
Workflows vs Agents for Code Translation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Translating algorithms from high-level languages like MATLAB to hardware1

description languages (HDLs) is a resource-intensive but necessary step for deploy-2

ment on FPGAs and ASICs. While large language models (LLMs) offer a path3

to automation, their limited training on HDL code makes end-to-end transpilation4

brittle and prone to syntax errors. We compare two LLM-driven methods for syntax5

repair in a MATLAB-to-HDL pipeline: a structured, expert-designed flow that6

follows a fixed sequence of operations, and a more autonomous agentic approach7

that uses the Model Context Protocol (MCP) [1] to dynamically select its own tools.8

We study 42 MATLAB signal-processing functions and isolate the syntax-repair9

stage. Across three model scales, the agentic approach is more effective at resolv-10

ing initial syntax errors, unblocking a greater number of candidates to proceed11

through the pipeline. This upstream improvement yields measurable downstream12

improvements, most notably on mid-sized models, where it increases the simulation13

reach rate by over 20 percentage points. We hypothesize the gains come from short14

prompts, aggressive context management, and conditional tool use. Conditional15

retrieval helps at 8B and 30B; at 235B final-success gains are small and a naive16

RAG variant attains the highest final success. Our findings suggest that these17

agentic frameworks, when properly designed, are most effective at compensating18

for the capacity limits of small and mid-sized models.19

1 Introduction20

Most digital signal processing algorithms are at least initially developed in MATLAB because it21

offers rapid iteration, a rich set of operations and toolboxes, and convenient testbench generation.22

However, deployment targets are often FPGAs or ASICs that demand code written in a hardware23

description language for low latency, high throughput, tight power budgets, and greater resource con-24

trol. Manually bridging the gap between these paradigms, from MATLAB’s high-level, dynamically25

typed environment to the low-level, statically typed structure of an HDL, is known to be slow and26

error-prone. Traditional compiler approaches, which are rule-based, are limited in their application to27

a subset of operations and rigid in the code format they generate.28

Although large language models (LLMs) promise to accelerate this process, their proficiency with29

HDLs is limited by the scarcity of high-quality open-source training data. As a result, direct end-to-30

end translation often fails, requiring a structured pipeline with robust guardrails. In such pipelines,31

failures frequently occur in the initial syntax repair stage. Naive, automated fixes at this step can32

silently alter the code’s semantics, ultimately leading to verification failures.33

In this paper, we focus on this critical syntax repair stage and conduct an empirical comparison of34

two LLM-driven strategies. We evaluated an expert-designed flow that follows a fixed script against a35

flexible agentic framework that uses the Model Context Protocol (MCP) to dynamically select tools.36

We study 42 MATLAB signal-processing functions and isolate the syntax-repair stage.37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



This paper makes three primary contributions. First, we provide a detailed empirical comparison of38

expert-designed and agentic flows across three model scales, quantifying their impact on pipeline39

success. Second, from these results, we derive a set of practical design guidelines for building40

effective agentic frameworks, emphasizing the importance of minimal prompts and aggressive41

context management. Finally, we isolate and demonstrate a key retrieval strategy, showing that42

on-demand tool use helps at small to mid scale, but naive inclusion of the same tools is actively43

detrimental to performance.44

Beyond the MATLAB to HDL setting, these results expose a broader pattern in agentic code systems.45

The experiments suggest that performance depends less on the presence of tools than on how and46

when they are invoked. Conditional retrieval, prompt minimalism, and separation of planning47

from generation emerge as scale-sensitive design levers that generalize to other agentic workflows48

such as refactoring, type inference, and translation between low-resource languages. We therefore49

view syntax repair as a controlled case study revealing general principles for reliable tool use in50

language-model-driven programming.51

2 Related Work52

Our work is situated at the intersection of several key research areas: LLMs for code translation, agen-53

tic frameworks with tool use, and the specific challenge of translating code to hardware description54

languages (HDLs).55

The use of large language models for programming tasks was measurably advanced by models like56

Codex, which demonstrated a strong ability to generate code in common languages [2]. However,57

these models often struggle with the “long tail” of specialized or low-resource languages. Recent58

work by Vijayaraghavan et al. (2024) specifically highlights this, showing that while LLMs can59

generate functionally correct VHDL, they often produce non-synthesizable or inefficient code that60

requires major manual correction [11]. This motivates our focus on a structured pipeline with a61

dedicated repair stage, rather than relying on direct, end-to-end translation.62

Several recent efforts have focused specifically on the MATLAB-to-HDL problem. For instance,63

Schwartz et al. (2024) introduced a fine-tuning approach to improve an LLM’s proficiency in VHDL,64

demonstrating gains but also noting the high cost of data acquisition [9]. Concurrently, Thakur et65

al. (2023) developed VeriGen, a system that uses an LLM to translate Python to Verilog for specific66

dataflow applications, relying on formal methods to constrain the output [10]. Our work complements67

these approaches by focusing not on model fine-tuning or formal constraints, but on a more flexible,68

agentic repair process that can be applied to general-purpose LLM outputs.69

To overcome the limitations of standalone LLMs, recent research has focused on agentic frameworks70

that allow models to use external tools. Foundational work like ReAct [12] established the core71

“reason-act” loop, while Toolformer [8] showed how models could learn to use APIs. Our MCP-based72

flow builds directly on these concepts, providing the LLM with a set of specialized tools (a compiler,73

a retrieval system) to diagnose and fix errors. A key contribution of our paper is the analysis of the74

strategy for tool use. While the use of Retrieval-Augmented Generation (RAG) [4] is a common75

technique, we demonstrate that for code repair, a conditional invocation policy is critical to its success.76

3 Experimental Setup77

To evaluate the effectiveness of an agentic framework in a real-world programming task, we integrated78

two distinct syntax repair methodologies into a MATLAB-to-HDL transpilation pipeline1. This setup79

allowed us to compare not only their immediate success in repairing syntax but also their impact on80

downstream verification and final code quality.81

3.1 Transpilation Pipeline82

Our end-to-end pipeline, illustrated in Figure 1, begins by generating a testbench from the source83

MATLAB code that is used to verify the behavior of the HDL code generated. If necessary, the84

MATLAB code is then converted to fixed-point arithmetic and to handle data in a streaming rather85

1Transpilation commonly stands for translating compilation, a form of language to language translation.

2



than batch fashion. An LLM uses this version to generate multiple candidate HDL translations (in86

our case, 3). Because this initial translation frequently introduces errors, each candidate is sent to87

a dedicated syntax repair stage. This is the stage that we isolate for our experiment. After repair,88

syntactically correct code proceeds to a synthesis stage and is finally validated against the original89

testbench.90

Figure 1: MATLAB to HDL, end-to-end pipeline

3.2 Comparing Syntax Repair Flows91

Expert-Designed Flow (Baseline): As shown in Figure 2, this flow represents a structured, non-92

agentic approach. For each HDL candidate, the LLM is provided with a large, expert-written prompt93

containing detailed guidance and advice for repairing HDL syntax. It uses the GHDL compiler to94

identify errors and iterates on the code in a fixed loop until syntax passes or a limit is reached.95

Figure 2: The expert-designed baseline flow, which follows a fixed repair script.

Agentic MCP Flow: In contrast, the flow in Figure 3 provides the LLM with autonomy. The agent96

receives a minimal prompt containing only the broken code, a repair goal, and a menu of available97

tools. It is then free to independently select and sequence tools to solve the problem. The tools98

provided were the following.99

1. GHDL Syntax Check: The same compiler used in the baseline flow to get a list of syntax100

errors.101

2. RAG Retrieval: A tool to retrieve syntactically correct VHDL code examples from a vector102

database to provide relevant context.103

3. Code Rewrite: A tool that passes the original code and a set of model-generated instruc-104

tions to a second clean context agent for implementation. This design avoids context105

contamination from previous failed attempts.106

The context was aggressively pruned to maintain performance and avoid exceeding the context107

window of smaller models. This decision was motivated by preliminary experiments showing that108

including history from failed repair iterations decreased performance. Therefore, the context was109

reset after each attempt, with only a brief summary of the previous attempt carried over.110

3



Figure 3: The agentic MCP flow, where the agent dynamically selects tools in an iterative loop.

3.3 Dataset and Evaluation Metrics111

We evaluated both flows on an internal dataset of 42 MATLAB functions for signal processing,112

ranging from 3 to 311 lines of code. We measured performance at both the candidate and function113

levels across three key metrics:114

1. Syntax Pass Rate: The percentage of candidates (or functions with at least one candidate)115

that successfully pass the GHDL syntax check.116

2. Simulation Reach Rate: The percentage of functions whose repaired code is valid enough117

to proceed to the synthesis and simulation stage.118

3. Final Flow Success Rate: The percentage of functions whose final HDL output passes the119

MATLAB-generated testbench, confirming semantic equivalence.120

3.4 RAG Corpus and Retrieval Configuration121

We built a retrieval corpus of syntactically correct VHDL functions drawn from internal examples122

used in class exercises and small design blocks. More than 1000 functions were included for reference123

by the tool. The functions were short, generally under 100 lines. Each item was stored as a single124

document representing a complete function, not fragmented into overlapping chunks. This whole125

function policy preserved idioms such as library imports, type declarations, and process structure that126

matter for synthesis.127

We embedded each document using Infinity embeddings [3]. At query time the agent formed a text128

query from the current error context and the working VHDL variant, then retrieved the top 3 nearest129

neighbors. The examples were inserted verbatim as full functions, subject to a strict token budget130

with truncation rules that favored keeping headers, library lines, and process scaffolding.131

In the naive Non MCP with RAG variant, the top 3 examples were appended unconditionally to every132

repair prompt. In the MCP variant, retrieval was conditional on lack of progress or on compiler errors133

that indicated missing idioms, and the agent could choose to skip retrieval. No additional reranking134

by compiler error similarity was used.135

We used three Qwen3 checkpoints from Hugging Face, Qwen3-8B [7], Qwen3-30B-A3B [6], and136

Qwen3-235B-A22B [5], with default tokenizers and no additional fine-tuning.137

3.5 Reproducibility.138

Additional configuration and decoding details are provided in Appendix B.139

4 Experimental Results140

We evaluated the expert-designed (non-MCP) and agentic (MCP) syntax repair flows on our 42-141

function MATLAB dataset using Qwen across three model scales: 8B, 30B, and 235B. The results142

4



demonstrate that the agentic MCP approach consistently improves pipeline progression, with the143

most measurable impact observed at the mid-scale 30B model.144

Variability across twelve independent runs was small (σ ≈ 2-3 pp on intermediate metrics in pilot145

logging).146

4.1 MCP Measurably Improves Pipeline Progression at 30B147

At the 30B scale (Table 1), the agentic MCP approach yields substantial improvements over the expert-148

designed baseline across all intermediate metrics. The candidate-level syntax pass rate increases149

from 51.9% to 75.0% (+23.1 pp), and the function-level syntax pass rate increases from 81.2% to150

92.3% (+11.1 pp). The most dramatic gain is in the share of functions that reach the simulation stage,151

which jumps from 72.1% to 95.3% (+23.2 pp). This upstream success translates into a measurable152

improvement in the end-to-end success rate, which improves from 33.5% to 42.1% (+8.6 pp). These153

results indicate that while downstream semantic issues remain a bottleneck, MCP is highly effective154

at resolving the initial syntax errors that cause the most pipeline attrition. For reference, the naive155

variant Non-MCP + RAG underperforms at 30B; see Table 1, where the simulation reach is 44.0%156

and the final success is 19.5%.157

4.2 The Effect of MCP is Scale-Dependent158

The benefits of the agentic framework vary with the size of the model, as shown in Tables 2 and 3.159

• At 8B, MCP provides a crucial lift for the smaller model, improving the function-level160

syntax pass from 76.7% to 90.7% (+14 pp) and boosting the simulation reach rate by over161

20 pp. However, the model’s limited capacity constrains its ability to translate these gains162

into end-to-end success, which sees a more modest improvement (+4.9 pp).163

• At 235B, the baseline expert-designed flow is already highly competent, successfully164

repairing syntax for 93% of functions. Here, MCP has less headroom to add value. It pushes165

the function-level syntax pass to 100% and provides a small lift to the final success rate166

(+2.3 pp), but its overall impact is diminished. In particular, the naive variant non-MCP +167

RAG attains the highest final success at 235B (58.1% vs 55.8% for MCP; Table 3); we defer168

the analysis to Section 5.169

4.3 Conditional Tool Use is Critical; Naive RAG Inclusion Degrades Performance170

To isolate the impact of tool-use policy, we tested a variant that naively appended RAG outputs to171

every repair prompt. As shown in the Non-MCP+RAG columns of Tables 2, 1, and 3, unconditional172

inclusion is detrimental at smaller and mid scales. At the 30B scale (Table 1), naively adding RAG173

caused the simulation reach rate to drop from 72.1% to 44.0% and the final success rate to drop from174

33.5% to 19.5%. This provides strong evidence that the agentic framework’s success is driven not175

just by the availability of tools, but by its ability to apply them conditionally and avoid the context176

clutter that harms less capable models.177

Table 1: Qwen 30B, function-level macro averages (baseline, MCP, and baseline + naive RAG).

Metric Non-MCP MCP Non-MCP+RAG

Candidate-level syntax pass 51.9% 75.0% 60.0%
Function-level syntax pass 81.2% 92.3% 77.0%
Reach testbench 72.1% 95.3% 44.0%
Final success 33.53% 42.12% 19.5%

5



Table 2: Qwen 8B, function-level macro averages (baseline, MCP, and baseline + naive RAG).

Metric Non-MCP MCP Non-MCP+RAG

Candidate-level syntax pass 59.0% 63.1% 56.7%
Function-level syntax pass 76.7% 90.7% 76.7%
Reach testbench 60.5% 90.7% 60.5%
Final success 18.3% 23.2% 16.9%

Table 3: Qwen 235B, function-level macro averages (baseline, MCP, and baseline + naive RAG).

Metric Non-MCP MCP Non-MCP+RAG

Candidate-level syntax pass 86.0% 94.4% 93.9%
Function-level syntax pass 93.0% 100% 100%
Reach testbench 100% 100% 100%
Final success 53.5% 55.8% 58.1%

Figure 4: metrics comparison for 30B model

5 Discussion178

5.1 Conditional Tool Use is the Primary Driver of Improvement179

Our results show that an agentic framework using MCP for syntax repair measurably improves180

pipeline progression compared to a deterministic, expert-designed flow. The success of this approach,181

however, depends heavily on a set of core design principles and the underlying model’s scale.182

To understand why MCP helps, we consider how the framework structures reasoning within the183

context window. We hypothesize that these improvements arise from differences in prompt entropy184

and token allocation rather than from the tools themselves. When the model must process long,185

unfiltered retrieval outputs, its effective reasoning bandwidth is diluted. Conditional invocation186

instead maintains a compact, high-signal context that fits within the model’s limited working memory.187

While we did not directly test this mechanism, the scale pattern in Tables 1-3 is consistent with this188

interpretation.189

The central finding of our work is that how auxiliary information is introduced matters as much as190

what information is available. At the 30B scale, the agentic approach delivered large improvements191

to intermediate metrics, most notably lifting the simulation reach rate from 72.1% to 95.3%. This192

gain is directly attributable to a conditional tool-use policy.193

This policy was encoded in a prompt that created a simple "if stuck, then retrieve" loop, instructing194

the agent to first attempt a local fix and only invoke RAG when it failed to make progress. We found195

6



that RAG helps when an error requires nonlocal structure or idioms absent from the current context,196

but it hurts when it injects loosely related code that widens the search space or distracts the model.197

This was validated by our negative control experiment, where naively appending RAG outputs to the198

expert-designed flow degraded performance sharply. At 30B, this unconditional retrieval caused the199

final success rate to drop from 33.5% to 19.5%. We identified three failure modes for this approach:200

context clutter from large examples, architectural mismatches in retrieved code, and the truncation201

of precise compiler errors. The agentic framework’s ability to selectively deploy tools avoids these202

pitfalls and is therefore its key advantage.203

This pattern suggests that agentic frameworks contribute value not by adding new capabilities, but204

by enforcing structure that protects limited attention within the model’s context window. This205

observation aligns with prior findings on reasoning bandwidth limits in LLMs and suggests that206

agentic orchestration may act as a form of context regularization.207

5.2 The Interplay of Agentic Design and Model Scale208

The effectiveness of the MCP framework is clearly dependent on the model’s intrinsic capacity. We209

observed two forces interacting with scale: the planning and selectivity which MCP supplies, and the210

intrinsic capacity which depends on the model’s size.211

When capacity is low (8B), MCP’s structure enables progress but cannot fully compensate for limited212

semantic modeling. It provides a crucial boost to pipeline progression but only a modest lift to final213

success.214

When capacity is moderate (30B), MCP’s selective tool use and context hygiene are complementary,215

yielding the greatest overall uplift. The model has enough reasoning bandwidth to exploit the216

framework’s design, converting a large number of otherwise failing candidates into successful217

simulations.218

When capacity is high (235B), the model’s intrinsic ability saturates progression metrics, leaving only219

a narrow semantic frontier where MCP can help. The framework’s benefit is real but small relative to220

its overhead.221

This pattern suggests that agentic frameworks are most impactful at the mid-scale, where they222

effectively compensate for a model’s capacity limits without being rendered redundant by its sheer223

competence.224

These findings indicate that policy of tool use is a controllable design variable. Conditional, selective225

invocation yields greater benefit at smaller model scales, whereas naive inclusion suffices or even226

helps at extreme scale. The practical takeaway is that reliable agentic systems depend as much227

on disciplined orchestration as on model capacity. Although the present study isolates the syntax-228

repair stage, the same orchestration principles-conditional tool use and separation of planning from229

generation likely extend to broader software-engineering workflows where LLMs operate under token230

or attention constraints.231

5.3 Naive RAG at 235B232

At 235B, the naive Non MCP with RAG variant attains the highest end to end success (58.1% versus233

55.8% for MCP; Table 3). Intermediate metrics are saturated at this scale. Function level syntax pass234

is 100% for both variants, and reach to testbench is 100% for all methods. The gain therefore most235

likely arises at the final verification stage through canonicalization rather than earlier unblocking.236

A simple hypothesis explains the pattern. Larger models filter non helpful retrieved tokens and are237

less susceptible to context saturation. Naive retrieval then acts as few shot priming instead of a238

distraction. In smaller and mid scale models, MCP helps by keeping prompts short and focused. At239

235B that focusing benefit is largely endogenous to the model.240

The practical implication is a hybrid policy for large models. Attach a compact deduplicated top k241

exemplar set that persists across attempts, and keep MCP for compiler guided diagnosis. Enforce242

strict length control to preserve signal to noise. The observed advantage is small at 2.3 percentage243

points, so it may fall within run to run variance.244

7



We treat this as a testable claim. Run length controlled ablations with equal token budgets, inject245

noise into retrieval to probe filtering, rerank retrieval by compiler error similarity, disable MCP resets246

to test persistence effects, and report confidence intervals to establish whether the gain is statistically247

reliable.248

These numbers (Tables 2, 1, 3) summarize the scale pattern: naive Non–MCP+RAG harms 8B249

and 30B but attains the highest final success at 235B; we treat the filtering and context–saturation250

explanation as a hypothesis pending length–controlled ablations and CIs.251

5.4 Design evolution and lessons252

Our design converged through four stages. The first prototype reused the prior framework that received253

the full VHDL and was instructed to output new VHDL in <vhdl> tags. We added a small tool set:254

a manual lookup, a similar examples retrieval tool, and a helper that proposed subproblems. The255

agent called tools directly, accumulated all tool outputs in the prompt, and deferred code generation.256

This version rarely produced code before the context filled. Prompt tuning reduced tool calls, but257

performance still lagged the expert script.258

The second stage allowed the agent to interleave thinking and tool calls and to place tool outputs into259

a persistent reasoning trace, then generate. Syntax pass improved, but context length again became260

the bottleneck.261

The third stage switched to a suggest change policy. The agent proposed edits at specific line numbers,262

with the latest VHDL always shown in context. We added visible line numbers and required each263

edit to name the lines and include a tight local window around the change. This reduced tokens and264

worked on small refactors, but it failed when many declarations or process blocks needed coordinated265

changes.266

The final stage separated analysis and generation. A tool using planner produced a compact instruction267

list and short rationale in a clean format. A second generator, with a clean context, produced a268

complete new VHDL unit from those instructions. This separation increased candidate level syntax269

pass and function level reach across scales. It also made behavior more stable, since the generator270

never saw long tool transcripts or prior failed attempts.271

Tool ablations informed the final menu. The manual lookup tool reduced performance whenever272

it was invoked, so we removed it. The similar examples retrieval tool helped within MCP when273

used conditionally and under a strict token budget, but naive attachment to every prompt reduced274

performance at 8B and 30B while slightly helping at 235B. This pattern supports a policy conclusion275

rather than a tool conclusion: conditional use matters more than tool availability.276

Why this worked: separating planning from generation reduced context contamination and kept277

token budgets predictable; short instruction payloads preserved signal to noise; and resets avoided278

anchoring on earlier failed edits. These mechanics align with the observed scale effects. At small279

and mid scale, MCP limits distraction and improves reach. At large scale, model capacity filters non280

helpful tokens so naive retrieval can act as few shot priming, which explains the small end to end281

gain at 235B.282

For reproduction, report the corpus construction in Section 3.4, the embedding model identifier,283

the top k used for retrieval, any deduplication, and fixed token budgets for planner instructions and284

inserted examples. Equalize token budgets when comparing policies to separate policy effects from285

length effects.286

5.5 Limitations and Future Work287

Our dataset consists of 42 functions from a single domain (signal processing), so these results may288

differ with other error profiles. The primary improvements we observed were in preventing pipeline289

attrition before the final verification stage, which indicates that a measurable semantic bottleneck290

remains downstream of syntax repair. Future work should focus on pairing agentic repair with291

semantic safeguards, such as differential testing or lightweight equivalence checks, to ensure that the292

gains from improved syntax repair fully propagate to the end-to-end success rate.293

8



The dataset used in this study is currently internal to our company. We plan to release a cleaned294

subset of the 42 MATLAB functions and corresponding HDL outputs in the near future to support295

external replication and follow-up work.296

Broader Impacts297

This work studies agentic tool-use for program repair and translation. Although evaluated on298

MATLAB→HDL, the design lessons (conditional retrieval, context control, separation of planning299

and generation) apply to agentic programming workflows such as refactoring, porting, linting, and300

large-scale code health tasks. Potential benefits include faster prototyping, lower entry barriers for301

hardware and systems development, and safer automation compared to unconstrained prompting.302

Risks include plausible-but-wrong repairs that can introduce latent defects or security vulnerabilities;303

propagation of license-incompatible or proprietary snippets via retrieval; over-reliance on non-304

deterministic systems in safety- or mission-critical settings; and increased energy use from large305

models. Agentic systems can also widen the attack surface (e.g., prompt or retrieval injection) and306

may amplify biases present in code corpora.307

Mitigations we recommend: enforce verification gates (compilation, unit and differential tests,308

fuzzing, and lightweight formal checks where feasible) before deployment; use privacy-preserving,309

in-tenant retrieval with provenance and license scanning; prefer conditional tool invocation and short310

prompts to reduce context leakage; log all tool calls and code diffs for audit; restrict side-effecting311

tools and require explicit human approval for high-impact actions; document stochasticity and provide312

reproducible decoding settings for review. The results here should be viewed as improving reliability313

in early pipeline stages, not as a substitute for semantic validation or secure development practices.314

References315

[1] Anthropic. Introducing the model context protocol, 2024.316

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared317

Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,318

Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,319

Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,320

Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,321

Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Guss, Alex Nichol, Alex Paino,322

Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,323

Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Tobin, Jakub Pachocki, Aitor Ormazabal,324

Bob McGrew, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained325

on code. arXiv preprint arXiv:2107.03374, 2021.326

[3] Michael Feil. Infinity - to embeddings and beyond, oct 2023.327

[4] Patrick Lewis et al. Retrieval-augmented generation for knowledge-intensive nlp tasks.328

arXiv:2005.11401, 2020.329

[5] Qwen Team. Qwen3-235b-a22b. HuggingFace model card, 2025.330

[6] Qwen Team. Qwen3-30b-a3b. https://huggingface.co/Qwen/Qwen3-30B-A3B, 2025.331

Accessed 2025-08-27.332

[7] Qwen Team. Qwen3-8b. https://huggingface.co/Qwen/Qwen3-8B, 2025. Accessed333

2025-08-27.334

[8] Timo Schick et al. Toolformer: Language models can teach themselves to use tools. In NeurIPS,335

2023.336

[9] Joshua Schwartz, Matthew J. Kusner, and T. J. O’Donnell. Fine-tuning a foundational llm for337

vhdl code generation. arXiv preprint arXiv:2405.09610, 2024.338

[10] Shailja Thakur et al. Verigen: A large language model for verilog code generation.339

arXiv:2308.00708, 2023.340

9

https://huggingface.co/Qwen/Qwen3-30B-A3B
https://huggingface.co/Qwen/Qwen3-8B


[11] Prashanth Vijayaraghavan et al. VHDL-Eval: A framework for evaluating large language341

models in vhdl code generation. In LAD 2024, 2024.342

[12] Shunyu Yao et al. React: Synergizing reasoning and acting in language models. In ICLR, 2023.343

A Licenses and attributions344

Models. Qwen3-8B, Qwen3-30B-A3B, Qwen3-235B-A22B. License: Apache License 2.0. Model345

cards hosted on Hugging Face specify Apache-2.0 for these checkpoints.346

Embedding server. michaelfeil/infinity. License: MIT. Used to serve text embeddings.347

Vector index. FAISS. License: MIT.348

VHDL toolchain. GHDL. License: GNU GPL v2 or later (code); documentation under CC BY-SA.349

Used only as an external compiler/simulator; we do not redistribute GHDL.350

MATLAB. Proprietary software by MathWorks, used under institutional license; governed by the351

MathWorks Software License Agreement (EULA). We do not redistribute MATLAB or MathWorks352

assets.353

Hosting. Hugging Face Inference Endpoints used for model serving; usage governed by Hugging354

Face Terms of Service and Supplemental Terms for Inference Services.355

Release. We do not release new datasets, models, or code in this work. All third-party assets were356

used within their respective licenses and terms.357

B Reproducibility Details358

Models: Qwen3-8B, Qwen3-30B-A3B, Qwen3-235B-A22B (default tokenizers). Decoding: tem-359

perature=0.6, top-p=1.0, top-k unset, max-new-tokens backend default (unset), no stop tokens.360

Trials: R=12 independent runs per function; K=3 candidates per run. Repair loop: max iterations361

T=10; stop on first syntax pass or when T is reached. Retrieval: Infinity embeddings; ℓ2-normalize,362

FAISS IndexFlatIP (cosine), top-k=3; truncate retrieved examples to 1200 tokens keeping head-363

ers/imports/process scaffolding; retrieval is conditional on no-progress or GHDL errors matching364

missing library/use/type/port/process. Tooling: GHDL with –std=08; backend via Hug-365

ging Face endpoints or local Transformers ≥4.43 (insensitive under fixed decoding). Metrics:366

per-function candidate pass pi = #passes/(R×K); function pass, reach, final success in {0, 1};367

report macro means over 42 functions.368

B.1 Compute resources369

Provider: Hugging Face Inference Endpoints. Backend: TGI (default image; version not recorded).370

Qwen3-8B. Instance: 1× NVIDIA A100 80GB GPU; 11 vCPUs; 145 GB RAM. Autoscaling: min 0,371

max 1 replica; strategy “hardware usage”; idle scale-to-0 after 15 min. Concurrency: single replica.372

Runtime: total 4,933 min across 42 functions × R=12 trials (K=3, T=10), i.e., ≈82.2 GPU-hours.373

Per-trial wall-clock (one function, K=3, T=10): ≈9.79 min. Tokens: no explicit max-token limits set.374

Qwen3-30B. Instance: 1× NVIDIA H200 141GB GPU; 23 vCPUs; 256 GB RAM. Autoscaling: min375

0, max 1 replica. Concurrency: single replica. Runtime: total 5,388 min across 42 functions × R=12376

trials (K=3, T=10), i.e., ≈89.8 GPU-hours. Per-function trial wall-clock (K=3, T=10): ≈10.69 min.377

Tokens: no explicit max-token limits configured.378

Qwen3-235B. Environment: on-prem DGX (local). Backend: Transformers/TGI (version not379

recorded). Hardware: not logged. Replication guidance:380

• FP16: ≥8× 80 GB GPUs (e.g., 8×A100 80GB) with tensor parallelism ≥8.381

• INT8/4-bit AWQ: ≥4× 80 GB GPUs (e.g., 4×A100 80GB) with tensor parallelism ≥4.382

10



• System RAM ≥512 GB; fast local storage for model weights; recent CUDA driver.383

Autoscaling/concurrency: not applicable (single local server). Runtime and wall-clock: not logged;384

replication may expect slower throughput than 30B under the same decoding settings.385

11



NeurIPS Paper Checklist386

1. Claims387

Question: Do the main claims made in the abstract and introduction accurately reflect the388

paper’s contributions and scope?389

Answer: [Yes]390

Justification: Yes. The abstract and introduction bound scope to a 42-function MATLAB-to-391

HDL dataset and the isolated syntax-repair stage, quantify key effects (e.g., 30B simulation392

reach 72.1%→95.3%, +23 pp), and note the mixed 235B outcome. Design attributions are393

framed as hypotheses and limitations are stated, so claims match the demonstrated results394

and their expected generality.395

Guidelines:396

• The answer NA means that the abstract and introduction do not include the claims397

made in the paper.398

• The abstract and/or introduction should clearly state the claims made, including the399

contributions made in the paper and important assumptions and limitations. A No or400

NA answer to this question will not be perceived well by the reviewers.401

• The claims made should match theoretical and experimental results, and reflect how402

much the results can be expected to generalize to other settings.403

• It is fine to include aspirational goals as motivation as long as it is clear that these goals404

are not attained by the paper.405

2. Limitations406

Question: Does the paper discuss the limitations of the work performed by the authors?407

Answer: [Yes]408

Justification: Yes. The paper includes a dedicated “Limitations and Future Work” section409

that bounds scope to a 42-function MATLAB→HDL dataset and the isolated syntax-repair410

stage, notes scale dependence, and states that downstream semantic correctness remains411

a bottleneck with limited generalization beyond signal-processing code. It also discloses412

reliance on an internal VHDL corpus and the absence of causal ablations, which are proposed413

as future work.414

Guidelines:415

• The answer NA means that the paper has no limitation while the answer No means that416

the paper has limitations, but those are not discussed in the paper.417

• The authors are encouraged to create a separate "Limitations" section in their paper.418

• The paper should point out any strong assumptions and how robust the results are to419

violations of these assumptions (e.g., independence assumptions, noiseless settings,420

model well-specification, asymptotic approximations only holding locally). The authors421

should reflect on how these assumptions might be violated in practice and what the422

implications would be.423

• The authors should reflect on the scope of the claims made, e.g., if the approach was424

only tested on a few datasets or with a few runs. In general, empirical results often425

depend on implicit assumptions, which should be articulated.426

• The authors should reflect on the factors that influence the performance of the approach.427

For example, a facial recognition algorithm may perform poorly when image resolution428

is low or images are taken in low lighting. Or a speech-to-text system might not be429

used reliably to provide closed captions for online lectures because it fails to handle430

technical jargon.431

• The authors should discuss the computational efficiency of the proposed algorithms432

and how they scale with dataset size.433

• If applicable, the authors should discuss possible limitations of their approach to434

address problems of privacy and fairness.435

• While the authors might fear that complete honesty about limitations might be used by436

reviewers as grounds for rejection, a worse outcome might be that reviewers discover437

limitations that aren’t acknowledged in the paper. The authors should use their best438

12



judgment and recognize that individual actions in favor of transparency play an impor-439

tant role in developing norms that preserve the integrity of the community. Reviewers440

will be specifically instructed to not penalize honesty concerning limitations.441

3. Theory assumptions and proofs442

Question: For each theoretical result, does the paper provide the full set of assumptions and443

a complete (and correct) proof?444

Answer: [NA]445

Justification: The paper is empirical only and presents no theorems or formal claims446

requiring assumptions or proofs.447

Guidelines:448

• The answer NA means that the paper does not include theoretical results.449

• All the theorems, formulas, and proofs in the paper should be numbered and cross-450

referenced.451

• All assumptions should be clearly stated or referenced in the statement of any theorems.452

• The proofs can either appear in the main paper or the supplemental material, but if453

they appear in the supplemental material, the authors are encouraged to provide a short454

proof sketch to provide intuition.455

• Inversely, any informal proof provided in the core of the paper should be complemented456

by formal proofs provided in appendix or supplemental material.457

• Theorems and Lemmas that the proof relies upon should be properly referenced.458

4. Experimental result reproducibility459

Question: Does the paper fully disclose all the information needed to reproduce the main ex-460

perimental results of the paper to the extent that it affects the main claims and/or conclusions461

of the paper (regardless of whether the code and data are provided or not)?462

Answer: [Yes]463

Justification: We specify decoding and loop settings (t=0.6, top-p=1.0, K=3, R=12, T=10),464

retrieval and FAISS configuration, tooling, metric definitions, enabling independent verifica-465

tion within expected stochastic variation.466

Guidelines:467

• The answer NA means that the paper does not include experiments.468

• If the paper includes experiments, a No answer to this question will not be perceived469

well by the reviewers: Making the paper reproducible is important, regardless of470

whether the code and data are provided or not.471

• If the contribution is a dataset and/or model, the authors should describe the steps taken472

to make their results reproducible or verifiable.473

• Depending on the contribution, reproducibility can be accomplished in various ways.474

For example, if the contribution is a novel architecture, describing the architecture fully475

might suffice, or if the contribution is a specific model and empirical evaluation, it may476

be necessary to either make it possible for others to replicate the model with the same477

dataset, or provide access to the model. In general. releasing code and data is often478

one good way to accomplish this, but reproducibility can also be provided via detailed479

instructions for how to replicate the results, access to a hosted model (e.g., in the case480

of a large language model), releasing of a model checkpoint, or other means that are481

appropriate to the research performed.482

• While NeurIPS does not require releasing code, the conference does require all submis-483

sions to provide some reasonable avenue for reproducibility, which may depend on the484

nature of the contribution. For example485

(a) If the contribution is primarily a new algorithm, the paper should make it clear how486

to reproduce that algorithm.487

(b) If the contribution is primarily a new model architecture, the paper should describe488

the architecture clearly and fully.489

13



(c) If the contribution is a new model (e.g., a large language model), then there should490

either be a way to access this model for reproducing the results or a way to reproduce491

the model (e.g., with an open-source dataset or instructions for how to construct492

the dataset).493

(d) We recognize that reproducibility may be tricky in some cases, in which case494

authors are welcome to describe the particular way they provide for reproducibility.495

In the case of closed-source models, it may be that access to the model is limited in496

some way (e.g., to registered users), but it should be possible for other researchers497

to have some path to reproducing or verifying the results.498

5. Open access to data and code499

Question: Does the paper provide open access to the data and code, with sufficient instruc-500

tions to faithfully reproduce the main experimental results, as described in supplemental501

material?502

Answer: [No]503

Justification: The dataset and internal tool flow are proprietary and cannot be released, and504

we do not include runnable code or scripts in the supplement. We provide detailed settings505

and a surrogate public replication recipe, but this is not open access to the original data or506

code.507

Guidelines:508

• The answer NA means that paper does not include experiments requiring code.509

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/510

public/guides/CodeSubmissionPolicy) for more details.511

• While we encourage the release of code and data, we understand that this might not be512

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not513

including code, unless this is central to the contribution (e.g., for a new open-source514

benchmark).515

• The instructions should contain the exact command and environment needed to run to516

reproduce the results. See the NeurIPS code and data submission guidelines (https:517

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.518

• The authors should provide instructions on data access and preparation, including how519

to access the raw data, preprocessed data, intermediate data, and generated data, etc.520

• The authors should provide scripts to reproduce all experimental results for the new521

proposed method and baselines. If only a subset of experiments are reproducible, they522

should state which ones are omitted from the script and why.523

• At submission time, to preserve anonymity, the authors should release anonymized524

versions (if applicable).525

• Providing as much information as possible in supplemental material (appended to the526

paper) is recommended, but including URLs to data and code is permitted.527

6. Experimental setting/details528

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-529

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the530

results?531

Answer: [Yes]532

Justification: This work is inference-only (no training), and it specifies the evaluation setup:533

dataset (42 MATLAB functions, 3–311 LoC), pipeline/tools (GHDL –std=08), decoding and534

loop settings (t=0.6, top-p=1.0, K=3, R=12, T=10), retrieval config (Infinity embeddings,535

FAISS IndexFlatIP, top-k=3, truncation), and metric definitions. These details are sufficient536

to understand and interpret the reported results.537

Guidelines:538

• The answer NA means that the paper does not include experiments.539

• The experimental setting should be presented in the core of the paper to a level of detail540

that is necessary to appreciate the results and make sense of them.541

• The full details can be provided either with the code, in appendix, or as supplemental542

material.543

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


7. Experiment statistical significance544

Question: Does the paper report error bars suitably and correctly defined or other appropriate545

information about the statistical significance of the experiments?546

Answer: [No]547

Justification: We report macro averages only. We did not retain run-level outcomes, so we548

cannot compute confidence intervals. Future work will log full run traces for statistical549

reporting.550

Guidelines:551

• The answer NA means that the paper does not include experiments.552

• The authors should answer "Yes" if the results are accompanied by error bars, confi-553

dence intervals, or statistical significance tests, at least for the experiments that support554

the main claims of the paper.555

• The factors of variability that the error bars are capturing should be clearly stated (for556

example, train/test split, initialization, random drawing of some parameter, or overall557

run with given experimental conditions).558

• The method for calculating the error bars should be explained (closed form formula,559

call to a library function, bootstrap, etc.)560

• The assumptions made should be given (e.g., Normally distributed errors).561

• It should be clear whether the error bar is the standard deviation or the standard error562

of the mean.563

• It is OK to report 1-sigma error bars, but one should state it. The authors should564

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis565

of Normality of errors is not verified.566

• For asymmetric distributions, the authors should be careful not to show in tables or567

figures symmetric error bars that would yield results that are out of range (e.g. negative568

error rates).569

• If error bars are reported in tables or plots, The authors should explain in the text how570

they were calculated and reference the corresponding figures or tables in the text.571

8. Experiments compute resources572

Question: For each experiment, does the paper provide sufficient information on the com-573

puter resources (type of compute workers, memory, time of execution) needed to reproduce574

the experiments?575

Answer: [Yes]576

Justification: Compute resources specifies provider/backend and, for 8B and 30B, the exact577

instance types (A100 80GB; H200 141GB), vCPU/RAM, autoscaling policy, per-function578

wall-clock, and total GPU-hours (≈82.2h and ≈89.8h). For 235B it documents a local579

DGX environment and provides minimum hardware to reproduce (e.g., ≥8×80GB FP16 or580

≥4×80GB INT8/4-bit) while noting runtime was not logged. This information is sufficient581

to size hardware and reproduce the experiments.582

Guidelines:583

• The answer NA means that the paper does not include experiments.584

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,585

or cloud provider, including relevant memory and storage.586

• The paper should provide the amount of compute required for each of the individual587

experimental runs as well as estimate the total compute.588

• The paper should disclose whether the full research project required more compute589

than the experiments reported in the paper (e.g., preliminary or failed experiments that590

didn’t make it into the paper).591

9. Code of ethics592

Question: Does the research conducted in the paper conform, in every respect, with the593

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?594

Answer: [Yes]595

15

https://neurips.cc/public/EthicsGuidelines


Justification: The work uses company-authorized, non-personal code data only; no human596

subjects, PII, demographics, or scraping are involved. We respect model and hosting licenses597

(Qwen, Hugging Face), preserve anonymity, disclose limitations and compute usage, and598

present no foreseeable dual-use or safety risks beyond standard code synthesis.599

Guidelines:600

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.601

• If the authors answer No, they should explain the special circumstances that require a602

deviation from the Code of Ethics.603

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-604

eration due to laws or regulations in their jurisdiction).605

10. Broader impacts606

Question: Does the paper discuss both potential positive societal impacts and negative607

societal impacts of the work performed?608

Answer: [Yes]609

Justification: The Broader Impacts section discusses positive effects (productivity, lowered610

barriers, safer agentic workflows) and negatives (latent defects/security risks, IP leakage611

via retrieval, attack surface, energy use), and outlines mitigations (verification gates, prove-612

nance/license scanning, conditional tool use, logging/audit, restricted side-effects).613

Guidelines:614

• The answer NA means that there is no societal impact of the work performed.615

• If the authors answer NA or No, they should explain why their work has no societal616

impact or why the paper does not address societal impact.617

• Examples of negative societal impacts include potential malicious or unintended uses618

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations619

(e.g., deployment of technologies that could make decisions that unfairly impact specific620

groups), privacy considerations, and security considerations.621

• The conference expects that many papers will be foundational research and not tied622

to particular applications, let alone deployments. However, if there is a direct path to623

any negative applications, the authors should point it out. For example, it is legitimate624

to point out that an improvement in the quality of generative models could be used to625

generate deepfakes for disinformation. On the other hand, it is not needed to point out626

that a generic algorithm for optimizing neural networks could enable people to train627

models that generate Deepfakes faster.628

• The authors should consider possible harms that could arise when the technology is629

being used as intended and functioning correctly, harms that could arise when the630

technology is being used as intended but gives incorrect results, and harms following631

from (intentional or unintentional) misuse of the technology.632

• If there are negative societal impacts, the authors could also discuss possible mitigation633

strategies (e.g., gated release of models, providing defenses in addition to attacks,634

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from635

feedback over time, improving the efficiency and accessibility of ML).636

11. Safeguards637

Question: Does the paper describe safeguards that have been put in place for responsible638

release of data or models that have a high risk for misuse (e.g., pretrained language models,639

image generators, or scraped datasets)?640

Answer: [NA]641

Justification: We do not release models, checkpoints, or datasets. Experiments use publicly642

available Qwen checkpoints via Hugging Face; the internal corpus remains private. Only643

configuration details and minimal prompts are disclosed, so no high-risk assets require644

safeguards.645

Guidelines:646

• The answer NA means that the paper poses no such risks.647

16



• Released models that have a high risk for misuse or dual-use should be released with648

necessary safeguards to allow for controlled use of the model, for example by requiring649

that users adhere to usage guidelines or restrictions to access the model or implementing650

safety filters.651

• Datasets that have been scraped from the Internet could pose safety risks. The authors652

should describe how they avoided releasing unsafe images.653

• We recognize that providing effective safeguards is challenging, and many papers do654

not require this, but we encourage authors to take this into account and make a best655

faith effort.656

12. Licenses for existing assets657

Question: Are the creators or original owners of assets (e.g., code, data, models), used in658

the paper, properly credited and are the license and terms of use explicitly mentioned and659

properly respected?660

Answer: [Yes]661

Justification: Appendix A credits all third-party assets and states licenses/terms (Qwen3662

Apache-2.0; Infinity MIT; FAISS MIT; GHDL GPLv2+; MATLAB EULA; Hugging Face663

ToS). Usage complies with those terms; no proprietary assets are redistributed.664

Guidelines:665

• The answer NA means that the paper does not use existing assets.666

• The authors should cite the original paper that produced the code package or dataset.667

• The authors should state which version of the asset is used and, if possible, include a668

URL.669

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.670

• For scraped data from a particular source (e.g., website), the copyright and terms of671

service of that source should be provided.672

• If assets are released, the license, copyright information, and terms of use in the673

package should be provided. For popular datasets, paperswithcode.com/datasets674

has curated licenses for some datasets. Their licensing guide can help determine the675

license of a dataset.676

• For existing datasets that are re-packaged, both the original license and the license of677

the derived asset (if it has changed) should be provided.678

• If this information is not available online, the authors are encouraged to reach out to679

the asset’s creators.680

13. New assets681

Question: Are new assets introduced in the paper well documented and is the documentation682

provided alongside the assets?683

Answer: [NA]684

Justification: We do not release new datasets, models, or runnable code. The internal685

dataset and tooling are not shared. The paper includes inline prompts/tool schemas only as686

documentation, not as a released asset package.687

Guidelines:688

• The answer NA means that the paper does not release new assets.689

• Researchers should communicate the details of the dataset/code/model as part of their690

submissions via structured templates. This includes details about training, license,691

limitations, etc.692

• The paper should discuss whether and how consent was obtained from people whose693

asset is used.694

• At submission time, remember to anonymize your assets (if applicable). You can either695

create an anonymized URL or include an anonymized zip file.696

14. Crowdsourcing and research with human subjects697

Question: For crowdsourcing experiments and research with human subjects, does the paper698

include the full text of instructions given to participants and screenshots, if applicable, as699

well as details about compensation (if any)?700

17

paperswithcode.com/datasets


Answer: [NA]701

Justification: The work involves no crowdsourcing and no human-subject research.702

Guidelines:703

• The answer NA means that the paper does not involve crowdsourcing nor research with704

human subjects.705

• Including this information in the supplemental material is fine, but if the main contribu-706

tion of the paper involves human subjects, then as much detail as possible should be707

included in the main paper.708

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,709

or other labor should be paid at least the minimum wage in the country of the data710

collector.711

15. Institutional review board (IRB) approvals or equivalent for research with human712

subjects713

Question: Does the paper describe potential risks incurred by study participants, whether714

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)715

approvals (or an equivalent approval/review based on the requirements of your country or716

institution) were obtained?717

Answer: [NA]718

Justification: No human-subjects research or crowdsourcing was conducted, so no participant719

risks or IRB approvals apply.720

Guidelines:721

• The answer NA means that the paper does not involve crowdsourcing nor research with722

human subjects.723

• Depending on the country in which research is conducted, IRB approval (or equivalent)724

may be required for any human subjects research. If you obtained IRB approval, you725

should clearly state this in the paper.726

• We recognize that the procedures for this may vary greatly between institutions and727

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the728

guidelines for their institution.729

• For initial submissions, do not include any information that would break anonymity (if730

applicable), such as the institution conducting the review.731

16. Declaration of LLM usage732

Question: Does the paper describe the usage of LLMs if it is an important, original, or733

non-standard component of the core methods in this research? Note that if the LLM is used734

only for writing, editing, or formatting purposes and does not impact the core methodology,735

scientific rigorousness, or originality of the research, declaration is not required.736

Answer: [Yes]737

Justification: LLMs are the core method: we use Qwen3-8B/30B/235B with specified738

decoding, trials, retrieval, and MCP tooling, all documented in the paper. Separately, an739

LLM assisted with minor copyediting only; it contributed no ideas, data, code, or analysis.740

Guidelines:741

• The answer NA means that the core method development in this research does not742

involve LLMs as any important, original, or non-standard components.743

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)744

for what should or should not be described.745

18

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Experimental Setup
	Transpilation Pipeline
	Comparing Syntax Repair Flows
	Dataset and Evaluation Metrics
	RAG Corpus and Retrieval Configuration
	Reproducibility.

	Experimental Results
	MCP Measurably Improves Pipeline Progression at 30B
	The Effect of MCP is Scale-Dependent
	Conditional Tool Use is Critical; Naive RAG Inclusion Degrades Performance

	Discussion
	Conditional Tool Use is the Primary Driver of Improvement
	The Interplay of Agentic Design and Model Scale
	Naive RAG at 235B
	Design evolution and lessons
	Limitations and Future Work

	Licenses and attributions
	Reproducibility Details
	Compute resources


