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Abstract

Within Convolutional Neural Network (CNN), the con-
volution operations are good at extracting local features
but experience difficulty to capture global representations.
Within visual transformer, the cascaded self-attention mod-
ules can capture long-distance feature dependencies but un-
fortunately deteriorate local feature details. In this paper,
we propose a hybrid network structure, termed Conformer,
to take advantage of convolutional operations and self-
attention mechanisms for enhanced representation learn-
ing. Conformer roots in the Feature Coupling Unit (FCU),
which fuses local features and global representations under
different resolutions in an interactive fashion. Conformer
adopts a concurrent structure so that local features and
global representations are retained to the maximum extent.
Experiments show that Conformer, under the comparable
parameter complexity, outperforms the visual transformer
(DeiT-B) by 2.3% on ImageNet. On MSCOCO, it outper-
forms ResNet-101 by 3.7% and 3.6% mAPs for object detec-
tion and instance segmentation, respectively, demonstrating
the great potential to be a general backbone network. Code
is available at github.com/pengzhiliang/Conformer.

1. Introduction

Convolutional neural networks (CNNs) [29, 37, 40, 19,
48, 22] have significantly advanced computer vision tasks
such as image classification, object detection, and instance
segmentation. This largely attributes to the convolution op-
eration, which collects local features in a hierarchical fash-
ion as powerful image representations. Despite of the ad-
vantage upon local feature extraction, CNNs experience dif-
ficulty to capture global representations, e.g., long-distance
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relationships among visual elements, which are often crit-
ical for high-level computer visual tasks. An intuitive so-
lution is enlarging the receptive field, which however could
require more intensive yet damaging pooling operations.

Recently, the transformer architecture [42] has been in-
troduced to visual tasks [16, 47, 41, 51, 8, 9, 3, 55, 28].
The ViT method [16] constructs a sequence of tokens by
splitting each image to patches with positional embed-
dings and applies cascaded transformer blocks to extract
parameterized vectors as visual representations. Thanks
to the self-attention mechanism and Multilayer Perceptron
(MLP) structure, the visual transformer reflects complex
spatial transforms and long-distance feature dependencies,
which constitute global representations. Unfortunately, vi-
sual transformers are observed ignoring local feature details
which decreases the discriminability between background
and foreground, Figs. 1(c) and (g). Improved visual trans-
formers [16, 51] have proposed a tokenization module or
leveraged CNN feature maps as input tokens to capture fea-
ture neighboring information. Nevertheless, the problem
about how to precisely embed local features and global rep-
resentations to each other remains.

In this paper, we propose a dual network structure,
termed Conformer, with the aim to couple CNN-based lo-
cal features with transformer-based global representations
for enhanced representation learning. Conformer consists
of a CNN branch and a transformer branch which respec-
tively follow the design of ResNet [19] and ViT [16]. The
two branches form a comprehensive combination of local
convolution blocks, self-attention modules, and MLP units.
During training, the cross entropy losses are used to su-
pervise both the CNN and transformer branches to couple
CNN-style and transformer-style features.

Considering the feature misalignment between CNN and
transformer features, the Feature Coupling Unit (FCU) is
designed as the bridge. On the one hand, to fuse the two-
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Figure 1: Comparison of feature maps of CNN (ResNet-101) [19], Visual Transformer (DeiT-S) [41], and the proposed
Conformer. The patch embeddings in transformer are reshaped to feature maps for visualization. While CNN activates
discriminative local regions (e.g., the peacock’s head in (a) and tail in (e)), the CNN branch of Conformer takes advantage
of global cues from the visual transformer and thereby activates complete object (e.g., full extent of the peacock in (b) and
(f)). Compared with CNN, local feature details of the visual transformer are deteriorated (e.g., (c) and (g)). In contrast,
the transformer branch of Conformer retains the local feature details from CNN while depressing the background (e.g., the
peacock contours in (d) and (h) are more complete than those in (c) and (g)). (Best viewed in color)

style features, FCU leverages 1×1 convolution to align the
channel dimensions, down/up sampling strategies to align
feature resolutions, LayerNorm [2] and BatchNorm [25] to
align feature values. On the other hand, since CNN and
transformer branches tend to capture features of different
levels (e.g., local vs. global), FCU is inserted into every
block to consecutively eliminate the semantic divergence
between them, in an interactive fashion. Such a fusion pro-
cedure can greatly enhance the global perception capability
of local features and the local details of global representa-
tions.

The ability of Conformer in coupling local features and
global representations is demonstrated in Fig. 1. While con-
ventional CNNs (e.g., ResNet-101) tend to retain discrim-
inative local regions (e.g., the peacock’s head or tail), the
CNN branch of Conformer can activate the full object ex-
tent, Figs. 1(b) and (f). When solely using the visual trans-
formers, for the weak local features (e.g., blurred object
boundaries), it is difficult to distinguish the object from the
background, Figs. 1(c) and (g). The coupling of local fea-
tures and global representations significantly enhances the
discriminability of transformer-based features, Figs. 1(d)
and (h).

The contributions of this paper include:

• We propose a dual network structure, termed Con-
former, which retains local features and global repre-
sentations to the maximum extent.

• We propose the Feature Coupling Unit (FCU), to fuse
convolutional local features with transformer-based
global representations in an interactive fashion.

• Under comparable parameter complexity, Conformer
outperforms CNNs and visual transformers by signif-

icant margins. Conformer inherits the structure and
generalization advantages of both CNNs and visual
transformers, demonstrating the great potential to be
a general backbone network.

2. Related Work
CNNs with Global Cues. In the deep learning era, CNNs
can be regarded as a hierarchical ensemble of local fea-
tures with different reception fields. Unfortunately, most
CNNs [29, 37, 19, 39, 48, 23, 44] are good at extracting lo-
cal features but experience difficulty to capture global cues.

To alleviate such a limitation, one solution is to define
larger receptive fields by introducing deeper architectures
and/or more pooling operations [22, 21]. The dilated con-
volution methods [49, 50] increased the sampling step size,
while deformable convolution [13] learned the sampling po-
sitions. SENet [22] and GENet [21] proposed to use global
Avgpooling to aggregate global context and then used it to
reweight feature channels, while CBAM [46] respectively
used global Maxpooling and global Avgpooling to refine
features independently in the spatial and channel dimen-
sions.

The other solution is the global attention mechanism [45,
7, 4, 20, 38], which has demonstrated great advantage in
capturing long-distance dependencies in natural language
processing [42, 15, 5]. Inspired by the non-local means
method [6], the non-local operation [45] was introduced
to CNNs in a self-attention manner so that the response
at each position is a weighted sum of the features at all
(global) positions. Attention augmented convolutional net-
works [4] concatenated convolutional feature maps with
self-attentional feature maps to augment convolution oper-
ations for capturing long-range interactions. Relation Net-
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Figure 2: Network architecture of the proposed Conformer. (a) Up-sampling and down-sampling for spatial alignment of
feature maps and patch embeddings. (b) Implementation details of the CNN block, the transformer block, and the Feature
Coupling Unit (FCU). (c) Thumbnail of Conformer.

works [20] proposed an object attention module, which pro-
cesses a set of objects simultaneously through interaction
between their appearance feature and geometry.

Despite of the progress, existing solutions that introduce
global cues to CNNs have obvious disadvantages. For the
first solution, larger receptive fields require more intensive
pooling operations, which implies lower spatial resolution.
For the second solution, if convolutional operations are not
properly fused with attention mechanisms, local feature de-
tails could deteriorate.

Visual Transformers. As a pioneered work, ViT [16] val-
idated the feasibility of pure transformer architectures for
computer vision tasks. To leverage the long-distance de-
pendencies, transformer blocks acted as independent archi-
tectures or were introduced to CNNs for image classifica-
tion [47, 41, 51], object detection [8, 58, 3], semantic seg-
mentation [55], image enhancement [9], weakly-supervised
object localization [17] and image generation [11, 28].
However, the self-attention mechanism in visual transform-
ers often ignores local feature details. To solve, DeiT [41]
proposed using a distillation token to transfer CNN-based
features to visual transformer while T2T-ViT [51] proposed
using a tokenization module to recursively reorganize the
image to tokens considering neighboring pixels. In object
detection, DETR method [8, 58] fed local features extracted
by CNN to the transformer encoder-decoder to model the
global relationships between features in a serial fashion.

Different from existing works, Conformer defines the
first concurrent network structure which fuses features in an
interactive fashion. Such a structure not only naturally in-
herits the structure advantages of both CNN and transform-
ers but also retains the representation capability of local fea-
tures and global representations to the maximum extent.

3. Conformer

3.1. Overview

Local features and global representations are important
counterparts, which have been extensively studied in the
long history of visual descriptors. Local features and their
descriptors [34, 27, 35], which are compact vector represen-
tations of local image neighborhoods, have been the build-
ing blocks of many computer vision algorithms. Global
representations include, but not limited to, contour repre-
sentations, shape descriptors, and object typologies at long-
distance [32]. In the deep learning era, CNN collects lo-
cal features in a hierarchical manner via convolutional op-
erations and retains the local cues as feature maps. Visual
transformer is believed to aggregate global representations
among the compressed patch embeddings in a soft fashion
by the cascaded self-attention modules.

In order to take advantage of local features and global
representations, we design a concurrent network structure,
as shown in Fig. 2(c), termed Conformer. Considering
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stage output CNN Branch FCU Transformer Branch

c1
112×112 7×7, 64, stride 2
56×56 3×3 max pooling, stride 2

c2 56× 56,197

 1×1, 64
3×3, 64
1×1, 256

 -

4×4, 384, stride 4

×1

 MHSA-6, 384
1×1, 1536
1×1, 384


 1×1, 64

3×3, 64
1×1, 256


×3

[1× 1, 384] −→  MHSA-6, 384
1×1, 1536
1×1, 384

- - - - - - - - - - - - - - 1×1, 64
3×3, 64
1×1, 256

 ←− [1× 1, 64]

c3 28× 28,197

 1×1, 128
3×3, 128
1×1, 512


×4

[1× 1, 384] −→  MHSA-6, 384
1×1, 1536
1×1, 384

- - - - - - - - - - - - - - 1×1, 128
3×3, 128
1×1, 512

 ←− [1× 1, 128]

c4 14× 14,197

 1×1, 256
3×3, 256
1×1, 1024


×3

[1× 1, 384] −→  MHSA-6, 384
1×1, 1536
1×1, 384

- - - - - - - - - - - - - - 1×1, 256
3×3, 256
1×1, 1024

 ←− [1× 1, 256]

c5 7× 7,197

 1×1, 256
3×3, 256
1×1, 1024


×1

[1× 1, 384] −→  MHSA-6, 384
1×1, 1536
1×1, 384

- - - - - - - - - - - - - - 1×1, 256
3×3, 256
1×1, 1024

 ←− [1× 1, 256]

classifier 1× 1, 1
global pooling - class token
1×1,1000 - 1×1,1000

Parameters 37.7 M
MACs 10.6 G

Table 1: Architecture of Conformer-S, where MHSA-6 de-
notes the multi-head self-attention with heads 6 in trans-
former block and the fc layer is viewed as 1×1 convolution
here. In FCU column, the arrows represent the flow of fea-
ture. And in output column, 56×56,197 respectively mean
the size of feature map is 56×56 and the number of embed-
ded patches is 197.

the complementarity of the two-style features, within Con-
former, we consecutively feed the global context from the
transformer branch to feature maps, to reinforce the global
perception capability of the CNN branch. Similarly, local
features from the CNN branch are progressively fed back to
patch embeddings, to enrich the local details of the trans-
former branch. Such a process constitutes the interaction.

In special, Conformer is composed of a stem module,
dual branches, FCUs to bridge dual branches, and two clas-
sifiers (a fc layer) for the dual branches. The stem module,
which is a 7×7 convolution with stride 2 followed by a 3×3
max pooling with stride 2, is used to extract initial local fea-
tures (e.g., edge and texture information), which are then

fed to the dual branches. The CNN branch and transformer
branch are composed of N (e.g., 12) repeated convolution
and transformer blocks, respectively, as described in Tab. 1.
Such a concurrent structure implies that CNN and trans-
former branch can respectively preserve the local features
and global representations to the maximum extent. FCU is
proposed as a bridge module to fuse local features in the
CNN branch with global representations in the transformer
branch, Fig. 2(b). FCU is applied from the second block
because the initialized features of the two branches are the
same. Along the branches, FCU progressively fuses feature
maps and patch embeddings in an interactive fashion.

Finally, for the CNN branch, all the features are pooled
and fed to one classifier. For the transformer branch, the
class token is taken out and fed to the other classifier. Dur-
ing training, we use two cross entropy losses to separately
supervise the two classifiers. The importance of the loss
functions are empirically set to be same. During inference,
the outputs of the two classifiers are simply summarized as
the prediction results.

3.2. Network Structure

CNN Branch. As shown in Fig. 2(b), the CNN branch
adopts feature pyramid structure, where the resolution of
feature maps decreases with network depth while the chan-
nel number increases. We split the whole branch into 4
stages, as described in Tab. 1(CNN Branch). Each stage
is composed of multiple convolution blocks and each con-
volution block contains nc bottlenecks. Following the def-
inition in ResNet [19], a bottleneck contains a 1×1 down-
projection convolution, a 3×3 spatial convolution, a 1×1
up-projection convolution, and a residual connection be-
tween the input and output of the bottleneck. In experi-
ments, nc is set to be 1 in the first convolution block and
satisfies ≥ 2 in the subsequent N − 1 convolution blocks.

Visual transformers [16, 41] project an image patch into
a vector through a single step, causing the lost of local de-
tails. While in CNNs, convolution kernels slide over feature
maps with overlap, which provides the possibility to pre-
serve fine-detailed local features. Consequently, the CNN
branch is able to consecutively provide local feature details
for the transformer branch.

Transformer Branch. Following ViT [16], this branch
contains N repeated transformer blocks. As shown in
Fig. 2(b), each transformer block consists of a multi-head
self-attention module and an MLP block (contains a up-
projection fc layer and a down-projection fc layer). Lay-
erNorms [2] are applied before each layer and residual con-
nections in both the self-attention layer and MLP block.
For tokenization, we compress the feature maps generated
by the stem module into 14×14 patch embeddings without
overlap, by a linear projection layer, which is a 4×4 con-
volution with stride 4. A class token is then pretended to
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(d) (e)
Figure 3: Structure analysis. Cn and Tr respectively denote
a bottleneck and a transformer block. (a) The dual struc-
ture can be considered as a special serial case of the resid-
ual structure. (b) The CNN (e.g., ResNet); (c) A special
hybrid structure where the transformer block is embedded
to bottlenecks. (d) The visual transformers (e.g., ViT); (e)
A special case where the bottlenecks are embedded to the
transformer blocks.

the patch embeddings for classification. Considering that
the CNN branch (3×3 convolution) encodes both local fea-
tures and spatial location information [26], the positional
embeddings are no longer required. This facilities increas-
ing image resolution for downstream vision tasks.

Feature Coupling Unit. Given the feature maps in the
CNN branch and patch embeddings in the transformer
branch, how to eliminate the misalignment between them
is an important issue. To solve, we propose the FCU to con-
secutively couple local features with global representations
in an interactive manner.

On the one hand, we must realize that the feature di-
mensinalities of CNN and transformer are inconsistent. The
CNN feature maps have the dimensinality C ×H ×W (C,
H , W are channels, height and width respectively), while
the shape of the patch embeddings is (K + 1) × E, where
K, 1, and E respectively represent the number of image
patches, class token and embedding dimensions. When fed
to the transformer branch, feature maps first require to get
through 1×1 convolution to align the channel numbers of
the patch embeddings. A down-sampling module (Fig. 2(a))
is then used to complete the spatial dimension alignment.
Finally, the feature maps are added with patch embeddings,
as shown in Fig. 2(b). When fed back from the transformer
branch to the CNN branch, the patch embeddings require
to be up-sampled (Fig. 2(a)) to align the spatial scale. The
channel dimension is then aligned with that of CNN feature
maps through the 1×1 convolution, and added to the fea-
ture maps. Meanwhile, LayerNorm and BatchNorm mod-
ules are used to regularize features.

On the other hand, there is a significant semantic gap
between feature maps and patch embeddings, i.e., feature
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Figure 4: Feature analysis. (a) Class activation maps in
ResNet-101 and the CNN branch of Conformer-S by using
the CAM method [57]. (b) Attention maps in DeiT-S and
the transformer branch of Conformer-S by using the Atten-
tion Rollout method [1]. (Best viewed in color)

maps are collected from the local convolutional operators
while patch embeddings are aggregated with the global self-
attention mechanisms. FCU is therefore applied in each
block (except the first) to progressively fill the semantic gap.

3.3. Analysis and Discussion

Structure Analysis. By considering the FCU as a short
connection, we can abstract the proposed dual structure into
the special serial residual structure, as shown in Fig. 3(a).
Under different residual connection units, Conformer can
implement different depths combinations of bottlenecks (as
in ResNet, Fig. 3(b)) and transformer blocks (as in ViT,
Fig. 3(d)), implying that Conformer inherits the structural
advantages of both CNNs and visual transformers. Fur-
thermore, it achieves different permutations of bottlenecks
and transformer blocks at different depths, including but not
limited to Figs. 3(c) and (e). This greatly enhances the rep-
resentation capacity of the network.

Feature Analysis. We visualize the feature maps in Fig. 1,
class activation maps and attention maps in Fig. 4. Com-
pared with ResNet [19], with the coupled global represen-
tations, the CNN branch of Conformer tends to activate
larger regions rather than local areas, suggesting enhanced
long-distance feature dependencies, which are significantly
demonstrated in Figs. 1(f) and 4(a). Thanks to the fine-
detailed local features progressively provided by the CNN
branch, the patch embeddings of the transformer branch
in the Conformer retain important detailed local features
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Model Image #Params MACs Top-1
size (M) (G) (%)

ResNet-50 [19] 2242 25.6 4.1 76.2
ResNet-101 [19] 2242 44.5 7.8 77.4
ResNet-152 [19] 2242 60.2 11.6 78.3
RegNetY-4.0GF [36] 2242 20.6 4.0 78.8
RegNetY-12.0GF [36] 2242 51.8 12.1 80.3
RegNetY-32.0GF [36] 2242 145.0 32.3 81.0

ViT-B [16] 3842 86 55.5 77.9
ViT-L [16] 3842 307 191.1 76.5
T2T-ViTt-14 [51] 2242 21.5 5.2 80.7
T2T-ViTt-19 [51] 2242 39.0 8.4 81.4
T2T-ViTt-24 [51] 2242 64.1 13.2 82.2
DeiT-S [41] 2242 22.1 4.6 79.8
DeiT-B [41] 2242 86.6 17.6 81.8

Conformer-Ti 2242 23.5 5.2 81.3
Conformer-S 2242 37.7 10.6 83.4
Conformer-B 2242 83.3 23.3 84.1

Table 2: Top-1 accuracy for image classification on the Im-
ageNet validation set.

(Figs. 1(d) and (h)), which are deteriorated by the visual
transformers [16, 41] (Figs. 1(c) and (g)). Furthermore, the
attention area in Fig. 4(b) is more complete while the back-
ground is significantly suppressed, implying the higher dis-
criminative capacity of the learned feature representations
by Conformer.

4. Experiments
4.1. Model Variants

By tuning the parameters of the CNN and transformer
branches, we have the model variants, termed Conformer-
Ti, -S, and -B, respectively. The details of Conformer-S are
described in Tab. 1, and those of Conformer-Ti/B are in the
Supplementary material. Conformer-S/32 splits the feature
maps to 7×7 patches, i.e., the patch size is 32×32 in the
transformer branch.

4.2. Image Classification

Experimental Setting. Conformer is trained on the
ImageNet-1k [14] training set with 1.3M images and tested
upon the validation set. The Top-1 accuracy is reported
in Tab. 2. To make the transformer converge to a reason-
able performance, we follow the data augmentation and
regularization techniques in DeiT [41]. These techniques
include Mixup [53], CutMix [52], Erasing [56], Rand-
Augment [12] and Stochastic Depth [24]). The model is
trained for 300 epochs with the AdamW optimizer [33],
batchsize 1024 and weight decay 0.05. The initial learning
rate is set to 0.001 and decay in a cosine schedule.

Performance. Under similar parameters and computa-
tional budgets, Tab. 2, Conformers outperform both CNN
and visual transformers. For example, Conformer-S (with
37.7M parameters and 10.6G MACs) respectively out-
performs ResNet-152 (with 60.2M parameters and 11.6G
MACs) by 4.1%((83.4% vs. 78.3%) and DeiT-B (with
86.6M parameters and 17.6G MACs) by 1.6% (83.4% vs.
81.8%). Conformer-B, with comparable parameters and
moderate MAC cost, outperforms DeiT-B by 2.3% (84.1%
vs. 81.8%). Beyond its superior performance, Conformer
converges faster than the visual transformers.

4.3. Object Detection and Instance Segmentation

To verify Conformer’s versatility, we test it on
instance-level tasks (e.g., object detection) and pixel-
level tasks (e.g., instance segmentation) on the MSCOCO
dataset1 [31]. Conformer, as the backbone, is migrated
without extra design, and the relative accuracy and parame-
ter comparison is included in Tab. 2. With the CNN branch,
we can use the output feature maps of [c2, c3, c4, c5] as side-
output to construct the feature pyramid [30].

Experimental Setting. As is common practice, the mod-
els are trained on the MSCOCO training set and tested
on the MSCOCO minival set. In Tab. 3, we report
APbbox (APsegm), APbbox

S (APsegm
S ), APbbox

M (APsegm
M ),

and APbbox
L (APsegm

L ) for averaged over IoU thresholds,
small, medium and large objects of box (mask), respec-
tively. Unless explicitly specified, we use the batch size 32,
with a learning rate 0.0002, optimizer AdamW [33], weight
decay 0.0001 and max epoch 12. The learning rate decays
at the 8-th and 11-th epoch by a magnitude.

Performance. As shown in Tab. 3, Conformer significantly
boosts the APbbox and APsegm. For object detection, the
mAP of Conformer-S/32 (55.4 M & 288.4 GFLOPs) is
3.7% higher than that of the FPN baseline (ResNet-101,
60.5 M & 295.7 GFLOPs). For instance segmentation, the
mAP of Conformer-S/32 (58.1M & 341.4 GFLOPs) is 3.6%
higher than that of the Mask R-CNN baseline (ResNet-101,
63.2 M & 348.8 GFLOPs). This demonstrates the impor-
tance of global representations for high level tasks and sug-
gests the great potential of Conformer to be a general back-
bone network.

4.4. Ablation Studies

Number of Parameters. The parameters of the proposed
Conformer are combinations of the CNN and transformer
branches. The parameter proportion of the two branches
is a hyper-parameter to be experimentally determined. In
Tab. 4, we evaluate performance of the two branches under
different parameter settings. For the CNN branch, we tune
the parameters of the CNN branch by changing the channels

1Using mmdetection library at github.com/open-mmlab/mmdetection
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Method Backbone Input size #Params GFLOPs APbbox APbbox
S APbbox

M APbbox
L APsegm APsegm

S APsegm
M APsegm

L

FPN

ResNet-50† [30] (1333, 800) 41.5 M 215.8 37.4 21.2 41.0 48.1 - - - -
ResNet-101† [30] (1333, 800) 60.5 M 295.7 39.4 22.4 43.7 51.1 - - - -
Conformer-S/32 (1344, 800) 55.4 M 288.4 43.1 26.8 46.5 55.8 - - - -
Conformer-S/16 (1120, 800) 54.2 M 404.6 44.2 28.5 48.1 58.4 - - - -

Mask R-CNN

ResNet-50† [18] (1333, 800) 44.2 M 268.9 38.2 21.9 40.9 49.5 34.7 18.3 37.4 47.2
ResNet-101† [18] (1333, 800) 63.2 M 348.8 40.0 22.6 44.0 52.6 36.1 18.8 39.7 49.5
Conformer-S/32 (1344, 800) 58.1 M 341.4 43.6 27.5 46.9 56.5 39.7 23.5 42.8 53.2
Conformer-S/16 (1120, 800) 56.9 M 457.7 44.9 28.7 48.8 58.6 40.7 24.4 44.3 55.1

Table 3: Performance for object detection and instance segmentation on the MSCOCO minival set. † means the results are
reported by the mmdetection library [10].

Transformer branch CNN branch
pp MACs Acc.(%)

E dh #Params nc C #Params

384 6 22 M

- - - - 4.6 G 79.8

2

64 1.5 M 0.07 5.2 G 81.3
128 4.5 M 0.2 6.4 G 82.3
192 9.3 M 0.4 8.2 G 82.8
256 15.7 M 0.7 10.6 G 83.4
320 23.7 M 1.0 13.7 G 83.6

4 192 15.8 M 0.7 10.9 G 83.3
3 256 21.4 M 1.0 13.0G 83.5

576 9 48.9 M
- - - - 10.0 G 79.0

2 256 16.4 M 0.3 16.3 G 83.6
384 36.4 M 0.7 23.3 G 84.1

768 12 86 M - - - - 17.6 G 81.8
2 256 17.6 M 0.2 24.2 G 83.0

Table 4: Performance under different parameter propor-
tions. E and dh respectively denote the embedding dimen-
sions and the head in the multi-head attention module in
the transformer branch. C and nc respectively represent the
channels of c2 and the bottleneck number within each con-
volution block in the CNN branch. pp is the proportion of
CNN (including stem and FCUs) and transformer branch
parameters.

and the number of bottlenecks, which respectively control
the width and depth of the CNN branch. For the transformer
branch, we tune the parameters by changing the numbers of
embedding dimensions and heads. From Tab. 4, one can
see that the accuracy is improved by increasing either pa-
rameters of the CNN or the transformer branch. More CNN
parameters bring greater improvement while the computa-
tional cost overhead is lower.

Dual Structure. Conformer is a dual model, which is to-
tally different from the serial hybrid ViT (CNN → Trans-
former) [16]. In Tab. 5, ResNet-26/50d & DeiT-S is a hy-
brid model which consists of ResNet-26/50d [19] and DeiT-
S [41], where DeiT-S forms tokens upon the feature maps
extracted by ResNet-26/50d. With comparable computa-
tional cost overhead, Conformer-S/32 outperforms the se-

Model #Params MACs Accuracy

DeiT-S/32 22.9 M 1.1 G 73.8%
ResNet-26d & DeiT-S 36.5 M 3.7 G 80.2%
ResNet-50d & DeiT-S 46.0 M 5.5 G 80.4%

Conformer-S/32 38.8 M 7.0 G 81.9%

Table 5: Comparison of hybrid structures. DeiT-S/32 means
the patch size is 32×32 for the DeiT-S model [41]. ResNet-
26/50d is the variant of ResNet-26/50, and its stem module
is composed of three 3×3 convolutions.

Method Positional embeddings Accuracy

Deit-S
√

79.8%
× 77.4% (-2.4%)

Conformer-S
√

83.5%
× 83.4% (-0.1%)

Table 6: Comparison of positional embeddings strategies.

rial hybrid model although ResNet-26/50d can retain more
local information within the stem stage.

Positional Embeddings. Considering that the CNN branch
encodes both local features and spatial location information,
the positional embeddings are assumed no longer required
for Conformer. In Tab. 6, when the positional embedding
is removed, the accuracy of DeiT-S decreases 2.4%, while
that of Conformer-S decreases marginally (0.1%).

Sampling Strategies. In FCU, to make CNN-based fea-
ture maps coupling with Transformer-based patch embed-
dings, up/down-sampling operations are used to align the
spatial scale. In Tab. 7, we compare different up/down-
sampling strategies including Maxpooling, Avgpooling,
convolution and attention-based sampling2. Compared
with Max/Avgpooling sampling, convolution and attention-
based sampling methods use more parameters and compu-
tation cost but achieve comparable accuracy. We thereby
choose the Avgpooling strategy.

2Refer to Supplementary material for detailed attention-based sam-
pling.
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Down Up #Params MACs Accuracy

Maxpooling Interpolation 37.7 M 10.3 G 83.3%
Avgpooling Interpolation 37.7 M 10.3 G 83.4%
Convolution Interpolation 47.7 M 12.3 G 83.4%

Attention Attention 39.4 M 11.3 G 83.3%

Table 7: Comparison of sampling strategies. The nearest
neighbor interpolation is used.

Model #Params MACs AccCn AccTr AccAll

DeiT-S 22.0 M 4.2 G - 79.8% 79.8%
ResNet-101 44.5 M 7.8 G 80.6% - 80.6%

DeiT-S + ResNet-101 66.5 M 11.2 G 80.6% 79.8% 81.8%

Conformer-S 37.7 M 10.3 G 83.3% 83.1% 83.4%

Table 8: Performance comparison of ensemble models.
AccCn and AccTr respectively denote the accuracy of the
CNN and transformer branches.

Comparison with Ensemble Models. Conformer is com-
pared with the ensemble models combining the outputs of
CNN and transformer. For fair comparison, we use the
same data augmentation and regularization strategies and
the same training epochs (300) to train ResNet-101 [19],
and combine it with the DeiT-S [41] model to form an en-
semble model, and report the accuracy in Tab. 8. The ac-
curacies of the CNN branch, the transformer branch, and
the Conformer-S respectively reach 83.3%, 83.1%, and
83.4%. In contrast, the ensemble model (DeiT-S+ResNet-
101) archives 81.8%, which is 1.6% lower than that of
Conformer-S (83.4%), although it uses significantly more
parameters and MACs.

4.5. Quantitative Evaluation

In Figs. 1 and 4, we qualitatively show that Conformer
can learn global information by weakly-supervised object
localization (WSOL), which can reflects the localization
capability of models. The experiment is conducted on
CUB-200-2011 dataset [43]. In Tab. 9, the localization
performance of TS-CAM [17] with Conformer-S signifi-
cantly outperforms those of CNN-based RCAM [54] and
Transformer-based DeiT-S, which supports the claim that
Conformer can better learn full object extent.

4.6. Generalization Capability

Rotation Invariance. To verify the generalization capabil-
ity of the model in terms of rotation, we rotate test images
by 0◦, 60◦, 120◦, 180◦, 240◦ and 300◦ and evaluate the per-
formance of models trained under same data augmentation
settings. As shown in Fig. 5(a), all models report compara-
ble performance for images without rotation (0◦). For the
rotated test images, the performance of ResNet-101 drops
significantly. In contrast, Conformer-S reports higher per-
formance, which implies stronger rotation invariance.

Method Backbone Top-1 Loc.Acc. GT-known Loc.Acc.

RCAM [54] VGG16 [37] 59.0% 76.3%

TS-CAM [17] DeiT-S [41] 71.3% 87.7%
Conformer-S 72.0% 93.4%

Table 9: WSOL performance on CUB-200-2011 test set.
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Figure 5: Generalization capability. (a) Comparison of ro-
tation invariance. The compared models are trained under
the same data augmentation settings and directly evaluated
on rotated images without model fintuning. (b) Comparison
of scale invariance. The models are trained on images with
the resolution of 224×224, and tested on different image
resolutions without model finetuning.

Scale Invariance. In Fig. 5(b), we compare the scale adap-
tation ability of Conformer with those of visual transform-
ers (DeiT-S) and CNN (ResNet). We interpolate the posi-
tional embeddings of DeiT-S to adapt it to input images of
different resolutions during inference. When the size of in-
put images reduces from 224 to 112, DeiT-S’s performance
drops by 25% and that of ResNet-50/152 drops by 15%. In
contrast, the performance of Conformer drops only by 10%,
demonstrating higher scale invariance of the learned feature
representations.

5. Conclusion
We propose Conformer, the first dual backbone to com-

bining CNN with visual transformer. Within Conformer, we
leverage the convolution operators to extract local features
and the self-attention mechanisms to capture global repre-
sentations. We design the feature coupling unit to fuse local
features and global representations, enhancing the ability
of visual representations in an interactive fashion. Exper-
iments show that Conformer, with comparable parameters
and computation budgets, outperforms both CNNs and vi-
sual transformers, in striking contrast with the state-of-the-
arts. On downstream tasks, Conformer has shown the great
potential to be a simple yet effective backbone network.
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