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ABSTRACT

In order to flexibly behave in dynamic environments, agents must learn the tempo-
ral structure of causal events. Standard value-based approaches in reinforcement
learning (RL) learn estimates of temporally discounted average future reward, lead-
ing to ambiguity about future reward timing and magnitude. Recently, midbrain
dopamine neurons (DANs) have been shown to resolve this ambiguity by represent-
ing distributional predictive maps of future reward over both time and magnitude
in the encoding of reward prediction errors. However, the computational function
of such time-magnitude distributions (TMD) in the brain is unknown. Here we
present online learning rules for acquiring information-maximising multidimen-
sional distributional estimates, extending classic work in distributional RL from 1D
return distributions to efficient representations of distributions of arbitrary dimen-
sionality. In previous distributional RL approaches, the distributional information
is largely used for improving representation learning. In our framework, TMDs
are the direct substrates for simple policy decoders, enabling rapid risk-sensitive
action selection in environments with rich probabilistic temporal reward structure,
even under distributional shifts. Finally, we present cross-species neural and be-
havior evidence, from rodents and humans, consistent with the implementation of
this theory in biological circuits. Our results advance a principled computational
link between distributional RL and neural coding theory, and establish a role for
multi-dimensional distributional predictive maps in rapidly generating sophisticated
risk-sensitive policies in environments with complex, multi-modal, distributions of
future reward.

1 INTRODUCTION

One of the most fruitful intersections between natural and artificial intelligence research has been the
idea that midbrain dopamine neurons (DANs) in the brain encode a reward prediction error critical
for reinforcement learning (RL) (Schultz et al., 1997). Recently, these neurons have been found
to represent a diverse set of state features (Lee et al., 2024) including the distributional coding of
the timing and magnitude of reward (Sousa et al., 2025). Beyond previous influential models of
distributional magnitude coding (Dabney et al., 2020), these recent empirical results (Sousa et al.,
2025) extend the 1D reward magnitude code to a 2D time-magnitude “map” of future reward in a
distributional format (TMD). The novel identification of these TMDs within dopaminergic circuits
raises the following critical questions. Q1. how are these representations acquired? Q2. how are they
used during action selection?

We aim to address this question by developing a comprehensive theory of such distributional
predictive maps across biological and artificial agents based on the core idea that TMDs
greatly simplify the problem of risk-sensitive sequential action selection. In particular, in the
naturalistic scenario of choosing between actions leading to probabilistic rewards generated by
the environments with intricate temporal structure and distributional shifts.

Significant advances in state-of-the-art RL have been achieved through distributional RL algorithms
which learn a one-dimensional probability distribution of value, rather than a single scalar sufficient
statistic of value (e.g. the mean) in an online manner via environmental feedback (Dabney et al.,
2018b; Rowland et al., 2019). In Section 2.1 we present a novel generalization of the one-dimensional
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distributional learning rules to arbitrary dimensionalities thus providing a mechanism by which
multi-dimensional TMDs may be learned [Q1]. This is accomplished by combining principles of
distributional RL with efficient coding drawn from theoretical neuroscience (Ganguli & Simoncelli,
2014). In neuroscience, the theory of efficient coding has modeled the tuning functions of popula-
tions of neurons to maximize the amount of information they encode about diverse stimuli in the
environment Barlow et al. (1961); Olshausen & Field (1996); Yerxa et al. (2020). However it lacks
a key element in brain computation: how neural population responses are learned. We address this
by proposing a theory of efficient learning that generalizes distributional RL rules through optimal
transport (Santambrogio, 2015).

Prior work in distributional RL has primarily focused on learning return distributions, leading to
improved representation learning in deep distributional agents, but used scalar value estimates to
generate policies (Bellemare et al., 2017; Dabney et al., 2018b). Less attention has been given to how
these representations can support flexible risk-sensitive policies across time (Gagne & Dayan, 2021).
Anticipating the timing of future rewards is especially important for sequential decisions such as
foraging, where animals must balance the energetic costs of search with uncertain resource availability,
and similarly, agents in RL must plan across extended horizons, trade off immediate versus delayed
gains, and adapt their strategies to dynamic environments. In section 4 we show how having access to
TMD representations allows for efficient solutions to sequential decision-making tasks with complex
temporal dynamics. In section 5, we show how having access to TMD representations allows for
generating complex risk-sensitive behavior for arbitrary joint reward distributions in magnitude and
time using simple linear readouts [Q2].

1.1 RELATED WORK

Distributed neural codes have been proposed to represent reward timing (Tiganj et al., 2019; Masset
et al., 2023; Brunec & Momennejad, 2022; Masset et al., 2025), as well as the joint representation of
reward magnitude and timing (Tano et al., 2020), future state occupancy (Brunec & Momennejad,
2022), and other task relevant features (Lee et al., 2024). However, these coding schemes are not
efficient in the information-theoretic sense consistent with the long-standing hypothesis established
in sensory neuroscience (Barlow et al., 1961; Ganguli & Simoncelli, 2014), they do not maximize
information about reward under constraints on the population size and adapt to environment stimuli
distributions. This is essential as the number of represented feature distributions becomes large.
Furthermore, new data shows that when the reward TMD changes, the population of DANs adapt
to encode the new distribution while preserving the relative tuning across the population (Sousa
et al., 2025; Rothenhoefer et al., 2021). Relatedly, this is also observed for hippocampus and medial
entorhinal cortex population codes in spatial navigation paradigms (Krupic et al., 2018; Boccara
et al., 2019). More recently, efficient distributional RL models for the encoding of reward magnitude
in midbrain DANs have been introduced (Schütt et al., 2024; Dabney et al., 2020), supported by
mechanistic models and experimental evidence suggesting that direct and indirect striatal medium
spiny neurons may implement such strategies (Lowet et al., 2025). However, these models are
restricted to one-dimensional reward features or assume the dimensions are statistically independent
(Sousa et al., 2025).

In machine learning, Zhang et al. (Zhang et al., 2021) proposed maximum mean discrepancy (MMD)
based multidimensional distributional algorithm similar to DNL, but its objective is degenerate since
in high dimensions there exist many distinct unit configurations that represent the same distribution.
The MMD objective is invariant with respect to permutations as well as rotational or translational
symmetries. We address this by adding a Wasserstein regularizer that penalizing distortions in the
population representation through learning and promotes the conservation of relative tuning across the
population, which has three important consequences (1) extends efficient coding to higher dimensions
(Schütt et al., 2024), (2) preserves the population coding when the reward distribution changes as
observed in many brain regions across multiple modalities and (3) enables flexible decoding of
subjective value (i.e. risk-sensitive utility to the agent) when changing TMDs across contexts, thereby
removing the need for retraining.
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Figure 1: (a) Illustration of the DNL rules for 1-dimensional reward magnitudes. Units are color coded
by the tuning towards r. (b) Samples were generated from the v-shaped reward TMDs represented in
blue. The converged units for the factorized one-dimensional distributional learning and the DNL
are represented as black dots. (c) Units learn to go from the initial to target distribution for MMD
(top) and DNL (bottom). Learning trajectories are represented in grey. Bottom right: Value error
decoding (considering 25% of units closest to origin) as a function of training steps for DNL and
MMD (considering Gaussian kernels with different bandwidths).

2 OPTIMAL TRANSPORT AND GRADIENT FLOWS UNIFY DISTRIBUTIONAL
REINFORCEMENT LEARNING AND EFFICIENT CODING THEORY

A long-standing-problem in efficient coding is the need for algorithms that learn how to optimize
neural population codes through online interactions with the environment, crucial for adaptable
behavior Ganguli & Simoncelli (2014); Yerxa et al. (2020); Denève & Machens (2016). In con-
trast, distributional RL, which implements an efficient code through a "population" of quantiles
or expectiles, is defined by online learning rules (Dabney et al., 2018b). However, these learning
rules only apply for one-dimensional distributional representations, typically of value. Thus, as a
starting point in our theoretic framework linking neural learning and machine distributional RL, we
focus on developing an integrative perspective on learning by leveraging optimal transport theory
(Santambrogio, 2015) to characterize distributional RL and efficient coding theory as special cases of
a more general class of learning rules (Chen et al., 2018b).

Distributional algorithms (Dabney et al., 2018b) can learn to approximate a target reward distribution
p(r) non-parametrically using a finite set of units {θi}Ni=1 where for all i, θi ∈ R. Given samples
r ∼ p(r) from the target distribution, the positions θi ∈ R of the units are iteratively updated
θi ← θi +∆i. The set of units implicitly define the approximate distribution1

q(r) ≈ 1

N

N∑
i=1

δθi(r) . (1)

In neuroscience, θi corresponds to the preferred stimulus tuning of a neuron in a population of cells
collectively optimizing a mutual information objective while in quantile regression RL (QR-RL)
Dabney et al. (2018b), the units θi converge to the quantiles of the target p(r) Dabney et al. (2018b).

Importantly, the online update rules for QR-RL imply that the units {θi}Ni=1 are updated in order to
minimize the Wasserstein distance to the target density p(r) Dabney et al. (2018b). Let T : R→ R
denote the set of transport maps from an initial R̂ ∼ q(r) to a target R ∼ p(r). The 2-Wasserstein
distance defines the minimal transport cost required to transform q(r) into p(r),

W2(R̂, R) =

(
inf
T∈T

∫
||r′ − T (r′)||2dp(r′)

)) 1
2

. (2)

1Sometimes known as the “equally-weighted particle” approximation in distributional RL (Wiltzer et al.,
2024; Zhang et al., 2021) or the Lagrangian discretization in fluid dynamics.
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In the one-dimensional case, the optimal transport (OT) map T ∗ has a closed-form solution given by
mapping the quantiles of q(r) to p(r). Interestingly, this corresponds to the one-dimensional efficient
code proposed by Ganguli & Simoncelli (2014), where a a uniformly distributed set of units q(r) is
mapped to the target distribution of stimuli p(r) through the inverse cumulative distribution function
(CDF) T ∗ = P−1(r) in order to maximize the mutual information between the reward distribution
p(r) and the neural population response q(r).

In one dimension, placing units via the inverse CDF solves efficient coding by dividing the stimulus
space into equal probability partitions. In higher dimensions, however, this strategy becomes
degenerate, since equal mass partitions are no longer unique, leading to multiple possible ways of
partitioning the probability distribution. In the next section, we first resolve this degeneracy issue
by additionally optimizing the efficiency of the learning trajectory (Section 2.1) and then show that
the resulting multi-dimensional distributional neural learning rules collapse to expectile regression
distributional RL in a particular limit (Section 2.3). We will focus on two behaviorally relevant
features of reward: time and magnitude for clarity of exposition, but our theory can be generalized to
other stimuli, such as spatial location or reward in space.

2.1 LEARNING MULTIDIMENSIONAL EFFICIENT POPULATION CODES

We solve the degeneracy problem by optimizing KL divergence between the implicit unit distribution
q and the target reward TMD p, while also promoting an efficient learning trajectory, quantified by
the Wasserstein distance between unit distributions across iterations qt → qt+1,

qt+1 = arg min
q′∈Q
{DKL(q

′||p(r))) + 1

h
W 2

2 (q
′, qt)}, (3)

where qt is approximated by a set of units {θi}Ni=1 such that q(r) =
∑N

i=1
1
N δθi(r), t is the time-

step, h is the step-size, p(r) is represented by discretized samples from the target distribution and
Q = {q′ : q′(r) =

∑N
i=1

1
N δθi

(r)}. Each unit θ = (τi, ri) ∈ R2 is tuned to a reward time τi and
magnitude ri. Importantly, many solutions minimize the KL-divergence to the target distribution, but
only one solution does so with the minimal transport cost, effectively disambiguating the degeneracy
Jordan et al. (1998); Santambrogio (2015).

Equation 3 can be rewritten as the sum of two terms (Chen et al., 2018a): one that attracts the units
towards the stimulus samples (F1) and a second one that regularizes the unit interactions, such that
they do not occupy the same position (F2, Fig. 1a):

qt+1 = arg min
q′∈Q
{−Eq[log l(θ|r)]︸ ︷︷ ︸

F1

+Eq′ [log q
′] +

1

h
W 2

2 (q
′, qt)︸ ︷︷ ︸

F2

} , (4)

where l(θ|r) represents the likelihood function over all θi conditioned on observed reward samples r.
Importantly, this discrete gradient flow is guaranteed to converge in the large sample limit Jordan et al.
(1998). To derive a closed-form solution, we follow Chen et al. (2018b); Cuturi (2013) and introduce
an entropy penalty, weighted by λ on the joint distribution over particle pairs across iterations.
Under this entropic regularization, the Distributional Neural Learning (DNL) update rules become

θt+1
i ← θt

i − α

(
∂F1

∂θi
+ ∂F2

∂θi

)
, where

∂F1

∂θi
= −∇θi

log l(θi|r) and
∂F2

∂θi
=

∑
j

c

(
dij
λ
− 1

)
e

−dij
λ (θi − θt

j) , (5)

dij = ∥θi − θt
j∥2, c is the weight of regularization of interactions between units and λ defines how

close units should be and absorves the step-size h. If dij

λ > 1, then θi is pulled towards θj , with force

proportional to (
dij

λ − 1)e
−dij

λ . If dij

λ < 1, then θi is pushed away. By increasing the λ values, the
learning rules become increasingly more global i.e. all units interact with all other units as λ→∞.
A full derivation of Eqns. 4,5 is in the SM. The likelihood function l(θ|s) depends on the choice of
generative model but for the numerical simulations below we smoothed the observed samples using a
radial basis function kernel and evaluated the resulting density at each point θi.
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2.2 COMPARING DISTRIBUTIONAL NEURAL LEARNING WITH RELATED WORK

For non-factorizable joint distributions over two or more dependent random variables, DNL accurately
represents the full joint distribution, whereas the factorized one-dimensional quantile learning fails
(Fig. 1d). Furthermore, in the SM we include simulations that investigate the inductive biases
introduced by deep DNL and compare with the previously proposed 1-dimensional Deep QR-RL.
We stacked DNL across network layers and trained the model end-to-end with backpropagation.
Crucially, OT regularization in DNL biases learning toward smooth, connected solutions, improving
generalization over deep QR-RL.

Aditionally, OT regularization enforces the preservation of relative tuning of population units along
the learning trajectory (Fig. 1c). This property enables risk-sensitive value decoding to transfer across
distribution shifts without retraining, unlike MMD-based approaches Zhang et al. (2021). In Fig. 1c,
we simulate a population of units transported to a target distribution. Compared to MMD, DNL
learning trajectories are more direct and preserve population geometry. Therefore, considering a
risk-sensitive linear value decoder, DNL transfers more efficiently to the target distribution than
MMD (Fig. 1c, top).

2.3 APPROXIMATELY RECOVERING THE 1-DIMENSIONAL DISTRIBUTIONAL RL

We demonstrate that the DNL multidimensional learning algorithm is an extension of the one-
dimensional expectile learning rule Dabney et al. (2018b). In one dimension, we consider the λ→∞
limit, where all units contribute to the F2 update of all other units. In this limit, the units can be
ordered from lower to higher values, which allows averaged interactions with a given unit θi to be
approximated by: F2 term of the mean of units to the left (θ̄LEFT) scaled by the number of units on the
left τi; F2 term with the mean of the units to right (θ̄RIGHT) scaled by the number of units of the right
1− τi. Given a reward sample r and a Gaussian likelihood l(θi|r) ∼ N (r, β2), our learning rules
become: ∂F1

∂θi
= − 1

β2 (r− θi) and ∂F2

∂θi
≈ τc(θ̄LEFT − θi) + (1− τ)c(θ̄RIGHT − θi). We notice

that θ̄LEFT ≈ E[r|r ≤ θi] and θ̄RIGHT ≈ E[r|r > θi], hence considering a sample r, θ̄LEFT ≈ r when
r ≤ θi and θ̄RIGHT ≈ r when r > θi and additionally setting β = c = 1 we recover the expectile
learning rules (Fig. 1c): θτ ← θτ + τδr>θi(r − θi) + (1− τ)δr<θi(r − θi). A full derivation of the
previous equations is in the SM.

3 LEARNING MULTIDIMENSIONAL DISTRIBUTIONS IN THE BRAIN

We apply our DNL theory to the adaptation of midbrain dopamine in a classical conditioning
experiment with mice where different cues predict reward at distinct delays and reward distribution
(Sousa et al., 2025). In this study, DANs were shown to encode the probability of rewards over time
and magnitudes (Sousa et al., 2025) (Fig. 2a). Additionally, the probability distribution of reward
times was manipulated by removing either the cue that predicts the shortest or longest delay (Fig. 2c)
and the probability distributions over magnitudes was also manipulated by providing separate cues
predicting variable or certain magnitudes. The tuning functions of midbrain DANs was observed to
adapt to the new distributions in time and magnitude (Fig. 2c).

We modeled each DAN tuning function based on the preferred reward time and magnitude θi =
(τi, ri). Importantly, as DANs exhibit tuning functions in time characterized by exponentially
decaying temporal discount factors (γ), the tuning towards reward times τi was mapped into γi

considering: γi = e
− 1

τi . We simulated the tuning function adaption of DNL learning rules using
simulated observations from the distributions of reward times and magnitudes given in the experiment
Sousa et al. (2025). In agreement with experimental observations, DNL predicts that temporal
discount factors became steeper when shifting to shorter reward times compared to longer ones (Fig.
2d). Conversely, sensitivity to reward magnitudes was more variable for cues predicting uncertain
reward than for those predicting fixed rewards (Fig. 2d). In the SM Fig. 9 illustrates adaptations in
hippocampal place cells and entorhinal cells to spatial structure and reward location changes.

4 REWARD TIME AND MAGNITUDE DISTRIBUTION FOR GENERALIZABLE RL

Learning flexible policies is essential for animals navigating environments with probabilistic rewards.

5
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Figure 2: Distributional neural learning models firing of DANs. (a) The task consists of four cues
predicting a certain reward magnitude after a variable delay and an additional cue predicting a variable
reward magnitude after a 3s delay. (b) The decoded joint density of reward over magnitude and time,
using the population responses aligned to the different cues. Adapted from (Sousa et al., 2025) (c)
Left: Adaptation of midbrain DANs’ temporal discount factors when shifting to shorter or longer
reward times by removing the shortest (magenta) or longest (green) reward delay. Right: Adaptation
of DANs tuning for cues predicting variable (blue) and certain (black) reward magnitudes. Bottom:
predictions from DNL theory.

For example, an animal may observe clouds and infer a probability of rain at a later time or may hear
a sound and infer the location and timing of moving prey. To make informed decisions over time,
animals must integrate learned associations between stimuli and probabilistic reward magnitudes and
delays. Yet, prior applications of distributional RL in both neuroscience and machine learning have
been limited to learning only one-dimensional reward distributions, primarily to support flexible risk
sensitivity Dabney et al. (2018a); Ávila Pires et al. (2025). On the other hand, the multidimensional
distributional methods described above Wiltzer et al. (2024); Zhang et al. (2021) have focused on
modeling distributions over multiple sources of reward, rather than over multiple attributes (such
as time and magnitude) of a single reward source. Here we demonstrate the advantages of learning
reward time-magnitude distributions, similar to those decoded from the activity of DANs (Sousa
et al., 2025), for reinforcement learning tasks.

First, we consider a patch environment in which several stimuli each indicate a possible reward
at a given patch after a delay. In this simple environment, each patch is connected to all others as
shown in Fig. 3a, and action at = j deterministically brings the agent to patch j at time t+ 1. At
every time step, regardless of the current state of the agent, the probability of stimuli i appearing was
drawn with constant probability, independent of all other stimuli. Multiple stimuli were allowed to
appear at the same timestep and a second stimulus could occur before the delivery of reward from a
previous stimulus. Each stimulus was associated with a probabilistic reward TMD such that a reward
was drawn from a distribution of possible reward magnitudes and delays after the stimulus onset.
The reward was available only at this delay and disappeared afterward, regardless of consumption.
We compare a time-magnitude reinforcement learning (TMRL) agent which learns a reward TMD
for each stimulus with an agent using a fully enumerated state space with a unique state for every
possible combination of time passed since each stimulus.

To predict the value of each state at the next time step conditioned on past stimuli, the TMRL agent
only needs to keep track of the elapsed time since each of the stimuli and use a learned TMD for each
stimulus, specifically TMD(s, τ, r) ≈ 1

N

∑
i δθs

i
(r)δθs

i
(τ) using units θi = (τθi

, rθi
) ∈ R2 learned

through the DNL update rules in Eq. 5. The standard RL agent learns a Q-value through temporal
difference (TD) learning (Q(s, a) ← Q(s, a) + α(r(t) + γmaxa′ Q(s′, a′) − Q(s, a)), where the
state s indicates current location and the time elapse since each stimuli was observed, the action a is
a movement direction, α is the learning rate and r(t) is the reward encountered at time t. Fig. 3b
shows the TMRL agent is able to learn the TMD quickly and adapt these distributions to various

6
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combinations of stimulus times. On the other hand, the standard RL agent must experience and learn
action values for each possible stimulus delay combination and therefore, requires more samples
from the environment to optimize. The state space of the standard agent grows exponentially with the
number of states and stimuli and we demonstrate the effect this has upon the learning rate (Fig. 3c).

To validate that this performance improvement is due to the multidimensionality of the time-magnitude
distributions, in Supp Fig. 10 we include agents with the same learning as TMRL but with the time
or magnitude dimension ablated. The asymptotic reward rate achieved by these agents using only the
expected value in either the time or magnitude dimension is inferior to the full TMRL agent.

Next, we consider a similar environment, again with several stimuli indicating probabilistic rewards
after a delay, but in a gridworld as represented in Fig. 3d. The standard RL agent once again must
fully enumerate the state space with both time from each stimulus and location on the grid. However,
the TMRL agent now learns multiple successor representations (SR) (Dayan, 1993) expanded in delay
time as well as a TMD for each of the stimuli, as depicted in Supp. Fig. 11. Each SR M̂π(s, s′, τ ′)
was estimated under a policy π trained to maximize reward at a grid location cued by a stimulus.
The SR is the state occupancy of state s′ starting in state s following policy π for τ time steps (with
maximal delay τD). By combining these SRs with the current probabilistic reward time-magnitude
distribution TMD(s′, τ ′, r) determined by the timings of recent stimuli, the agent is able to use
generalized policy improvement (GPI) to select actions (Barreto et al., 2016):

V (s) =
∑

s′,τ ′∈{1,..,τD},r′
r′ M(s, s′, τ ′)TMD(s′, τ ′, r′) . (6)

Fig. 3d shows the TMRL agent outperforms the standard RL and the QR-RL agent and that this
difference grows as the number of stimuli increase, demonstrating the utility of flexibly combining
reward time-magnitude distributions in sequential decision making. Importantly, the QR-RL agent is
learning a distribution over value using the same state space as the standard RL agent. Implementation
details of the agents as well as the environment are left to the SM.

5 DECODING POLICIES IN MULTIDIMENSIONAL RISK-SENSITIVE RL

In this section we investigate how the TMD representations found in DANs may support risk-sensitive
behavior in reward time and magnitude. For 1-dimensional reward magnitude distributions, risk
sensitivity behavior can be generated by assigning weights to the reward distribution quantiles (Dabney
et al., 2018a). For example, overweighting lower reward quantiles generates risk-averse behavior,
while overweighting higher quantiles instead produces risk-prone behavior. We extend risk sensitivity
to reward time and magnitude by applying weights that depend on both reward magnitudes and delays
to compute the subjective value: V (s) =

∑
s′,τ ′∈{1,..,τD},r′ r

′ M(s, s′, τ ′)w(τ ′, r′)TMD(s′, τ ′, r′).
To model risk sensitivity in sequential RL tasks, we consider the gridworld environment in Fig. 3d
with different stimuli structure and weighting functions w(τ, r).

Magnitude risk To demonstrate risk sensitivity under reward uncertainty, we simulate the gridworld
with three stimuli: one predicting certain reward (certain); another predicting uncertain reward
magnitudes with a higher expected value (risky); a control certain reward (control). During testing,
the risky and certain stimuli are always presented simultaneously, forcing the agent to select between
risky or certain options, while the control stimulus was presented randomly. The risk-sensitive agent
computed a weighting w(τ,m) which only gave weights to smaller reward magnitudes. Figure 4b
shows the TMRL agent often chose the risky choice with higher expected value but the risk-sensitive
TMRL agent almost never chose the risky choice, opting for the certain option.

Time varying risk Risk-sensitive behavior can also arise through internal state dynamics, and
survival may depend on fast adaptation to these states. In Figure 4a top, the dynamics of an internal
state such as satiety is shown over time (decaying exponentially between reward consumption). An
agent may become risk averse with respect to the magnitude or timing of rewards during times of low
satiety, requiring certain rewards as soon as possible. After satiation, when immediate rewards are
not as critical, animals may revert to more risk prone behavior. To model this scenario, we consider
two stimuli: one signaling a certain low reward; the other predicting a higher reward but occurring
less frequently. Importantly, the expected value for the high-magnitude lower probability reward was
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Figure 3: (a) Sequential decision-making task of n states and n stimuli (3 shown here). Each different
stimulus indicates a reward may be given at the corresponding patch with a magnitude and delay
after stimulus observation drawn from a joint distribution. (b) Reward rate of agents (TMRL: blue,
standard RL: red) training over time steps on the patch environment. Reward rate is normalized to
the largest mean reward achieved so that learning rate can be compared across environments with
different number of stimuli. (c) Same data as b but only showing the final reward rate for the TMRL
(blue) and standard RL (red) agents after 10000 training steps. (d) A gridworld environment in which
n stimuli indicate reward at different locations with reward magnitude and delay drawn from different
distributions. (e) Reward rate of agents (QR-RL: green) training over time steps on the gridworld
environment. Reward rate is normalized to the largest mean reward achieved. (f) Final reward rate
for the TMRL (blue), standard RL (red), and QR-RL (green) agents after 300000 training steps.

larger, so an agent optimizing expected reward would favor it. A TMRL agent was compared to a
time-varying risk-sensitive TMRL agent where weights w(τ,m|x) are a non-linear function of its
satiety level xt (Supp. equation 40). The time-varying risk-sensitive TMRL agent achieves slightly
lower expected reward rates (Supp. Fig. 13b) but a higher subjective value (i.e. the risk-modulated
utility to the agent) as predicted (Fig. 4a).

Interestingly, human risky decision-making shows similar weighting schemes. To experimentally
measure risk sensitivity of probabilistic rewards, human participants chose between certain and
probabilistic rewards (Fig. 4b, Green et al. (1999a)). Fig. 4c plots the measured subjective value
of a probabilistic option, defined as the reward magnitude of the certain option for which the
participant is equally likely to choose the certain and probabilistic options. Similarly, to assess
how individuals discounted delayed rewards, participants were asked to choose between imme-
diate and delayed options in intertemporal experiments. In this case, the subjective value of the
delayed reward was defined as the reward magnitude of the immediate option for which the par-
ticipant was equally likely to choose the immediate and delayed options. Studies have shown that
humans discount smaller rewards more steeply over time than larger ones, while they discount
larger rewards more steeply under uncertainty (Green et al., 1999a). These behavioral asymme-
tries, seen in Fig. 4b,c as the swap in ordering of the dashed and full curves, have led to the
hypothesis that distinct mechanisms underlie temporal and probabilistic discounting. We found
that modeling risk-sensitive behaviors using a weighting scheme that decreases hyperbolically in-
dependently in delay and magnitude

(
Factorized: w(τ, r) = 1

(1+kττ)sτ
· 1
(1+krr)sr

)
is insufficient

to generate both behaviors (Fig. 4d–f). However, we are able to reproduce the reverse discounting
effect by instead considering weights that decrease hyperbolically jointly in delay and magnitude(
Multidimensional: w(τ, r) = 1

(1+k(τ+r))s

)
2. This multidimensional scheme reduces delay sen-

2The k parameter controls the discount rate and s sets the shape of the discounting curve.
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Figure 4: (a) Top: Satiety level example dynamics as a function of rewards. The weights wt applied to
the TMDs depend on the satiety level at time t. Bottom: Subjective value for TMRL and time varying
risk-sensitive agent. (b) Probability of choosing risky, certain and control option for the TMRL
and magnitude risk-sensitive TMRL agent. (c) Top: example of a trial where participants choose
between a certain and a risky option and a trial where participants choose between an immediate and
delayed option. Middle: Humans subjects discount larger rewards more steeply under uncertainty.
Bottom: Humans discount smaller rewards more steeply over time (Green et al., 1999a). (d) Top:
Factorized weights for reward magnitudes and times are represented. Middle and bottom: Predicted
subjective value for the model considering independent weights for reward time and magnitude. (c)
Multidimensional weights where the delay discounting decreases with the magnitudes. Middle and
bottom: Predicted subjective value that match human behavior.

sitivity for larger rewards, capturing the reverse discounting seen in humans (Fig. 4g–l). Such
correlated weighting cannot be captured by independent dimensions, suggesting that risk sensitivity
and intertemporal biases may stem from a shared mechanism Green et al. (1999a;b).

6 DISCUSSION AND LIMITATIONS

In this work, we unify the long-standing frameworks of efficient coding and distributional learning,
proposing a neural learning model for the joint time–magnitude reward representations observed in
midbrain dopaminergic neurons. Our theory specifies how population geometry should be iteratively
reshaped throughout learning to optimize the learning trajectory. While we focused here on reward
TMDs (Masset et al., 2023; Sousa et al., 2025), our DNL learning rules apply broadly to arbitrary
stimulus dimensions and behaviorally relevant control variables (Hollup et al., 2001; Boccara et al.,
2019; Ebitz & Hayden, 2021). However, our current formulation does not yet incorporate biological
constraints such as metabolic cost, synaptic plasticity mechanisms, or recurrent feedback loops
(Denève & Machens, 2016).

Prior work in distributional RL typically derives policies from value estimates without fully exploiting
the underlying reward distributions (Dabney et al., 2018b; Bellemare et al., 2017; Wiltzer et al.,
2024; Zhang et al., 2021). To move beyond these approaches, we designed a naturalistic RL task
with probabilistic variation in reward timing and magnitude, and show that agents equipped with
predictive TMDs learn and generalize more rapidly in sequential decision-making tasks with complex
temporal dynamics. While we have limited our experiments to tabular environments in order to
precisely elucidate the functional role of TMDs, our algorithmic strategies may be incorporated into
scalable architectures with deep function approximation. For example, TMDs may be learned over
world model latents thus providing a pathway towards rapid risk-sensitive control in state-of-the-art
benchmarks (Hafner et al., 2025).
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A APPENDIX

REPRODUCIBILITY STATEMENT

We have included all source code in the supplementary material and have thoroughly verified the
reproducibility of the experimental results. All proofs from derivations in the main text are included
in the Appendix with clear statements of the underlying assumptions.
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Figure 5: We summarize related work in terms of: 1) the dimensionality (from one-dimension
to n-dimensional) of the stimulus space; 2) if the population code (quantile or neural) is learned
through online interactions with the environment stimuli or optimized offline; 3) if the learning
trajectory is efficient or not. Classical work (Barlow, 1961; Ganguli & Simoncelli, 2014) (one-
dimensional stimuli) and recent generalizations (Yerxa et al., 2020) (n-dimensional stimuli) optimize
population codes offline while distributional RL (Dabney et al., 2018b) provides learning rules for
quantiles approximating one-dimensional distributions. Recently, multidimensional distributional RL
approaches were proposed (Zhang et al., 2021), however it leads to inefficient learning trajectories.
Our work fills in the bacl upper-right quadrant with n-dimensional codes being learned through
online efficient updating rules.

A.1 DEFINING QUANTILES AND EXPECTILES

We briefly summarize the definitions of quantiles and expectiles of a distribution for reference.
Essentially, quantiles generalize the median statistic of a distribution and expectiles generalize the
mean statistic Rowland et al. (2019).

• The η-quantile θ of a random variable R with probability mass function p satisfies:
ηp(r < θ) = (1− η)p(r ≥ θ).

The median is the 0.5-quantile (η = 0.5).
• The η-expectile r̄ satisfies Newey & Powell (1987):

ηE[(r̄ − r)−] = (1− η)E[(r̄ − r)+] .

The expectiles are distributed according to the cumulative distribution,

P (r̄) ∼ E[(r̄ − r)+]

E[|r̄ − r|]
.

The mean is the 0.5-expectile (η = 0.5).

A.2 COMPARING DISTRIBUTIONAL NEURAL LEARNING RULES WITH MAXIMUM MEAN
DISCREPANCY LEARNING RULES

In (Zhang et al., 2021), a distributional learning algorithm is proposed for multi-dimensional reward
functions based on the maximum mean discrepancy (MMD) (Gretton et al., 2012), extending the
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Figure 6: (a,b) Vector field generated by the MMD and DNL learning rules for the experiment where
the spatial occupancy is manipulated, by removing the lower triangle (represented as dashed lines).
Decoding error for both algorithms.

one-dimensional MMD-based algorithm in (Nguyen et al., 2020). The proposed learning algorithm,
similarly to our algorithm, approximates the target distribution using a finite set of units. However,
rather than minimizing the KL divergence, it minimizes the MMD between the approximated q′ and
target p3 distributions:

qt+1 = arg min
q′∈Q
{MMD2(q′, p(s))} , (7)

where Q = {q′ : q′ =
∑N

i=1
1
N δθi}. Here we derive exact analytic update rules considering a

Gaussian kernel k with covariance matrix Σ:
k(x, z) = exp

(
− 1

2 (x− z)⊤ Σ−1 (x− z)
)
, ∇xk(x, z) = −Σ−1(x− z) k(x, z).

Considering an approximation of the target distribution p(s) =
∑M

i=1
1
M δνi , the gradient of

MMD2(q′, p(s))} with respect to unit θi is given by:

∇θi
MMD2

(
q′, p(s)

)
= − 2

N2

∑
i′

∇θi
k(θi,θi′) +

2

NM

∑
j

∇θi
k(θi,νj)

= − 2

N2

∑
i′

Σ−1(θi − θi′) k(θi,θi′) +
2

NM

∑
j

Σ−1(θi − νj) k(θi,νj).

The update for unit θi is therefore given by:

θi ← θi − α∇θi
MMD2(q′, p(s)),

where α is the learning rate. As an aside, these dynamics correspond to a so-called “blob method” in
the particle optimization framework (Chen et al.).

The DNL Wasserstein regularization enforces the conservation os the population geometry through
learning. Preserving population geometry ensures that decoders remain effective across changing
contexts and stimulus distributions, thereby removing the need for retraining. To illustrate this,
in addition to the simulation described in Fig.1(c), we simulate a spatial cognitive task (Krupic
et al., 2015) where the environment shape changes, by removing the lower triangle as represented
in Fig. 6(d-f). As observed in hippocampus place cells (Krupic et al., 2015), DNL, but not MMD,
enforces the conservation of the population geometry, and therefore a linear decoder based on DNL
representations adapts faster to the new distribution(Fig. 6(a-c)). In particular, we decoded the mean
of the x spatial coordinate of the 10% closest units to the origin.

A.3 DERIVING THE DISTRIBUTIONAL NEURAL LEARNING RULES IN DETAIL

We optimize the reward distribution representation, quantified by the KL divergence between the unit
distribution and the target reward distribution, and the efficiency of the learning trajectory, quantified
by the Wasserstein distance between unit distributions across iterations,

qt+1 = arg min
q′∈Q
{DKL(q

′||p(r))) + 1

h
W 2

2 (q
′, qt)}, (8)

3In this section both rewards and spatial samples are denoted by s.
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where r ∈ RN , h is a step-size, p(r) is discretized and represented by samples from the target
distribution, qt is the unit distribution at time-step t and Q = {q′ : q′ =

∑N
i=1

1
N δθi

}. We use the
learning rules derived in Chen et al. (2018b). In particular, the KL divergence can be decomposed as,

DKL(q
′||p(r))) =

∫
r

q′(r) log
q′(r)

p(r)
dr =

∫
r

q′(r)(log q′(r)−log p(r))dr = Eq′ [log q
′]−Eq′ [log q

′(r|θ)].

Introducing the likelihood function of parameters θ given samples s, q′(r|θ) = l(θ|r), equation 8
(Chen et al., 2018a) can be rewritten as the sum of two terms:

qt+1 = arg min
q′∈Q
{−Eq′ [log l(θ|r)]︸ ︷︷ ︸

F1

+E′
q[log q

′] +
1

h
W 2

2 (q
′, qt(r))︸ ︷︷ ︸

F2

}, (9)

the term F1 attracts the units towards the samples and the F2 regularizes the unit interactions. Then,
distributional neural learning (DNL) rules can be derived for each unit,

θt+1
i ← θt

i − α

(
∂F1

∂θi
+

∂F2

∂θi

)
. (10)

The gradient of F1 is given by:
∂F1

∂θi
= −∇θi log l(θi|s) .

To approximate the gradient of F2, let {pij}Ni,j=1 denote the joint distribution (or coupling in optimal
transport literature) of the unit-pair across iterations (θi,θt

j) ∈ Rd × Rd. In order to obtain closed-
form, explicit learning rules, an entropy penalty (weighted by λ) is added to pij . The term Eq[log q]
is minimized when the particles are uniformly distributed, i.e., when the marginal distributions
(
∑

j pij)i are uniform.

Combining all terms and using the definition of W2, minimizing F2 is equivalent to solving the
following optimization problem:

{pij} = argmin
pij

∑
i,j

λpij log pij +
1

h
pijdij such that

∑
j

pij =
1

N
and

∑
i

pij =
1

N
,

where dij = ||θi − θt
j ||2. Considering the dual variables {αi}Di=1 and {βj}Dj=1, the Lagrangian is

given by:

L({pij}, {αi}, {βi}) =
{∑

i,j

λpij log pij+
1

h
pijdij+

∑
i

αi

(∑
j

pij−
1

N

)
+
∑
j

βj

(∑
i

pij−
1

N

)}
.

(11)
Setting ∂L/∂pij = 0 yields

∂L
∂pij

=

(
λ
(
1 + log pij

)
+

dij
h

)
+ αi + βj = 0 =⇒ p∗ij = exp

(
−1− dij/h+αi+βj

λ

)
.

Setting ui = e−
1
2−

αi
λ and vj = e−

1
2−

βj
λ , the gradient of F2 with respect to θi is given by:

∂F2

∂θi
≈

∑
j

2uivj

(
dij
λ
− 1

)
e−dij/λ(θi − θt

j),

where we considered the λ parameter absorves the step-size h. Theoretically, the dual values {αi, βj}
can be computed using Sinkhorn’s fixed point iteration (Algorithm 1 in (Cuturi, 2013)). In practice,
we use a constants scalar c to approximate 2uivj .

A.4 DERIVING THE 1-DIMENSIONAL APPROXIMATION TO EXPECTILE LEARNING RULES IN
DETAIL

In the limit λ→∞, the F2 gradient with respect to θi tends to:
∂F2

∂θi
→ −

∑
j

c(θi − θtj) =
∑
j

c(θtj − θi)
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Since in one dimensions, the units can be ordered from lower to higher values:

∂F2

∂θi
=

∑
j:θj<θi

c(θtj − θi) +
∑

j:θj>θi

c(θtj − θi),

By approximating the interactions with a given unit θi in F2 by the interactions with the mean of the
units to its left (θ̄LEFT) and right (θ̄RIGHT), we get:

∂F2

∂θi
≈ cNLEFT(θ̄LEFT − θi) + cNRIGHT(θ̄RIGHT − θi),

where NLEFT and NRIGHT are the number of units to the left and right of θi respectively. Since
τ = NLEFT

N fraction of the units are to the left and 1− τ are to the right:

∂F2

∂θi
≈ +cτ(θ̄LEFT − θi) + c(1− τ)(θ̄RIGHT − θi).

Noticing θ̄LEFT ≈ E[r|r ≤ θi] and θ̄RIGHT ≈ E[r|r > θi], considering the stochastic approximation
θ̄LEFT ≈ r when r ≤ θi and θ̄RIGHT ≈ r when r > θi:

∂F2

∂θi
≈ τcδr<θi(r − θi) + (1− τ)cδr>θi(r − θi).

Considering a Gaussian likelihood with standard deviation β, l(θi|r) ∼ N (r, β2), the F1 term is
given by:

∂F1

∂θi
= − 1

β2
(r − θi).

Setting c = β = 1 our learning rules become:

θτ ← θτ + (1− τ)δr<θi(r − θi) + τδr>θi(r − θi),

which are the one-dimensional expectile learning rules Bellemare et al. (2017).

A.5 DERIVING SUFFICIENT CONDITIONS FOR OPTIMAL DISTRIBUTIONAL LEARNING
TRAJECTORY

In this section we provide sufficient conditions for the DNL learning rules to converge to globally
optimal transport map from the initial to the converged distribution and show that this condition is
always satisfied for one-dimensional distributions.

The Jordan–Kinderlehrer–Otto (JKO) flow (Jordan et al., 1998) states that the trajectory obtained by
solving the Fokker-Planck equation (FPE) is the gradient flow of the appropriate target objective (e.g.
KL-divergence between initial and target densities) in the Wasserstein space of probability measures
Jordan et al. (1998); Otto (2001). We can therefore draw on tools from FPE convergence analysis
(Kim & Milman, 2012), to characterize the convergence of our distributional neural learning rules.

The FPE does not minimize in general the global Wasserstein metric Lavenant & Santambrogio
(2022); Tanana (2021). Here, we revisit a classic result that provides sufficient conditions for the
minimization of the global Wasserstein metric Kim & Milman (2012).

The FPE describes the time-evolution of the probability density ρ of the random vector R,

∂ρ

∂t
= ∇ · (rρ) + ∆ρ. (12)

It generates a curve (ρt)t≥0 of probability measures that converge to the unit standard Gaussian γ.
Building on theoretical advances that connect transportation of measures to the FPE Jordan et al.
(1998), Eqn. 12 can be recast as the transport equation

∂ρ(r)

∂t
= −∇ · (ρv), (13)

where the velocity field is given by,

v(t, r) = −r −∇ log ρt(r), (14)
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Rotation Shearing Radial symmetry
Initial TargetInitial TargetInitial Target

(a) (b) (c)

Figure 7: In (a) and (b) we simulate cases where the Jacobian of the unit update rules is not symmetric
and therefore generates globally twisted transport maps. In (c) we simulate the case where the initial
and target distributions are radial symmetric, and therefore the Jacobian of the update is symmetric
and the transport map is optimal. Each panel represents on the top the initial (magenta) and target
(green) distributions and on the bottom the learning trajectory, with the gradient flow represented as
black arrows.

and can be interpreted as the Wasserstein velocity of the curve (ρt)t≥0 (i.e. the vector field providing
the steepest descent in functional space according to the Wasserstein metric) Santambrogio (2015).
We consider the ordinary differential equation (ODE) generated by v and define a function of transport
maps S : R≥0 × Rd×d → Rd×d defined by,{

∂S
∂t = v(t, S) = −S −∇ log ρt(S),

S(0, .) = Id.
(15)

This allows us to view ρt as the pushforward of ρ0 under the flow map St, ρt = St#ρ0. We will
derive sufficient conditions for S∞ to be the optimal transport map between ρ0 and γ and minimize
the global 2-Wasserstein metric. Differentiating Eqn. 15 we obtain,

∂DSt

∂t
= −DSt −D2 log ρt(St)DSt = −(I +D2 log ρt(St))DSt . (16)

To simplify notation let Bt(r) = −(I +D2 log ρt(St)). If all D2 log ρt(St) commute, then all Bt(r)
also commute and DSt remains symmetric along the flow and we can write,

DSt(x) = exp

(∫ t

0

Bτ (x)dτ

)
, (17)

from which it follows that DSt is pointwise semi-definite and hence St must be the gradient of a
convex function. Finally, taking in account Brenier’s theorem Santambrogio (2015) and taking the
limit t→∞, we conclude S∞ is the optimal transport map.

Conversely, this result states that probability measures that generate flows with symmetric Jacobians
imply that the learning trajectory will be equivalent to the optimal transport map, i.e. Eqn. 12
minimizes the 2-Wasserstein metric. This criterion is satisfied by radially symmetric probability
measures such as Gaussians with isotropic covariance. In SFig. 7c we give an example, where the
initial and target distributions are radially symmetric, hence the flow Jacobians are symmetric and
Eqn. 12 coincides with the optimal transport. Notably, the Jacobians along the gradient flow of a one-
dimensional probability measure is scalar and thus is trivially symmetric. Therefore, distributional RL
(without function approximation) converges on the optimal learning trajectories in the large sample
limit.

However, in general this implies that, Eqn. 12 flow introduces a curl on the trajectory of probability
measures. For example, if we replace −r by −Ar in the drift in Eqn. 14, then ρt converges to a
Gaussian with covariance A−1. Selecting a matrix A that does not commute with the initial density
covariance, then Eqn. 12 generates curled trajectories, such as the rotation and shearing examples
shown in SFig.7a,b).

A.6 DEEP DISTRIBUTIONAL NEURAL LEARNING EXPERIMENTS

We train a deep quantile regression network (DQR) Dabney et al. (2018b) to predict N = 100
reward quantiles and a deep distributional neural learning network (DNL) to predict N = 100
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Deep quantile
 regression (DQR)

Distributions neural 
learning (DNL)

Hidden layers
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Hidden layers

Figure 8: (a) Representation of the DQR and DNL networks. (b) The dots correspond to a quantile
for a given orientation in the DQR case and a multidimensional quantile in reward and orientation in
the DNL case. The target distributions are represented in the background. On the right, the 95% C.I.
of KL divergence between the quantiles and the target distribution is shown for 10 runs.

multidimensional quantiles over reward magnitude and orientation. The DQR and DNL networks
have two hidden layers with 1024 and 256 units. The Adam optimizer was used, with an initial
learning rate of 0.0001. Mini-batches of 200 samples were used, and the networks were trained for
1000 epochs. Since the Wasserstein distance is computationally expensive, we employ the Maximum
Mean Discrepancy (MMD) as a practical approximation in these simulations Gretton et al. (2012).
For the MMD computation, we set the kernel bandwidth parameter bw = 4 and used 1000 samples
to estimate the distributions.

A.7 MODELING CELL ADAPTATION IN THE BRAIN VIA DISTRIBUTIONAL NEURAL LEARNING

(a) (b)Place cells in hippocampus Grid cells in MEC
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Figure 9: (a) Top: adapted from Krupic et al. (2018). Middle: Mean field displacement (left) and
vector field (right) for an example place cell population, when modifying the shape of the environment.
Bottom: predictions from DNL theory. (b) Top: adapted from Boccara et al. (2019). Middle : Spikes
of an example grid field (left), distribution of the distance to the closest goal (center) and proportion
of fields at goal (right) pre (blue) and post-probe (red) to new reward locations. Bottom: predictions
from DNL theory.

In order to demonstrate the utility of the distributional neural learning framework for understanding
neural coding in the brain, we model two datasets of neural population codes in spatial navigation
paradigms whereby the target stimulus is a two-dimensional representation of space.

Krupic et al Krupic et al. (2018) allowed rodents to explore an environment before exposing them to
a locally transformed version of it (SFig. 9 (a), top) and found that place cells in the hippocampus
adapted their tuning to the altered shape of the environment (SFig. 9 (a), middle). We modeled each
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place cell tuning in terms of each neuron’s preferred spatial position {θi}Ni=1. The spatial distribution
pθ, optimized for this population, was interpolated from {θi}Ni=1, conceptualized as approximate
Dirac delta functions in probability space. Initially, samples of x and y spatial positions that uniformly
covered the rectangular space were given until convergence. Subsequently, only samples from the
trapezoidal region were provided. Our simulations show that the DNL theory generates place fields
that adapt to the shape of the environment (SFig. 9 (a), bottom).

In another study, Boccara et al Boccara et al. (2019) trained rats to daily learn three new reward
locations on a cheeseboard maze while recording from the medial entorhinal cortex (MEC) and found
many grid fields moved toward goal location (SFig. 9 (b), middle). We modeled the tuning functions
of grid cells as two-dimensional hexagonal grids. Samples of reward x and y spatial positions were
given. Our simulations show that the DNL theory generates grid fields that move towards reward
locations (SFig. 9 (b), bottom).
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B EXPERIMENTAL DETAILS

B.1 DISTRIBUTIONAL NEURAL LEARNING CONVERGENCE SIMULATIONS

For the DNL simulation shown in Fig. 1b (main text), we initialized the N = 100 units uniformly
spaced in the rectangle delimited by x = 3.5 and x = 5.75 and y = 0 to y = 10. The following
hyperparameters were used for the distributional neural learning rules defined in Eqn. 6 of the main
manuscript:

• Total number of iterations: 1000.
• Batch size: 500.
• Gaussian KDE bandwidth: 0.4.
• Unit interaction regularization parameter: c = 1000

• Interaction attraction-repulsion term λ = 0.1.
• Learning rate α = 0.1 reduced by 50% every 500 iterations.

For the DNL simulation shown in Fig. 1c (main text) we initialized N = 12 units sampled from a

Gaussian with mean µ = [1, 1] and covariance matrix Σ =

[
0.25 0
0 0.25

]
. Samples from a Gaussian

were given with mean µ = [3, 3] and covariance matrix: Σ =

[
0.5 0
0 0.5

]
. The likelihood function

was estimated from the stimulus samples using kernel density estimation, as implemented in the
gaussian kernel density function from SciPy Virtanen et al. (2020). The following parameters were
used for the distributional neural learning rules defined in Eqn. 5 of the main manuscript:

• Total number of iterations: 30 000.
• Batch size: 10.
• Gaussian KDE bandwidth: 3.
• Unit interaction regularization parameter c = 200.
• Interaction attraction-repulsion term: λ = 0.1.
• Learning rate α = 0.1.

For the MMD, the total number of iterations and batch size were kept the same. To ensure that the
absolute update magnitude was not smaller than in DNL, we set the learning rate to α = 2. Gaussian
kernels with different covariance matrix were used:

Σ =

[
σ 0
0 σ

]
,

with σ = 0.1, 0.25, 0.5, 0.75. The value decoded error was the square of the difference of the true
and decoded value, V =

∑
i riγ

τi , where θi = (τi, ri), computed using the 25% units closest to the
origin.

For the simulations of the spatial cognitive task the following parameters were considered:

• Total number of iterations: 1000.
• Batch size: 25.
• Gaussian KDE bandwidth: 0.4.
• Unit interaction regularization parameter c = 5.
• Interaction attraction-repulsion term: λ = 0.07.
• Learning rate α = 0.001.

In this case, the mean of the x spatial coordinate of the 10% closest units to the origin was decoded.
To ensure that the absolute update magnitude was not smaller than in DNL, we set the learning rate
to α = 4.5.
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B.2 MODELING CELL ADAPTATION VIA DISTRIBUTIONAL NEURAL LEARNING

For the adaptation of place cells (Fig. 9a), we considered the following parameters for the distribu-
tional neural learning rules defined in Eqn. 5 of the main manuscript:

• Total number of iterations: 500 .
• Batch size: 25 .
• Gaussian KDE bandwidth: 0.4 .
• Unit interaction regularization parameter: c = 5 .
• Interaction attraction-repulsion term: λ = 0.07 .
• Learning rate α = 0.001 .

For the adaptation of grid cells (9b) we considered the following parameters for the distributional
neural learning rules defined in Eqn. 5 of the main manuscript:

• Total number of iterations: 350 .
• Batch size: 25 .
• Gaussian KDE bandwidth: 0.4 .
• Unit interaction regularization parameter: c = 1000 .
• Interaction attraction-repulsion term λ = 0.08 .
• Learning rate α = 0.01 .

B.3 GENERALIZATION IN RL OVER REWARD DYNAMICS USING TIME-MAGNITUDE MAPS

We use two different environments. The first uses n states (or patches) and n distinct stimuli, each
associated with a different reward delay and magnitude following the stimulus. The second is a
gridworld environment with similarly structured stimuli and rewards. A stimulus appears with a
random probability at each time step with equal probability for all stimulus.

These experiments were designed to demonstrate that a reinforcement learning agent can learn
structure in the environment rapidly using the reward TMD. To fairly compare learning to a standard
RL model, in the training steps, random actions were taken for both the standard RL and TMRL
models. This was done just to be certain that the convergence rates were not due to bad policy
initializations or local minima. During test steps, both agents used a greedy policy.

B.3.1 PATCH EXPERIMENTS

This simple environment was designed such that the Q-value of actions (one possible action for every
possible state transition) only depended on the probability of reward at the next time step. Tracking
the reward delays and magnitudes is shown to be useful but there is no need to learn a policy for
sequential decisions as an action from one state can bring the agent to any other state in the next time
step. As long as the agent is able to track the time since each cue and has learned a mapping from
the time since each cue to a probability of reward appearing with a certain magnitude, the agent can
simply take the action to the state with the highest expected reward at the next time.

The reward rates shown are during test trials of 10000 time steps using a greedy policy in both models.
The parameters are given below:

• number of runs for each model: 10
• number of states/stimuli: n ∈ {2, 3, 4, 5}
• maximum reward delay: 5
• maximum reward magnitude: 4
• probability of each stimulus shown at every time step: 0.1
• number of training steps: 10000
• number of test steps: 10000
• test every 100 steps of training
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Patch environment The environment has n patches/states, n ∈ {2, 3, 4, 5}. The agent can perform
an action to transition from its current state to any other deterministically. The environment also has
the same number n of stimuli which each cue a reward after a certain delay and magnitude drawn
from a distribution. The reward cued by stimuli i would be available in state i for simplicity but
similar results would hold without this constraint. At every time step, regardless of the current state
of the agent, the probability of stimuli i appearing was drawn with probability 0.1, independent of
all other stimuli. Multiple stimuli were allowed to appear at the same timestep. A second stimulus
was also allowed to occur before the delivery of reward from a previous stimulus. Each stimulus was
associated with a probabilistic reward TMD which was constructed randomly. For each stimulus, the
TMD was constructed to have 0.5 probability of reward appearing at some delay t1 after the stimulus
with magnitude r1 and 0.5 probability for delay t2 and r2. For each stimulus t1, t2, r1 and r2 were
randomly chosen with uniform probability with maximum magnitude 4 and maximum delay 5. After
every presentation of a stimulus i, a reward would be available at state i with delay and magnitude
drawn from the true TMD i, independently after each presentation. The reward would then only be
available at only the time after the cue and would not remain after that time step.

TMRL agent This agent separately tracked two parts of its state, the current patch it was in st and
the time since each of the stimuli τi (up to the maximum delay time). At every time step, if a stimulus
i was seen, the current time delay τ ti was reset to 0 for that stimulus, otherwise the time increased by
1.

The reward TMD (TMDi(s
′, τ ′, r′) is the probability of reward at location s′ of magnitude

r′ at delay time τ ′ after stimulus i) was learned by the agent using the DNL learning rules,
TMDi(s, τ,m) ≈ 1

N

∑
i δθs

j
(r)δθs

j
(τ) using units θj = (τθj

, rθj
). To make the Q value easy

to compute, the approximation discretized the magnitude and delay space into a matrix and the
percentage of units in each discrete square was used as a probability. Parameters for the DNL learning
are given below:

Parameters of the TMRL agents including the ablations:

• Batch size: 100.
• Gaussian KDE bandwidth: 0.5.
• Unit interaction regularization parameter: γ = 100.0.
• Interaction attraction-repulsion term λ = 4.0.
• DNL learning rate starting at αDNL = 0.001 and decreased to αDNL = 0.0001 over 5000

training steps
• Number of units N = 25.
• Covariance of 0.05 times the identity matrix.
• TMD learning rate αTMD = 0.01

At test time, the agent chooses greedy actions by looking only at the reward TMDs for each stimulus
and the current time since each stimulus τi. Using this, it can construct the probability of reward
times and magnitudes for each state (TMDt

total). Here we simply update TMDt
total at every time

step given all the observed stimuli j at time t,

TMDt
total(s, τ

′, r′) ← TMDt−1
total(s, τ

′ + 1, r′) +
∑

j observed at time t

TMDj(s, τ
′, r′)

for 1 ≤ τ ′ ≤ τD − 1 (18)

TMDt
total(s, τ

′, r′) ←
∑

j observed at time t

TMDj(s, τ
′, r′) for τ ′ = τD (19)

where τD is the maximum reward delay. The greedy policy simply picks the action for the state with
the largest expected reward at the next time step

at = argmaxi
∑
r

r TMDt
total(s = i, 1, r) (20)

The full algorithm is given in Algorithm 1.
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Algorithm 1 TMRL Agent in Patch Environment

1: Initialize TMDi, ∀i to all 0
2: Initialize τi to τD, ∀i
3: function ACT(s)
4: Choose action at from TMDt

total using greedy policy ▷ Equation 20
5: end function
6: function TRAIN(s, a, r, s′)
7: if stimulus j is observed then
8: τ tj = 0
9: else

10: τ tj += 1
11: end if
12: if reward is observed then
13: for i from 0 to C do ▷ C is the number of stimuli
14: if τ ti < τ then
15: TMDi(·, ·, ·)← TMDi(·, ·, ·) + αδTMDi

(·, ·, ·) ▷ Equation 4
16: end if
17: end for
18: end if
19: end function

Standard RL agent The standard RL agent had an expanded state space that represented the
current patch and the time since each stimuli. This state space has a discrete state for every possible
combination of cue delays (up to the maximum delay time).

Value for this agent was learned by standard temporal difference learning

δV (t) = rt − V (st) (21)
V (st) = V (st) + αδV (t) (22)

where rt is the reward at time t. Here we do not need to include γV (st+1) because there is no need
for sequential decisions. We just learn a value for every state that is the average reward.

As the actions are deterministic and because we only give reward when the agent is in the correct
state, we can determine the action at under the greedy policy at state st by just looking at the value
of V (st+1) after taking that action. In the patch environment this is particularly easy as each action
at = i corresponds to moving to one of the locations i. However, the state space is a combination of
state and delay so st+1 should be the next location i and the delays from stimuli after one time step.

The full algorithm is given in Algorithm 2

Algorithm 2 Standard Agent in Patch Environment

1: Initialize V (s)
2: Initialize state s

3: function ACT(s)
4: Compute Q(a) = V (s′) for actions a from state s and transitioning to state s′

5: return argmaxa Q(a)
6: end function
7: function TRAIN(s, a, r, s′)
8: V (s)← V (s) + α [rt − γV (s)] ▷ Treat as bandit task at s
9: end function

Ablation experiments In order to demonstrate the necessity of the multidistributional distribution in
TMRL in achieving fast generalizations to different stimulus combinations in the task, we perform an
ablation experiment. We learn on the patch environment with the same TMRL parameters. However,
during testing, when using the learned stimulus TMD to compute the action, we only use the time
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dimension and the expected value along the magnitude dimension (time only) or we only use the
magnitude dimension and expectation along the time dimension (magnitude only) of the distributions.
Here, the agents have the same structure but only compute policy with 1D distributions rather than
the joint. To highlight the differences, we use stimulus TMDs in the environment where the TMD
for stimulus i has 0.5 probability of reward at (τ1i , r

1
i ) and 0.5 probability of reward at (τ2i , r

2
i ).

For every stimulus i, τ1i and τ2i had a difference of 3 time steps and r1i and r2i had a magnitude
difference of 8. In this way, the expectation across either time or magnitude of the learned TMDs
were poor representations of the distribution. Furthermore, we simulated these environments with
different values of the probability of a stimulus appearing. As seen in Supplementary Fig. 10, the
magnitude only agent performs extremely poorly. This is because timing information in crucial in
this environment as rewards are only available at delay τ1i or τ2i after stimulus i. The magnitude only
agent expects the reward at the expectation over delays when there is no reward. The time only agent
performs fairly well with only the delay distribution. This agent can go the the correct states at the
correct times. However, as the probability of stimuli increase, it becomes more likely that rewards
occur at the same time in different states. In these situations, the time only agent must act using
only the expected value of the magnitudes rather than comparing r1i with r1j or r2i with rj1 etc. The
expected value fails to represent all the information available to the full TMRL agent. Parameters of
the environment are listed below:

• number of runs for each model: 10

• number of states/stimuli: 3

• maximum reward delay: 5

• maximum reward magnitude: 10

• probability of each stimulus shown at every time step: 0.1

• number of training steps: 100000

• number of test steps: 10000

• test every 100 steps of training

• cue probability: {0.05, 0.1, 0.2}

Parameters of the TMRL agents including the ablations:

• Batch size: 100.

• Gaussian KDE bandwidth: 0.5.

• Unit interaction regularization parameter: γ = 100.0.

• Interaction attraction-repulsion term λ = 4.0.

• DNL learning rate starting at αDNL = 0.001 and decreased to αDNL = 0.0001 over 5000
training steps

• Number of units N = 25.

• Covariance of 0.05 times the identity matrix.

• TMD learning rate αTMD = 0.01

B.3.2 GRIDWORLD EXPERIMENTS

This environment was designed such that sequential decisions are necessary as agents must travel to
the next reward location and must know if they will reach that location before the delay time. If two
stimuli appear close in time, the agent must decide which of the different reward locations will give
the best expected reward, again considering the reward magnitudes and delays with travel time to the
location.

During training, we used random actions to collect observed samples for the TMRL standard RL, and
QR-RL agents. This was done simply to show that learning speed was not due to better initial policies
of the model. The reward rates shown are during test trials of 10000 time steps using a greedy policy
in all models. The parameters are given below:
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(a) (b)

Figure 10: Ablation experiments TMRL (blue) using DNL update rules compared to time only
(green) and magnitude only (red) ablated TMRL agents. Performance in the patches environment for
a varying probability of appearance of the stimuli. (a) Reward rate of agents training over time steps
on the patch environment. Reward rate is normalized to the largest mean reward achieved so that
performance can be compared across environments with different probability of stimuli appearance.
(b) Same data as (a) but only showing the final reward rate after 100000 train steps.

• number of runs for each model: 10

• gridworld size: 5×5
• gridworld number of possible actions: 4

• maximum reward delay: 5

• maximum reward magnitude: 4

• probability of each stimulus shown at every time step: 0.1

• number of cues: n ∈ {3, 4, 5}
• number of training steps: 300000

• number of test steps: 10000

• test every 1000 steps of training

Gridworld environment The gridworld was constructed with a grid of size 5×5 with 4 possible
deterministic actions: up, down, left, and right. Similar to the patch environments, this gridworld
environment also has n stimuli, n ∈ {2, 3, 4, 5}, each associated with a TMD constructed the same
way with maximum magnitude 4 and maximum delay 5. In addition, the location of the reward on
the grid was also randomly chosen for each stimulus. Again, the probability of observing a stimulus
at each timestep was a fixed probability of 0.1 for every stimulus. Just as in the patch environment,
we place no restriction on when the stimuli can appear. Multiple can appear simultaneously, they can
appear before the reward was given for a previous stimulus, and they can appear while the agent is in
any state. The reward is only available at a certain time and location, with a certain magnitude, and is
not available afterward if not collected.

TMRL agent Similar to the previous TMRL agent, this agent separately tracked two parts of its
state, the current location in the gridworld st and the time since each of the stimuli τi (up to the
maximum delay time τD). These were updated using the same method as above.

The reward TMD was also learned similarly by the agent through temporal difference learning with s
now the location on the grid. The TMDi for stimulus i was learning using the DNL update rules in
equation 4 and discretized to create a matrix in order to use the successor representations.

We again find the TMDt
total that tracks the possible reward locations, delay from current time t, and

magnitude given the past history of observed stimuli as in equation 18.
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To select actions using the learned TMD, the TMRL agent also learns n successor representations
(SR). In these experiments, we just set n to the number of stimuli. Each SR Mπi will represent the
discounted future state occupancy of state s′ in the grid starting from state s and following a policy πi.
Multiple SR’s allow the agent to learn multiple policies and combine them using generalized policy
improvement (GPI) Barreto et al. (2016). This is useful when the agent encounters a combination of
stimuli with different timings and must find the policy that maximizes reward.

In the SR framework, the TMDt
total will serve as our reward vector in the vanilla SR. Essentially,

given the past history of observed stimuli, the TMDt
total tracks the location of possible rewards,

their time delay from the current time point, and their magnitude. To use the TMD with the SR, we
simply expand the SR matrix to include the time of occupancy of each state, Mπ(s, s′, τ), where τ is
the number of time steps after starting in state s (see Supplementary Fig. 11). We only track τ up
to the maximum delay time τD since this is the time horizon we care about. Then multiplying the
SR Mπ(s, s′, τ) by the TMDt

total(s
′, τ, r) gives us the discounted probability of seeing reward of

magnitude r starting from state s and following policy π.

First we find a weighting for the update of SR given by Wi(st, at) for each policy πi

Hi(s
′, τ − τi,m) = TMDi(s

′, τ, r) for τD ≥ τ ≥ τi (23)

Wi(st, at) =
∑
r

r Hi(st+1, 0, r) +
∑

s′,τ ′,r′

r′Mπi(st+1, s
′, τ ′) ·Hi(s

′, τ ′ + 1, r′)

where at is action, st is state/location at time t, st+1 is the next state after taking action at, and
τi is the time since the previous observation of stimulus i. Hi is the reward time and magnitude
distribution for stimulus i given the current time from the previous observation of stimulus i, τi. τD
is the maximum reward delay that is tracked. Hi is similar to total_TMD but only for each stimulus
separated. We use this only to get importance weights Wi(st, at) used in the updates of the SR as
seen below. These importance weights bias the SR to represent separate policies for each stimulus
which can later be combined for GPI.

To learn this SR, we again use TD learning but weight the updates such that the policy πj with the
maximum action probability for the action at that was taken gets larger weight.

j = max
i

Wi(st, at) (24)

w(j) = 1− ϵ (25)
w(i) = ϵ/A, ∀i ̸= j (26)

δMl
(s′, τ) = 1[s′ = st+1, τ = 0] + γ ∗Mπl(st+1, s

′, τ + 1)−Mπl(st, s
′, τ) (27)

Mπl(st, s
′, τ) ← Mπl(st, s

′, τ) + αw(l)δMl
(s, s′, τ) (28)

where ϵ = 0.1 is a free parameter and A = 4 is the number of possible actions.

Figure 11: (a) In order to compute value in a state s , the SR over future states is multiplied by the
reward vector. (b) We generalize this approach by considering the SR is also defined over future
times, do that it may be combined with the TMD representations.
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Finally, to find the best action, we use GPI.

Qj(st, at) =
∑
r

r TMDt
total(st+1, 0, r) +∑

s′,τ,r′

r′ Mπj (st+1, s
′, τ) · TMDt

total(s
′, τ + 1, r′) (29)

at = argmaxat
max

j
Qj(st, at) (30)

The full algorithm is given in Algorithm 3.

Algorithm 3 TMRL Agent in GridWorld

1: Initialize TMDi, ∀i to all 0
2: Initialize τi to τD ∀i
3: function ACT(s)
4: Choose action at from TMDt

total and Mπi using GPI ▷ Equation 36 - 37
5: end function
6: function TRAIN(s, a, r, s′)
7: if stimulus j is observed then
8: τj = 0
9: else

10: τj += 1
11: end if
12: Update TMDt

total ▷ Equation 18
13: if reward is observed then
14: Update TMDi using DNL learning rules
15: end if
16: for i from 0 to C do ▷ C is the number of stimuli
17: Mπi(st, s

′, k)←Mπi(st, s
′, k) + αw(i)δMi

(s, s′, k) ▷ Update SR. Equation 24
18: end for
19: end function

Standard RL agent This agent simply used standard Q-learning as shown in Algorithm 4. The
state s is a state that represents both the current location on the grid but also the current time delay
since each of the stimuli.

Algorithm 4 Standard Agent in GridWorld

1: Initialize Q(s, a) for all states s and actions a

2: function ACT(s)
3: Choose action a from s using greedy policy on Q
4: end function
5: function TRAIN(s, a, r, s′)
6: Q(s, a)← Q(s, a) + α

[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
7: end function

Quantile Regression Reinforcement Learning (QR-RL) agent The QR-RL agent uses the same
expanded state space over grid location and time since each stimulus as the standard RL agent but also
learns the return distribution using quantiles rather than the expected value. This is to show that simply
adding the magnitude distribution is not enough to see any generalization performance increase.
For a comparison with only the grid location as a state space, we use the ablation experiments in
Supplementary Section B.3.1. The algorithm for this model is given in 5. The parameters are the
same as above but with N = 50 quantiles used and huber κ = 1.
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Algorithm 5 Distributional RL with Quantile Regression

1: Initialize quantiles θ(s, a) ∈ RN for all states s, actions a
2: Set quantile midpoints hi =

i+0.5
N , i = 0, . . . , N − 1

3: function ACT(s)
4: Compute mean action-values Q(a) = 1

N

∑N
i=1 θi(s, a)

5: return argmaxa Q(a)
6: end function
7: function TRAIN(s, a, r, s′)
8: θ ← θ(s, a) ▷ Current quantiles
9: a′ ← ACT(s′) ▷ Next greedy action

10: θ′ ← θ(s′, a′) ▷ Next-state quantiles
11: target← r + γ · θ′
12: Compute pairwise differences dij = targetj − θi
13: Compute Huber gradient:

gij =

{
dij |dij | ≤ κ

κ · sign(dij) otherwise

14: Compute quantile weights:
wij = hi − I[dij < 0]

15: Aggregate gradient:

δi =
1

N

N∑
j=1

wijgij

16: Update quantiles:
θi ← θi + αδi

17: end function

B.4 MODELING MULTIDIMENSIONAL RISK SENSITIVITY

B.4.1 RISK SENSITIVITY IN HUMAN BEHAVIOR

To model the human bandit experiments we considered a set of N = 10 units representing the
reward time magnitude distribution for each trial type. The subjective value was computed as:
V (s) =

∑
s′,τ ′∈{1,..,τD},r′ r

′ M(s, s′, τ ′)w(τ ′, r′)TMD(s′, τ ′, r′). Importantly, the reward time and
magnitudes were normalized by the maximum reward delay and magnitude. This task has a single
state, SR is the identity and the weighting for the factorized and multidimensional model are defined
in the main text.

B.4.2 MAGNITUDE RISK SENSITIVITY

We simulate this agent to display risk sensitivity to uncertainty in reward magnitudes in the gridworld
environment. The environment had 3 stimuli: one predicting certain reward of value 2 (certain);
another predicting uncertain reward magnitudes of either 1 with 0.5 probability or 7 with 0.5
probability (risky); a control certain reward of value 4 (control). All these rewards had a time delay
of 7 time steps after the stimulus. Importantly, the expected value of the risky stimulus is higher than
the certain stimulus but is more uncertain. During training of the agents, the stimuli appeared with
independent random probability. However, during testing, the certain and risky stimulus were always
observed at the same time such that the agent would always have to decide between reward locations.

The magnitude risk sensitive TMRL agent learned the SRs exactly the same as the TMRL agent.
However, it learned the TMDs just as matrices. The reward TMD (TMDi(s

′, τ ′i , r
′) is the probability

of reward at location s′ of magnitude r′ at delay time τ ′i after stimulus i) was learned by the agent
through temporal difference learning Sutton & Barto (2018). For each stimulus i with current delay
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τ ti , after observing reward of magnitude r at state s

RMTi(s
′, τ ′i , r

′) =

{
1 at s′ = s, τ ′i = τi, and r′ = r

0 otherwise
(31)

δTMDi(s
′, τ ′i , r

′) = RMTi(s
′, τ ′i , r

′)− TMDi(s
′, τ ′i , r

′) (32)
TMDi(s

′, τ ′i , r
′) ← TMDi(s

′, τ ′i , r
′) + αδTMDi(s

′, τ ′i , r
′) (33)

where RMTi(s
′, τ ′i , r

′) is just a dummy variable to compute the TD update.

During testing of the magnitude risk sensitive agent, the Q value would be computed by weighting
the TMD with weights w(r). These were computed by taking the reward distribution at each reward
location at each delay separately and applying a risk function to the distribution over magnitude. This
risk funtion only considers the lower half of the cumulative density function over magnitude.

w0.5(r|TMD) =

{
r for r ≤ VaR0.5(r)

0 otherwise
(34)

VaR0.5(r) = inf
{
r ∈ R : FR(r) ≥ 0.5

}
(35)

where FR(r) is the cumulative density function over magnitudes r of the TMD.

Then the magnitude risk sensitive TMRL agent found the greedy action through GPI while weighting
TMDt

total

Qj(st, at) =
∑
r

w(r|TMDt
total)TMDt

total(st+1, 0, r) +∑
s′,τ,r′

r′ Mπj (st+1, s
′, τ) · w(r|TMDt

total)TMDt
total(s

′, τ + 1, r′) (36)

at = argmaxat
max

j
Qj(st, at) (37)

Supplementary Figure 12 shows the TMRL agent often chose the risky choice with higher expected
value but the risk-sensitive TMRL agent almost never chose the risky choice, opting for the certain
option. Fig. 12b shows the magnitude risk sensitive agent achieves a slightly lower reward rate
compared to the TMRL agent which is directly trying to optimize expected rewards. However, the
risk sensitive agent is optimizing to minimize risk.

Parameters for the environment:

• number of runs for each model: 10

• number of states/stimuli: 3

• maximum reward delay: 10

• maximum reward magnitude: 8

• number of training steps: 200000

• number of test steps: 10000

• test every 1000 steps of training

B.4.3 TIME VARYING RISK SENSITIVITY

We again simulate the agent in the gridworld to show how risk sensitivity can vary through time.
Here, the environment had two cues, one with certain reward of value 1 at time delay 7 and the other
with certain reward of value 3 at time delay 9. Importantly, during testing, the first stimulus appears
with probability 0.2 at every time step while the second stimulus appears with probability 0.1. The
expected reward of the second is still larger than the first.
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(a) (b) (c)

(d) (e)

Figure 12: TMRL (blue) and the magnitude risk sensitive agent (pink) in the gridworld environment.
(a) The distribution of choices of the agent during testing. (b) The reward rate achieved by the agents
through learning. (c) The distribution of reward magnitudes received by the agent during testing. (d)
The policy learned by the TMRL agent. Top is the policy when the certian stimulus is observed. The
highlighted square is the location of the reward. Middle is the risky reward stimulus. Bottom is the
control stimulus. (e) The policy learned by the magnitude risk sensitive agent.

We design an agent that learns the same way as the magnitude risk sensitive agent but the weights
depend on an internal state at satiety. The internal state xt+1 at time t + 1 given the reward Rt at
time t and the internal state xt is given by

xt+1 = max(2, 0.8xt +Rt) (38)

The internal state decays exponentially over time to zero and increases only when the agent encounters
a reward. The agent also has a maximum internal state of 2 signifying the agent is satiated.

We define a subjective value function dependent on xt as

V = (1− 0.1

(xt + 0.1)2
(39)

This nonlinear subjective value gives higher value to higher internal states xt.

Using this V , we compute the weights w(τ, r|xt) by finding the internal states xt, ..., xt+τD if a
reward of magnitude r were delivered at delay τ . The weight was then the summed subjective value
of these internal states:

w(τ, r|xt) =
∑

τD≥τ ′≥0

V (xt+τ ′) (40)

Using these weights we find the GPI action using the same equation 36. Supplementary Fig 13 shows
this time-varying risk sensitive agents subjective value compared to that of the TMRL agent. As
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the time-varying risk sensitive agent is optimizing for this subjective value or utility, it achieves
higher values than the TMRL. Yet in Fig 13b, we see the TMRL achieves higher reward rate as it is
maximizing expected rewards.

(a) (b) (c)

(e)(d)

Figure 13: TMRL (blue) and the time-varying risk sensitive agent (orange) in the gridworld environ-
ment. (a) The subjective value of the agents over training. (b) The reward rate achieved by the agents
through learning. (c) The distribution of choices of the agent during testing. Choice 1 is the high
probability, low magnitude stimulus and choice 2 is the low probability, high magnitude stimulus.
(d) The policy learned by the TMRL agent. Top is the policy when the low magnitude stimulus
is observed. The highlighted square is the location of the reward. Bottom is the high magnitude
stimulus. (e) The policy learned by the time-varying risk sensitive agent.

Parameters for the environment:

• number of runs for each model: 10
• number of states/stimuli: 2
• maximum reward delay: 10
• maximum reward magnitude: 4
• number of training steps: 200000
• number of test steps: 10000
• test every 1000 steps of training
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