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Abstract

Realistic manipulation tasks require a robot to interact with an environment with
a prolonged sequence of motor actions. While deep reinforcement learning meth-
ods have recently emerged as a promising paradigm for automating manipula-
tion behaviors, they usually fall short in long-horizon tasks due to the explo-
ration burden. This work introduces Manipulation Primitive-augmented Rein-
forcement Learning (MAPLE), a learning framework that augments standard re-
inforcement learning algorithms with a pre-defined library of behavior primitives.
These behavior primitives are robust functional modules specialized in achiev-
ing manipulation goals, such as grasping and pushing. To use these heteroge-
neous primitives, we develop a hierarchical policy that involves the primitives
and instantiates their executions with input parameters. We demonstrate that
MAPLE outperforms baseline approaches by a significant margin on a suite of
simulated manipulation tasks. We also quantify the compositional structure of
the learned behaviors and highlight our method’s ability to transfer policies to
new task variants and to physical hardware. Videos and code are available at
https://ut-austin-rpl.github.io/maple

1 Introduction

Enabling autonomous robots to solve diverse and complex manipulation tasks has been a grand
challenge for decades. In recent years, deep reinforcement learning (DRL) approaches have made
great strides towards designing robot manipulation behaviors that are difficult to engineer manu-
ally [28, 52, 51, 29]. Nonetheless, state-of-the-art DRL models fall short in long-horizon tasks
due to the exploration challenge — the robot has to explore a prohibitively large space of possi-
ble behaviors for accomplishing a task. To remedy the exploration burden, prior DRL work has
developed various temporal abstraction frameworks to exploit the hierarchical structure of manip-
ulation tasks [9, 44, 4, 13]. These methods learn low-level controllers, often modeled as skills or
options, together with high-level controllers from trial-and-error. While they have demonstrated
greater scalability than vanilla DRL methods, they often suffer from high sample complexity, lack
of interpretability, and brittle generalization.

In the meantime, decades-long research in robotics has developed a rich repertoire of functional
modules specialized at particular robot behaviors, such as grasping [7] and motion planning [30, 24].
These pre-built functional modules, which we refer to as behavior primitives, exhibit a high degree
of robustness and reusability for achieving certain manipulation goals, such as picking up objects
with the end-effector and moving the robot to a target configuration in a collision-free path. In
spite of their specialties, it remains a challenge for DRL algorithms to use them as the building
blocks to scaffold complex tasks. The challenge is primarily due to the fact that these behavior
primitives are heterogeneous by design. They take non-uniform parameters as input, operate at
varying temporal resolutions, and exhibit distinct behaviors. This thus requires an algorithm to
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Figure 1: Overview of MAPLE. (a) We present a learning framework that augments the robot’s
atomic motor actions with a library of versatile behavior primitives. (b) Our method learns to com-
pose these primitives via reinforcement learning. (c) This enables the agent to solve complex long-
horizon manipulation tasks.

reason about the temporal decomposition of a complex task and adaptively compose these behavior
primitives accordingly.

A variety of hierarchical modeling approaches in robotics have used behavior modules as low-level
building blocks. Notably, task-and-motion planning [27, 18, 66] and neural programming [71, 23]
methods have used primitives such as motion planners and pick-and-place controllers to model ma-
nipulation tasks in a compositional fashion. They require well-specified domain knowledge to per-
form task planning or strong human supervision to train a high-level controller with ground-truth
task decomposition. These assumptions limit the scalability of these methods in realistic tasks.

In this work, we introduce MAPLE (Manipulation Primitive-augmented Reinforcement Learning),
a general DRL algorithm that harnesses a set of pre-built behavior primitives for solving long-
horizon manipulation tasks. To address the exploration challenge of DRL algorithms, our method
uses a library of high-level behavior primitives (such as grasping or pushing objects) in conjunction
with low-level motor actions to autonomously learn a hierarchical policy (see Fig. 1). Our algorithm
models each behavior primitive as an implementation-agnostic controller that produces a temporally
extended behavior. At a given state, our DRL policy invokes a behavior primitive (or an atomic mo-
tor action) and instantiates it with input parameters. For example, the input parameters to a 6-DoF
grasping module can be the pre-grasp end-effector pose. The selected primitive interprets the input
parameters and executes one or a sequence of motor actions to realize its specialized behavior. By
integrating behavior primitives into DRL algorithms, MAPLE shields away a substantial portion of
complexity in manipulation planning, while leaving the flexibility to a generic reinforcement learn-
ing algorithm to discover the compositional structure of tasks without strong domain knowledge.
Furthermore, by retaining low-level motor actions MAPLE can rely on these actions for the stages
of tasks where the finite library of behavior primitives is insufficient to express a desired behavior.

We conduct an extensive set of experiments on a suite of eight manipulation tasks of varying com-
plexities in the robosuite simulation framework [74]. We compare our method to standard DRL
approaches [20] that only use low-level motor actions, hierarchical DRL methods that learn op-
tions [73, 44, 8] or open-loop task schemas [8]. MAPLE achieves a 70% increase in task success
rate compared to using only atomic actions, becoming the only method that consistently solved all
single-arm tasks in the standard robosuite benchmark. We also devise a data-driven metric to quan-
titatively examine the compositionality of manipulation tasks contingent on the available primitives,
offering new insight on the challenges and opportunities of compositional modeling for realistic
manipulation tasks.

We highlight three contributions of this work: 1) We develop a novel method that augments stan-
dard DRL algorithms with pre-defined behavior primitives to reduce the exploration burden; 2) We
validate the effectiveness of our method in solving diverse manipulation tasks and quantitatively an-
alyze the compositional structure of these tasks; and 3) We show that the modularity and abstraction
offered by the behavior primitives facilitate knowledge transfer of the learned policies to new task
variants and physical hardware.
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2 Related Work

Deep Reinforcement Learning. Prior work on DRL has investigated a number of approaches
to solve long-horizon tasks, through improved exploration strategies [6, 54, 22, 55], learning op-
tions [44, 4, 63, 73, 5], unsupervised skill discovery [12, 59], and integrating planning [13, 48].
Despite these efforts, today’s DRL methods still struggle in long-horizon robotic tasks due to the
exploration burden of learning from scratch. A growing amount of work has examined the use
of offline data to alleviate the exploration burden in DRL, namely through demonstration-guided
RL [57, 47, 19], learned behavioral priors [56, 62] and action spaces [1, 2] from demonstrations,
and offline RL [17, 41, 34, 16]. While promising, these methods can be difficult to scale up due to
the costs of acquiring offline data.

Hierarchical Modeling in Robotics. Outside of DRL, there has been a plethora of work in robotics
dedicated to building customized functional modules that emit specific robot behaviors, such as
grasping [7, 39] and motion planning [30, 3]. Prior works on task-and-motion planning [27, 18, 66]
and neural programming [71, 23] have developed hierarchical models that leverage these modules as
building blocks to scaffold manipulation tasks. While these methods have demonstrated impressive
capabilities in restrictive domains, their applicability has been limited by their reliance on domain
knowledge or human supervision.

To bridge the gap between hierarchical models and DRL algorithms that learn from scratch, re-
cent work has harnessed pre-built primitives, such as model-based planners [35], motion plan-
ners [72, 68], movement primitives [24, 49], and pre-built skills [8, 36, 64, 60, 61], to expedite
DRL algorithms. These approaches aim at retaining the flexibilities of RL algorithms to learn
general-purpose behaviors while benefiting from the temporal abstraction provided by the prim-
itives. However, these works are limited as they are confined to using only one or two specific
primitives [35, 72, 68], employ rigid primitives that are not reconfigurable [64, 60], or hard-code
how the primitives are composed [61]. In contrast, our method adopts a set of versatile primitives
and composes them in conjunction with low-level motor actions to solve diverse manipulation tasks.

Reinforcement Learning with PAMDPs. Our formalism specifically falls under the established
reinforcement learning framework of Parameterized Action MDPs (PAMDPs) [42], in which the
agent executes a parameterized primitive at each decision-making step. We note that several prior
works [21, 67, 69, 14, 25] have adapted off-the-shelf deep RL algorithms to the PAMDP setting.
Nonetheless, they have focused on relatively simple game domains, shielding away practical chal-
lenges in robot manipulation, such as high-dimensional continuous state/action spaces and hetero-
geneous primitives. Our work is closest to Chitnis et al. [8] and Lee et al. [36], which have modeled
robot manipulation with PAMDPs. We provide empirical comparisons to demonstrate the limita-
tions of their modeling choices, yielding less competitive performance in challenging manipulation
tasks than ours. We note that concurrent work by Dalal et al. [10] also studies the application of
robotic primitives for manipulation tasks, further validating the ability of robotic primitives to accel-
erate exploration in RL. Our work complements theirs with additional analysis on the compositional
structure of the learned behavior and experiments demonstrating the ability to transfer learned poli-
cies to novel task variants and to physical hardware.

3 Method

Our goal is to enable robots to leverage behavior primitives to solve manipulation tasks effectively
and efficiently. To that end, we seek a library of behavior primitives that serve as the building
blocks to scaffold manipulation tasks and a reinforcement learning algorithm that composes these
primitives to solve tasks. To evaluate whether our algorithm facilitates compositional behaviors, we
also propose a metric to quantify the degree to which the resulting learned behavior is compositional.
See Fig. 1 for an overview of our method.

3.1 Decision-Making with Parameterized Behavior Primitives

We adopt reinforcement learning (RL) as the underlying decision-making framework. The objective
of RL is to maximize the expected infinite sum of discounted rewards in a Markov Decision Process
(MDP), defined by the tuple M = (S,A, r, p, p0, γ). The entities in the tuple represent the state
space, the action space, the reward function, the transition function, the initial state distribution, and
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the discount factor. In most robotic RL problems, the action space A consists of all atomic actions
u ∈ Rdcontrol provided by the robot, such as joint torque commands or end-effector displacements.
We would like to augment this action space with a heterogeneous library of behavior primitives
L = {a1, a2, · · · , ak} that perform semantically meaningful behaviors. Formally, each behavior
primitive — which we will call primitive for brevity — a ∈ L is represented by a control module
Ma(x) that executes a finite, variable sequence of atomic actions (u1, u2, · · · , ut), ui ∈ Rdcontrol ∀i
to achieve a certain behavior, where the exact action sequences are specified by input parameters
x ∈ Rda . Here da is the dimension of the input parameters to the primitive a that varies across
different primitives. To incorporate these behavior primitives into the action space, we recast our
decision-making problem as a Parameterized Action MDP (PAMDP) [42]. Under this formulation
the agent executes at each decision-making step a parameterized action (a, x) ∈ A consisting of the
type of primitive a and its parameters x.

3.2 Behavior Primitives: Building Blocks for Manipulation

We are interested in equipping agents with a library of versatile primitives that serve as the core
building blocks for diverse manipulation tasks. To devise a general learning framework for compos-
ing primitives, our decision-making algorithm assumes no knowledge on the detailed implementa-
tions of these primitives. These primitives can come in any generic form, ranging from closed-loop
skills learned via reinforcement [20, 58] or imitation learning [53], analytical motion planners [30],
to even full-fledged grasping systems [39, 7]. Regardless of their inner workings, we must ensure
that our primitives are versatile and adaptive to behavioral variations. In our learning framework,
we consider these primitives as functional APIs that take input parameters x that instantiate action
execution. The input parameters usually have clear semantics, such as the 6-DoF end-effector pose
for a grasping primitive or a target robot configuration for a motion planning primitive. These pa-
rameters significantly improve the flexibility and utility of our primitives for solving complex tasks.
Even so, we recognize that our library of primitives may still not be universally applicable in every
setting, and equipping the agent solely with these primitives may limit the set of possible behaviors
that the agent can achieve. We address this limitation by introducing an additional atomic primitive
aatom dedicated to performing atomic robot actions. The addition of this atomic primitive will allow
the agent to fill in any missing gaps that cannot be fulfilled by the other primitives.

Here we design a library of five primitives, including prehensile and non-prehensile motions, that
forms the basis for many manipulation tasks:

• Reaching: The robot moves its end-effector to a target location (x, y, z), specified by the
input parameters. Execution takes at most 15 atomic actions.

• Grasping: The robot moves its end-effector to a pre-grasp location (x, y, z) at a yaw angle
ψ, specified by the input parameters, and closes its gripper. Execution takes at most 20
atomic actions.

• Pushing: The robot reaches a starting location (x, y, z) at a yaw angle ψ and then moves its
end-effector by a displacement (δx, δy, δz). The input parameters are 7D. Execution takes
at most 20 atomic actions.

• Gripper Release: The robot repeatedly applies atomic actions to open its gripper. This
primitive has no input parameters. Execution takes 4 atomic actions.

• Atomic: The robot applies a single atomic action of dimension dcontrol.

We implemented these primitives as hard-coded closed-loop controllers, each requiring only a hand-
ful of lines of code. We highlight that these primitives take input parameters of different dimensions,
operate at variable temporal lengths, and produce distinct behaviors. These properties make them
challenging to utilize in a learning framework. In the following, we will introduce our algorithm for
composing these primitives to solve diverse manipulation tasks.

3.3 Composing Primitives via Reinforcement Learning

We follow the PAMDP framework outlined in Section 3.1, where at each decision-making step a pol-
icy π must select a discrete behavior primitive type a and its corresponding continuous parameters
x. Previous work has explored various policy structures that reason over parameterized primitives.
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The simplest approach is a flat policy [68, 21] that outputs a distribution over the primitive type a
and all primitive parameters {x1, x2, · · · , xk}. A major drawback of this approach is that the total
number of policy outputs can quickly become intractable as additional primitives are introduced.
We address this limitation with a hierarchical policy where at the high level a task policy πtsk deter-
mines the primitive type a and at the low level a parameter policy πp determines the corresponding
primitive parameters x. See Fig. 2 for an illustration of our policy architecture. In addition to reduc-
ing the overall number of output parameters our hierarchical design facilitates modular reasoning,
delegating the high-level to focus on which primitive to execute and the low-level to focus on how
to instantiate that primitive. We note that a few prior works have previously explored this hierar-
chical design [67, 14] but to our knowledge we are the first to demonstrate its utility on complex
manipulation domains with a set of heterogeneous primitives.
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Figure 2: Policy Architecture. We adopt a hierar-
chical policy, with a high-level task policy that de-
termines which primitive to apply and a low-level
parameter policy that determines how to instantiate
that primitive.

In principle, we can integrate our policy
architecture with any DRL algorithm de-
signed for continuous control. We choose
Soft Actor-Critic (SAC) [20], a state-of-
the-art DRL algorithm that aims to max-
imize environment rewards as well as the
policy entropy. We modify the standard
critic neural network Qθ(s, a) and actor neu-
ral network πφ(a|s) with our critic network
Qθ(s, a, x) and our hierarchical policy net-
works πtskφ(a|s), πpψ (x|s, a). Under these
changes the losses for the critic, task policy,
and parameter policy are defined respectively
(we highlight components pertaining to the
task policy in red and the parameter policy in
blue):

JQ(θ) =

(
Qθ(s, a, x)−

(
r(s, a, x) + γ

(
Qθ̄(s

′, a′, x′) (1)

− αtsk log(πtskφ(a′|s′))− αp log(πpψ (x′|s′, a′))
)))2

Jπtsk(φ) = E
a∼πtskφ

[
αtsk log(πtskφ(a|s))− E

x∼πpψ
Qθ(s, a, x)

]
(2)

Jπp(ψ) = E
a∼πtskφ

E
x∼πpψ

[
αp log(πpψ (x|s, a))−Qθ(s, a, x)

]
(3)

Here αtsk and αp control the maximum entropy objective for the task policy and parameter policy,
respectively.

3.4 Facilitating Exploration with Affordances

Compared with existing methods that reason purely over atomic actions, our algorithm benefits
from accelerated exploration due to the temporal abstraction provided by our behavior primitives.
However, as previous work [56] has noted, even reasoning with temporally extended actions can
present an exploration challenge. One way to address this issue is to equip the agent with affordances
that help to discern the utility of actions in different settings. For example, a grasping skill is only
appropriate when applied in the vicinity of graspable objects, and a pushing skill is only appropriate
in the vicinity of pushable objects.

In our framework, these affordances can be expressed by adding to the reward function an auxil-
iary affordance score saff(s, x; a) ∈ [0, 1] that measures the affinity for parameters x at a particular
state s for a given primitive a. These affordances scores can in principle come from learned models
trained on robot interaction data [61, 46, 40, 43, 70] or human data [11, 15, 45, 33]. Nonetheless,
as our primitive parameters carry clear semantic meanings, we can analytically define these affor-
dance scores based on the objects’ physical states. Concretely, for the atomic and gripper release
primitives, we always give an affordance score of 1 to enable the universal applicability of these
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Figure 3: Simulated Environments. We perform evaluations on eight manipulation tasks. The first six come
from the robosuite benchmark [74]. We designed the last two to test our method in multi-stage, contact-rich
tasks: Cleanup requires storing a spam can into a storage bin and a jello box at a corner; Peg Insertion requires
inserting a peg into a block.

primitives. For the remaining reach, grasp, and push primitives we implement general, easy-to-
define affordances encouraging the agent to reach relevant areas of interest in the workspace. More
specifically, these primitives all involve reaching a location xreach = [x[0], x[1], x[2]] and
we encourage the agent to specify the reaching parameters xreach to be within a threshold of a set
of keypoints P :

saff(s, x; a) = max
p∈P

1− tanh
(
max(‖xreach − p‖−τ, 0)

)
(4)

The keypoints P for pushing are the locations objects to push, the locations of objects to grasp for
grasping, and the target reaching location for reaching.

3.5 Quantifying Compositionality

Our framework relies on the hypothesis that most manipulation tasks have an intrinsic composi-
tional structure and that our algorithm can discover this structure. To examine this hypothesis we
propose to measure the degree to which our learned agent exhibits compositional behaviors with a
quantifiable metric. Assume that we are given a set of n trajectories in which the agent solved a
task T : {τ i}ni=1 = {(si1, (ai1, xi1), · · · , siTi , (a

i
Ti
, xiTi), s

i
Ti+1)}ni=1. The corresponding task sketches

{Ki}ni=1 = {(ai1, ai2, · · · aiTi)}
n
i=1 capture the high-level task semantics and provide useful abstrac-

tions through which we can analyze the compositional structure of these trajectories.

Intuitively, agents that demonstrate compositional reasoning will express recurring patterns of be-
haviors across their task sketches and prefer the use of high-level primitives over low-level ones. We
quantify this intuition by computing the Levenshtein distance [37] among task sketches, which in our
context measures the minimum number of single-token edits (insertions, deletions, or substitutions)
needed to transform one task sketch to another. In our task sketches we represent each non-atomic
primitive type as a unique token, and in order to explicitly discourage the use of low-level atomic
actions, we represent each individual occurrence of an atomic primitive in our task sketches as a
unique token. Given a task T and available primitives L, we compute the compositionality of the
agent’s behavior as the average pairwise normalized score between the resulting task sketches:

fcomp(T ;L) =
1

n(n− 1)

∑
i 6=j

1− dLev(Ki,Kj)

max(|Ki|, |Kj |)
(5)

Note that this measure is contingent on the choice of behavior primitives in the library L, and we
can use this measure to compare the effectiveness of different libraries.

One question that arises is whether MAPLE incentivizes the agent to discover compositional task
structures in the first place. While there is no explicit mechanism to discover recurring patterns of
primitives, our algorithm exhibits compositional reasoning by preferring the use of high-level primi-
tives over low-level ones. Due to the temporal abstraction encapsulated by the high-level primitives,
the agent can make far greater progress toward solving the task by using high-level primitives and
thus receives higher average reward per timestep. This incentivizes the agent to choose higher-level
primitives over lower-level actions whenever appropriate.

6



0 1 2 3 4 5
Env Steps (x1M)

0

25

50

75

100

Re
wa

rd

Lift

0 1 2 3 4 5
0

25

50

75

100

Re
wa

rd

Door

0 1 2 3 4 5
0

25

50

75

100

Re
wa

rd

Pick and Place

0 1 2 3 4 5
0

25

50

75

100

Re
wa

rd

Wipe

0 2 4 6 8 10
0

25

50

75

100

Re
wa

rd

Stack

0 2 4 6 8 10
0

25

50

75

100

Re
wa

rd

Nut Assembly

0 2 4 6 8 10
0

25

50

75

100

Re
wa

rd

Cleanup

0 5 10 15
0

25

50

75

100

Re
wa

rd

Peg Insertion

Atomic Flat Open Loop DAC MAPLE (Non-Atomic) MAPLE (ours)

Figure 4: Main Results. Learning curves showing average episodic task rewards throughout train-
ing, normalized between 0 and 100. All experiments are averaged over 5 seeds, with shaded regions
depicting the standard deviation.

4 Experiments

Our experiments study 1) whether our method can compose pre-built behavior primitives and atomic
actions to solve complex tasks, 2) the degree to which the learned behavior is compositional, and 3)
whether our approach is amenable to transfer to task variants and to real hardware.

4.1 Experimental Setup

We examine these questions on robosuite [74], a framework for simulated robot manipulation tasks.
We consider a comprehensive suite of eight manipulation tasks of varying complexities (see Fig. 3).
For all tasks we adopt a Franka Emika Panda robot arm equipped with a parallel jaw gripper (with
the exception of the wiping task). The robot is controlled through end-effector displacements with
an operational space controller (OSC) [31]. At each decision-making step our agent can execute
either an atomic OSC action or one of the temporally extended non-atomic primitives outlined in
Section 3.2. In return the agent receives 1) a dense reward signal indicating task progress and 2) an
observation comprising the robot’s proprioceptive state and pose information of the objects in the
environment.

4.2 Quantitative Evaluations

We compare our method (MAPLE) to five baselines. The first baseline uses exclusively atomic
actions (Atomic), which corresponds to the standard Soft Actor-Critic model [20] trained on end-
effector commands. To understand the effect of hierarchy on our policy design, we compare to a flat
variant where the policy outputs the primitive type and parameters independently (Flat), following
the design by Lee et al. [36] and Neunert et al. [50]. We also compare to a variant of our method
using an open loop task policy (Open Loop), following Chitnis et al. [8] which suggests utilizing an
open-loop task schema improves the sample efficiency of the learning algorithm. Next, we compare
to HIerarchical Reinforcement learning with Off-policy correction (HIRO) [44] and Double Actor-
Critic (DAC) [73], state-of-the-art hierarchical DRL methods which aim to learn low-level policies
(or options) along with high-level controllers. HIRO failed to make progress and we thus omit it
from our results. Finally, we compare to a self baseline where we include all primitives except
the atomic primitive MAPLE (Non-Atomic), to understand whether we need atomic actions to
satisfy behaviors that cannot be fulfilled by the non-atomic primitives. All baselines using behavior
primitives use the affordance score outlined in Section 3.4.

Fig. 4 outlines environment rewards throughout training. We also evaluated the final task success
rates at the end of training: MAPLE achieved the highest average success rate across all baselines
(90%), compared to 19% for the Atomic baseline, 36% for Flat, 41% for Open Loop, 11% for DAC,
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Figure 5: Analyzing Learned Behavior. (Top) We visualize the task sketches that our agent has
learned. Each row corresponds to a single sketch progressing temporally from left to right. For each
task we also report the compositionality score fcomp. (Bottom) We visualize the behavior for a peg
insertion sketch.

and 79% for MAPLE (Non-Atomic). First, we see that the inclusion of non-atomic primitives allows
MAPLE to significantly outperform the Atomic baseline, achieving on average 2-3× higher rewards
and 71% higher success rate. Qualitatively we found that the Atomic baseline fails to advance past
the first stage in most tasks while our method is able to successfully solve all tasks. Next we find
that the Flat baseline is unable to reliably solve all tasks, demonstrating that our hierarchical policy
design is key to reasoning over a heterogeneous set of primitives. While the Open Loop baseline
is able to solve basic tasks such as Door Opening and Pick and Place, it struggles with tasks that
require the agent to adaptively reason about the current state of the task. DAC is only able to solve
the Lift task, highlighting the difficulty of learning complex tasks from scratch even when employing
temporal abstraction. Finally we find that the Non-Atomic self baseline is on par with our method
in most tasks, yet it notably fails for Peg Insertion as the non-atomic primitives are not expressive
enough to perform the contact-rich insertion phase. Together, these results highlight that given an
appropriate library of primitives and an appropriate policy structure we can solve a wide range of
manipulation tasks.

4.3 Model Analysis

4.3.1 Emergence of Compositional Structures
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Figure 6: (a) Task Transfer. We trans-
fer the learned task sketch from a source
task (pick and place can) to a seman-
tically similar task variant (pick and
place bread), enabling us to learn the
target task over 5× faster. (b) Abla-
tions. Without affordances, reaching,
or grasping, the agent is unable to solve
tasks due to the exploration burden.

We present an analysis of the task sketches that our
method learned for each task in Fig. 5. We see evidence
that the agent unveils compositional task structures by ap-
plying temporally extended primitives whenever appro-
priate and relying on atomic actions otherwise.

For example, for the peg insertion task the agent leverages
the grasping primitive to pick up the peg and the reach-
ing primitive to align the peg with the hole in the block,
but then it uses atomic actions for the contact-rich inser-
tion phase. In Fig. 5 we also quantify the degree to which
these task sketches are compositional via the composi-
tionality score fcomp that we defined in Eq. (5). As we
can see, tasks involving contact interactions such as Peg
Insertion and Wiping have lower scores than prehensile
tasks such as Pick and Place and Stacking.

4.3.2 Transfer
to Semantically Similar Task Variants

We have seen how task sketches enable interpretability
by serving as blueprints of high-level semantic task struc-
ture. We can leverage these task sketches to accelerate
learning on similar task instances. We propose to re-use
the task sketch from a semantically similar task, and only
learn the corresponding primitive parameters. We vali-
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date this idea with a preliminary experiment on the Pick and Place domain, where we transfer the
task sketch from a source task of placing a soda can into one bin, to a target task of placing a loaf of
bread into a different bin.

As shown in Fig. 6a, we are able to solve the bread task significantly faster than learning the task
from scratch with a sample efficiency of over 5×. This result implies that our task sketch serves as
a high-level scaffold of a manipulation task, which can be re-used by learning algorithms for faster
adaptation to related task variants.

Ablation Study. We perform an ablation study examining the role of affordances and individual
manipulation primitives in facilitating exploration. We specifically perform experiments on the Pick
and Place task, comparing our method (Ours) to ablations 1) without affordances in the reward
function (No Aff), 2) without the reaching skill (No Reach), and 3) without the grasping skill (No
Grasp). We see in Fig. 6b that without these components the agent fails to solve the task, under-
scoring that our method is reliant on the appropriate primitive skills and affordances to effectively
overcome the exploration burden.

4.4 Real-World Evaluation

Simulation Reality

Start Goal

Start GoalCleanup

Stack

Figure 7: Transfer to Real-World
Tasks. We transfer our policy trained
on simulated environments to the real-
world Stack and Cleanup tasks.

We conclude with an evaluation on real-world copies of
the Stack and Cleanup tasks (see Fig. 7). As our behav-
ior primitives offer high-level action abstractions and en-
capsulate low-level complexities of motor actuation, our
policies can directly transfer to the real world. We trained
MAPLE on simulated versions of these tasks and exe-
cuted the resulting policies to the real world. We re-
implemented our behavior primitives on the real robot
and used an off-the-shelf pose estimation model [65] to
estimate the environment states as the model input. We
achieved an average success rate of 93% on Stack and
83% on Cleanup. Videos of the experiments can be found
on the project webpage1.

5 Conclusion

We presented MAPLE, a reinforcement learning framework that incorporates behavior primitives
in conjunction with low-level motor actions to solve complex manipulation tasks. Our experiments
demonstrate that behavior primitives can significantly improve exploration while low-level motor ac-
tions allow us to retain flexibility to learn intricate behaviors. Our work opens the possibility for sev-
eral avenues for future work. First, learning affordances using data-driven methods [61, 33, 40, 43]
can expand the scalability of our method. Second, while atomic actions can help fill in gaps where
the primitives are insufficient (such as peg insertion), we are unable to fill in large gaps that require
a significant number of low-level action executions (as seen in the ablation experiments). Further
research on exploration and credit assignment is needed to overcome these challenges. Finally, an
exciting avenue for future work is to continually discover recurring compositions of primitives and
add them to the library of primitives, which can ultimately enable curriculum learning of progres-
sively more challenging tasks.
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