA on ACDC, including: (1) tailness, (2) consistency, and (3) diversity. The results are in Table 2.
As is shown, each key component makes a clear difference and leveraging all of them contributes to
the remarkable performance improvements. This suggests the importance of learning meaningful
representations for the inter-class correlations and intra-class invariances within the entire dataset.
The intuitions behind each concept are as follows: (1) Only tailness: many anatomy-rich head classes
would be sampled; (2) Only consistency: it would lead to object collapsing due to the different
anatomical variations; (3) Only diversity: oversampling too many negative samples often comes at
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the cost of performance degradation. By combining tailness, consistency, and diversity, our method
confers a significant advantage at representation learning in imbalanced feature similarity, semantic
consistency and anatomical diversity, which further highlights the superiority of our proposed MONA.

Table 2: Ablation on model component: (1) tail-
ness; (2) consistency; (3) diversity, compared to
the Vanilla and our proposed MONA.

Method Metrics
Dice[%] ↑ ASD[mm] ↓

Vanilla 67.4 6.53

w/ tailness 87.1 1.02
w/ consistency 74.1 11.8
w/ diversity 74.3 10.9
w/ tailness + consistency 88.1 0.864
w/ consistency + diversity 80.2 6.11
w/ tailness + diversity 88.0 1.13

•MONA (ours) 88.8 0.62

Table 3: Ablation on augmentation strategies for
MONA on the ACDC and LiTS dataset under 5%
labeled ratio.

Dataset Student Teacher Metrics
Aug. Aug. Dice[%] ↑ ASD[mm] ↓

ACDC

Weak Weak 86.0 1.02
Weak Strong 88.8 0.62
Strong Weak 86.4 2.83
Strong Strong 88.8 2.07

LiTS

Weak Weak 62.3 26.5
Weak Strong 67.3 16.4
Strong Weak 64.3 34.7
Strong Strong 66.5 21.1

Effects of Different Augmentations. In addition to further improving the quality and stability in
anatomical representation learning, we claim that MONA also gains robustness using augmentation
strategies. For augmentation strategies, previous works Tejankar et al. (2021); Zheng et al. (2021);
Sohn et al. (2020) show that composing the weak augmentation strategy for the “pivot-to-target”
model (i.e., trained with limited labeled data and a large number of unlabeled data) is helpful for
anatomical representation learning since the standard contrastive strategy is too aggressive, intuitively
leading to a “hard” task (i.e., introducing too many disturbances and yielding model collapses).
Here we examine whether and how applying different data augmentations helps MONA. In this work,
we implement the weak augmentation to the student’s input as random rotation, random cropping,
horizontal flipping, and strong augmentation to the teacher’s input as random rotation, random
cropping, horizontal flipping, random contrast, CutMix French et al. (2020), brightness changes Perez
et al. (2018), morphological changes (diffeomorphic deformations). We summarize the results in
Table 3, and list the following observations: (1) weak augmentations benefits more: composing the
weak augmentation for the student model and strong augmentation for the teacher model significantly
boosts the performance across two benchmark datasets. (2) same augmentation pairs do not
make more gains: interestingly, applying same type of augmentation pairs does not lead to the
best performance compared to different types of augmentation pairs. We postulate that composing
different augmentations can be considered as a harder albeit more useful strategy for anatomical
representation learning, making feature more generalizable.

5 CONCLUSION AND DISCUSSION OF BROADER IMPACT

In this paper, we have presented MONA, a semi-supervised contrastive learning method for medical
image segmentation. We start from the observations that medical image data always exhibit a long-tail
class distribution, and the same anatomical objects (i.e., liver regions for two people) are more similar
to each other than different objects (e.g.liver and tumor regions). We further expand upon this idea by
introducing anatomical contrastive formulation, as well as equivariance and invariances constraints.
An extensive empirical study shows that we can formulate a generic set of perspectives that allows
us to learn meaningful representations across different anatomical features, which can dramatically
improve the segmentation quality and alleviate the training memory bottleneck. Extensive experiments
on three datasets demonstrate the state-of-the-art performance of our proposed framework in the
long-tailed medical data regimes with extremely limited labels. We believe our results contribute
to a better understanding of medical image segmentation and point to new avenues for long-tailed
medical image data in realistic clinical applications.

Broader Impact. This research aims to study and improve contrastive learning methods for learning
useful representations with only extremely limited labels in the long-tail medical data regimes. Our
findings show that our proposed framework can potentially benefit the effectiveness of anatomical
representation learning and reduce computational costs, leading to realistic deployments in a large
variety of real-world clinical applications. Besides, we should address the challenges of fairness or
privacy in medical imaging domain as our future research direction.
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Appendix to
Mine yOur owN Anatomy: Revisiting Medical Image

Segmentation with Extremely Limited Labels
section A provides additional training details.
section B provides more experimental results on MMWHS.
section C compares to existing state-of-the-art contrastive learning (CL) frameworks.
section D provides more ablations on anatomical contrastive reconstruction.

A MORE TRAINING DETAILS

The ACDC dataset was hosted in MICCAI 2017 ACDC challenge Bernard et al. (2018), which
includes 200 3D cardiac cine MRI scans with expert annotations for three classes (i.e., left ventricle
(LV), myocardium (Myo), and right ventricle (RV)). We divide the dataset into splits of 120, 40 and
40 scans for training, validation, and testing with a random order. For pre-processing, we adopt the
similar setting in Chaitanya et al. (2020) by normalizing the intensity of each 3D scan (i.e., using
min-max normalization) into [0, 1], and re-sampling all 2D scans and the corresponding segmentation
maps into a fixed spatial resolution of 256× 256 pixels.

The LiTS dataset was hosted in MICCAI 2017 Liver Tumor Segmentation Challenge Bilic et al.
(2019), which includes 131 contrast-enhanced 3D abdominal CT volumes with expert annotations for
two classes (i.e., liver and tumor). We divide the dataset into splits of 100 and 31 scans for training
and testing with a random order. For pre-processing, we adopt the similar setting in Li et al. (2018) by
truncating the intensity of each 3D scan into [−200, 250] HU for removing irrelevant and redundant
details, normalizing each 3D scan into [0, 1], and re-sampling all 2D scans and the corresponding
segmentation maps into a fixed spatial resolution of 256× 256 pixels.

The MMWHS dataset was hosted in MICCAI 2017 challenge Zhuang & Shen (2016), which
includes 20 3D cardiac MRI scans with expert annotations for seven classes: left ventricle (LV), left
atrium (LA), right ventricle (RV), right atrium (RA), myocardium (Myo), ascending aorta (AAo),
and pulmonary artery (PA). We divide the dataset into splits of 15 and 5 scans for training and testing
with a random order. For pre-processing, we normalize the intensity of each 3D scan (i.e., using
min-max normalization) into [0, 1], and re-sampling all 2D scans and the corresponding segmentation
maps into a fixed spatial resolution of 256× 256 pixels.

𝐸 t

𝑔!

1×
1
co
nv

1×
1
co
nv

1×
1
co
nv

1×
1
co
nv

1×
1
co
nv

Generated Representations

UL

Representation Head

Ground-truth LabelsGenerated Labels

G GT

Figure 5: Representation head architecture.

Implementation details. We implement all the evaluated models using PyTorch library Paszke et al.
(2019). All the models are trained using Stochastic Gradient Descent (SGD) (i.e., initial learning rate
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= 0.01, momentum = 0.9, weight decay = 0.0001) with batch size of 6, and the initial learning rate
is divided by 10 every 2500 iterations. All of our experiments are conducted on NVIDIA GeForce
RTX 3090 GPUs. We first train our model with 100 epochs during the pre-training, and then retrain
the model for 300 epochs during the fine-tuning. We set the temperature τξ, τθ, τ as 0.01, 0.1, 0.5.
The size of the memory bank is 36. During the pre-training, we follow the settings of ISD, including
global projection head setting, and predictors with the 512-dimensional output embedding, and adopt
the setting of local projection head in Hu et al. (2021). More specifically, given the predicted logits
ŷ ∈ RC×H×W , we create 36 different views (i.e., random crops at the same location) of ŷ and ŷ′

with the fixed size 64× 64, and then project all pixels into 512-dimensional output embedding space,
and the output feature dimension of h′

θ is also 512. An illustration of our representation head is
presented in Figure 5. We then actively sample 256 query embeddings and 512 key embeddings
for each mini-batch, and the confidence threshold δθ is set to 0.97. When fine-tuning we use an
equally sized pool of candidates K = 5, as well as λ1 = 0.01, λ2 = 1.0, λ3 = 1.0, and λ4 = 1.0.
For different augmentation strategies, we implement the weak augmentation to the student’s input
as random rotation, random cropping, horizontal flipping, and strong augmentation to the teacher’s
input as random rotation, random cropping, horizontal flipping, random contrast, CutMix French et al.
(2020), brightness changes Perez et al. (2018), morphological changes (diffeomorphic deformations).
We adopt two popular evaluation metrics: Dice coefficient (DSC) and Average Symmetric Surface
Distance (ASD) for 3D segmentation results. Of note, the projection heads, the predictor, and the
representation head are only used in training, and will be discarded during inference.

(3) CPS(2) Ground Truth (4) GCL (5) SCS (6) MONA (our)(1) Input Image (5) PCL

Figure 6: Visualization of segmentation results on MMWHS with 5% labeled ratio. As is shown,
MONA consistently generates more accurate predictions compared to all other SSL methods with a
significant performance margin. Different anatomical classes are shown in different colors (LV:
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;
LA:
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).

B MORE EXPERIMENTS RESULTS - MMWHS

Lastly, we validate MONA on MMWHS, under 1%, 5%, 10% labeled ratios. The results are provided
in Table 4 and Figure 6. Again, we found that MONA consistently outperforms all other SSL methods
with a significant performance margin, and achieves the highest accuracy among all the SSL and fully
supervised approaches under three labeled ratios. As is shown, MONA trained at the 1% labeled ratio
significantly outperforms all other methods trained at the 1% labeled ratio, even over the 5% labeled
ratio. Concretely, MONA trained at only 1% labeled ratio outperforms the second-best method (i.e.,
GLCon) both at the 1% and 5% labeled, yielding 12.3% and 0.4% gains in Dice. We also observe
the similar patterns that, MONA performs better or on par with all the other methods at 10% labeled.
Particularly, MONA trained at both 5% and 10% labeled ratio surpasses the fully-supervised scheme
by 0.6% and 1.8% improvements in Dice, which again demonstrates the superiority of MONA in
extremely limited labeled data regimes.

C GENERALIZATION STUDY OF CONTRASTIVE LEARNING PRE-TRAINING

As discussed in Section 3.1, our motivation comes from the observation that there are only very
limited labeled data and a large amount of unlabeled data in real-world clinical practice. As the
fully-supervised methods generally outperform all other SSL methods by clear margins, we postulate
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Table 4: Comparison of segmentation performance (DSC[%]/ASD[mm]) on MMWHS under three
labeled ratio settings (1%, 5%, 10%). On all three labeled settings, MONA significantly outperforms
all the state-of-the-art methods by a significant margin. The best results are in bold.

1% Labeled 5% Labeled 10% Labeled

Method DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓
UNet-F Ronneberger et al. (2015) 85.8 8.01 85.8 8.01 85.8 8.01

UNet-L 58.3 33.9 77.8 24.4 82.7 13.5

EM Vu et al. (2019) 54.5 41.1 80.6 17.3 82.1 15.1
CCT Ouali et al. (2020) 62.8 27.5 79.0 21.9 79.4 16.3
DAN Zhang et al. (2017) 52.8 48.4 79.4 22.7 80.2 15.0
URPC Luo et al. (2021) 65.7 29.7 73.7 20.5 81.9 12.3
DCT Qiao et al. (2018) 62.7 27.5 80.8 23.0 82.8 12.4
ICT Verma et al. (2019) 59.9 32.8 76.5 15.4 82.2 12.0

MT Tarvainen & Valpola (2017) 58.8 35.6 76.5 15.5 79.4 19.8
UAMT Yu et al. (2019) 61.1 37.6 76.3 20.9 83.7 14.2
CPS Chen et al. (2021b) 58.8 33.6 78.3 22.5 82.0 13.1

GCL Chaitanya et al. (2020) 71.6 20.3 83.5 7.41 86.7 8.76
SCS Hu et al. (2021) 71.4 19.3 81.1 11.5 82.6 9.68

PLC Chaitanya et al. (2021) 71.5 19.8 83.4 10.7 86.0 9.65
•MONA (ours) 83.9 9.06 86.3 8.22 87.6 6.83

that leveraging massive unlabeled data usually introduces additional noise during training, leading to
degraded segmentation quality. To address this challenge, “contrastive learning” is a straightforward
way to leverage existing unlabeled data in the learning procedure. As supported in Section 4 and
Appendix B, our findings have shown that MONA generalizes well across different benchmark datasets
(i.e., ACDC, LiTS, MMWHS) with diverse labeled settings (i.e., 1%, 5%, 10%). In the following
subsection, we further demonstrate that our proposed principles (i.e., tailness, consistency, diversity)
are beneficial to various state-of-the-art CL-based frameworks (i.e., MoCov2 Chen et al. (2020b),
kNN-MoCo Van Gansbeke et al. (2021), SimCLR Chen et al. (2020a), BYOL Grill et al. (2020), and
ISD Tejankar et al. (2021)) with different label settings. More details about these three principles
can be found in Section 3.2. Of note, to the best of our knowledge, MONA is the first SSL training
scheme that consistently outperforms the fully-supervised method on diverse benchmark datasets
with only 10% labeled ratio.

Training details of competing CL methods. We identically follow the default setting in each
CL framework Chen et al. (2020b); Van Gansbeke et al. (2021); Chen et al. (2020a); Grill et al.
(2020); Tejankar et al. (2021) except the epochs number. We train each model in the semi-supervised
setting. For labeled data, we follow the same training strategy in Section 3.1. As for unlabeled
data, we strictly follow the default settings in each baseline. Specifically, for fair comparisons, we
pre-train each CL baseline and our proposed CL pre-trained method (i.e., GLCon) for 100 epochs in
all our experiments. Then we fine-tune each CL model with our proposed principles with the same
setting, as provided in Appendix A. For kNN-MoCo Van Gansbeke et al. (2021), given the following
ablation study we set the number of neighbors k as 5, and further compare different settings of k in
kNN-MoCo Van Gansbeke et al. (2021) in the following subsection. All the experiments are run with
three different random seeds, and the results we present are calculated from the validation set.

Comparisons with CL-based frameworks. Table 5 presents the comparisons between our proposed
methods (i.e., GLCon and MONA) and various CL baselines. After analyzing these extensive results,
we can draw several consistent observations. First, we can observe that our proposed GLCon achieves
performance gains under all the labeled ratios, which not only demonstrates the effectiveness of our
method, but also further verifies this argument using “global-local” strategy Chaitanya et al. (2020).
The average improvement in Dice obtained by GLCon could reach up to 2.53%, compared to the
second best scores at different labeled ratios. Second, we can find that incorporating our proposed
three principles significantly outperforms the CL baselines without fine-tuning, across all frameworks
and different labeled ratios. These experimental findings suggest that our proposed three principles
can further improve the generalization across different labeled ratios. On the ACDC dataset at the 1%
labeled ratio, the backbones equipped with all three principles all obtain promising results, improving
the performance of MoCov2, kNN-MoCo, SimCLR, BYOL, ISD, and our GLCon by 39.1%, 38.5%,
40.9%, 41.2%, 34.3%, 34.0%, respectively. The ACDC dataset is a popular multi-class medical
image segmentation dataset, with massive imbalanced or long-tailed class distribution cases. The
imbalanced or long-tailed class distribution gap could result in the vanilla models overfitting to
the head class, and generalizing very poorly to the tail class. With the addition of under-sampling
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Table 5: Ablation study of different contrastive learning frameworks on ACDC under three labeled
ratio settings (1%, 5%, 10%). We compare two settings: with or without fine-tuning on the seg-
mentation performance (DSC[%]/ASD[mm]). We denote ‘without fine-tuning” to only pretaining.
On all three labeled settings, our methods (i.e., GLCon and MONA) significantly outperform all the
state-of-the-art methods by a significant margin. All the experiments are run with three different
random seeds. The best results are in bold.

1% Labeled 5% Labeled 10% Labeled

Framework Method DSC ↑ ASD ↓ DSC ↑ ASD ↓ DSC ↑ ASD ↓

only pretaining

MoCov2 Chen et al. (2020b) 38.6 22.4 56.2 17.9 81.0 5.36
kNN-MoCo Van Gansbeke et al. (2021) 39.5 22.0 58.3 15.7 83.1 7.18

SimCLR Chen et al. (2020a) 34.8 24.3 51.7 19.9 80.3 4.16
BYOL Grill et al. (2020) 35.9 7.25 65.9 9.15 85.6 2.51
ISD Tejankar et al. (2021) 45.8 17.2 71.0 4.29 85.3 2.97

•GLCon (ours) 49.3 7.11 74.2 3.89 86.5 1.92

w/ fine-tuning

MoCov2 Chen et al. (2020b) 77.7 4.78 85.4 1.52 86.7 1.74
kNN-MoCo Van Gansbeke et al. (2021) 78.0 4.28 85.9 1.51 86.9 1.61

SimCLR Chen et al. (2020a) 75.7 4.33 83.2 2.06 86.1 2.25
BYOL Grill et al. (2020) 77.1 4.84 85.3 2.06 88.1 0.99
ISD Tejankar et al. (2021) 80.1 3.00 83.8 1.95 88.6 1.20

•MONA (ours) 83.3 1.98 89.1 0.784 90.8 0.736

the head classes, the principle – tailness – can be deemed as the prominent strategy to yield better
generalization and segmentation performance of the models across different labeled ratios. Similar
results are found under 5% and 10% labeled ratios. Third, over a wide range of labeled ratios,
MONA can establish the new state-of-the-art performance bar for semi-supervised medical image
segmentation. Particularly, MONA – for the first time – boots the segmentation performance with
10% labeled ratio over the fully-supervised method while significantly outperforming all the other
semi-supervised methods by a large margin. In summary, our proposed methods (i.e., GLCon and
MONA) obtain remarkable performance on all labeled settings. The results verify the superiority of
our proposed three principles (i.e., tailness, consistency, diversity) jointly, which makes the model
well generalize to different labeled settings, and can be easily and seamlessly plugged into all other
CL frameworks Chen et al. (2020b); Van Gansbeke et al. (2021); Chen et al. (2020a); Grill et al.
(2020); Tejankar et al. (2021) adopting the two-branch design, demonstrating that these concepts
consistently help the model yield extra performance boosts for them all.

(a) (b)

(c)

Figure 7: Effects of k-nearest neighbour in global feature space, mined view-set size, and mined view
patch size. We report Dice and ASD of GLCon on the ACDC dataset at the 5% labeled ratio. All the
experiments are run with three different random seeds.

Does k-nearest neighbour in global feature space help? Prior work suggests that the use of stronger
augmentations and nearest neighbour can be the very effective tools in learning additional invariances
Van Gansbeke et al. (2021). That is, both the specific number of nearest neighbours and specific
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augmentation strategies are necessary to achieve superior performance. In this subsection, we study
the relationship of k-nearest neighbour in global feature space and the behavior of our GLCon for the
downstream medical image segmentation. Here we first follow the same augmentation strategies in
Van Gansbeke et al. (2021) (More analysis on data augmentation can be found in Section 4.2), and then
conduct ablation studies on how the choices of k-nearest neighbour can influence the performance of
GLCon. Specifically, we run GLCon on the ACDC dataset at the 5% labeled ratio with a range of
k ∈ {3, 5, 7, 10, 12}. Figure 7(a) shows the ablation study on k-nearest neighbour in global feature
on the segmentation performance. As is shown, we find that GLCon at k = 5, 7, 10 have almost
identical performance (k = 5 has slightly better performance compared to other two settings), and all
have superior performance compared to all others. In contrast, GLCon – through the use of randomly
selected samples – is capable of finding diverse yet semantically consistent anatomical features from
the entire dataset, which at the same time gives better segmentation performance.

Ablation study of mined view-set size. We then conduct ablation studies on how the mined view-set
size in GLCon can influence the segmentation performance. We run GLCon on the ACDC dataset at
5% labeled ratio with a range of the mined view-set size ∈ {12, 18, 24, 30, 36, 42, 48}. The results
are summarized in Figure 7(b). As is shown, we find that GLCon trained with view-set size 36 and
42 have similar or superior performance compared to all other settings, and our model with view-set
size of 36 achieves the highest performance.

Ablation study of mined view size. Lastly, we study the influence of mined view size on the
segmentation performance. Specifically, we run GLCon on the ACDC dataset at the 5% labeled ratio
with a range of the mined view size ∈ {8, 16, 32, 64, 128}. Figure 7(c) shows the ablation study of
mined view size on the segmentation performance. As is shown, we observe that GLCon trained
with mined view size of 32 and 64 have similar segmentation abilities, and both achieve superior
performance compared to other settings. Here the mined view size of 64 works the best for GLCon
to yield the superior segmentation performance.

Conclusion. Given the above ablation study, we set k, mined view-set size, patch size as 5, 36, 64×64
in our experiments, respectively. This can contribute to satisfactory segmentation performance.

D ABLATION STUDY OF ANATOMICAL CONTRASTIVE RECONSTRUCTION

In this section, we give a detailed analysis on the choice of the parameters in the anatomical contrastive
reconstruction fine-tuning, and take a deeper look and understand how they contribute to the final
segmentation performance. All the hyperparameters in training are the same across three benchmark
datasets. All the experiments are run with three different random seeds, and the experimental results
we report are calculated from the validation set.

Ablation study of total loss Ltotal. Proper choices of hyperparameters in total loss Ltotal (See
Section 3.2) play a significant role in improving overall segmentation quality. We hence conduct
the fine-grained analysis of the hyperparameters in Ltotal. In practice, we fine-tune the models with
three independent runs, and grid search to select multiple hyperparameters. Specifically, we run
MONA on the ACDC dataset at the 5% labeled ratio with a range of different hyperparameters λ1∈
{0.005, 0.001, 0.05, 0.01, 0.05, 0.1}, and λ2, λ3, λ4 ∈{0.1, 0.2, 0.5, 1.0, 2.0, 10.0}. We summarize
the results in Figure 8, and take the best setting λ1=0.01, λ2=1.0, λ3=1.0, λ4=1.0.

Ablation study of confidence threshold δθ. We then assess the influence of δθ on the segmentation
performance. Specifically, we run MONA on the ACDC dataset at the 5% labeled ratio with a range
of the confidence threshold δθ ∈ {0.85, 0.88, 0.91, 0.94, 0.97, 1.0}. Figure 9(a) shows the ablation
study of δθ on the segmentation performance. As we can see, MONA on δθ = 0.97 has superior
performance compared to other settings.

Ablation study of K-nearest neighbour constraint. Next, we conduct ablation studies on how
the choices of K in K-nearest neighbour constraint can influence the segmentation performance.
Specifically, we run MONA on the ACDC dataset at the 5% labeled ratio with a range of the choices
K ∈ {3, 5, 7, 10, 12}. Figure 9(b) shows the ablation study of K choices on the segmentation
performance. As we can see, MONA on K = 5 achieves the best performance compared to other
settings.
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(a) (b)

(c) (d)

Figure 8: Effects of hyperparameters λ1, λ2, λ3, λ4. We report Dice and ASD of MONA on the ACDC
dataset at the 5% labeled ratio. All the experiments are run with three different random seeds.

(a) (b)

(c)

Figure 9: Effects of confidence threshold δθ, K-nearest neighbour constraint, and output embedding
dimension. We report Dice and ASD of MONA on the ACDC dataset at the 5% labeled ratio. All the
experiments are run with three different random seeds.

Ablation study of output embedding dimension. Finally, we study the influence of the out-
put embedding dimension on the segmentation performance of MONA. Specifically, we run MONA
on the ACDC dataset at the 5% labeled ratio with a range of output embedding dimension
∈ {64, 128, 256, 512, 768}. Figure 9(c) shows the ablation study of output embedding dimension on
the segmentation performance. As we can see, MONA with output embedding dimension of 512, can
be trained to outperform other settings.

Conclusion. Given the above ablation study, we select λ1 = 0.01, λ2 = 1.0, λ3 = 1.0, λ4 = 1.0,
δθ = 0.97, K = 5, output embedding dimension = 512 in our experiments. This can provide the
optimal segmentation performance across different labeled ratios.
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