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Figure 1: A teleoperation system featuring an actuated neck and dexterous arms, enabling human-like manipu-
lation in complex environments. The robot’s 5-DOF neck mimics natural head movements, allowing behaviors
like “peeking” obstacles to locate objects. By incorporating human-like perception, the system broadens task
capabilities and enhances efficiency, paving the way for advanced remote teleoperation.

Abstract: We introduce a teleoperation system that integrates a 5-DOF actuated
neck, designed to replicate natural human head movements and perception. By
enabling behaviors like “peeking” or “tilting”, the system provides operators with
a more intuitive and comprehensive view of the environment, improving task per-
formance, reducing cognitive load, and facilitating complex whole-body manipu-
lation. We demonstrate the benefits of natural perception across seven challeng-
ing teleoperation tasks, showing how the actuated neck enhances the scope and
efficiency of remote operation. Furthermore, we investigate its role in training
autonomous policies through imitation learning. In three distinct tasks, the actu-
ated neck supports better spatial awareness, reduces distribution shift, and enables
adaptive task-specific adjustments compared to a static wide-angle camera.
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1 Introduction

Collecting high-quality demonstration data to train robotic manipulation algorithms presents signif-
icant challenges. Various methods for data collection have emerged, including the use of exoskele-
tons [1, 2], handheld manipulation devices [3, 4], and retargeting human actions from videos into
robot trajectories [5, 6, 7]. However, these approaches often involve translating the collected data
into robot trajectories, which can introduce errors.

Alternatively, teleoperation [8, 9, 10, 11, 12, 13] offers a more direct data collection method, elim-
inating the need for retargeting. Yet, teleoperation poses its own set of challenges, particularly in
terms of intuitiveness and ease of use for operators [14]. Operators typically struggle with a limited
field of view, especially if they are not positioned directly above the robot or constrained by a fixed
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camera setup such as in [15], or lack haptic feedback. In this work, we address the challenge of per-
ception gap and propose using a first-person perspective teleoperation by incorporating an actuated
arm as a “neck” that mimics natural human head movements, making teleoperation more intuitive.

1.1 Human Perception and Intuitive Teleoperation

In daily life, humans use head and neck movements extensively to navigate complex spaces and
manipulate objects. A teleoperation system that replicates these natural movements can reduce
cognitive load and enhance operator efficiency. To facilitate this, we mount a camera on an actuated
neck with 5 degrees of freedom (DOF), allowing it to replicate human-like neck motions, including
looking around obstacles and altering viewpoints through combined translation and rotation.

The increased DOF not only enables the operator to rotate and tilt the neck camera but also to ’peek”
around occlusions and create new viewpoints. This setup mimics the way humans perceive their en-
vironment, ultimately making teleoperation feel more natural and reduce the operator’s cognitive
effort. As shown in Figure 1, adding the ability to peek around allows the teleoperator to perform
complex whole-body maneuvers like finding the coat hanger relative to the viewpoint. This capa-
bility is especially crucial for whole-body remote teleoperation, where the operator is not physically
present alongside the robot.

1.2 Autonomy and Improved Data Collection

In addition to improving the operator’s experience, the actuated neck also has implications for au-
tonomous policy training. Unlike static wide-angle cameras that often capture distorted images and
can contribute to out-of-distribution perception, the actuated neck provides a dynamic viewpoint,
reducing such risks. By using standard RGB cameras, image quality is enhanced, resulting in better
data for both teleoperation and machine learning algorithms.

The dynamic camera adjustment also helps manage occlusions, allowing the robot to ”peek” around
obstacles to locate objects of interest, mirroring natural human behavior. In one task, for example,
adjusting the camera’s angle was critical to finding a target object that was not visible in the di-
rect line of sight. While a local wrist-mounted camera provided fine-grained details necessary for
grasping or aligning the gripper, the actuated neck camera delivered crucial contextual information,
aiding navigation within a broader environment.

The actuated neck also enables interactive perception [16], as it integrates sensor observations and
action trajectories over time. This combined signal contains learnable and generalizable relation-
ships, such as the ability to track objects as they move through space. By aligning the neck camera’s
movement with object trajectories, we can implicitly learn which objects are of interest for specific
tasks.

Our experiments trained a multi-task policy across different environment heights, demonstrating the
neck’s ability to improve generalization and adaptability. The system effectively managed diverse
scenarios, such as working on high and low tables, showing the potential for broader application.

Our key contributions are:

1. Intuitive Teleoperation: We introduce an actuated neck with 5 degrees of freedom (DOF),
allowing for human-like head movements. This design reduces operator cognitive load by
enabling natural viewpoint adjustments.

2. Improved Data Quality: The 5-DOF neck, equipped with standard RGB cameras, enhances
image quality and minimizes perception errors, leading to better generalization for au-
tonomous policy training.

3. Enhanced Interactive Perception: The neck’s full range of motion supports dynamic object
tracking and effective manipulation across diverse tasks, closely mimicking natural human
behavior.



2 Hardware

To enhance teleoperation
and ensure intuitive opera-
tion, our robotic system is
designed to mimic human
mechanics while balancing
complexity, mobility, and
robustness. We follow
three core design prin-
ciples: (1) Human-like
Mobility: The system fea-
tures an untethered mobile

base, an actuated neck with

5 degrees of freedom, and Figure 2: Overview of the teleoperated robotic system featuring a mobile
base, 5-DOF actuated neck [17], dual URSe arms [18], and dexterous grip-
pers [19, 20]. The diagram details key dimensions, capabilities, and teleop-
: erator setup, which includes Vision Pro for head tracking and hand tracking
crucial for both local ma-  geyices. The system is designed to provide human-like movement and precise
nipulation and global scene  control for remote teleoperation tasks, with a total of 21 degrees of freedom
understanding. (2) Remote (14 for arms with parallel-jaw grippers, 5 for neck, and 2 for base) and addi-
Teleoperation Suitability: tional 6 DoF with a Psyonic Ability dexterous hand.

The hardware is optimized for remote operation, enabling natural interactions even when operators
are not physically present alongside the robot, crucial for intuitive control from a distance. (3)
Robustness: The system’s arms are built to handle heavy payloads, and the base is designed for
stability to prevent tipping during operation, ensuring safety and reliability.

dexterous arms, enabling
human-like movements

The robot’s arms consist of two Universal Robotics URSe arms [18], chosen for their high payload
capacity (5 kg each) and safety features like torque-based collision detection, allowing teleoperators
to maneuver confidently without fear of causing damage. The arms have a reach ranging from 50
cm to 170 cm, enabling versatile manipulation across various heights.

For the neck, we use the Interbotix WidowX-200 [17], which provides 5 degrees of freedom. This
is a critical aspect of our design, allowing the neck to not only rotate and tilt but also to ”peek” over
and around obstacles through a combination of rotational and translational movements, mimicking
human head dynamics as described above. This flexibility enhances operator perception, enabling
better navigation of occlusions and complex environments during remote teleoperation.

The system’s torso is mounted on a metal frame that mimics a human’s upper body structure, as
shown in Figure 2. The frame is secured to a Husarion Panther mobile base [21], capable of speeds
up to 2 m/s (comparable to brisk walking) and able to navigate uneven terrain. The base supports
both differential and holonomic drive modes, providing additional flexibility for maneuvering in
cluttered spaces. The wide base, combined with bottom-loaded weight from the mounted URS
control boxes, prevents tipping, contributing to overall system stability.

Video streaming is enabled through four USB cameras positioned on the neck, torso, and wrists (us-
ing Intel Realsense D405 cameras [22]). The URS arms transmit proprioception data (joint positions,
velocities, torques) over Ethernet, while the actuated neck communicates with the computer via se-
rial connection. These sensory inputs are recorded and utilized to train imitation learning policies,
aligning with our goal of integrating teleoperation data to support autonomous policy development.

3 Teleoperation and Data Collection

Our teleoperation system consists of two main components: hand tracking and head tracking, both
designed to provide a natural and intuitive interface for remote robot control. !

!The teleoperation code will be released.



Figure 3: Demonstrating different head movements during teleoperation, mapped directly to the robot’s actu-
ated neck: (Top left) Neutral, (Top right) Sideways, (Bottom left) Peeking, (Bottom right) Slanting. The robot’s
5-DOF neck enables natural, human-like adjustments, enhancing perception and control in complex environ-
ments.

3.1 Hand Tracking

For hand tracking, we use the Ascension trakSTAR device—a 6DOF electromagnetic hand tracking
system originally developed for teleoperating surgical robots [23]. Tracking nodes are placed on
the back of the teleoperator’s palm, thumb tip, and index finger tip using a glove. This setup is
comfortable for the operator and enables precise capture of hand positions and finger movements,
which are crucial for manipulating the robot’s grippers.

To achieve fine-grained control of a dexterous robotic hand, we employ the Manus VR glove [24],
which was initially developed for virtual reality gaming and provides 6DOF tracking of 25 keypoints
on the hand. This allows detailed control of the robot’s dexterous psyonic hand [20], supporting
complex manipulation tasks. Additionally, the gloves offer potential for future integration with
haptic feedback systems, further enhancing the teleoperation experience.

We also conducted experiments using the Apple Vision Pro for hand tracking. While this approach
provided promising results, it posed challenges for tasks performed close to the robot’s body, as
the operator’s hands sometimes moved out of the field of view of the headset. This led to tracking
inconsistencies and jittering in the robot’s arms, which not only hindered task performance but could
also be dangerous in close-proximity scenarios.

3.2 Head Tracking

6DOF head tracking is implemented using the Apple Vision Pro [25]. As shown in Fig 3, changes in
the operator’s head pose are directly mapped to the robot’s neck camera pose, enabling a synchro-
nized and intuitive perception experience. Video from the neck camera is streamed in real-time to
the Vision Pro over a WiFi connection, allowing the operator to rapidly adjust the robot’s viewpoint,
as humans naturally do when observing their surroundings. This supports interactive perception,
enabling teleoperators to adapt to dynamic changes in the environment.

Unlike many existing teleoperation systems that rely on global third-person views or external feed-
back systems, our setup is fully self-contained. Visual feedback is conveyed exclusively through the
Vision Pro, eliminating the need for global cameras or additional environmental feedback mecha-
nisms. This streamlined design enables remote teleoperation in any location with a stable wireless
connection, making it well-suited for diverse operational contexts.

4 Experiments

We conduct a series of experiments to evaluate the effectiveness of the actuated neck in enabling
intuitive remote teleoperation and to assess the capability of learning autonomous policies that lever-



Figure 4: Teleoperated Tasks: The teleoperated robot performing various manipulation tasks, including set-
ting up a dinner table (left), retrieving items from a refrigerator (middle), and managing workspace clutter
(right). The 5-DOF actuated neck and dexterous hands enable precise control and adaptation to diverse envi-
ronments, facilitating human-like interaction with household objects during teleoperation.

age the actuated neck for task execution. We first highlight how the actuated neck tracks the teleop-
erator’s head movements, as shown in Figure 3, and enables a synchronized and intuitive perception
experience for the teleoperator. Secondly, we train and evaluate the potential of training autonomous
policies with the actuated neck, and compare it against a baseline policy trained using data from a
static wide-angle camera without actuated neck movements.

4.1 Actuated Neck Enabled Intuitive Teleoperation

To evaluate the impact of the actuated neck on teleoperation, we designed a series of seven complex,
whole-body manipulation tasks that required coordinated use of a dexterous hand, a mobile base,
and a parallel-jaw gripper. These tasks, (three of them visualized in Figure 4), included: (i) loading
dishes into a dishwasher, (ii) hanging sweatshirts on a coat hanger, (iii) filling a cup with water from
a faucet, (iv) arranging a dinner table, (v) making coffee, (vi) opening a refrigerator and transferring
items from it to a table, and (vii) throwing trash into a bin. Each of these tasks demand dynamic per-
spective adjustments, precise dexterous manipulation, and base repositioning to achieve successful
execution. Without an actuated neck, completing these tasks effectively would be extremely diffi-
cult, as they require the ability to change viewpoints, handle occlusions, and interact with objects
from different angles.

The choice of tasks was deliberate, focusing on scenarios where the robot must use whole-body coor-
dination, including base movement, to align with the workspace. For example, hanging a sweatshirt
requires the teleoperator to not only locate the hanger but also move the mobile base to position the
robot optimally relative to the hanger. This level of interaction makes dynamic viewpoint adjust-
ments critical. The teleoperators, operating remotely, rely entirely on the robot’s onboard cameras,
making the actuated neck indispensable for accurate perception. As shown in the coat hanger task
in Figure 1 and the fridge task in Figure 4 (middle), the ability to “peek” around obstacles, observe
objects from occluded angles, and adjust the head position enhanced situational awareness and task
effectiveness significantly.

The actuated neck was especially important during dexterous manipulation, allowing teleoperators
to refine the camera angle and achieve fine-grained observation of the dexterous hand’s movements.
This led to improved control and task success, particularly in precision tasks such as filling a cup
with water or placing items accurately on shelves. In contrast, using a wide-angle camera combined



with software-based zooming would not have provided the same level of depth perception or ability
to handle occlusions. Wide-angle lenses suffer from distortion and lack the ability to change per-
spectives, making it harder to adjust to dynamic environments or locate objects relative to the robot’s
body.

4.2 TImpact of an Actuated Neck on Imitation Learning

Building on the enhancements ob-
served in teleoperation through the
use of the actuated neck, we further
investigate its potential to facilitate
autonomous policy learning. Specif-
ically, we aim to determine whether
the actuated neck can enable poli-
cies that not only replicate the oper-
ator’s head movements but also rea-
son about tasks at hand. We train
an imitation learning policy, ACT [9],
that predicts joint configurations for

the robot’s right arm and the actu-
ated neck. To train this policy, we Figure 5: Autonomous Tasks: A single policy is trained on
concatenate the proprioceptive input, three merged tasks across varying workspace heights_ anq positions.

hich includes ioint it £ th (Left) The robot “peeks” and picks up a cup, placing it on a top
which mcludes jomn ROSI 10ns oL e gpeyf. (Middle) The robot picks an object close to its body and
actuated neck along with the arm and places it on a table. (Right) The robot retrieves an item from under
end-effector joints. Similarly, we a coffee table and deposits it inside a package. The actuated neck
combine the neck camera’s observa- adjusts dynamically based on observations, allowing the robot to
identify and complete tasks without specific task labeling.

tions with those from the wrist cam-
eras to form the visual input. Since the evaluated tasks do not require long-term contextual rea-
soning, we set the context window to 1, focusing solely on immediate feedback. Additionally, to
simplify the learning process, we concentrate on controlling the right arm with a parallel-jaw gripper
while keeping the left arm fixed.

To evaluate the role of the actuated neck in task reasoning and coordinated movement, we de-
signed three specific tasks that required dynamic neck adjustments: (1) Left-to-right Pick and
Place (L2R): The robot picks an object from a bin by peeking into it, then places it on a top shelf.
This task requires precise horizontal neck adjustments for object localization, tracking, and guiding
placement. (2) Close-range Object Manipulation (CRange): The object is initially located close
to the robot’s body, requiring the neck to retract inward to observe the object closely, enabling fine
control for manipulation. (3) Cup Transfer From Bottom Shelf (CfB): The robot picks a cup from
beneath a coffee table and places it in a packaging box on a higher table. This task necessitates
vertical neck adjustments to maintain visibility of the cup throughout the transfer.

These tasks, illustrated in Figure 5, require dynamic

spatial awareness and viewpoint adjustments, making Task T Actuated | Static
them ideal for testing the active neck’s contribution to CfB 959, 0%

autonomous learning. We collected 120 teleoperated L2Rmod 90 % 78%
demonstrations for each task, simultaneously controlling CRange 82% 68%

the right arm and the neck. To assess whether the ac- .

. ... . Table 1: Success rates of the actuated neck
tive neck goes beyond merely mimicking the operator’s policy (Actuated) versus the static wide-
movements—e.g., moving left-to-right without reasoning  angle camera policy (Static) across the three
for the L2R task—we merged the datasets from all three different tasks as described in Sec. 4.2.
tasks without explicit labeling and trained a single imita-
tion learning policy. We let the policy figure out which task is at hand. To further verify the reasoning
capability of the learned policy, we varied the location of the objects of interest during training and
testing. Based on the learned policies, we make the following observations:
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Figure 6: (a) Visualization of the autonomous execution of the task CfB across three different instances
(columns #1, #2, #3). The actuated neck policy successfully generalizes to the three different instances of
the task, despite the varying positions of the cup and the box highlighting its robustness. (b) Compares the
autonomous execution of the task CfB with the actuated neck policy and the static wide angle lens policy. In
the left column, the policy with the actuated neck successfully completes the task, dynamically adjusting the
neck to guide the robot’s movements and place the cup inside the box. In the contrast, the robot with the wide
angle policy fails to accomplish the task with the gripper getting stuck during the approach phase.

Global camera guides the local wrist cameras: The wide workspace of these tasks necessitates
reasoning over a broad visual area. The global camera, provided by the actuated neck, plays a critical
role in guiding task execution. For example, in the CfB task, the neck adjusts to detect and localize
the cup on the bottom shelf—an area initially outside the local camera’s view. Similarly, the neck
aids the robot in correctly positioning the arm above the packaging box on the top table, as shown
in Figure 6 (a), even when the box is not directly in view from the local cameras just after the robot
successfully picks up the cup from the bottom of the coffee table.

Conversely, the local wrist cameras handle finer adjustments, such as grasp alignment and release
timing. For example, when approaching the cup in the CfB task, the wrist cameras refine the ap-
proach angle for a precise grip (see Figure 6 (a), ”Approaching the cup”). Similarly, during the
release phase, the wrist cameras ensure the gripper only lets go when the cup is correctly positioned
inside the packaging box (see Figure 6 (a), "Dropping the cup”).

Comparison with a Wide-angle Camera: A possible alternative to the actuated neck is a wide-
angle camera, which could provide a broader field of view. To test this, we trained a separate
policy using a 160-degree diagonal ultra-wide camera, following the same strategy of collecting
120 demonstrations across the three tasks. We modified the L2R task (L2ZRmod) by removing the
”peeking” behavior. Instead of picking the object from inside of a container, we simply place the



object on the left side of the table to eliminate occlusions, focusing purely on horizontal movement.
This is important as unlike the actuated neck that can adjust itself to observe objects not directly in
line of sight, the static cameras cannot do that. We conducted 15 trials per task, slightly altering the
object locations in each trial to assess the robustness of the learned policies. In each trial, we first
test the actuated neck, and then bring the object back to the exact same position to test the static
camera.

As shown in Table 1, the actuated neck significantly outperforms wide-angle cameras across tasks.
This improvement is likely due to reduced distribution shift. While wide-angle cameras capture a
broad visual field, this often causes a shift even if any minor detail change (such as the position of
wires on the floor). In contrast, the actuated neck maintains a focused, dynamic view, adapting to
specific areas and ensuring consistent visibility. The performance gap is most notable in the CfB
task, where the wide-angle camera fails completely. Here, the cup is located at the bottom of the
frame, as shown in Fig. 6 (b). The static camera cannot adjust its view downward and the cup is only
visible at the bottom of the global image, causing the local cameras to get stuck at the table edge.
Conversely, the actuated neck adjusts its height to keep the cup in view, guiding the local cameras to
complete the task. In the other two tasks, where objects are more centrally located, the wide-angle
camera performs better but still lags behind the actuated neck. This emphasizes the importance
of dynamic viewpoint adjustments, which enable the neck to maintain clear visibility and achieve
higher success rates, particularly in occluded or boundary-positioned scenarios.

5 Conclusion

Collecting large amounts of high-quality demonstration data remains a challenging problem when
building autonomous manipulation systems. Teleoperation is a promising approach for data collec-
tion, but can be challenging and non-intuitive for human operators. In this work, we introduce a
teleoperation system that incorporates an actuated neck to mimic operator’s head movements, en-
hancing both intuitive remote teleoperation and the training of autonomous policies. Our system
reduces operator cognitive load, improves situational awareness, and enhances task efficiency, par-
ticularly in complex environments with occlusions.

Through a series of experiments involving seven different tasks, we demonstrated that the actu-
ated neck allows operators to perform whole-body remote teleoperation effectively, providing an
intuitive and seamless control experience. Further, we investigate the role of the actuated neck in
imitation-learning based autonomous policies by training a single policy across three different tasks.
We observe that the actuated neck reasons about the tasks and adjusts its neck movements accord-
ingly. Moreover, the active neck significantly enhances policy generalization and robustness, and
significantly outperformed those trained with a fixed wide-angle camera. Summarily, the actuated
neck not only enhances the operator’s situational awareness but also contributes to more effective au-
tonomous task execution by providing dynamic viewpoint adjustments to better facilitate perception
and manipulation.

In the future, we aim to extend the training of autonomous policies to a broader range of tasks

enabled by the actuated neck.
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