
Ax: A Platform for Adaptive Experimentation

Miles Olson1,∗ Elizabeth Santorella1,∗ Louis C. Tiao1,∗ David Eriksson1,∗ Sait Cakmak1,∗

Mia Garrard1,∗ Samuel Daulton1,∗ Elena Kashtelyan1,∗ Maximilian Balandat1,∗

Eytan Bakshy1,∗ Zhiyuan Jerry Lin1 Sebastian Ament1 Bernard Beckerman1

Eric Onofrey1 Paschal Igusti1 Cristian Lara1 Benjamin Letham1 Cesar Cardoso1

Shiyun Sunny Shen1 Andy Chenyuan Lin1 Matthew Grange1

1
Meta

∗
Equal contribution.

Abstract Optimizing industry-scale machine learning systems involves resource-intensive black-box

optimization. Adaptive experimentation substantially improves the sample efficiency of such

tasks compared with naive baselines (such as grid or random search) by utilizing surrogate

models and sequential optimization algorithms. Ax (https://ax.dev) is an open-source

platform for adaptive experimentation. Ax is highly extensible and full-featured, and is

used at scale at Meta. We discuss Ax’s design, usage, and performance. Off the shelf, Ax

achieves state-of-the-art performance in a wide range of synthetic and real-world black-box

optimization tasks in machine learning, engineering, and science.

1 Introduction

Optimizing machine learning systems is a prominent application of black-box optimization.

Modern machine learning pipelines involve multiple resource-intensive stages, including feature

selection, architecture search, hyperparameter optimization, and optimization for inference and

serving efficiency. Ultimately, deployed models integrate into higher-level systems, such as

recommender systems, which require online A/B testing.

Figure 1: Industry-scale ML pipelines include diverse optimization tasks.

While each stage has unique design parameters and goals, many of these tasks can be formulated

as black-box optimization problems. In such problems, the aim is to solve argmax𝑥∈𝑋 𝑓 (𝑥) for some

objective 𝑓 : 𝑋 → R, where evaluations 𝑓 (𝑥) are the only available information and finding the

optimum requires conducting trials that sample values 𝑥 ∈ 𝑋 .

When evaluations are costly, as they often are in modern ML pipelines, an iterative approach

that adaptively explores the design space offers superior efficiency compared to naïve methods

such as grid or random search (Turner et al., 2021). The performance of sample-efficient methods

can be sensitive to implementation details, and a production optimization system must be robust to

many real-world issues – for example, trial failures – while remaining accessible to people with

diverse backgrounds, from those with little ML experience to people who implement their own

optimization algorithms. To this end, we introduce Ax (https://ax.dev), a versatile, open-source,

AutoML 2024 © 2024 the authors, released under CC BY 4.0

mailto:mpolson64@meta.com
mailto:santorella@meta.com
mailto:tiao@meta.com
mailto:deriksson@meta.com
mailto:saitcakmak@meta.com
mailto:mgarrard@meta.com
mailto:sdaulton@meta.com
mailto:drfreund@meta.com
mailto:balandat@meta.com
mailto:ebakshy@meta.com
mailto:zylin@meta.com
mailto:sebastianament@meta.com
mailto:bbeckerman@meta.com
mailto:eonofrey@meta.com
mailto:paschali@meta.com
mailto:cristianlara@meta.com
mailto:bletham@meta.com
mailto:cesarcardoso@meta.com
mailto:sunnyshen@meta.com
mailto:andyclin@meta.com
mailto:mgrange@meta.com
https://ax.dev
https://ax.dev
https://creativecommons.org/licenses/by/4.0/

adaptive experimentation platform implemented in Python for state-of-the-art sample-efficient

optimization with a focus on accelerating the research-to-production pipeline.

1.1 Contributions

Ax supports automated, sample-efficient optimization for a variety of problems, including those

frequently encountered in AutoML. Ax is feature-rich:

• Ax’s expressive API handles complex search spaces, multiple objectives, constraints on both pa-

rameters and outcomes, and noisy observations, with or without observed noise levels. It supports

suggesting multiple designs to evaluate in parallel (both synchronously and asynchronously) and

can stop evaluations early to save resources.

• Ax provides sensible defaults, facilitating access to advanced techniques that are typically reserved

for experts.

• Ax leverages state-of-the-art Bayesian Optimization (BO) algorithms implemented in BoTorch (Ba-

landat et al., 2020) to deliver strong performance in a variety of problem classes.

• Ax allows researchers to customize optimization algorithms, models, and experimentation flows.

• Ax is production-ready, offering automation and orchestration features, as well as robust error

handling for real-world deployment at scale.

Figure 2: Illustration of Ax as a platform for adaptive experimentation

2 Related work

Several open-source packages exist for black-box / hyperparameter optimization (HPO), active

learning, experiment management, and/or orchestration (i.e., handling trial execution, data fetching,

and managing parallelism). SMAC (Lindauer et al., 2022), Nevergrad (Rapin and Teytaud, 2018), and

Dragonfly (Kandasamy et al., 2020) offer black-box optimizers but not orchestration capabilities. Ray

Tune (Liaw et al., 2018) integrates popular black-box optimizers including Ax, Optuna (Akiba et al.,

2019), Nevergrad, HyperOpt (Bergstra et al., 2013), and BayesOpt (Martinez-Cantin, 2014) but only

works with the Ray distributed ML platform. The Hydra (Yadan, 2019) configuration framework is

commonly used in distributed computation and, like Ray Tune, supports various optimizers (Ax,

Optuna, and Nevergrad). SyneTune (Salinas et al., 2022) implements various black-box optimizers

and provides orchestration capabilities, primarily with Amazon Sagemaker. Vizier (Golovin et al.,

2017a) exposes its optimization algorithm (Song et al., 2024) through an ask-tell service.

The features summary Table 1 shows that Ax provides a broader range of capabilities. In

particular, imposing constraints on parameters and outcomes is not supported by most alternative,

but is often needed in practice. Moreover, while other libraries focus exclusively on HPO, Ax also

2

supports A/B testing well: it handles substantial levels of (known) observation noise and offers

batched trial representations to account for non-stationarity (Feng et al., 2025). Together, these

features enable Ax to optimize the full ML pipeline in Figure 1.

Ax Vizier Syne Tune Optuna SMAC3 HEBO

Single objective ✓ ✓ ✓ ✓ ✓ ✓
Multiple objectives ✓ ✓ ✓ ✓ ✓ ✓
Outcome constraints ✓ ✗ ✓ ✗ ✗ ✓

Discrete/Mixed search spaces ✓ ✓ ✓ ✓ ✓ ✓
Hierarchical search spaces ✓ ✓ ✗ ✓ ✓ ✗
Parameter constraints ✓ ✗ ✗ ✗ ✓ ✗

Time series observations ✓ ✓ ✓ ✓ ✓ ✗
Noise measurements ✓ ✗ ✗ ✗ ✗ ✗

Closed-loop orchestration ✓ ✗ ✓ ✓ ✓ ✗
Early stopping ✓ ✓ ✓ ✓ ✓ ✗
Visualization ✓ ✓ ✓ ✓ ✗ ✗

Table 1: Overview of supported features for popular open-source adaptive experimentation libraries.

Ax and BoTorch. BoTorch (Balandat et al., 2020) is a popular library for Bayesian optimization

(BO) research built on PyTorch. Ax has a special relationship with BoTorch, illustrated in Figure 2;

it leverages components implemented in BoTorch, and the two libraries are developed in tandem

as sister projects. This allows for a separation of concerns, where BoTorch provides a modular

and extensible interface for composing BO primitives, while Ax provides a higher-level interface

and manages the experimentation process end-to-end. This design empowers researchers who

use BoTorch to deploy new methods via Ax with minimal boilerplate, accelerating the research-to-

production pipeline.

3 Usage of Ax

3.1 Open-Source

Ax is open-source (MIT license) and has an active developer community. Its Github repository

https://github.com/facebook/Ax demonstrates a commitment to ongoing improvements to the

package and provides a forum for teaching and discussion. At the time of writing, Ax has around

4,250 commits across 3,000 pull requests from 100 unique developers. More than 2,500 Github users

have starred the repository, created more than 330 forks, and opened more than 800 issues.

3.2 Deployment at Meta

Ax has been deployed at scale at Meta to help solve some of the company’s most challenging

optimization problems. Its primary use cases atMeta are offline optimization ofML hyperparameters,

parameter tuning ofML systemswith online experiments, infrastracture optimization, and hardware

design. Ax is also used independently by researchers and engineers across Meta to solve various ad

hoc problems.

Ax emphasizes quality, stability, and robustness. It is fully typed and type-checked in Python

3.10+, performs extensive run-time validation, its unit tests cover >96% of its >52,000 lines of code,

and its integration tests and nightly benchmarks ensure API and performance stability over time.

Ax maintains high levels of reliability in production services at Meta.

3

https://github.com/facebook/Ax

Hyperparameter optimization. AxSweep, a deployment of Ax on Meta’s internal ML infrastructure,

is used across the company to optimize hyperparameters of ML systems, including learning rates,

architecture parameters, training data weights, training and serving configurations, and general

ML infrastructure parameters. In 2024, more than a thousand engineers and scientists across the

company ran more than 70,000 parameter tuning experiments through AxSweep. In addition, some

teams have built specialized tools using custom interfaces and orchestration logic while leveraging

Ax as the core optimization engine.

Online Parameter Tuning. Often, parameter changes can only be reliably evaluated by testing

the changes in a large-scale online experiment, otherwise known as an A/B test. Ax is integrated
with Meta’s A/B testing systems and is used across product groups for various online use cases,

including optimizing ranking and retrieval configurations, tuning infrastructure parameters for

capacity efficiency, and optimizing on-device content retrieval policies (Letham and Bakshy, 2019).

In 2024, more than 200 different users ran more than 1,000 Ax experiments for online tuning.

Ax can handle particular challenges of the online setting, including delayed feedback due

to long-term effects, non-stationarity of the effect of parameter changes over time, highly noisy

observations, and contextual policy optimization (Feng et al., 2020, 2025). It supports batch-

sequential optimization, in which each arm within a batch is compared against a common control

arm (however, as of this writing, this is not yet exposed in the user-friendly Client API).

Hardware Design & Simulation Optimization. Due to the resources required to run computer

simulations or to manufacture and test prototypes in the lab, designing novel hardware for ML

(such as AI training/inference accelerators) and Augmented/Virtual Reality (AR/VR) also involves

solving challenging black-box optimization problems. At Meta, Ax has been used extensively for

these purposes, including optimizing the design of the waveguides (optical nano-structures) in

the development of Meta’s Orion AR glasses (Meta, 2024a), which required supporting a high-

throughput optimization setting with tens of thousands of evaluations and the development of

novel high-dimensional multi-objective optimization algorithms, e.g., Daulton et al. (2022).

4 API and Usage Patterns

Ax defines a concise yet expressive API. A typical optimization involves the user:

1. Configuring the experiment, including the search space, optimization goals and constraints

2. Conducting the experiment, either in an ask-tell fashion where candidates are manually re-

quested and data is manually reported, or in a closed-loop fashion where trials are run automati-

cally via Metric and Runner abstractions.

3. Analyzing the experiment through provided diagnostic visualizations and tables.

This process is facilitated by Ax’s Client class, which serves as a single entry point, exposing

methods for each task and managing experiment state. Ax supports saving experiment state to

json and remote databases (MySQL, PostgreSQL).

4.1 Configuring the experiment

Ax uses config classes, lightweight containers which group related configuration settings together

and validate the setup at instantiation time. This improves API clarity and provides a serializable

interface suitable for deployments where Ax is called over-the-wire. After instantiating a Client
object, configuring an Ax optimization consists of three steps as illustrated in Code Example 1.

First, the user calls configure_experiment() to define the search space and set other metadata

useful for managing experiments such as a name, description, or owner. Search spaces are de-

fined by a collection of parameter configs: A RangeParameterConfig describes continuous design
parameters with configurable bounds, scaling (linear or logarithmic), and optionally step size. A

4

from ax import *

client = Client()

client.configure_experiment(
parameters=[

RangeParameterConfig(name="n_layers", bounds=(1, 16), parameter_type="int"),
RangeParameterConfig(name="learning_rate", bounds=(1e-8, 1), parameter_type="float", scaling="log"),
ChoiceParameterConfig(name="batch_size", values=[2,4,8,16,32,64], parameter_type="int", is_ordered=True),

],
parameter_constraints=[...],

)
client.configure_optimization(objective="accuracy", outcome_constraints="model_size_MB <= 2_500")

Code Example 1: Experiment Configuration in Ax (Enums are simplified to save space) for minimizing

the loss subject to a constraint on the model size not exceeding 2.5GB.

ChoiceParameterConfig describes a discrete parameter, either ordinal or categorical. A user may

also constrain the search space via a collection of linear inequalities, or specify dependents on

choice parameters to define a hierarchical structure.

Next, the user calls configure_optimization() to specify objective(s) and optionally out-

come constraints to define optimization goals and guardrails. Optionally, a user may call

configure_generation_strategy() to control aspects of the optimization process such as the

initialization budget or selecting between preset optimization methods.

4.2 Conducting the experiment

An experiment can be conducted either in an ask-tell fashion where candidates are manually re-

quested and data are manually reported, or in a closed-loop fashion where trials are run automatically

via previously configured Metric and Runner abstractions.

Figure 3: Ax API (‘Client‘) in "ask-tell" mode

Ask-tell experimentation. Running an experiment in ask-tell mode (Figure 3, Code Example 2a)

can be useful if trials are executed in the same Python runtime as Ax or if trials require manual

intervention to deploy and evaluate. In this setting, users request one or more candidate param-

eterizations at a time using get_next_trials(), evaluate the candidate(s) externally to Ax, and

report the results back via complete_trial(). Evaluations can be attached once or multiple times

using a progression term to indicate a timeseries-like structure as found in learning curves. Users

may also mark trials’ status or query whether the trial should be terminated early to preserve

experimentation budget.

Closed-loop experimentation. Alternatively, running an experiment in closed-loop mode (Figure 4,

Code Example 2b) is useful when trials are executed on external systems or when it is desirable to

fully automate the experimentation loop. Users must define a Runner class which implements logic

5

for _ in range(num_trials):
for i, params in client.get_next_trials().items():

User-defined function / external process
loss = train_and_evaluate(**params)
client.complete_trial(

trial_index=trial_index,
raw_data={"loss": loss},

)

(a) Ask-tell operation (fully sequential)

client.configure_runner(runner=Runner(...))
client.configure_metrics(metrics=[Metric(...)])

client.run_trials(# Runs all trials automatically
maximum_trials=30,
parallelism=4,
tolerated_trial_failure_rate=0.1,
initial_seconds_between_polls=1,

)

(b) Closed-loop operation

Code Example 2: Running experiments with Ax’s Client API.

for deploying trials to external systems and polling their status and a Metric class for fetching a
trial’s results. For instance, this could entail writing code for enqueuing an ML workload on a HPC

cluster using SLURM and reading the associated learning curves from Tensorboard. Then, a user

simply makes calls run_trials(), specifying a maximum number of trials to run and miscellaneous

options to be consumed by Ax’s Orchestrator, the finite state machine responsible for managing

the optimization loop. The Orchestrator then runs the experiment automatically, supporting

asynchronous parallelism (including early stopping), and providing robust error handling, including

the ability to resume interrupted optimizations.

Figure 4: Ax API (‘Client‘) in "closed-loop" mode

4.3 Analyzing the experiment

During or after experimentation, users may extract the best point (or the Pareto frontier in multi-

objective settings) from Ax, or may use Ax’s suite of analysis tools to understand their results and

gain deeper insights into the underlying black-box problem. Ax provides a rich framework for

generating plots and tables via its Analysis class. At any point during experimentation, users can

generate analyses individually, implement their own custom analyses, or allow Ax to heuristically

select the most relevant analyses for their specific setting. These may include scatter plots of

outcomes, global sensitivity analyses (Sobol’, 2001), and cross-validation, slice, and contour plots

based on the underlying surrogate model. See Figure 5 for two examples provided out-of-the-box

by Ax, and Appendix D for additional details.

5 Candidate Generation

Selecting the right strategy to adaptively generate the next point to evaluate is a non-trivial task,

and the optimal choice will depend on the characteristics of the problem. By default, Ax uses

6

(a) Leave-one-out cross-validation

(b) 1D Slice plot of model predictions as (other parame-

ters fixed at reference)

Figure 5: Example visualizations provided by Ax that help understand surrogate model quality and

behavior of the underlying black-box function. See Appendix D for additional details.

heuristics to dispatch to various BO algorithms implemented in BoTorch (see Section 5.2 for details)

which, as our benchmarks in Section 6 demonstrate, achieve good performance out-of-the box

across a broad range of use cases.

5.1 The GenerationStrategy abstraction

Ax’s GenerationStrategy is a flexible abstraction that dynamically transitions between sam-

pling / point suggestion methods, allowing different algorithms to be used at different stages.

The GenerationStrategy comprises GenerationNodes, which suggest candidates to evaluate, and

TransitionCritera, which determine when and how to switch between nodes. These form a

finite-state machine which is capable of encoding complex optimization procedures. Users can

define their own optimization algorithms by defining GenerationNodes; in fact, all baselines in this

paper were evaluated with Ax itself, wrapping each external method in a GenerationNode.

5.2 Default model dispatch and typical settings

By default, Ax automatically constructs a GenerationStrategy using the search space of the

problem, optimization goals, and user settings. Ax evaluates the center of the search space, runs four

quasi-random Sobol trials, then transitions to Bayesian optimization for the rest of the experiment.

For Bayesian optimization, Ax defines a Modular BoTorch framework, which simplifies using

probabilistic surrogates (typically Gaussian processe models) and acquisition functions imple-

mented in BoTorch within a GenerationNode. As many surrogate models are defined over continu-

ous/numerical domains, a series of transforms are applied within the Adapter layer. This flattens
potential hierarchical parameter structure, ensures all parameters are numerical, and applies any

necessary scaling (e.g. log-scaling) specified by the search space or optimization settings.

The low-level modeling and candidate generation is then handled by Ax’s Modular BoTorch
Generator (MBG) interface. Besides exposing BoTorch surrogate models and acquisition functions,

this interface also provides advanced capabilities such as per-metric model selection between

multiple models based on a measure of model fit quality. By default, MBG will pick an appropriate

surrogate class (typically a SingleTaskGPwith an RBF Kernel and dimension-scaled priors (Hvarfner

et al., 2024)), an acquisition function (qLogNEI for single- or qLogNEHVI for multi-objective

optimization (Ament et al., 2023)), and an optimizer suitable for the problem search space (L-BFGS-B

for fully continuous spaces, enumeration for small discrete spaces, alternating between discrete

and continuous steps for mixed spaces). For additional details, see Appendix C.1.

7

5.3 Early stopping

For use cases where partial results on the outcomes are available while trials are running (such

as learning curves in ML model training), Ax implements an EarlyStoppingStrategy inter-

face. This interface integrates with the Client API and allows easy extension of Ax with

custom strategies for early-stopping / pruning trials. In ask-tell mode, the user queries the

‘Client’s should_stop_trial_early() method for which trials to stop manually. In closed-loop

mode, the stopping strategy is automatically queried by the Orchestrator, and to-be-pruned

trials are stopped automatically via the Runner. Ax ships with a robust, model-free default

PercentileEarlyStoppingStrategy generalizing the Median Stopping Rule (Golovin et al., 2017b)

that prunes trials based on their performance relative to other trials at the same progression.

6 Benchmarks

Ax provides a flexible benchmarking setup that allows easily evaluating different algorithms—

including external optimizers with ask-tell interfaces—while using Ax as the orchestration layer.

Here, we use this setup to benchmark Ax against a number of popular black-box optimization

libraries with an AutoML focus.

6.1 Experimental Setup

Baselines. We compare Ax to Vizier (Golovin et al., 2017a; Song et al., 2022, 2024), Optuna (Akiba

et al., 2019), SMAC3 (Lindauer et al., 2022), HEBO (Cowen-Rivers et al., 2022), and random search.

We use the default configurations for Vizier, Optuna, HEBO, and Ax. For SMAC3, we consider both

the BlackBoxFacade (Gaussian process) and HyperParameterOptimizationFacade (Random forest)

implementations. We ran 10 replications for each of the slower methods (Ax, HEBO, SMAC-BB,

and Vizier) and 100 for the faster methods (Optuna, random search, and SMAC-HPO).

We compare Ax’s default early-stopping functionality to several state-of-the-art early-stopping

methods implemented in Optuna: ASHA (Li et al., 2020), Hyperband (Li et al., 2018), BOHB (Falkner

et al., 2018), and the Median Stopping Rule (Golovin et al., 2017b). All methods are run with

asynchronous parallelism of 4. We ran 20 replications for all early-stopping experiments. Details

on the specific Optuna configurations are provided in Appendix A.1.

Problems. We consider a comprehensive suite of 47 popular benchmark problems from the literature

covering various settings, including single- and multi-objective optimization, black-box outcome

constraints, noisy observations, continuous, discrete, and mixed search spaces, sequential and

parallel evaluation of trials, and problems with progressive evaluations that enable early-stopping

decisions based on intermediate performance. Table 3 in the Appendix contains the full list of

problems and additional details.

Benchmark scoring. We leverage a scoring system similar to Turner et al. (2021) to aggregate

results across different problems. Assuming the goal is to minimize a single objective 𝑓 (𝑥), we
define the score for a given replication after 𝑡 iterations on problem 𝑝 as:

100 ×
(
1 −

𝑓 ∗𝑝 −min{𝑓1, . . . 𝑓𝑡 }
𝑓 ∗𝑝 − RS5𝑝

)
, (1)

where 𝑓 ∗𝑝 is the global optimal value and RS5𝑝 is the best value observed after 5 trials with Ax’s

random search (including starting at the center of the search space), averaged over 100 replications.

𝑓𝑖 is the (noise-free) value of the 𝑖-th parameterization. So an optimal solution gets a score of 100,

and a method that matches the average performance of 5 trials of random search gets a score of 0.

This scoring method extends to the multi-objective setting by using the hypervolume of the Pareto

frontier in place of the best observation of 𝑓 . For the constrained setting, we follow the rationale

8

in Hernández-Lobato et al. (2016) and subsequent work that any feasible solution is better than

an infeasible solution and score infeasible solutions using the worst-seen feasible objective value

(across all benchmarks for the problem).

For early-stopping, where methods utilize computational resources adaptively, we depart from

this normalized scoring and instead report the best observed objective value as a function of total

training epochs consumed, allowing direct comparison of resource efficiency across methods.

For noisy problems, scoring uses true underlying function values rather than observed values;

this is equivalent to omnisciently selecting the best in-sample point (or points, if multi-objective)

and evaluating those parameters noiselessly. This measures the quality of the generated arms in

isolation from the ability of the package to select the best arm. This approach has been taken in

previous works, which highlighted that results were generally consistent with selecting the best

in-sample point using the surrogate model (Daulton et al., 2021).

6.2 Results

The results for the different benchmark problems aggregated across 8 different categories are shown

in Table 2 and Figure 6, with additional results for early-stopping in Figure 7. We observe that Ax is

competitive with all baselines across all problem settings and outperforms baselines substantially

on mixed/discrete, multi-objective, constrained, and noisy problems. This is largely attributed to its

use of state-of-the-art algorithms such as BoTorch’s qLogNoisyE(HV)I and discrete/mixed acquisi-

tion function optimizers that can effectively handle binary, discrete, and continuous parameters.

Additional details, including anytime performance and runtimes, are provided in Appendix A.3.

Category BBOB Other vanilla Mixed/Discrete Async Multi-obj Noisy Constr. High-Dim

Method

Ax 73.9 98.8 69.4 78.1 90.1 80.0 97.2 70.1

Vizier 74.1 99.1 55.9** 74.2 65.4** 61.3** 53.7**

SMAC-BB 79.1** 98.1 23.8** 99.1 66.0** 72.8** 40.2**

HEBO 81.7** 99.4 50.7** 85.7 64.8** 61.5** 70.4** 33.7**

Optuna 35.8** 82.8** 51.4** 76.3** 48.6** 47.2** 34.1**

SMAC-HPO 41.9** 71.5** 15.2** 85.9** 46.7** 43.2** 27.6**

Random Search 17.2** 67.1** 46.5** 71.6** 35.5** 35.0** 38.8** 22.0**

Table 2: Performance matrix across libraries and benchmark problems in terms of score (1). Here * and

** denote a statistically significant difference from Ax at the 95% and 99% level, respectively.

7 Future work

At the time of writing, the features in Table 1 are fully supported in Ax’s top-level Client API

and comprehensively tested and documented. Ax has additional capabilities that are not yet

API-stable, including cost-aware multi-fidelity optimization, transfer learning (leveraging data

from related experiments), active learning, and preference-based optimization (e.g., based off of

pairwise comparisons between outputs of a generative model, as illustrated in Appendix E.1). We

are working towards improving the support and usability of these features going forward.

A current limitation of Ax is that it was initially designed for small-sample regimes and, due to

internal overhead does not efficiently handle the thousands of trials per experiment required by

high-throughput methods such as TuRBO (Eriksson et al., 2019). We are working to reduce this

overhead.

8 Broader Impact Statement

Ax is a tool for general black-box optimization and, as such, does not present any specific risks.

9

Figure 6: Final performance of each method aggregated across 8 different problem types.

59

60

61

62

63

va
lid

at
io

n
ac

cu
ra

cy

LCBench/airlines

63.5

64.0

64.5

65.0

65.5

LCBench/albert

40

50

60

70

80

LCBench/dionis

200 400 600 800 1000 1200
cumulative epochs

65.0

67.5

70.0

72.5

75.0

77.5

va
lid

at
io

n
ac

cu
ra

cy

LCBench/jungle_chess_2pcs_raw_endgame_complete

200 400 600 800 1000 1200
cumulative epochs

85

86

87

88

89

90
LCBench/MiniBooNE

200 400 600 800 1000 1200
cumulative epochs

93.0

93.5

94.0

94.5

95.0

95.5

LCBench/nomao

method
Ax ES
Optuna ES - ASHA
Optuna ES - BOHB
Optuna ES - Hyperband
Optuna ES - Median/Random
Optuna ES - Median/TPE

Figure 7: Best validation accuracy achieved by each early-stopping method as a function of cumulative

epochs across six randomly selected LCBench learning curve benchmark datasets.

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-generation

hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining.

Ament, S., Daulton, S., Eriksson, D., Balandat, M., and Bakshy, E. (2023). Unexpected improvements

to expected improvement for bayesian optimization. In Advances in Neural Information Processing
Systems.

Astudillo, R., Lin, Z. J., Bakshy, E., and Frazier, P. (2023). qEUBO: A Decision-Theoretic Acquisition

Function for Preferential Bayesian Optimization. In Ruiz, F., Dy, J., and van de Meent, J.-W.,

editors, Proceedings of The 26th International Conference on Artificial Intelligence and Statistics,
volume 206 of Proceedings of Machine Learning Research, pages 1093–1114. PMLR.

10

Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B., Wilson, A. G., and Bakshy, E. (2020).

Botorch: A framework for efficient monte-carlo bayesian optimization. In Larochelle, H., Ranzato,

M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances in Neural Information Processing
Systems, volume 33, pages 21524–21538. Curran Associates, Inc.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter optimiza-

tion. In Advances in Neural Information Processing Systems.

Bergstra, J., Yamins, D., and Cox, D. (2013). Making a science of model search: Hyperparameter

optimization in hundreds of dimensions for vision architectures. In Proceedings of the 30th
International Conference on Machine Learning.

Cowen-Rivers, A. I., Lyu, W., Tutunov, R., Wang, Z., Grosnit, A., Griffiths, R. R., Maraval, A. M.,

Jianye, H., Wang, J., Peters, J., et al. (2022). Hebo: Pushing the limits of sample-efficient hyper-

parameter optimisation. Journal of Artificial Intelligence Research, 74.

Daulton, S., Balandat, M., and Bakshy, E. (2020). Differentiable expected hypervolume improvement

for parallel multi-objective bayesian optimization. In Advances in Neural Information Processing
Systems.

Daulton, S., Balandat, M., and Bakshy, E. (2021). Parallel bayesian optimization of multiple noisy

objectives with expected hypervolume improvement. InAdvances in Neural Information Processing
Systems.

Daulton, S., Eriksson, D., Balandat, M., and Bakshy, E. (2022). Multi-objective bayesian optimization

over high-dimensional search spaces. In Proceedings of the Thirty-Eighth Conference on Uncertainty
in Artificial Intelligence.

Deshwal, A., Ament, S., Balandat, M., Bakshy, E., Doppa, J. R., and Eriksson, D. (2023). Bayesian

optimization over high-dimensional combinatorial spaces via dictionary-based embeddings. In

International Conference on Artificial Intelligence and Statistics.

Elhara, O. A., Varelas, K., Nguyen, D. H., Tušar, T., Brockhoff, D., Hansen, N., and Auger, A. (2019).

Coco: The large scale black-box optimization benchmarking (bbob-largescale) test suite. arXiv
preprint arXiv:2408.11527.

Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., and Poloczek, M. (2019). Scalable global

optimization via local bayesian optimization. In Advances in Neural Information Processing
Systems.

Eriksson, D. and Poloczek, M. (2021). Scalable constrained bayesian optimization. In Proceedings of
The 24th International Conference on Artificial Intelligence and Statistics.

Falkner, S., Klein, A., and Hutter, F. (2018). BOHB: Robust and efficient hyperparameter optimization

at scale. In International conference on machine learning.

Feng, Q., Daulton, S., Letham, B., Balandat, M., and Bakshy, E. (2025). Experimenting, fast and slow:

Bayesian optimization of long-term outcomes with online experiments. In 31st ACM SIGKDD
Conference on Knowledge Discovery and Data Mining V.1 (KDD ’25).

Feng, Q., Letham, B., Mao, H., and Bakshy, E. (2020). High-dimensional contextual policy search

with unknown context rewards using bayesian optimization. In Advances in Neural Information
Processing Systems.

11

Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., and Vanschoren, J. (2019). An open source

automl benchmark. arXiv preprint arXiv:1907.00909.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley, D. (2017a). Google vizier:

A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley, D. (2017b). Google vizier:

A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining.

Hernández-Lobato, J. M., Gelbart, M. A., Adams, R. P., Hoffman, M. W., and Ghahramani, Z. (2016).

A general framework for constrained bayesian optimization using information-based search.

Journal of Machine Learning Research, 17(160):1–53.

Hvarfner, C., Hellsten, E. O., and Nardi, L. (2024). Vanilla Bayesian optimization performs great in

high dimensions. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and

Berkenkamp, F., editors, Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pages 20793–20817. PMLR.

Kandasamy, K., Vysyaraju, K. R., Neiswanger, W., Paria, B., Collins, C. R., Schneider, J., Poczos,

B., and Xing, E. P. (2020). Tuning hyperparameters without grad students: Scalable and robust

bayesian optimisation with dragonfly. Journal of Machine Learning Research, 21(81):1–27.

Letham, B. and Bakshy, E. (2019). Bayesian optimization for policy search via online-offline

experimentation. Journal of Machine Learning Research, 20(145):1–30.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2018). Hyperband: A novel

bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research,
18(185).

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-Tzur, J., Hardt, M., Recht, B., and Talwalkar, A.

(2020). A system for massively parallel hyperparameter tuning. Proceedings of machine learning
and systems, 2:230–246.

Liang, Q. and Lai, L. (2021). Scalable bayesian optimization accelerates process optimization of

penicillin production. In NeurIPS 2021 AI for Science Workshop.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., and Stoica, I. (2018). Tune: A research

platform for distributed model selection and training. arXiv preprint arXiv:1807.05118.

Lin, Z. J., Astudillo, R., Frazier, P., and Bakshy, E. (2022). Preference exploration for efficient bayesian

optimization with multiple outcomes. In Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics.

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf, T.,

Sass, R., and Hutter, F. (2022). Smac3: A versatile bayesian optimization package for hyperpa-

rameter optimization. Journal of Machine Learning Research, 23(54):1–9.

Martinez-Cantin, R. (2014). Bayesopt: A bayesian optimization library for nonlinear optimization,

experimental design and bandits. Journal of Machine Learning Research, 15(115):3915–3919.

Meta (2024a). Introducing orion, our first true augmented reality glasses. press release.

Meta (2024b). Meta’s ai products just got smarter and more useful. press release.

12

Rapin, J. and Teytaud, O. (2018). Nevergrad - A gradient-free optimization platform. https:
//GitHub.com/FacebookResearch/Nevergrad.

Salinas, D., Seeger, M., Klein, A., Perrone, V., Wistuba, M., and Archambeau, C. (2022). Syne tune:

A library for large scale hyperparameter tuning and reproducible research. In International
Conference on Automated Machine Learning.

Sobol’, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their monte

carlo estimates. Mathematics and computers in simulation, 55(1-3):271–280.

Song, X., Perel, S., Lee, C., Kochanski, G., and Golovin, D. (2022). Open source vizier: Distributed

infrastructure and api for reliable and flexible blackbox optimization. In International Conference
on Automated Machine Learning.

Song, X., Zhang, Q., Lee, C., Fertig, E., Huang, T.-K., Belenki, L., Kochanski, G., Ariafar, S., Va-

sudevan, S., Perel, S., et al. (2024). The vizier gaussian process bandit algorithm. arXiv preprint
arXiv:2408.11527.

Tanabe, R. and Ishibuchi, H. (2020). An easy-to-use real-world multi-objective optimization problem

suite. Applied Soft Computing, 89.

Turner, R., Eriksson, D., McCourt, M., Kiili, J., Laaksonen, E., Xu, Z., and Guyon, I. (2021). Bayesian

optimization is superior to random search for machine learning hyperparameter tuning: Analysis

of the black-box optimization challenge 2020. In Proceedings of the NeurIPS 2020 Competition and
Demonstration Track.

Vanschoren, J., Van Rijn, J. N., Bischl, B., and Torgo, L. (2014). Openml: networked science in

machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60.

Wan, X., Nguyen, V., Ha, H., Ru, B., Lu, C., and Osborne, M. A. (2021). Think global and act

local: Bayesian optimisation over high-dimensional categorical and mixed search spaces. In

International Conference on Machine Learning.

Yadan, O. (2019). Hydra - A framework for elegantly configuring complex applications. Github.

Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., and Hutter, F. (2019). NAS-bench-

101: Towards reproducible neural architecture search. In Proceedings of the 36th International
Conference on Machine Learning.

Zimmer, L., Lindauer, M., and Hutter, F. (2021). Auto-pytorch: Multi-fidelity metalearning for

efficient and robust autodl. IEEE transactions on pattern analysis and machine intelligence,
43(9):3079–3090.

13

https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes]

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] Details of the experimental setup are described

in Appendix A. The code required to reprodcue the results is available at https://github.
com/facebookresearch/ax-paper.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes]

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes]

(e) Did you report the statistical significance of your results? [Yes]

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We used

LCBench and NASBench as part of our evaluation. NASBench is fully tabulated. Since

LCBench cannot possibly provide exhaustive evaluations of the search space, we used a

multi-output random forest surrogate model–where each output corresponds to a different

epoch–to interpolate evaluations between observed configurations. All other evaluations

are based on synthetic / analytic functions.

(g) Did you compare performance over time and describe how you selected the maximum

duration? [Yes] We provide results on anytime performance of the different methods and

libraries.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] Details are provided in Appendix A.4.

(i) Did you run ablation studies to assess the impact of different components of your approach?

[N/A] We performed a comprehensive comparison across different libraries, settings, and

benchmark problems, but since the metric of interest is the performance of the default

settings of the libraries we did not perform any specific ablation studies.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] Code and instructions for how to generate the

results is available at https://github.com/facebookresearch/ax-paper

14

https://2022.automl.cc/ethics-accessibility/
https://github.com/facebookresearch/ax-paper
https://github.com/facebookresearch/ax-paper
https://github.com/facebookresearch/ax-paper

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes]

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes]

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes]

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The only data used is the data used indirectly

through the LCBench and NASBench tabulated benchmarks. Neither of these contain any

PII or offensive content.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

Ax is licensed under the MIT license. The code for generating the benchmark results is avail-

able at https://github.com/facebookresearch/ax-paper, also under the MIT license.

(b) Did you include the new assets either in the supplemental material or as a url (to,

e.g., GitHub or Hugging Face)? [Yes] Ax is available on GitHub at https://github.
com/facebook/Ax; the code for reproducing the benchmarking results is available at

https://github.com/facebookresearch/ax-paper.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

15

https://github.com/facebookresearch/ax-paper
https://github.com/facebook/Ax
https://github.com/facebook/Ax
https://github.com/facebookresearch/ax-paper

A Details on the Experiments

In this section, we provide some additional details on the benchmarks.

A.1 Baselines

Baseline Licenses. Vizier uses an Apache 2.0 license
1
, SMAC3 uses a BSD-3 license

2
, HEBO uses

an MIT license
3
, Optuna uses an MIT license

4
.

Baseline Algorithms. Vizier at its core uses a Bayesian optimization algorithm based on GP models

similar to that of Ax (Song et al., 2024). The main differences are that (i) it uses an Upper Confidence

Bound (UCB) acquisition function in conjunction with a trust-region algorithm for single-objective

optimization and (ii) a version of the Firefly genetic algorithm for acquisition function optimization.

HEBO (Cowen-Rivers et al., 2022) also uses a GP model and performs outcome transformations

and input warping to better handle heteroskedasticity and non-stationarity. It uses a compound

acquisition function that employs a generic algorithm to solve a multi-objective optimization

problem over the values of multiple classic (Expected Improvement, Upper Confidence Bound, and

Probability of Improvement) acquisition functions to generate new candidates.

SMAC3 implements multiple algorithms; in this comparison we consider SMAC-BB and SMAC-

HPO. Both algorithms default to a quasi-random initial design. SMAC-BB implements a classic

GP-based Bayesian optimization algorithm, using a Gaussian Process surrogate with Matérn 5/2

kernel and Expected Improvement as the acquisition function. SMAC-HPO uses a Random Forest

surrogate with logEI acquisition function.

Optuna by default uses an approach that, rather than fitting a regressionmodel to the (potentially

transformed) outcomes, models a density ratio via Tree-Structured Parzen (TPE) estimators (Bergstra

et al., 2011) is used to express an approximation of the the Expected Improvement acquisition

function directly (up to a constant factor). The main benefit of this approach is that it can be very

fast. Additionally, Optuna implements early-stopping functionality through a modular system of

pruners and samplers that can be combined to realize various methods. The pruners we evaluate

include:

• MedianPruner: Implements the median-rule stopping rule (Golovin et al., 2017b)

• SuccessiveHalvingPruner: Implements the Successive Halving mechanism

• HyperbandPruner: Implements the Hyperband mechanism

These pruners are paired with the RandomSampler and TPESampler samplers. The specific pruner-

sampler combinations correspond to different early-stopping methods:

• SuccessiveHalvingPruner + RandomSampler → ASHA (Li et al., 2020)

• HyperbandPruner + RandomSampler → Hyperband (Li et al., 2018)

• HyperbandPruner + TPESampler → BOHB (Falkner et al., 2018)

• MedianPruner + RandomSampler →Median-rule with random search

• MedianPruner + TPESampler →Median-rule with TPE-based Bayesian optimization

A.2 Benchmark Problem Details

A summary of the benchmark problems is provided in Table 3. All test problems considered in this

paper are publicly available. Similar to the Google Vizier paper (Song et al., 2024), we consider

randomly shifted versions of the 24 single-objective BBOB problems (Elhara et al., 2019). In the

1https://github.com/google/vizier/blob/main/LICENSE
2https://github.com/automl/SMAC3/blob/main/LICENSE.txt
3https://github.com/huawei-noah/HEBO/blob/master/HEBO/LICENSE
4https://github.com/optuna/optuna/blob/master/LICENSE

16

https://github.com/google/vizier/blob/main/LICENSE
https://github.com/automl/SMAC3/blob/main/LICENSE.txt
https://github.com/huawei-noah/HEBO/blob/master/HEBO/LICENSE
https://github.com/optuna/optuna/blob/master/LICENSE

multi-objective setting, we consider the car side impact and vehicle safety problems from Tanabe

and Ishibuchi (2020), the penicillin problem (Liang and Lai, 2021), and the popular synthetic ZDT1-3

and DTLZ2 problems.

For the constrained setting, we use the tension compression string, pressure vessel, and welded

beam problems that were considered in Eriksson and Poloczek (2021). The LABS (50 binary param-

eters) and mixed Ackley (50 binary parameters, 3 continuous parameters) problems from Deshwal

et al. (2023) tests how well different methods can deal with binary and mixed search spaces.

NASBench (Ying et al., 2019) provides fully tabulated results of different convolutional NN

architectures trained and evaluated on the CIFAR-10 data set. NASBench uses an Apache 2.0 license.

The LCBench benchmark (Zimmer et al., 2021) provides learning curve observations for various

performance metrics collected during the training of fully-connected neural networks (NN). These

networks were trained for 50 epochs across 2,000 randomly sampled hyperparameter configura-

tions and evaluated on 35 datasets from the AutoML Benchmark (Gijsbers et al., 2019) hosted on

OpenML (Vanschoren et al., 2014). The LCBench benchmark data is available under the Apache 2.0

license, while the OpenML datasets are distributed under the CC BY 4.0 license. The hyperparameter

search space consists of 7 parameters: 3 integer-valued and 4 float-valued. Since LCBench cannot

possibly provide exhaustive evaluations of the search space, we use a multi-output random forest

surrogate model–where each output corresponds to a different epoch–to interpolate evaluations

between observed configurations.

A.3 Additional Benchmark Results

Figure 8 averages the time to run all the trials in an optimization within each problem group. We

observe an expected bifurcation in run times according to the optimization approach: Optuna

and SMAC-HPO, which do not use Gaussian process models, run substantially faster than Ax,

Vizier, and SMAC-BB, which do use GPs. Optuna, which by default uses a likelihood-free Bayesian

Optimization approach based on Tree Parzen Estimators (TPEs), has a particularly fast runtime.

However, as the results in Section 6.2 demonstrate, this comes at a substantial loss in optimization

performance across all problem types.

Within the GP-based libraries, we see that Ax’s run time generally falls between that of HEBO

(faster) and Vizier and SMAC-BB (slower), except for the multi-objective problems, where Ax is

the slowest method. However, this time investment pays off in terms of optimization performance,

where Ax far outperforms all other baselines. Note also that this slowless is largely because the

hypervolume computations were – in order to enable a fair comparison – not being run on a GPU,

which would lead to substantially speed ups, see Daulton et al. (2020).

Figure 9 illustrates the anytime performance of the different libraries across the different problem

settings. We observe that in the multi-objective, constrained, and high-dimensional settings, Ax

achieves substantially better performance early on. The situation is a bit more nuanced in the

mixed/discrete setting, where Ax goes head-to-head with most other libraries until about 20 trials,

after which it starts outperforming the other ones. We conjecture that one of the main reasons for

this is the superior acquisition function optimization algorithm in Ax for discrete and mixed spaces

that do not rely on continuous relaxation or purely discrete optimizers.

A.4 Resources used for benchmarking

To enable a fair comparison, all evaluations were run on the same type of virtual machine with

32 x86 cores (physical CPU: Intel Xeon) and 48GB of memory. In total, the benchmarks in this

paper required around 550 machine-hours of compute – as the benchmark problems were either

synthetic or based on tabular data or surrogates, the additional cost from evaluating the underlying

black-box function is negligible.

17

Problem setting Test Problems Dim. Objectives Constraints Evaluation budget

Single-objective BBOB1-24 20 1 0 50 trials

Other Branin 2 1 0 50 trials

vanilla SixHumpCamel 2 1 0 50 trials

single-objective Hartmann 6 1 0 50 trials

Constrained

Tension Compression String 3 1 4 50 trials

Pressure Vessel 4 1 4 50 trials

Welded Beam 4 1 5 50 trials

Multi-objective

Car Side Impact 7 4 0 50 trials

ZDT1-3 5 2 0 50 trials

DTLZ2 6 2 0 50 trials

Penicillin 7 3 0 50 trials

Vehicle Safety 5 3 0 50 trials

Mixed/Discrete

LABS 50 1 0 100 trials

Mixed Ackley 53 1 0 100 trials

NASBench201/ImageNet16-120 6 1 0 50 trials

NASBench201/CIFAR-100 6 1 0 50 trials

High-dimensional

Embedded Hartmann 30 1 0 50 trials

LABS 50 1 0 100 trials

Mixed Ackley 53 1 0 100 trials

Early-stopping/Async

LCBench/airlines 7 1 0 1,400 epochs

LCBench/albert 7 1 0 1,400 epochs

LCBench/dionis 7 1 0 1,400 epochs

LCBench/jungle_chess_... 7 1 0 1,400 epochs

LCBench/MiniBooNE 7 1 0 1,400 epochs

LCBench/nomao 7 1 0 1,400 epochs

Async

Branin 2 1 0 50 trials

NASBench201/ImageNet16-120 6 1 0 50 trials

NASBench201/CIFAR-100 6 1 0 50 trials

Noisy

Branin 2 1 0 50 trials

BBOB01 20 1 0 50 trials

DTLZ2 6 2 0 50 trials

Hartmann 6 1 0 50 trials

Table 3: Summary of the benchmark problems used in the paper and how they are grouped for analysis.

Figure 8: Runtime of each method aggregated across 8 different problem types (log scale).

18

Figure 9: Score on a per-trial basis. Trajectories for problems that typically run more trials have been

truncated so that all problems in the same grouping have the same trajectory length.

19

B API Details

Users interact with Ax via its Client, which manages experiment state either through an ask-tell

paradigm or with orchestrated trial deployment and data retrieval. Figures 10 and 11 provide

additional details on the ask-tell and orchestrated operations of Ax.

Figure 10: Details on the Ax API (‘Client‘) in "ask-tell" mode

Figure 11: Details on the Ax API (‘Client‘) in “orchestrated” mode

Advanced users and developers are able to control Ax’s candidate generation process via

modifications to its GenerationStrategy or by creating custom GenerationNodes, which can

implement any optimziation strategy. Figure 12 illustrates a typical GenerationStrategy comprised

of three GenerationNodes representative of the default optimization strategy used in Ax including

for generating the benchmark results in Section 6. Figure 13 shows a more complex strategy that

is useful in contexts where certain advanced BO methods such as transfer learning can become

applicable partway through the experimentation process.

20

Figure 12: A simple GenerationStrategy with two initialization nodes followed by a BO node

Figure 13: A GenerationStrategy which utilizes BO with Transfer Learning when available and

appropriate

C Details on Candidate Generation in Ax

C.1 Configuration of Modular BoTorch Generator

Modular BoTorch Generator (MBG) offers a convenient interface for leveraging BoTorch models

and acquisition functions for candidate generation in Ax. MBG consists of two core components:

Surrogate and Acquisition. Before going into details on these components, it is worth noting

that the capabilities and default behavior of MBG are regularly updated to support new use cases

and incorporate new methods and developments to improve the out-of-the-box performance of Ax.

Surrogate. The Surrogate handles all modeling-related functionality, including construction and fit-

ting of BoTorchmodels, and advanced features like selecting betweenmultiple fitted BoTorchmodels

based on a measure of model quality (under active development), such as the marginal log-likelihood

or rank correlation computed on cross-validation outcomes. The Surrogate will select an appropri-

ate BoTorch model class to use, based on the features of the search space (after applying transforms

in Adapter) such as MultiTaskGP in the presence of task features, SingleTaskMultiFidelityGP in
the presence of fidelity features, and SingleTaskGP for most other use-cases.

The Surrogate can be customized extensively using SurrogateSpec and ModelConfig. In

addition to specifying an off the shelf BoTorch model class to use, various options including the

covariance and likelihood modules, input and outcome transforms, and the marginal log-likelood

used for model fitting can be customized. SurrogateSpec can include multiple ModelConfigs, in
which case multiple models are fit and the best one for each metric (selected using a specified

evaluation criterion on the cross-validation outcomes) will be used within the acquisition function.

Code Example 3 shows an example with two ModelConfigs.

21

Transforms. Ax comes with a comprehensive transform layer that is used to transform the trials

and optimization config from the user-specified search space into a "modeling space" that is more

appropriate for the underlying optimization algorithms. This includes input transforms such as

OrderedChoiceToIntegerRangewhich converts ordered choice parameters into a contiguous range

0, 1, ..., 𝑛choices − 1 of integers, OneHot which one-hot encodes unordered choice parameters, Log
which transforms parameters in log-scale, and Normalize/UnitX which normalizes the domain to

the unit hypercube. Ax also leverages several outcome transforms such as StandardizeY, which
standardizes all metrics to have mean zero and variance one, and BilogY, which applies the bilog

transform from Eriksson and Poloczek (2021) to outcome constraint metrics in order to magnify

the region around the constraint boundary and improve performance on constrained problems.

Acquisition. The Acquisition class is responsible for constructing the BoTorch acquisition class

and the necessary input arguments, as well as optimizing it to generate candidates. If the acquisition

function class is not specified, it will pick between qLogNEI and qLogNEHVI (Ament et al., 2023)

based on the number of objectives in the optimization config. Where possible, BoTorch leverages

gradient-based methods to optimize the acquisition functions. To support continuous, discrete, and

mixed search spaces, Acquisition dispatches to an appropriate optimizer from BoTorch depending

on the features in the (post-transform) search space. This includes, using L-BFGS-B based optimizer

for continuous parameters, local search or enumeration for discrete parameters, and an optimizer

that alternates between discrete and continuous steps for mixed search spaces (Wan et al., 2021).

GeneratorSpec(
model_enum=Generators.BOTORCH_MODULAR,
model_kwargs={

Select between two models: An additive mixture of relatively strong SAAS priors
with learnable input warping and a relatively vanilla GP with a Matérn kernel.
"surrogate_spec": SurrogateSpec(

model_configs=[
ModelConfig(

botorch_model_class=AdditiveMapSaasSingleTaskGP, input_transform_classes=[Warp],
),
ModelConfig(

botorch_model_class=SingleTaskGP, covar_module_class=MaternKernel, covar_module_options={"nu": 2.5}
),

]
),
Negative integrated posterior variance as acquisition function for active learning.
"botorch_acqf_class": qNegIntegratedPosteriorVariance,

},
)

Code Example 3: Implementation of parallel active learning (negative integrated posterior variance)

with a sparsity-inducing GP prior and input warping using a custom BoTorch genera-

tor in Ax. Specifying multiple ModelConfigs results in a “model selection” procedure

picking the “best” model from the list, where “best” is defined as the model achieving

the highest rank correlation based on leave-one-out cross validation (if desired, this

can be separately configured further).

C.2 Handling Outcome Constraints

In many applications, user wants to impose constraints on one of more outcomes. For instance,

optimizing an ML model for capacity efficiency may mean performing tuning architectural pa-

rameters to increase throughput while not or only minimally regressing model quality. Ax allows

incorporating such constraints in both single- and multi-objective settings. By default, Ax uses

the qLog(Noisy)ExpectedImprovement or qLog(Noisy)ExpectedHypervolumeImprovement acqui-
sition functions.

22

D Details on Diagnostics and Visualizations
Beyond algorithms and orchestration capabilities, Ax provides a number of diagnostic tools and

visualizations that help the user understand various aspects of the underlying problem and the

optimization. Especially in a human-in-the-loop context, this can be highly valuable for refining

the problem statement and improving optimization outcomes.

The example visualizations in Figures 14 - 18 in this section are based on a single run on the

LCBench (Zimmer et al., 2021) benchmark surrogate for the Fashion-MNIST data set (available

under the Apache 2.0 license). In this problem, the goal is to optimize the accuracy of a fully-

connected neural network over a 7-dimensional search space consisting of architecture parameters

(the number of layers), optimizer parameters (learning rate, momentum, weight decay, batch size).

Figure 14: Leave-one-out cross-validation of the surrogate GP model used in Ax’s default generation

strategies. The plot shows posterior predictions for the ML model accuracy in terms of

mean and 95% confidence intervals for each observation. In this example, we can see that

the GP surrogate has good predictive performance and that the posterior variance is lower

towards higher values, where the Bayesian Optimization algorithm has explored more

configurations. The plot is interactive and users can get details on individual predictions by

hovering over them with their cursor.

Figure 15: 1D Slice plot of model predictions of the ML model’s accuracy as a function of the learning

rate (other parameters fixed at reference). The plot shows predicted mean and 95% con-

fidence interval as a function of the learning rate, as well as the observed values (black

crosses).

23

Figure 16: Contour plot visualization of the response surface of the negative validation loss as a

function of the learning rate and weight decay parameters (brighter colors correspond

to higher values). The behavior of how the accuracy depends on the learning rate from

Figure 15 is also represented in this visualization.

Figure 17: Global parameter sensitivity analysis plot based on Sobol indices (Sobol’, 2001). Intuitively,

the larger the sensitivity value, the more a particular parameter affects the outcome –

“is_positive” denotes whether the effect is positive (True) or negative (False) as the parameter

value increases. We have found that in practice our users highly value this and similar

diagnostics.

E Details on Applications at Meta

E.1 Optimizing Generative AI Models Using Human Preferential Feedback with Ax

One application of Ax at Meta is to optimize an auto-dubbing generative AI model, which translates

and dubs audio into a different language while synchronizing the speaker’s lip movements and

facial expressions to match the new language (Meta, 2024b). While humans are quite good at

assessing which version of a generated video appears most natural based on pair-wise comparisons,

defining a “naturalness score” is extremely hard. By representing pairwise comparison data and

leveraging state-of-the-art preference learning algorithms (Lin et al., 2022; Astudillo et al., 2023)

through Ax, we have been able to substantially improve the quality of automatic dubbing and

lip syncing AI translation tools as illustrated by Figure 19. In this setup, Ax generates a batch of

configurations for which to train the AI model, the outputs of which on a set of evaluation videos

are then compared pair-wise by humans, who indicate which version appears more natural to them.

24

Figure 18: Parallel coordinate plot for the accuracy (indicated by color, darker colors corresponding to

higher accuracy. The visualization presents more information about other parameters than

the slice or contour plots, but may not be as easily interpretable.

Estimated English Quality

E
st

im
at

ed
 S

pa
ni

sh
 Q

ua
lit

y

Top 5 arms with highest overall utility

0

10

20

30

40

50

60

70

80

90

100
Tr

ia
l I

nd
ex

Figure 19: Estimated Pareto front of viewer preference on dubbed English and Spanish videos, respec-

tively. Scales are omitted intentionally as the magnitude of the inferred video quality scores

is on a relative scale. As we iterate, Ax improves the neural-dubbing model’s performance

by pushing the Pareto front outward without compromising the qualities of generated

English and Spanish videos.

25

	Introduction
	Contributions

	Related work
	Usage of Ax
	Open-Source
	Deployment at Meta

	API and Usage Patterns
	Configuring the experiment
	Conducting the experiment
	Analyzing the experiment

	Candidate Generation
	The GenerationStrategy abstraction
	Default model dispatch and typical settings
	Early stopping

	Benchmarks
	Experimental Setup
	Results

	Future work
	Broader Impact Statement
	Details on the Experiments
	Baselines
	Benchmark Problem Details
	Additional Benchmark Results
	Resources used for benchmarking

	API Details
	Details on Candidate Generation in Ax
	Configuration of Modular BoTorch Generator
	Handling Outcome Constraints

	Details on Diagnostics and Visualizations
	Details on Applications at Meta
	Optimizing Generative AI Models Using Human Preferential Feedback with Ax

