
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONLINE LEARNING OF MULTIDIMENSIONAL DISTRIBU-
TIONAL MAPS FOR RAPID POLICY ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In order to flexibly behave in dynamic environments, agents must learn the tempo-
ral structure of causal events. Standard value-based approaches in reinforcement
learning (RL) learn estimates of temporally discounted average future reward, lead-
ing to ambiguity about future reward timing and magnitude. Recently, midbrain
dopamine neurons (DANs) have been shown to resolve this ambiguity by represent-
ing distributional predictive maps of future reward over both time and magnitude
in the encoding of reward prediction errors. However, the computational function
of such time-magnitude distributions (TMD) in the brain is unknown. Here we
present online learning rules for acquiring information-maximising multidimen-
sional distributional estimates, extending classic work in distributional RL from 1D
return distributions to efficient representations of distributions of arbitrary dimen-
sionality. In previous distributional RL approaches, the distributional information
is largely used for improving representation learning. In our framework, TMDs
are the direct substrates for simple policy decoders, enabling rapid risk-sensitive
action selection in environments with rich probabilistic temporal reward structure,
even under distributional shifts. Finally, we present cross-species neural and be-
havior evidence, from rodents and humans, consistent with the implementation of
this theory in biological circuits. Our results advance a principled computational
link between distributional RL and neural coding theory, and establish a role for
multi-dimensional distributional predictive maps in rapidly generating sophisticated
risk-sensitive policies in environments with complex, multi-modal, distributions of
future reward.

1 INTRODUCTION

One of the most fruitful intersections between natural and artificial intelligence research has been the
idea that midbrain dopamine neurons (DANs) in the brain encode a reward prediction error critical
for reinforcement learning (RL) (Schultz et al., 1997). Recently, these neurons have been found
to represent a diverse set of state features (Lee et al., 2024) including the distributional coding of
the timing and magnitude of reward (Sousa et al., 2025). Beyond previous influential models of
distributional magnitude coding (Dabney et al., 2020), these recent empirical results (Sousa et al.,
2025) extend the 1D reward magnitude code to a 2D time-magnitude “map” of future reward in a
distributional format (TMD). The novel identification of these TMDs within dopaminergic circuits
raises the following critical questions. Q1. how are these representations acquired? Q2. how are they
used during action selection?

We aim to address this question by developing a comprehensive theory of such distributional
predictive maps across biological and artificial agents based on the core idea that TMDs
greatly simplify the problem of risk-sensitive sequential action selection. In particular, in the
naturalistic scenario of choosing between actions leading to probabilistic rewards generated by
the environments with intricate temporal structure and distributional shifts.

Significant advances in state-of-the-art RL have been achieved through distributional RL algorithms
which learn a one-dimensional probability distribution of value, rather than a single scalar sufficient
statistic of value (e.g. the mean) in an online manner via environmental feedback (Dabney et al.,
2018b; Rowland et al., 2019). In Section 2.1 we present a novel generalization of the one-dimensional

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

distributional learning rules to arbitrary dimensionalities thus providing a mechanism by which
multi-dimensional TMDs may be learned [Q1]. This is accomplished by combining principles of
distributional RL with efficient coding drawn from theoretical neuroscience (Ganguli & Simoncelli,
2014). In neuroscience, the theory of efficient coding has modeled the tuning functions of popula-
tions of neurons to maximize the amount of information they encode about diverse stimuli in the
environment Barlow et al. (1961); Olshausen & Field (1996); Yerxa et al. (2020). However it lacks
a key element in brain computation: how neural population responses are learned. We address this
by proposing a theory of efficient learning that generalizes distributional RL rules through optimal
transport (Santambrogio, 2015).

Prior work in distributional RL has primarily focused on learning return distributions, leading to
improved representation learning in deep distributional agents, but used scalar value estimates to
generate policies (Bellemare et al., 2017; Dabney et al., 2018b). Less attention has been given to how
these representations can support flexible risk-sensitive policies across time (Gagne & Dayan, 2021).
Anticipating the timing of future rewards is especially important for sequential decisions such as
foraging, where animals must balance the energetic costs of search with uncertain resource availability,
and similarly, agents in RL must plan across extended horizons, trade off immediate versus delayed
gains, and adapt their strategies to dynamic environments. In section 4 we show how having access to
TMD representations allows for efficient solutions to sequential decision-making tasks with complex
temporal dynamics. In section 5, we show how having access to TMD representations allows for
generating complex risk-sensitive behavior for arbitrary joint reward distributions in magnitude and
time using simple linear readouts [Q2].

1.1 RELATED WORK

Distributed neural codes have been proposed to represent reward timing (Tiganj et al., 2019; Masset
et al., 2023; Brunec & Momennejad, 2022; Masset et al., 2025), as well as the joint representation of
reward magnitude and timing (Tano et al., 2020), future state occupancy (Brunec & Momennejad,
2022), and other task relevant features (Lee et al., 2024). However, these coding schemes are not
efficient in the information-theoretic sense consistent with the long-standing hypothesis established
in sensory neuroscience (Barlow et al., 1961; Ganguli & Simoncelli, 2014), they do not maximize
information about reward under constraints on the population size and adapt to environment stimuli
distributions. This is essential as the number of represented feature distributions becomes large.
Furthermore, new data shows that when the reward TMD changes, the population of DANs adapt
to encode the new distribution while preserving the relative tuning across the population (Sousa
et al., 2025; Rothenhoefer et al., 2021). Relatedly, this is also observed for hippocampus and medial
entorhinal cortex population codes in spatial navigation paradigms (Krupic et al., 2018; Boccara
et al., 2019). More recently, efficient distributional RL models for the encoding of reward magnitude
in midbrain DANs have been introduced (Schütt et al., 2024; Dabney et al., 2020), supported by
mechanistic models and experimental evidence suggesting that direct and indirect striatal medium
spiny neurons may implement such strategies (Lowet et al., 2025). However, these models are
restricted to one-dimensional reward features or assume the dimensions are statistically independent
(Sousa et al., 2025).

In machine learning, Zhang et al. (Zhang et al., 2021) proposed maximum mean discrepancy (MMD)
based multidimensional distributional algorithm similar to DNL, but its objective is degenerate since
in high dimensions there exist many distinct unit configurations that represent the same distribution.
The MMD objective is invariant with respect to permutations as well as rotational or translational
symmetries. We address this by adding a Wasserstein regularizer that penalizing distortions in the
population representation through learning and promotes the conservation of relative tuning across the
population, which has three important consequences (1) extends efficient coding to higher dimensions
(Schütt et al., 2024), (2) preserves the population coding when the reward distribution changes as
observed in many brain regions across multiple modalities and (3) enables flexible decoding of
subjective value (i.e. risk-sensitive utility to the agent) when changing TMDs across contexts, thereby
removing the need for retraining.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Pr
ob

ab
ili

ty

Fa
ct

or
iz

ed
 1

-D

D
N

L

r

θi

τ 1 − τ
LEFT RIGHT

θ̄LEFT θ̄RIGHT

−τ

−(1 − τ)
Magnitude (r)

Magnitude (r)

Time

M
ag

ni
tu

de
M

ag
ni

tu
de

Time

P(
tim

e)

P(Magnitude)

(c)(a) (b)Distributional neural learning
collapses to 1-dimensional

distributional RL

Distributional neural learning (DNL) vs
1-dimensional distributional RL

Distributional neural learning
(DNL) vs Maximum mean

discrepancy (MMD)

D
N

L
M

M
D

higher bandwidthlower bandwidth

M
ag

ni
tu

de

Time Time

M
ag

ni
tu

de

Time

M
ag

ni
tu

de

Training steps

Va
lu

e
de

co
di

ng
 e

rr
or

Initial
Target

−
−

−
−

Figure 1: (a) Illustration of the DNL rules for 1-dimensional reward magnitudes. Units are color coded
by the tuning towards r. (b) Samples were generated from the v-shaped reward TMDs represented in
blue. The converged units for the factorized one-dimensional distributional learning and the DNL
are represented as black dots. (c) Units learn to go from the initial to target distribution for MMD
(top) and DNL (bottom). Learning trajectories are represented in grey. Bottom right: Value error
decoding (considering 25% of units closest to origin) as a function of training steps for DNL and
MMD (considering Gaussian kernels with different bandwidths).

2 OPTIMAL TRANSPORT AND GRADIENT FLOWS UNIFY DISTRIBUTIONAL
REINFORCEMENT LEARNING AND EFFICIENT CODING THEORY

A long-standing-problem in efficient coding is the need for algorithms that learn how to optimize
neural population codes through online interactions with the environment, crucial for adaptable
behavior Ganguli & Simoncelli (2014); Yerxa et al. (2020); Denève & Machens (2016). In con-
trast, distributional RL, which implements an efficient code through a "population" of quantiles
or expectiles, is defined by online learning rules (Dabney et al., 2018b). However, these learning
rules only apply for one-dimensional distributional representations, typically of value. Thus, as a
starting point in our theoretic framework linking neural learning and machine distributional RL, we
focus on developing an integrative perspective on learning by leveraging optimal transport theory
(Santambrogio, 2015) to characterize distributional RL and efficient coding theory as special cases of
a more general class of learning rules (Chen et al., 2018b).

Distributional algorithms (Dabney et al., 2018b) can learn to approximate a target reward distribution
p(r) non-parametrically using a finite set of units {θi}Ni=1 where for all i, θi ∈ R. Given samples
r ∼ p(r) from the target distribution, the positions θi ∈ R of the units are iteratively updated
θi ← θi +∆i. The set of units implicitly define the approximate distribution1

q(r) ≈ 1

N

N∑
i=1

δθi(r) . (1)

In neuroscience, θi corresponds to the preferred stimulus tuning of a neuron in a population of cells
collectively optimizing a mutual information objective while in quantile regression RL (QR-RL)
Dabney et al. (2018b), the units θi converge to the quantiles of the target p(r) Dabney et al. (2018b).

Importantly, the online update rules for QR-RL imply that the units {θi}Ni=1 are updated in order to
minimize the Wasserstein distance to the target density p(r) Dabney et al. (2018b). Let T : R→ R
denote the set of transport maps from an initial R̂ ∼ q(r) to a target R ∼ p(r). The 2-Wasserstein
distance defines the minimal transport cost required to transform q(r) into p(r),

W2(R̂, R) =

(
inf
T∈T

∫
||r′ − T (r′)||2dp(r′)

)) 1
2

. (2)

1Sometimes known as the “equally-weighted particle” approximation in distributional RL (Wiltzer et al.,
2024; Zhang et al., 2021) or the Lagrangian discretization in fluid dynamics.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In the one-dimensional case, the optimal transport (OT) map T ∗ has a closed-form solution given by
mapping the quantiles of q(r) to p(r). Interestingly, this corresponds to the one-dimensional efficient
code proposed by Ganguli & Simoncelli (2014), where a a uniformly distributed set of units q(r) is
mapped to the target distribution of stimuli p(r) through the inverse cumulative distribution function
(CDF) T ∗ = P−1(r) in order to maximize the mutual information between the reward distribution
p(r) and the neural population response q(r).

In one dimension, placing units via the inverse CDF solves efficient coding by dividing the stimulus
space into equal probability partitions. In higher dimensions, however, this strategy becomes
degenerate, since equal mass partitions are no longer unique, leading to multiple possible ways of
partitioning the probability distribution. In the next section, we first resolve this degeneracy issue
by additionally optimizing the efficiency of the learning trajectory (Section 2.1) and then show that
the resulting multi-dimensional distributional neural learning rules collapse to expectile regression
distributional RL in a particular limit (Section 2.3). We will focus on two behaviorally relevant
features of reward: time and magnitude for clarity of exposition, but our theory can be generalized to
other stimuli, such as spatial location or reward in space.

2.1 LEARNING MULTIDIMENSIONAL EFFICIENT POPULATION CODES

We solve the degeneracy problem by optimizing KL divergence between the implicit unit distribution
q and the target reward TMD p, while also promoting an efficient learning trajectory, quantified by
the Wasserstein distance between unit distributions across iterations qt → qt+1,

qt+1 = arg min
q′∈Q
{DKL(q

′||p(r))) + 1

h
W 2

2 (q
′, qt)}, (3)

where qt is approximated by a set of units {θi}Ni=1 such that q(r) =
∑N

i=1
1
N δθi(r), t is the time-

step, h is the step-size, p(r) is represented by discretized samples from the target distribution and
Q = {q′ : q′(r) =

∑N
i=1

1
N δθi

(r)}. Each unit θ = (τi, ri) ∈ R2 is tuned to a reward time τi and
magnitude ri. Importantly, many solutions minimize the KL-divergence to the target distribution, but
only one solution does so with the minimal transport cost, effectively disambiguating the degeneracy
Jordan et al. (1998); Santambrogio (2015).

Equation 3 can be rewritten as the sum of two terms (Chen et al., 2018a): one that attracts the units
towards the stimulus samples (F1) and a second one that regularizes the unit interactions, such that
they do not occupy the same position (F2, Fig. 1a):

qt+1 = arg min
q′∈Q
{−Eq[log l(θ|r)]︸ ︷︷ ︸

F1

+Eq′ [log q
′] +

1

h
W 2

2 (q
′, qt)︸ ︷︷ ︸

F2

} , (4)

where l(θ|r) represents the likelihood function over all θi conditioned on observed reward samples r.
Importantly, this discrete gradient flow is guaranteed to converge in the large sample limit Jordan et al.
(1998). To derive a closed-form solution, we follow Chen et al. (2018b); Cuturi (2013) and introduce
an entropy penalty, weighted by λ on the joint distribution over particle pairs across iterations.
Under this entropic regularization, the Distributional Neural Learning (DNL) update rules become

θt+1
i ← θt

i − α

(
∂F1

∂θi
+ ∂F2

∂θi

)
, where

∂F1

∂θi
= −∇θi

log l(θi|r) and
∂F2

∂θi
=

∑
j

c

(
dij
λ
− 1

)
e

−dij
λ (θi − θt

j) , (5)

dij = ∥θi − θt
j∥2, c is the weight of regularization of interactions between units and λ defines how

close units should be and absorves the step-size h. If dij

λ > 1, then θi is pulled towards θj , with force

proportional to (
dij

λ − 1)e
−dij

λ . If dij

λ < 1, then θi is pushed away. By increasing the λ values, the
learning rules become increasingly more global i.e. all units interact with all other units as λ→∞.
A full derivation of Eqns. 4,5 is in the SM. The likelihood function l(θ|s) depends on the choice of
generative model but for the numerical simulations below we smoothed the observed samples using a
radial basis function kernel and evaluated the resulting density at each point θi.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.2 COMPARING DISTRIBUTIONAL NEURAL LEARNING WITH RELATED WORK

For non-factorizable joint distributions over two or more dependent random variables, DNL accurately
represents the full joint distribution, whereas the factorized one-dimensional quantile learning fails
(Fig. 1d). Furthermore, in the SM we include simulations that investigate the inductive biases
introduced by deep DNL and compare with the previously proposed 1-dimensional Deep QR-RL.
We stacked DNL across network layers and trained the model end-to-end with backpropagation.
Crucially, OT regularization in DNL biases learning toward smooth, connected solutions, improving
generalization over deep QR-RL.

Aditionally, OT regularization enforces the preservation of relative tuning of population units along
the learning trajectory (Fig. 1c). This property enables risk-sensitive value decoding to transfer across
distribution shifts without retraining, unlike MMD-based approaches Zhang et al. (2021). In Fig. 1c,
we simulate a population of units transported to a target distribution. Compared to MMD, DNL
learning trajectories are more direct and preserve population geometry. Therefore, considering a
risk-sensitive linear value decoder, DNL transfers more efficiently to the target distribution than
MMD (Fig. 1c, top).

2.3 APPROXIMATELY RECOVERING THE 1-DIMENSIONAL DISTRIBUTIONAL RL

We demonstrate that the DNL multidimensional learning algorithm is an extension of the one-
dimensional expectile learning rule Dabney et al. (2018b). In one dimension, we consider the λ→∞
limit, where all units contribute to the F2 update of all other units. In this limit, the units can be
ordered from lower to higher values, which allows averaged interactions with a given unit θi to be
approximated by: F2 term of the mean of units to the left (θ̄LEFT) scaled by the number of units on the
left τi; F2 term with the mean of the units to right (θ̄RIGHT) scaled by the number of units of the right
1− τi. Given a reward sample r and a Gaussian likelihood l(θi|r) ∼ N (r, β2), our learning rules
become: ∂F1

∂θi
= − 1

β2 (r− θi) and ∂F2

∂θi
≈ τc(θ̄LEFT − θi) + (1− τ)c(θ̄RIGHT − θi). We notice

that θ̄LEFT ≈ E[r|r ≤ θi] and θ̄RIGHT ≈ E[r|r > θi], hence considering a sample r, θ̄LEFT ≈ r when
r ≤ θi and θ̄RIGHT ≈ r when r > θi and additionally setting β = c = 1 we recover the expectile
learning rules (Fig. 1c): θτ ← θτ + τδr>θi(r − θi) + (1− τ)δr<θi(r − θi). A full derivation of the
previous equations is in the SM.

3 LEARNING MULTIDIMENSIONAL DISTRIBUTIONS IN THE BRAIN

We apply our DNL theory to the adaptation of midbrain dopamine in a classical conditioning
experiment with mice where different cues predict reward at distinct delays and reward distribution
(Sousa et al., 2025). In this study, DANs were shown to encode the probability of rewards over time
and magnitudes (Sousa et al., 2025) (Fig. 2a). Additionally, the probability distribution of reward
times was manipulated by removing either the cue that predicts the shortest or longest delay (Fig. 2c)
and the probability distributions over magnitudes was also manipulated by providing separate cues
predicting variable or certain magnitudes. The tuning functions of midbrain DANs was observed to
adapt to the new distributions in time and magnitude (Fig. 2c).

We modeled each DAN tuning function based on the preferred reward time and magnitude θi =
(τi, ri). Importantly, as DANs exhibit tuning functions in time characterized by exponentially
decaying temporal discount factors (γ), the tuning towards reward times τi was mapped into γi

considering: γi = e
− 1

τi . We simulated the tuning function adaption of DNL learning rules using
simulated observations from the distributions of reward times and magnitudes given in the experiment
Sousa et al. (2025). In agreement with experimental observations, DNL predicts that temporal
discount factors became steeper when shifting to shorter reward times compared to longer ones (Fig.
2d). Conversely, sensitivity to reward magnitudes was more variable for cues predicting uncertain
reward than for those predicting fixed rewards (Fig. 2d). In the SM Fig. 9 illustrates adaptations in
hippocampal place cells and entorhinal cells to spatial structure and reward location changes.

4 REWARD TIME AND MAGNITUDE DISTRIBUTION FOR GENERALIZABLE RL

Learning flexible policies is essential for animals navigating environments with probabilistic rewards.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

p=0.01

p=0.02 var=2.6

var=0.81

Time

Distributional neural learning prediction

0.5 1.0
γ before

0.5

1.0

γ a
ft

er

Dopamine data

0s

1.5s

3s

6s

3s
variable
reward

D
ec

od
ed

 d
en

si
ty

Magnitude (l) μ
1

4.5
8

Tim
e

sin
ce cu

e (s)
0

1.5
3

6

Remove
shortest delay
longest delay

Certain
Variable

(a) (b) (c)

Odor RewardTime

Task

Time
3s

6s

3s

1.5s

0s

Certain
reward

Variable
reward

Record dopamine
neurons

Figure 2: Distributional neural learning models firing of DANs. (a) The task consists of four cues
predicting a certain reward magnitude after a variable delay and an additional cue predicting a variable
reward magnitude after a 3s delay. (b) The decoded joint density of reward over magnitude and time,
using the population responses aligned to the different cues. Adapted from (Sousa et al., 2025) (c)
Left: Adaptation of midbrain DANs’ temporal discount factors when shifting to shorter or longer
reward times by removing the shortest (magenta) or longest (green) reward delay. Right: Adaptation
of DANs tuning for cues predicting variable (blue) and certain (black) reward magnitudes. Bottom:
predictions from DNL theory.

For example, an animal may observe clouds and infer a probability of rain at a later time or may hear
a sound and infer the location and timing of moving prey. To make informed decisions over time,
animals must integrate learned associations between stimuli and probabilistic reward magnitudes and
delays. Yet, prior applications of distributional RL in both neuroscience and machine learning have
been limited to learning only one-dimensional reward distributions, primarily to support flexible risk
sensitivity Dabney et al. (2018a); Ávila Pires et al. (2025). On the other hand, the multidimensional
distributional methods described above Wiltzer et al. (2024); Zhang et al. (2021) have focused on
modeling distributions over multiple sources of reward, rather than over multiple attributes (such
as time and magnitude) of a single reward source. Here we demonstrate the advantages of learning
reward time-magnitude distributions, similar to those decoded from the activity of DANs (Sousa
et al., 2025), for reinforcement learning tasks.

First, we consider a patch environment in which several stimuli each indicate a possible reward
at a given patch after a delay. In this simple environment, each patch is connected to all others as
shown in Fig. 3a, and action at = j deterministically brings the agent to patch j at time t+ 1. At
every time step, regardless of the current state of the agent, the probability of stimuli i appearing was
drawn with constant probability, independent of all other stimuli. Multiple stimuli were allowed to
appear at the same timestep and a second stimulus could occur before the delivery of reward from a
previous stimulus. Each stimulus was associated with a probabilistic reward TMD such that a reward
was drawn from a distribution of possible reward magnitudes and delays after the stimulus onset.
The reward was available only at this delay and disappeared afterward, regardless of consumption.
We compare a time-magnitude reinforcement learning (TMRL) agent which learns a reward TMD
for each stimulus with an agent using a fully enumerated state space with a unique state for every
possible combination of time passed since each stimulus.

To predict the value of each state at the next time step conditioned on past stimuli, the TMRL agent
only needs to keep track of the elapsed time since each of the stimuli and use a learned TMD for each
stimulus, specifically TMD(s, τ, r) ≈ 1

N

∑
i δθs

i
(r)δθs

i
(τ) using units θi = (τθi

, rθi
) ∈ R2 learned

through the DNL update rules in Eq. 5. The standard RL agent learns a Q-value through temporal
difference (TD) learning (Q(s, a) ← Q(s, a) + α(r(t) + γmaxa′ Q(s′, a′) − Q(s, a)), where the
state s indicates current location and the time elapse since each stimuli was observed, the action a is
a movement direction, α is the learning rate and r(t) is the reward encountered at time t. Fig. 3b
shows the TMRL agent is able to learn the TMD quickly and adapt these distributions to various

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

combinations of stimulus times. On the other hand, the standard RL agent must experience and learn
action values for each possible stimulus delay combination and therefore, requires more samples
from the environment to optimize. The state space of the standard agent grows exponentially with the
number of states and stimuli and we demonstrate the effect this has upon the learning rate (Fig. 3c).

To validate that this performance improvement is due to the multidimensionality of the time-magnitude
distributions, in Supp Fig. 10 we include agents with the same learning as TMRL but with the time
or magnitude dimension ablated. The asymptotic reward rate achieved by these agents using only the
expected value in either the time or magnitude dimension is inferior to the full TMRL agent.

Next, we consider a similar environment, again with several stimuli indicating probabilistic rewards
after a delay, but in a gridworld as represented in Fig. 3d. The standard RL agent once again must
fully enumerate the state space with both time from each stimulus and location on the grid. However,
the TMRL agent now learns multiple successor representations (SR) (Dayan, 1993) expanded in delay
time as well as a TMD for each of the stimuli, as depicted in Supp. Fig. 11. Each SR M̂π(s, s′, τ ′)
was estimated under a policy π trained to maximize reward at a grid location cued by a stimulus.
The SR is the state occupancy of state s′ starting in state s following policy π for τ time steps (with
maximal delay τD). By combining these SRs with the current probabilistic reward time-magnitude
distribution TMD(s′, τ ′, r) determined by the timings of recent stimuli, the agent is able to use
generalized policy improvement (GPI) to select actions (Barreto et al., 2016):

V (s) =
∑

s′,τ ′∈{1,..,τD},r′
r′ M(s, s′, τ ′)TMD(s′, τ ′, r′) . (6)

Fig. 3d shows the TMRL agent outperforms the standard RL and the QR-RL agent and that this
difference grows as the number of stimuli increase, demonstrating the utility of flexibly combining
reward time-magnitude distributions in sequential decision making. Importantly, the QR-RL agent is
learning a distribution over value using the same state space as the standard RL agent. Implementation
details of the agents as well as the environment are left to the SM.

5 DECODING POLICIES IN MULTIDIMENSIONAL RISK-SENSITIVE RL

In this section we investigate how the TMD representations found in DANs may support risk-sensitive
behavior in reward time and magnitude. For 1-dimensional reward magnitude distributions, risk
sensitivity behavior can be generated by assigning weights to the reward distribution quantiles (Dabney
et al., 2018a). For example, overweighting lower reward quantiles generates risk-averse behavior,
while overweighting higher quantiles instead produces risk-prone behavior. We extend risk sensitivity
to reward time and magnitude by applying weights that depend on both reward magnitudes and delays
to compute the subjective value: V (s) =

∑
s′,τ ′∈{1,..,τD},r′ r

′ M(s, s′, τ ′)w(τ ′, r′)TMD(s′, τ ′, r′).
To model risk sensitivity in sequential RL tasks, we consider the gridworld environment in Fig. 3d
with different stimuli structure and weighting functions w(τ, r).

Magnitude risk To demonstrate risk sensitivity under reward uncertainty, we simulate the gridworld
with three stimuli: one predicting certain reward (certain); another predicting uncertain reward
magnitudes with a higher expected value (risky); a control certain reward (control). During testing,
the risky and certain stimuli are always presented simultaneously, forcing the agent to select between
risky or certain options, while the control stimulus was presented randomly. The risk-sensitive agent
computed a weighting w(τ,m) which only gave weights to smaller reward magnitudes. Figure 4b
shows the TMRL agent often chose the risky choice with higher expected value but the risk-sensitive
TMRL agent almost never chose the risky choice, opting for the certain option.

Time varying risk Risk-sensitive behavior can also arise through internal state dynamics, and
survival may depend on fast adaptation to these states. In Figure 4a top, the dynamics of an internal
state such as satiety is shown over time (decaying exponentially between reward consumption). An
agent may become risk averse with respect to the magnitude or timing of rewards during times of low
satiety, requiring certain rewards as soon as possible. After satiation, when immediate rewards are
not as critical, animals may revert to more risk prone behavior. To model this scenario, we consider
two stimuli: one signaling a certain low reward; the other predicting a higher reward but occurring
less frequently. Importantly, the expected value for the high-magnitude lower probability reward was

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Patch 1

Patch 2 Patch 3

Time

Time Time

M
ag

ni
tu

d
e

M
ag

ni
tu

d
e

M
ag

ni
tu

d
e

Time

M
ag

ni
tu

d
e

Time

M
ag

ni
tu

d
e

Time

M
ag

ni
tu

d
e

(a) (b) (c)

(d) (e) (f)

Figure 3: (a) Sequential decision-making task of n states and n stimuli (3 shown here). Each different
stimulus indicates a reward may be given at the corresponding patch with a magnitude and delay
after stimulus observation drawn from a joint distribution. (b) Reward rate of agents (TMRL: blue,
standard RL: red) training over time steps on the patch environment. Reward rate is normalized to
the largest mean reward achieved so that learning rate can be compared across environments with
different number of stimuli. (c) Same data as b but only showing the final reward rate for the TMRL
(blue) and standard RL (red) agents after 10000 training steps. (d) A gridworld environment in which
n stimuli indicate reward at different locations with reward magnitude and delay drawn from different
distributions. (e) Reward rate of agents (QR-RL: green) training over time steps on the gridworld
environment. Reward rate is normalized to the largest mean reward achieved. (f) Final reward rate
for the TMRL (blue), standard RL (red), and QR-RL (green) agents after 300000 training steps.

larger, so an agent optimizing expected reward would favor it. A TMRL agent was compared to a
time-varying risk-sensitive TMRL agent where weights w(τ,m|x) are a non-linear function of its
satiety level xt (Supp. equation 40). The time-varying risk-sensitive TMRL agent achieves slightly
lower expected reward rates (Supp. Fig. 13b) but a higher subjective value (i.e. the risk-modulated
utility to the agent) as predicted (Fig. 4a).

Interestingly, human risky decision-making shows similar weighting schemes. To experimentally
measure risk sensitivity of probabilistic rewards, human participants chose between certain and
probabilistic rewards (Fig. 4b, Green et al. (1999a)). Fig. 4c plots the measured subjective value
of a probabilistic option, defined as the reward magnitude of the certain option for which the
participant is equally likely to choose the certain and probabilistic options. Similarly, to assess
how individuals discounted delayed rewards, participants were asked to choose between imme-
diate and delayed options in intertemporal experiments. In this case, the subjective value of the
delayed reward was defined as the reward magnitude of the immediate option for which the par-
ticipant was equally likely to choose the immediate and delayed options. Studies have shown that
humans discount smaller rewards more steeply over time than larger ones, while they discount
larger rewards more steeply under uncertainty (Green et al., 1999a). These behavioral asymme-
tries, seen in Fig. 4b,c as the swap in ordering of the dashed and full curves, have led to the
hypothesis that distinct mechanisms underlie temporal and probabilistic discounting. We found
that modeling risk-sensitive behaviors using a weighting scheme that decreases hyperbolically in-
dependently in delay and magnitude

(
Factorized: w(τ, r) = 1

(1+kττ)sτ
· 1
(1+krr)sr

)
is insufficient

to generate both behaviors (Fig. 4d–f). However, we are able to reproduce the reverse discounting
effect by instead considering weights that decrease hyperbolically jointly in delay and magnitude(
Multidimensional: w(τ, r) = 1

(1+k(τ+r))s

)
2. This multidimensional scheme reduces delay sen-

2The k parameter controls the discount rate and s sets the shape of the discounting curve.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(e)(c) (d)

de
cr

ea
se

di

sc
ou

nt

short long
small

big

Multidimensional modelFactorized 1-D modelHuman data

co
ns

ta
nt

di
sc

ou
nt

short long
small

big

$500
now
p=1

$750
with

p=0.5

Example trials:

$500
now
p=1

$640 in
4 month

p=1

Probability bandit Delay bandit

(a)

Sa
tie

ty
 le

ve
l

time

hungry
sated

short long
small

big
w w

Su
bj

ec
tiv

e
va

lu
e

Time varying risk
sensitive TMRL

short long
small

big

Risky

Magnitude risk
sensitive TMRL

Certain Control Choices:

TMRL

(b)

Figure 4: (a) Top: Satiety level example dynamics as a function of rewards. The weights wt applied to
the TMDs depend on the satiety level at time t. Bottom: Subjective value for TMRL and time varying
risk-sensitive agent. (b) Probability of choosing risky, certain and control option for the TMRL
and magnitude risk-sensitive TMRL agent. (c) Top: example of a trial where participants choose
between a certain and a risky option and a trial where participants choose between an immediate and
delayed option. Middle: Humans subjects discount larger rewards more steeply under uncertainty.
Bottom: Humans discount smaller rewards more steeply over time (Green et al., 1999a). (d) Top:
Factorized weights for reward magnitudes and times are represented. Middle and bottom: Predicted
subjective value for the model considering independent weights for reward time and magnitude. (c)
Multidimensional weights where the delay discounting decreases with the magnitudes. Middle and
bottom: Predicted subjective value that match human behavior.

sitivity for larger rewards, capturing the reverse discounting seen in humans (Fig. 4g–l). Such
correlated weighting cannot be captured by independent dimensions, suggesting that risk sensitivity
and intertemporal biases may stem from a shared mechanism Green et al. (1999a;b).

6 DISCUSSION AND LIMITATIONS

In this work, we unify the long-standing frameworks of efficient coding and distributional learning,
proposing a neural learning model for the joint time–magnitude reward representations observed in
midbrain dopaminergic neurons. Our theory specifies how population geometry should be iteratively
reshaped throughout learning to optimize the learning trajectory. While we focused here on reward
TMDs (Masset et al., 2023; Sousa et al., 2025), our DNL learning rules apply broadly to arbitrary
stimulus dimensions and behaviorally relevant control variables (Hollup et al., 2001; Boccara et al.,
2019; Ebitz & Hayden, 2021). However, our current formulation does not yet incorporate biological
constraints such as metabolic cost, synaptic plasticity mechanisms, or recurrent feedback loops
(Denève & Machens, 2016).

Prior work in distributional RL typically derives policies from value estimates without fully exploiting
the underlying reward distributions (Dabney et al., 2018b; Bellemare et al., 2017; Wiltzer et al.,
2024; Zhang et al., 2021). To move beyond these approaches, we designed a naturalistic RL task
with probabilistic variation in reward timing and magnitude, and show that agents equipped with
predictive TMDs learn and generalize more rapidly in sequential decision-making tasks with complex
temporal dynamics. While we have limited our experiments to tabular environments in order to
precisely elucidate the functional role of TMDs, our algorithmic strategies may be incorporated into
scalable architectures with deep function approximation. For example, TMDs may be learned over
world model latents thus providing a pathway towards rapid risk-sensitive control in state-of-the-art
benchmarks (Hafner et al., 2025).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

H. B. Barlow. Possible principles underlying the transformations of sensory messages. Sensory
Communication, pp. 217–234, 1961.

Horace B Barlow et al. Possible principles underlying the transformation of sensory messages.
Sensory communication, 1(01):217–233, 1961.

André Barreto, Rémi Munos, Tom Schaul, and David Silver. Successor features for transfer in
reinforcement learning. CoRR, abs/1606.05312, 2016. URL http://arxiv.org/abs/
1606.05312.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449–458. PMLR, 2017.

Charlotte N Boccara, Michele Nardin, Federico Stella, Joseph O’Neill, and Jozsef Csicsvari. The
entorhinal cognitive map is attracted to goals. Science, 363(6434):1443–1447, 2019.

Iva K Brunec and Ida Momennejad. Predictive representations in hippocampal and prefrontal
hierarchies. Journal of Neuroscience, 42(2):299–312, 2022.

Changyou Chen, Ruiyi Zhang, Wenlin Wang, Bai Li, and Liqun Chen. A unified particle-optimization
framework for scalable bayesian sampling.

Changyou Chen, Ruiyi Zhang, Wenlin Wang, Bai Li, and Liqun Chen. A unified particle-
optimization framework for scalable bayesian sampling. In Amir Globerson and Ricardo Silva
(eds.), Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI
2018, Monterey, California, USA, August 6-10, 2018, pp. 746–755. AUAI Press, 2018a. URL
http://auai.org/uai2018/proceedings/papers/263.pdf.

Changyou Chen, Ruiyi Zhang, Wenlin Wang, Bai Li, and Liqun Chen. A unified particle-optimization
framework for scalable bayesian sampling. arXiv preprint arXiv:1805.11659, 2018b.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096–
1105. PMLR, 2018a.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32 (1), 2018b.

Will Dabney, Zeb Kurth-Nelson, Naoshige Uchida, Clara Kwon Starkweather, Demis Hassabis, Rémi
Munos, and Matthew Botvinick. A distributional code for value in dopamine-based reinforcement
learning. Nature, 577(7792):671–675, 2020.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural computation, 5(4):613–624, 1993.

Sophie Denève and Christian K Machens. Efficient codes and balanced networks. Nature neuro-
science, 19(3):375–382, 2016.

Sophie Denève and Christian K Machens. Efficient codes and balanced networks. Nature Neuro-
science, 19:375–382, 2016.

R Becket Ebitz and Benjamin Y Hayden. The population doctrine in cognitive neuroscience. Neuron,
109(19):3055–3068, 2021.

Christopher Gagne and Peter Dayan. Two steps to risk sensitivity. Advances in Neural Information
Processing Systems, 34:22209–22220, 2021.

Deep Ganguli and Eero P Simoncelli. Efficient sensory encoding and bayesian inference with
heterogeneous neural populations. Neural computation, 26(10):2103–2134, 2014.

10

http://arxiv.org/abs/1606.05312
http://arxiv.org/abs/1606.05312
http://auai.org/uai2018/proceedings/papers/263.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leonard Green, Joel Myerson, and Pawel Ostaszewski. Amount of reward has opposite effects on the
discounting of delayed and probabilistic outcomes. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 25(2):418, 1999a.

Leonard Green, Joel Myerson, and Pawel Ostaszewski. Discounting of delayed rewards across the
life span: age differences in individual discounting functions. Behavioural processes, 46(1):89–96,
1999b.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The journal of machine learning research, 13(1):723–773, 2012.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, . . . , and Timothy Lillicrap. Mastering diverse control
tasks through world models. Nature, 640:647–653, 2025. doi: 10.1038/s41586-025-08744-2.
URL https://www.nature.com/articles/s41586-025-08744-2.

S Hollup, S Molden, J G Donnett, M B Moser, and E I Moser. Accumulation of hippocampal place
fields at the goal location in an annular watermaze task. Journal of Neuroscience, 21:1635–1644,
2001.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker–planck
equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.

Young-Heon Kim and Emanuel Milman. A generalization of caffarelli’s contraction theorem via
(reverse) heat flow. Mathematische Annalen, 354(3):827–862, 2012.

J Krupic, M Bauza, S Burton, C Barry, and J O’Keefe. Grid cell symmetry is shaped by environmental
geometry. Nature, 518(7538):232–235, 2015.

J Krupic, M Bauza, S Burton, and J O’Keefe. Local transformations of the hippocampal cognitive
map. Science, 359(6380):1143–1146, 2018.

Hugo Lavenant and Filippo Santambrogio. The flow map of the fokker–planck equation does not
provide optimal transport. Applied Mathematics Letters, pp. 108225, 2022.

Rachel S Lee, Yotam Sagiv, Ben Engelhard, Ilana B Witten, and Nathaniel D Daw. A feature-specific
prediction error model explains dopaminergic heterogeneity. Nature neuroscience, pp. 1–13, 2024.

Adam S Lowet, Qiao Zheng, Melissa Meng, Sara Matias, Jan Drugowitsch, and Naoshige Uchida.
An opponent striatal circuit for distributional reinforcement learning. Nature, pp. 1–10, 2025.

Paul Masset, Pablo Tano, HyungGoo R Kim, Athar N Malik, Alexandre Pouget, and Naoshige Uchida.
Multi-timescale reinforcement learning in the brain. bioRxiv, 2023.

Paul Masset, Pablo Tano, HyungGoo R Kim, Athar N Malik, Alexandre Pouget, and Naoshige Uchida.
Multi-timescale reinforcement learning in the brain. Nature, pp. 1–9, 2025.

Whitney K Newey and James L Powell. Asymmetric least squares estimation and testing. Economet-
rica: Journal of the Econometric Society, pp. 819–847, 1987.

Thanh Tang Nguyen, Sunil Gupta, and Svetha Venkatesh. Distributional reinforcement learning with
maximum mean discrepancy. Association for the Advancement of Artificial Intelligence (AAAI),
2020.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381(6583):607–609, 1996.

Felix Otto. The geometry of dissipative evolution equations: the porous medium equation. 2001.

Kathryn M Rothenhoefer, Tao Hong, Aydin Alikaya, and William R Stauffer. Rare rewards amplify
dopamine responses. Nature neuroscience, 24(4):465–469, 2021.

Mark Rowland, Robert Dadashi, Saurabh Kumar, Rémi Munos, Marc G Bellemare, and Will Dabney.
Statistics and samples in distributional reinforcement learning. In International Conference on
Machine Learning, pp. 5528–5536. PMLR, 2019.

11

https://www.nature.com/articles/s41586-025-08744-2

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94,
2015.

Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of prediction and reward.
Science, 275(5306):1593–1599, 1997.

Heiko H Schütt, Dongjae Kim, and Wei Ji Ma. Reward prediction error neurons implement an
efficient code for reward. Nature Neuroscience, pp. 1–7, 2024.

Margarida Sousa, Pawel Bujalski, Bruno F Cruz, Kenway Louie, Daniel C McNamee, and Joseph J
Paton. A multidimensional distributional map of future reward in dopamine neurons. Nature, pp.
1–9, 2025.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Anastasiya Tanana. Comparison of transport map generated by heat flow interpolation and the optimal
transport brenier map. Communications in Contemporary Mathematics, 23(06):2050025, 2021.

Pablo Tano, Peter Dayan, and Alexandre Pouget. A local temporal difference code for distributional
reinforcement learning. Advances in neural information processing systems, 33:13662–13673,
2020.

Zoran Tiganj, Samuel J Gershman, Per B Sederberg, and Marc W Howard. Estimating scale-invariant
future in continuous time. Neural Computation, 31(4):681–709, 2019.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. Scipy 1.0: Fundamental algorithms for scientific computing in python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Harley Wiltzer, Jesse Farebrother, Arthur Gretton, and Mark Rowland. Foundations of multivariate
distributional reinforcement learning. arXiv preprint arXiv:2409.00328, 2024.

Thomas E Yerxa, Eric Kee, Michael R DeWeese, and Emily A Cooper. Efficient sensory coding of
multidimensional stimuli. PLoS computational biology, 16(9):e1008146, 2020.

Pushi Zhang, Xiaoyu Chen, Li Zhao, Wei Xiong, Tao Qin, and Tie-Yan Liu. Distributional reinforce-
ment learning for multi-dimensional reward functions. Advances in Neural Information Processing
Systems, 34:1519–1529, 2021.

Bernardo Ávila Pires, Mark Rowland, Diana Borsa, Zhaohan Daniel Guo, Khimya Khetarpal, André
Barreto, David Abel, Rémi Munos, and Will Dabney. Optimizing return distributions with
distributional dynamic programming. arXiv preprint arXiv:2501.13028, 2025. URL https:
//arxiv.org/abs/2501.13028.

A APPENDIX

REPRODUCIBILITY STATEMENT

We have included all source code in the supplementary material and have thoroughly verified the
reproducibility of the experimental results. All proofs from derivations in the main text are included
in the Appendix with clear statements of the underlying assumptions.

12

https://arxiv.org/abs/2501.13028
https://arxiv.org/abs/2501.13028

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

1-DIMENSIONAL N-DIMENSIONAL

O
FF

LI
N

E

O
N

LI
N

E ?

Yerxa et al. PLOSCB, 2020

E�cient Coding

Barlow, 1961
Ganguli & Simoncelli, Neural Comp. 2014

θτ ← θτ + {
τ(s − θτ), if s > θτ,
(1 − τ)(s − θτ), if s > θτ

Distributional RL

Dabney et al, AAAI, 2018
Dabney, Kurth-Nelson et al, Nature, 2020

INEFFICIENT

EFFICIENT

TRAJECTORY

Zhang et al. NeurIPS, 2021

Figure 5: We summarize related work in terms of: 1) the dimensionality (from one-dimension
to n-dimensional) of the stimulus space; 2) if the population code (quantile or neural) is learned
through online interactions with the environment stimuli or optimized offline; 3) if the learning
trajectory is efficient or not. Classical work (Barlow, 1961; Ganguli & Simoncelli, 2014) (one-
dimensional stimuli) and recent generalizations (Yerxa et al., 2020) (n-dimensional stimuli) optimize
population codes offline while distributional RL (Dabney et al., 2018b) provides learning rules for
quantiles approximating one-dimensional distributions. Recently, multidimensional distributional RL
approaches were proposed (Zhang et al., 2021), however it leads to inefficient learning trajectories.
Our work fills in the bacl upper-right quadrant with n-dimensional codes being learned through
online efficient updating rules.

A.1 DEFINING QUANTILES AND EXPECTILES

We briefly summarize the definitions of quantiles and expectiles of a distribution for reference.
Essentially, quantiles generalize the median statistic of a distribution and expectiles generalize the
mean statistic Rowland et al. (2019).

• The η-quantile θ of a random variable R with probability mass function p satisfies:
ηp(r < θ) = (1− η)p(r ≥ θ).

The median is the 0.5-quantile (η = 0.5).
• The η-expectile r̄ satisfies Newey & Powell (1987):

ηE[(r̄ − r)−] = (1− η)E[(r̄ − r)+] .

The expectiles are distributed according to the cumulative distribution,

P (r̄) ∼ E[(r̄ − r)+]

E[|r̄ − r|]
.

The mean is the 0.5-expectile (η = 0.5).

A.2 COMPARING DISTRIBUTIONAL NEURAL LEARNING RULES WITH MAXIMUM MEAN
DISCREPANCY LEARNING RULES

In (Zhang et al., 2021), a distributional learning algorithm is proposed for multi-dimensional reward
functions based on the maximum mean discrepancy (MMD) (Gretton et al., 2012), extending the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a)

x

y

x

y

Hippocampus place cells

(b)

y

(c)

x

x

y

Distributional neural learning

Figure 6: (a,b) Vector field generated by the MMD and DNL learning rules for the experiment where
the spatial occupancy is manipulated, by removing the lower triangle (represented as dashed lines).
Decoding error for both algorithms.

one-dimensional MMD-based algorithm in (Nguyen et al., 2020). The proposed learning algorithm,
similarly to our algorithm, approximates the target distribution using a finite set of units. However,
rather than minimizing the KL divergence, it minimizes the MMD between the approximated q′ and
target p3 distributions:

qt+1 = arg min
q′∈Q
{MMD2(q′, p(s))} , (7)

where Q = {q′ : q′ =
∑N

i=1
1
N δθi}. Here we derive exact analytic update rules considering a

Gaussian kernel k with covariance matrix Σ:
k(x, z) = exp

(
− 1

2 (x− z)⊤ Σ−1 (x− z)
)
, ∇xk(x, z) = −Σ−1(x− z) k(x, z).

Considering an approximation of the target distribution p(s) =
∑M

i=1
1
M δνi , the gradient of

MMD2(q′, p(s))} with respect to unit θi is given by:

∇θi
MMD2

(
q′, p(s)

)
= − 2

N2

∑
i′

∇θi
k(θi,θi′) +

2

NM

∑
j

∇θi
k(θi,νj)

= − 2

N2

∑
i′

Σ−1(θi − θi′) k(θi,θi′) +
2

NM

∑
j

Σ−1(θi − νj) k(θi,νj).

The update for unit θi is therefore given by:

θi ← θi − α∇θi
MMD2(q′, p(s)),

where α is the learning rate. As an aside, these dynamics correspond to a so-called “blob method” in
the particle optimization framework (Chen et al.).

The DNL Wasserstein regularization enforces the conservation os the population geometry through
learning. Preserving population geometry ensures that decoders remain effective across changing
contexts and stimulus distributions, thereby removing the need for retraining. To illustrate this,
in addition to the simulation described in Fig.1(c), we simulate a spatial cognitive task (Krupic
et al., 2015) where the environment shape changes, by removing the lower triangle as represented
in Fig. 6(d-f). As observed in hippocampus place cells (Krupic et al., 2015), DNL, but not MMD,
enforces the conservation of the population geometry, and therefore a linear decoder based on DNL
representations adapts faster to the new distribution(Fig. 6(a-c)). In particular, we decoded the mean
of the x spatial coordinate of the 10% closest units to the origin.

A.3 DERIVING THE DISTRIBUTIONAL NEURAL LEARNING RULES IN DETAIL

We optimize the reward distribution representation, quantified by the KL divergence between the unit
distribution and the target reward distribution, and the efficiency of the learning trajectory, quantified
by the Wasserstein distance between unit distributions across iterations,

qt+1 = arg min
q′∈Q
{DKL(q

′||p(r))) + 1

h
W 2

2 (q
′, qt)}, (8)

3In this section both rewards and spatial samples are denoted by s.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where r ∈ RN , h is a step-size, p(r) is discretized and represented by samples from the target
distribution, qt is the unit distribution at time-step t and Q = {q′ : q′ =

∑N
i=1

1
N δθi

}. We use the
learning rules derived in Chen et al. (2018b). In particular, the KL divergence can be decomposed as,

DKL(q
′||p(r))) =

∫
r

q′(r) log
q′(r)

p(r)
dr =

∫
r

q′(r)(log q′(r)−log p(r))dr = Eq′ [log q
′]−Eq′ [log q

′(r|θ)].

Introducing the likelihood function of parameters θ given samples s, q′(r|θ) = l(θ|r), equation 8
(Chen et al., 2018a) can be rewritten as the sum of two terms:

qt+1 = arg min
q′∈Q
{−Eq′ [log l(θ|r)]︸ ︷︷ ︸

F1

+E′
q[log q

′] +
1

h
W 2

2 (q
′, qt(r))︸ ︷︷ ︸

F2

}, (9)

the term F1 attracts the units towards the samples and the F2 regularizes the unit interactions. Then,
distributional neural learning (DNL) rules can be derived for each unit,

θt+1
i ← θt

i − α

(
∂F1

∂θi
+

∂F2

∂θi

)
. (10)

The gradient of F1 is given by:
∂F1

∂θi
= −∇θi log l(θi|s) .

To approximate the gradient of F2, let {pij}Ni,j=1 denote the joint distribution (or coupling in optimal
transport literature) of the unit-pair across iterations (θi,θt

j) ∈ Rd × Rd. In order to obtain closed-
form, explicit learning rules, an entropy penalty (weighted by λ) is added to pij . The term Eq[log q]
is minimized when the particles are uniformly distributed, i.e., when the marginal distributions
(
∑

j pij)i are uniform.

Combining all terms and using the definition of W2, minimizing F2 is equivalent to solving the
following optimization problem:

{pij} = argmin
pij

∑
i,j

λpij log pij +
1

h
pijdij such that

∑
j

pij =
1

N
and

∑
i

pij =
1

N
,

where dij = ||θi − θt
j ||2. Considering the dual variables {αi}Di=1 and {βj}Dj=1, the Lagrangian is

given by:

L({pij}, {αi}, {βi}) =
{∑

i,j

λpij log pij+
1

h
pijdij+

∑
i

αi

(∑
j

pij−
1

N

)
+
∑
j

βj

(∑
i

pij−
1

N

)}
.

(11)
Setting ∂L/∂pij = 0 yields

∂L
∂pij

=

(
λ
(
1 + log pij

)
+

dij
h

)
+ αi + βj = 0 =⇒ p∗ij = exp

(
−1− dij/h+αi+βj

λ

)
.

Setting ui = e−
1
2−

αi
λ and vj = e−

1
2−

βj
λ , the gradient of F2 with respect to θi is given by:

∂F2

∂θi
≈

∑
j

2uivj

(
dij
λ
− 1

)
e−dij/λ(θi − θt

j),

where we considered the λ parameter absorves the step-size h. Theoretically, the dual values {αi, βj}
can be computed using Sinkhorn’s fixed point iteration (Algorithm 1 in (Cuturi, 2013)). In practice,
we use a constants scalar c to approximate 2uivj .

A.4 DERIVING THE 1-DIMENSIONAL APPROXIMATION TO EXPECTILE LEARNING RULES IN
DETAIL

In the limit λ→∞, the F2 gradient with respect to θi tends to:
∂F2

∂θi
→ −

∑
j

c(θi − θtj) =
∑
j

c(θtj − θi)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Since in one dimensions, the units can be ordered from lower to higher values:

∂F2

∂θi
=

∑
j:θj<θi

c(θtj − θi) +
∑

j:θj>θi

c(θtj − θi),

By approximating the interactions with a given unit θi in F2 by the interactions with the mean of the
units to its left (θ̄LEFT) and right (θ̄RIGHT), we get:

∂F2

∂θi
≈ cNLEFT(θ̄LEFT − θi) + cNRIGHT(θ̄RIGHT − θi),

where NLEFT and NRIGHT are the number of units to the left and right of θi respectively. Since
τ = NLEFT

N fraction of the units are to the left and 1− τ are to the right:

∂F2

∂θi
≈ +cτ(θ̄LEFT − θi) + c(1− τ)(θ̄RIGHT − θi).

Noticing θ̄LEFT ≈ E[r|r ≤ θi] and θ̄RIGHT ≈ E[r|r > θi], considering the stochastic approximation
θ̄LEFT ≈ r when r ≤ θi and θ̄RIGHT ≈ r when r > θi:

∂F2

∂θi
≈ τcδr<θi(r − θi) + (1− τ)cδr>θi(r − θi).

Considering a Gaussian likelihood with standard deviation β, l(θi|r) ∼ N (r, β2), the F1 term is
given by:

∂F1

∂θi
= − 1

β2
(r − θi).

Setting c = β = 1 our learning rules become:

θτ ← θτ + (1− τ)δr<θi(r − θi) + τδr>θi(r − θi),

which are the one-dimensional expectile learning rules Bellemare et al. (2017).

A.5 DERIVING SUFFICIENT CONDITIONS FOR OPTIMAL DISTRIBUTIONAL LEARNING
TRAJECTORY

In this section we provide sufficient conditions for the DNL learning rules to converge to globally
optimal transport map from the initial to the converged distribution and show that this condition is
always satisfied for one-dimensional distributions.

The Jordan–Kinderlehrer–Otto (JKO) flow (Jordan et al., 1998) states that the trajectory obtained by
solving the Fokker-Planck equation (FPE) is the gradient flow of the appropriate target objective (e.g.
KL-divergence between initial and target densities) in the Wasserstein space of probability measures
Jordan et al. (1998); Otto (2001). We can therefore draw on tools from FPE convergence analysis
(Kim & Milman, 2012), to characterize the convergence of our distributional neural learning rules.

The FPE does not minimize in general the global Wasserstein metric Lavenant & Santambrogio
(2022); Tanana (2021). Here, we revisit a classic result that provides sufficient conditions for the
minimization of the global Wasserstein metric Kim & Milman (2012).

The FPE describes the time-evolution of the probability density ρ of the random vector R,

∂ρ

∂t
= ∇ · (rρ) + ∆ρ. (12)

It generates a curve (ρt)t≥0 of probability measures that converge to the unit standard Gaussian γ.
Building on theoretical advances that connect transportation of measures to the FPE Jordan et al.
(1998), Eqn. 12 can be recast as the transport equation

∂ρ(r)

∂t
= −∇ · (ρv), (13)

where the velocity field is given by,

v(t, r) = −r −∇ log ρt(r), (14)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Rotation Shearing Radial symmetry
Initial TargetInitial TargetInitial Target

(a) (b) (c)

Figure 7: In (a) and (b) we simulate cases where the Jacobian of the unit update rules is not symmetric
and therefore generates globally twisted transport maps. In (c) we simulate the case where the initial
and target distributions are radial symmetric, and therefore the Jacobian of the update is symmetric
and the transport map is optimal. Each panel represents on the top the initial (magenta) and target
(green) distributions and on the bottom the learning trajectory, with the gradient flow represented as
black arrows.

and can be interpreted as the Wasserstein velocity of the curve (ρt)t≥0 (i.e. the vector field providing
the steepest descent in functional space according to the Wasserstein metric) Santambrogio (2015).
We consider the ordinary differential equation (ODE) generated by v and define a function of transport
maps S : R≥0 × Rd×d → Rd×d defined by,{

∂S
∂t = v(t, S) = −S −∇ log ρt(S),

S(0, .) = Id.
(15)

This allows us to view ρt as the pushforward of ρ0 under the flow map St, ρt = St#ρ0. We will
derive sufficient conditions for S∞ to be the optimal transport map between ρ0 and γ and minimize
the global 2-Wasserstein metric. Differentiating Eqn. 15 we obtain,

∂DSt

∂t
= −DSt −D2 log ρt(St)DSt = −(I +D2 log ρt(St))DSt . (16)

To simplify notation let Bt(r) = −(I +D2 log ρt(St)). If all D2 log ρt(St) commute, then all Bt(r)
also commute and DSt remains symmetric along the flow and we can write,

DSt(x) = exp

(∫ t

0

Bτ (x)dτ

)
, (17)

from which it follows that DSt is pointwise semi-definite and hence St must be the gradient of a
convex function. Finally, taking in account Brenier’s theorem Santambrogio (2015) and taking the
limit t→∞, we conclude S∞ is the optimal transport map.

Conversely, this result states that probability measures that generate flows with symmetric Jacobians
imply that the learning trajectory will be equivalent to the optimal transport map, i.e. Eqn. 12
minimizes the 2-Wasserstein metric. This criterion is satisfied by radially symmetric probability
measures such as Gaussians with isotropic covariance. In SFig. 7c we give an example, where the
initial and target distributions are radially symmetric, hence the flow Jacobians are symmetric and
Eqn. 12 coincides with the optimal transport. Notably, the Jacobians along the gradient flow of a one-
dimensional probability measure is scalar and thus is trivially symmetric. Therefore, distributional RL
(without function approximation) converges on the optimal learning trajectories in the large sample
limit.

However, in general this implies that, Eqn. 12 flow introduces a curl on the trajectory of probability
measures. For example, if we replace −r by −Ar in the drift in Eqn. 14, then ρt converges to a
Gaussian with covariance A−1. Selecting a matrix A that does not commute with the initial density
covariance, then Eqn. 12 generates curled trajectories, such as the rotation and shearing examples
shown in SFig.7a,b).

A.6 DEEP DISTRIBUTIONAL NEURAL LEARNING EXPERIMENTS

We train a deep quantile regression network (DQR) Dabney et al. (2018b) to predict N = 100
reward quantiles and a deep distributional neural learning network (DNL) to predict N = 100

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Deep quantile
 regression (DQR)

Distributions neural
learning (DNL)

Hidden layers

DQR DNL

Pr
ob

ab
ili

ty

(a) (b)

Hidden layers

Figure 8: (a) Representation of the DQR and DNL networks. (b) The dots correspond to a quantile
for a given orientation in the DQR case and a multidimensional quantile in reward and orientation in
the DNL case. The target distributions are represented in the background. On the right, the 95% C.I.
of KL divergence between the quantiles and the target distribution is shown for 10 runs.

multidimensional quantiles over reward magnitude and orientation. The DQR and DNL networks
have two hidden layers with 1024 and 256 units. The Adam optimizer was used, with an initial
learning rate of 0.0001. Mini-batches of 200 samples were used, and the networks were trained for
1000 epochs. Since the Wasserstein distance is computationally expensive, we employ the Maximum
Mean Discrepancy (MMD) as a practical approximation in these simulations Gretton et al. (2012).
For the MMD computation, we set the kernel bandwidth parameter bw = 4 and used 1000 samples
to estimate the distributions.

A.7 MODELING CELL ADAPTATION IN THE BRAIN VIA DISTRIBUTIONAL NEURAL LEARNING

(a) (b)Place cells in hippocampus Grid cells in MEC

D
it

ri
bu

ti
on

al
 n

eu
ra

l
le

ar
ni

ng
 p

re
di

ct
io

n

Mean field
displacement

K
ru

pi
c

et
 a

l (
20

18
)

B
oc

ca
ra

 e
t

al
 (

20
19

)
D

it
ri

bu
ti

on
al

 n
eu

ra
l

le
ar

ni
ng

 p
re

di
ct

io
n

Figure 9: (a) Top: adapted from Krupic et al. (2018). Middle: Mean field displacement (left) and
vector field (right) for an example place cell population, when modifying the shape of the environment.
Bottom: predictions from DNL theory. (b) Top: adapted from Boccara et al. (2019). Middle : Spikes
of an example grid field (left), distribution of the distance to the closest goal (center) and proportion
of fields at goal (right) pre (blue) and post-probe (red) to new reward locations. Bottom: predictions
from DNL theory.

In order to demonstrate the utility of the distributional neural learning framework for understanding
neural coding in the brain, we model two datasets of neural population codes in spatial navigation
paradigms whereby the target stimulus is a two-dimensional representation of space.

Krupic et al Krupic et al. (2018) allowed rodents to explore an environment before exposing them to
a locally transformed version of it (SFig. 9 (a), top) and found that place cells in the hippocampus
adapted their tuning to the altered shape of the environment (SFig. 9 (a), middle). We modeled each

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

place cell tuning in terms of each neuron’s preferred spatial position {θi}Ni=1. The spatial distribution
pθ, optimized for this population, was interpolated from {θi}Ni=1, conceptualized as approximate
Dirac delta functions in probability space. Initially, samples of x and y spatial positions that uniformly
covered the rectangular space were given until convergence. Subsequently, only samples from the
trapezoidal region were provided. Our simulations show that the DNL theory generates place fields
that adapt to the shape of the environment (SFig. 9 (a), bottom).

In another study, Boccara et al Boccara et al. (2019) trained rats to daily learn three new reward
locations on a cheeseboard maze while recording from the medial entorhinal cortex (MEC) and found
many grid fields moved toward goal location (SFig. 9 (b), middle). We modeled the tuning functions
of grid cells as two-dimensional hexagonal grids. Samples of reward x and y spatial positions were
given. Our simulations show that the DNL theory generates grid fields that move towards reward
locations (SFig. 9 (b), bottom).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL DETAILS

B.1 DISTRIBUTIONAL NEURAL LEARNING CONVERGENCE SIMULATIONS

For the DNL simulation shown in Fig. 1b (main text), we initialized the N = 100 units uniformly
spaced in the rectangle delimited by x = 3.5 and x = 5.75 and y = 0 to y = 10. The following
hyperparameters were used for the distributional neural learning rules defined in Eqn. 6 of the main
manuscript:

• Total number of iterations: 1000.
• Batch size: 500.
• Gaussian KDE bandwidth: 0.4.
• Unit interaction regularization parameter: c = 1000

• Interaction attraction-repulsion term λ = 0.1.
• Learning rate α = 0.1 reduced by 50% every 500 iterations.

For the DNL simulation shown in Fig. 1c (main text) we initialized N = 12 units sampled from a

Gaussian with mean µ = [1, 1] and covariance matrix Σ =

[
0.25 0
0 0.25

]
. Samples from a Gaussian

were given with mean µ = [3, 3] and covariance matrix: Σ =

[
0.5 0
0 0.5

]
. The likelihood function

was estimated from the stimulus samples using kernel density estimation, as implemented in the
gaussian kernel density function from SciPy Virtanen et al. (2020). The following parameters were
used for the distributional neural learning rules defined in Eqn. 5 of the main manuscript:

• Total number of iterations: 30 000.
• Batch size: 10.
• Gaussian KDE bandwidth: 3.
• Unit interaction regularization parameter c = 200.
• Interaction attraction-repulsion term: λ = 0.1.
• Learning rate α = 0.1.

For the MMD, the total number of iterations and batch size were kept the same. To ensure that the
absolute update magnitude was not smaller than in DNL, we set the learning rate to α = 2. Gaussian
kernels with different covariance matrix were used:

Σ =

[
σ 0
0 σ

]
,

with σ = 0.1, 0.25, 0.5, 0.75. The value decoded error was the square of the difference of the true
and decoded value, V =

∑
i riγ

τi , where θi = (τi, ri), computed using the 25% units closest to the
origin.

For the simulations of the spatial cognitive task the following parameters were considered:

• Total number of iterations: 1000.
• Batch size: 25.
• Gaussian KDE bandwidth: 0.4.
• Unit interaction regularization parameter c = 5.
• Interaction attraction-repulsion term: λ = 0.07.
• Learning rate α = 0.001.

In this case, the mean of the x spatial coordinate of the 10% closest units to the origin was decoded.
To ensure that the absolute update magnitude was not smaller than in DNL, we set the learning rate
to α = 4.5.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.2 MODELING CELL ADAPTATION VIA DISTRIBUTIONAL NEURAL LEARNING

For the adaptation of place cells (Fig. 9a), we considered the following parameters for the distribu-
tional neural learning rules defined in Eqn. 5 of the main manuscript:

• Total number of iterations: 500 .
• Batch size: 25 .
• Gaussian KDE bandwidth: 0.4 .
• Unit interaction regularization parameter: c = 5 .
• Interaction attraction-repulsion term: λ = 0.07 .
• Learning rate α = 0.001 .

For the adaptation of grid cells (9b) we considered the following parameters for the distributional
neural learning rules defined in Eqn. 5 of the main manuscript:

• Total number of iterations: 350 .
• Batch size: 25 .
• Gaussian KDE bandwidth: 0.4 .
• Unit interaction regularization parameter: c = 1000 .
• Interaction attraction-repulsion term λ = 0.08 .
• Learning rate α = 0.01 .

B.3 GENERALIZATION IN RL OVER REWARD DYNAMICS USING TIME-MAGNITUDE MAPS

We use two different environments. The first uses n states (or patches) and n distinct stimuli, each
associated with a different reward delay and magnitude following the stimulus. The second is a
gridworld environment with similarly structured stimuli and rewards. A stimulus appears with a
random probability at each time step with equal probability for all stimulus.

These experiments were designed to demonstrate that a reinforcement learning agent can learn
structure in the environment rapidly using the reward TMD. To fairly compare learning to a standard
RL model, in the training steps, random actions were taken for both the standard RL and TMRL
models. This was done just to be certain that the convergence rates were not due to bad policy
initializations or local minima. During test steps, both agents used a greedy policy.

B.3.1 PATCH EXPERIMENTS

This simple environment was designed such that the Q-value of actions (one possible action for every
possible state transition) only depended on the probability of reward at the next time step. Tracking
the reward delays and magnitudes is shown to be useful but there is no need to learn a policy for
sequential decisions as an action from one state can bring the agent to any other state in the next time
step. As long as the agent is able to track the time since each cue and has learned a mapping from
the time since each cue to a probability of reward appearing with a certain magnitude, the agent can
simply take the action to the state with the highest expected reward at the next time.

The reward rates shown are during test trials of 10000 time steps using a greedy policy in both models.
The parameters are given below:

• number of runs for each model: 10
• number of states/stimuli: n ∈ {2, 3, 4, 5}
• maximum reward delay: 5
• maximum reward magnitude: 4
• probability of each stimulus shown at every time step: 0.1
• number of training steps: 10000
• number of test steps: 10000
• test every 100 steps of training

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Patch environment The environment has n patches/states, n ∈ {2, 3, 4, 5}. The agent can perform
an action to transition from its current state to any other deterministically. The environment also has
the same number n of stimuli which each cue a reward after a certain delay and magnitude drawn
from a distribution. The reward cued by stimuli i would be available in state i for simplicity but
similar results would hold without this constraint. At every time step, regardless of the current state
of the agent, the probability of stimuli i appearing was drawn with probability 0.1, independent of
all other stimuli. Multiple stimuli were allowed to appear at the same timestep. A second stimulus
was also allowed to occur before the delivery of reward from a previous stimulus. Each stimulus was
associated with a probabilistic reward TMD which was constructed randomly. For each stimulus, the
TMD was constructed to have 0.5 probability of reward appearing at some delay t1 after the stimulus
with magnitude r1 and 0.5 probability for delay t2 and r2. For each stimulus t1, t2, r1 and r2 were
randomly chosen with uniform probability with maximum magnitude 4 and maximum delay 5. After
every presentation of a stimulus i, a reward would be available at state i with delay and magnitude
drawn from the true TMD i, independently after each presentation. The reward would then only be
available at only the time after the cue and would not remain after that time step.

TMRL agent This agent separately tracked two parts of its state, the current patch it was in st and
the time since each of the stimuli τi (up to the maximum delay time). At every time step, if a stimulus
i was seen, the current time delay τ ti was reset to 0 for that stimulus, otherwise the time increased by
1.

The reward TMD (TMDi(s
′, τ ′, r′) is the probability of reward at location s′ of magnitude

r′ at delay time τ ′ after stimulus i) was learned by the agent using the DNL learning rules,
TMDi(s, τ,m) ≈ 1

N

∑
i δθs

j
(r)δθs

j
(τ) using units θj = (τθj

, rθj
). To make the Q value easy

to compute, the approximation discretized the magnitude and delay space into a matrix and the
percentage of units in each discrete square was used as a probability. Parameters for the DNL learning
are given below:

Parameters of the TMRL agents including the ablations:

• Batch size: 100.
• Gaussian KDE bandwidth: 0.5.
• Unit interaction regularization parameter: γ = 100.0.
• Interaction attraction-repulsion term λ = 4.0.
• DNL learning rate starting at αDNL = 0.001 and decreased to αDNL = 0.0001 over 5000

training steps
• Number of units N = 25.
• Covariance of 0.05 times the identity matrix.
• TMD learning rate αTMD = 0.01

At test time, the agent chooses greedy actions by looking only at the reward TMDs for each stimulus
and the current time since each stimulus τi. Using this, it can construct the probability of reward
times and magnitudes for each state (TMDt

total). Here we simply update TMDt
total at every time

step given all the observed stimuli j at time t,

TMDt
total(s, τ

′, r′) ← TMDt−1
total(s, τ

′ + 1, r′) +
∑

j observed at time t

TMDj(s, τ
′, r′)

for 1 ≤ τ ′ ≤ τD − 1 (18)

TMDt
total(s, τ

′, r′) ←
∑

j observed at time t

TMDj(s, τ
′, r′) for τ ′ = τD (19)

where τD is the maximum reward delay. The greedy policy simply picks the action for the state with
the largest expected reward at the next time step

at = argmaxi
∑
r

r TMDt
total(s = i, 1, r) (20)

The full algorithm is given in Algorithm 1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 1 TMRL Agent in Patch Environment

1: Initialize TMDi, ∀i to all 0
2: Initialize τi to τD, ∀i
3: function ACT(s)
4: Choose action at from TMDt

total using greedy policy ▷ Equation 20
5: end function
6: function TRAIN(s, a, r, s′)
7: if stimulus j is observed then
8: τ tj = 0
9: else

10: τ tj += 1
11: end if
12: if reward is observed then
13: for i from 0 to C do ▷ C is the number of stimuli
14: if τ ti < τ then
15: TMDi(·, ·, ·)← TMDi(·, ·, ·) + αδTMDi

(·, ·, ·) ▷ Equation 4
16: end if
17: end for
18: end if
19: end function

Standard RL agent The standard RL agent had an expanded state space that represented the
current patch and the time since each stimuli. This state space has a discrete state for every possible
combination of cue delays (up to the maximum delay time).

Value for this agent was learned by standard temporal difference learning

δV (t) = rt − V (st) (21)
V (st) = V (st) + αδV (t) (22)

where rt is the reward at time t. Here we do not need to include γV (st+1) because there is no need
for sequential decisions. We just learn a value for every state that is the average reward.

As the actions are deterministic and because we only give reward when the agent is in the correct
state, we can determine the action at under the greedy policy at state st by just looking at the value
of V (st+1) after taking that action. In the patch environment this is particularly easy as each action
at = i corresponds to moving to one of the locations i. However, the state space is a combination of
state and delay so st+1 should be the next location i and the delays from stimuli after one time step.

The full algorithm is given in Algorithm 2

Algorithm 2 Standard Agent in Patch Environment

1: Initialize V (s)
2: Initialize state s

3: function ACT(s)
4: Compute Q(a) = V (s′) for actions a from state s and transitioning to state s′

5: return argmaxa Q(a)
6: end function
7: function TRAIN(s, a, r, s′)
8: V (s)← V (s) + α [rt − γV (s)] ▷ Treat as bandit task at s
9: end function

Ablation experiments In order to demonstrate the necessity of the multidistributional distribution in
TMRL in achieving fast generalizations to different stimulus combinations in the task, we perform an
ablation experiment. We learn on the patch environment with the same TMRL parameters. However,
during testing, when using the learned stimulus TMD to compute the action, we only use the time

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

dimension and the expected value along the magnitude dimension (time only) or we only use the
magnitude dimension and expectation along the time dimension (magnitude only) of the distributions.
Here, the agents have the same structure but only compute policy with 1D distributions rather than
the joint. To highlight the differences, we use stimulus TMDs in the environment where the TMD
for stimulus i has 0.5 probability of reward at (τ1i , r

1
i) and 0.5 probability of reward at (τ2i , r

2
i).

For every stimulus i, τ1i and τ2i had a difference of 3 time steps and r1i and r2i had a magnitude
difference of 8. In this way, the expectation across either time or magnitude of the learned TMDs
were poor representations of the distribution. Furthermore, we simulated these environments with
different values of the probability of a stimulus appearing. As seen in Supplementary Fig. 10, the
magnitude only agent performs extremely poorly. This is because timing information in crucial in
this environment as rewards are only available at delay τ1i or τ2i after stimulus i. The magnitude only
agent expects the reward at the expectation over delays when there is no reward. The time only agent
performs fairly well with only the delay distribution. This agent can go the the correct states at the
correct times. However, as the probability of stimuli increase, it becomes more likely that rewards
occur at the same time in different states. In these situations, the time only agent must act using
only the expected value of the magnitudes rather than comparing r1i with r1j or r2i with rj1 etc. The
expected value fails to represent all the information available to the full TMRL agent. Parameters of
the environment are listed below:

• number of runs for each model: 10

• number of states/stimuli: 3

• maximum reward delay: 5

• maximum reward magnitude: 10

• probability of each stimulus shown at every time step: 0.1

• number of training steps: 100000

• number of test steps: 10000

• test every 100 steps of training

• cue probability: {0.05, 0.1, 0.2}

Parameters of the TMRL agents including the ablations:

• Batch size: 100.

• Gaussian KDE bandwidth: 0.5.

• Unit interaction regularization parameter: γ = 100.0.

• Interaction attraction-repulsion term λ = 4.0.

• DNL learning rate starting at αDNL = 0.001 and decreased to αDNL = 0.0001 over 5000
training steps

• Number of units N = 25.

• Covariance of 0.05 times the identity matrix.

• TMD learning rate αTMD = 0.01

B.3.2 GRIDWORLD EXPERIMENTS

This environment was designed such that sequential decisions are necessary as agents must travel to
the next reward location and must know if they will reach that location before the delay time. If two
stimuli appear close in time, the agent must decide which of the different reward locations will give
the best expected reward, again considering the reward magnitudes and delays with travel time to the
location.

During training, we used random actions to collect observed samples for the TMRL standard RL, and
QR-RL agents. This was done simply to show that learning speed was not due to better initial policies
of the model. The reward rates shown are during test trials of 10000 time steps using a greedy policy
in all models. The parameters are given below:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 10: Ablation experiments TMRL (blue) using DNL update rules compared to time only
(green) and magnitude only (red) ablated TMRL agents. Performance in the patches environment for
a varying probability of appearance of the stimuli. (a) Reward rate of agents training over time steps
on the patch environment. Reward rate is normalized to the largest mean reward achieved so that
performance can be compared across environments with different probability of stimuli appearance.
(b) Same data as (a) but only showing the final reward rate after 100000 train steps.

• number of runs for each model: 10

• gridworld size: 5×5
• gridworld number of possible actions: 4

• maximum reward delay: 5

• maximum reward magnitude: 4

• probability of each stimulus shown at every time step: 0.1

• number of cues: n ∈ {3, 4, 5}
• number of training steps: 300000

• number of test steps: 10000

• test every 1000 steps of training

Gridworld environment The gridworld was constructed with a grid of size 5×5 with 4 possible
deterministic actions: up, down, left, and right. Similar to the patch environments, this gridworld
environment also has n stimuli, n ∈ {2, 3, 4, 5}, each associated with a TMD constructed the same
way with maximum magnitude 4 and maximum delay 5. In addition, the location of the reward on
the grid was also randomly chosen for each stimulus. Again, the probability of observing a stimulus
at each timestep was a fixed probability of 0.1 for every stimulus. Just as in the patch environment,
we place no restriction on when the stimuli can appear. Multiple can appear simultaneously, they can
appear before the reward was given for a previous stimulus, and they can appear while the agent is in
any state. The reward is only available at a certain time and location, with a certain magnitude, and is
not available afterward if not collected.

TMRL agent Similar to the previous TMRL agent, this agent separately tracked two parts of its
state, the current location in the gridworld st and the time since each of the stimuli τi (up to the
maximum delay time τD). These were updated using the same method as above.

The reward TMD was also learned similarly by the agent through temporal difference learning with s
now the location on the grid. The TMDi for stimulus i was learning using the DNL update rules in
equation 4 and discretized to create a matrix in order to use the successor representations.

We again find the TMDt
total that tracks the possible reward locations, delay from current time t, and

magnitude given the past history of observed stimuli as in equation 18.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

To select actions using the learned TMD, the TMRL agent also learns n successor representations
(SR). In these experiments, we just set n to the number of stimuli. Each SR Mπi will represent the
discounted future state occupancy of state s′ in the grid starting from state s and following a policy πi.
Multiple SR’s allow the agent to learn multiple policies and combine them using generalized policy
improvement (GPI) Barreto et al. (2016). This is useful when the agent encounters a combination of
stimuli with different timings and must find the policy that maximizes reward.

In the SR framework, the TMDt
total will serve as our reward vector in the vanilla SR. Essentially,

given the past history of observed stimuli, the TMDt
total tracks the location of possible rewards,

their time delay from the current time point, and their magnitude. To use the TMD with the SR, we
simply expand the SR matrix to include the time of occupancy of each state, Mπ(s, s′, τ), where τ is
the number of time steps after starting in state s (see Supplementary Fig. 11). We only track τ up
to the maximum delay time τD since this is the time horizon we care about. Then multiplying the
SR Mπ(s, s′, τ) by the TMDt

total(s
′, τ, r) gives us the discounted probability of seeing reward of

magnitude r starting from state s and following policy π.

First we find a weighting for the update of SR given by Wi(st, at) for each policy πi

Hi(s
′, τ − τi,m) = TMDi(s

′, τ, r) for τD ≥ τ ≥ τi (23)

Wi(st, at) =
∑
r

r Hi(st+1, 0, r) +
∑

s′,τ ′,r′

r′Mπi(st+1, s
′, τ ′) ·Hi(s

′, τ ′ + 1, r′)

where at is action, st is state/location at time t, st+1 is the next state after taking action at, and
τi is the time since the previous observation of stimulus i. Hi is the reward time and magnitude
distribution for stimulus i given the current time from the previous observation of stimulus i, τi. τD
is the maximum reward delay that is tracked. Hi is similar to total_TMD but only for each stimulus
separated. We use this only to get importance weights Wi(st, at) used in the updates of the SR as
seen below. These importance weights bias the SR to represent separate policies for each stimulus
which can later be combined for GPI.

To learn this SR, we again use TD learning but weight the updates such that the policy πj with the
maximum action probability for the action at that was taken gets larger weight.

j = max
i

Wi(st, at) (24)

w(j) = 1− ϵ (25)
w(i) = ϵ/A, ∀i ̸= j (26)

δMl
(s′, τ) = 1[s′ = st+1, τ = 0] + γ ∗Mπl(st+1, s

′, τ + 1)−Mπl(st, s
′, τ) (27)

Mπl(st, s
′, τ) ← Mπl(st, s

′, τ) + αw(l)δMl
(s, s′, τ) (28)

where ϵ = 0.1 is a free parameter and A = 4 is the number of possible actions.

Figure 11: (a) In order to compute value in a state s , the SR over future states is multiplied by the
reward vector. (b) We generalize this approach by considering the SR is also defined over future
times, do that it may be combined with the TMD representations.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Finally, to find the best action, we use GPI.

Qj(st, at) =
∑
r

r TMDt
total(st+1, 0, r) +∑

s′,τ,r′

r′ Mπj (st+1, s
′, τ) · TMDt

total(s
′, τ + 1, r′) (29)

at = argmaxat
max

j
Qj(st, at) (30)

The full algorithm is given in Algorithm 3.

Algorithm 3 TMRL Agent in GridWorld

1: Initialize TMDi, ∀i to all 0
2: Initialize τi to τD ∀i
3: function ACT(s)
4: Choose action at from TMDt

total and Mπi using GPI ▷ Equation 36 - 37
5: end function
6: function TRAIN(s, a, r, s′)
7: if stimulus j is observed then
8: τj = 0
9: else

10: τj += 1
11: end if
12: Update TMDt

total ▷ Equation 18
13: if reward is observed then
14: Update TMDi using DNL learning rules
15: end if
16: for i from 0 to C do ▷ C is the number of stimuli
17: Mπi(st, s

′, k)←Mπi(st, s
′, k) + αw(i)δMi

(s, s′, k) ▷ Update SR. Equation 24
18: end for
19: end function

Standard RL agent This agent simply used standard Q-learning as shown in Algorithm 4. The
state s is a state that represents both the current location on the grid but also the current time delay
since each of the stimuli.

Algorithm 4 Standard Agent in GridWorld

1: Initialize Q(s, a) for all states s and actions a

2: function ACT(s)
3: Choose action a from s using greedy policy on Q
4: end function
5: function TRAIN(s, a, r, s′)
6: Q(s, a)← Q(s, a) + α

[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
7: end function

Quantile Regression Reinforcement Learning (QR-RL) agent The QR-RL agent uses the same
expanded state space over grid location and time since each stimulus as the standard RL agent but also
learns the return distribution using quantiles rather than the expected value. This is to show that simply
adding the magnitude distribution is not enough to see any generalization performance increase.
For a comparison with only the grid location as a state space, we use the ablation experiments in
Supplementary Section B.3.1. The algorithm for this model is given in 5. The parameters are the
same as above but with N = 50 quantiles used and huber κ = 1.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Algorithm 5 Distributional RL with Quantile Regression

1: Initialize quantiles θ(s, a) ∈ RN for all states s, actions a
2: Set quantile midpoints hi =

i+0.5
N , i = 0, . . . , N − 1

3: function ACT(s)
4: Compute mean action-values Q(a) = 1

N

∑N
i=1 θi(s, a)

5: return argmaxa Q(a)
6: end function
7: function TRAIN(s, a, r, s′)
8: θ ← θ(s, a) ▷ Current quantiles
9: a′ ← ACT(s′) ▷ Next greedy action

10: θ′ ← θ(s′, a′) ▷ Next-state quantiles
11: target← r + γ · θ′
12: Compute pairwise differences dij = targetj − θi
13: Compute Huber gradient:

gij =

{
dij |dij | ≤ κ

κ · sign(dij) otherwise

14: Compute quantile weights:
wij = hi − I[dij < 0]

15: Aggregate gradient:

δi =
1

N

N∑
j=1

wijgij

16: Update quantiles:
θi ← θi + αδi

17: end function

B.4 MODELING MULTIDIMENSIONAL RISK SENSITIVITY

B.4.1 RISK SENSITIVITY IN HUMAN BEHAVIOR

To model the human bandit experiments we considered a set of N = 10 units representing the
reward time magnitude distribution for each trial type. The subjective value was computed as:
V (s) =

∑
s′,τ ′∈{1,..,τD},r′ r

′ M(s, s′, τ ′)w(τ ′, r′)TMD(s′, τ ′, r′). Importantly, the reward time and
magnitudes were normalized by the maximum reward delay and magnitude. This task has a single
state, SR is the identity and the weighting for the factorized and multidimensional model are defined
in the main text.

B.4.2 MAGNITUDE RISK SENSITIVITY

We simulate this agent to display risk sensitivity to uncertainty in reward magnitudes in the gridworld
environment. The environment had 3 stimuli: one predicting certain reward of value 2 (certain);
another predicting uncertain reward magnitudes of either 1 with 0.5 probability or 7 with 0.5
probability (risky); a control certain reward of value 4 (control). All these rewards had a time delay
of 7 time steps after the stimulus. Importantly, the expected value of the risky stimulus is higher than
the certain stimulus but is more uncertain. During training of the agents, the stimuli appeared with
independent random probability. However, during testing, the certain and risky stimulus were always
observed at the same time such that the agent would always have to decide between reward locations.

The magnitude risk sensitive TMRL agent learned the SRs exactly the same as the TMRL agent.
However, it learned the TMDs just as matrices. The reward TMD (TMDi(s

′, τ ′i , r
′) is the probability

of reward at location s′ of magnitude r′ at delay time τ ′i after stimulus i) was learned by the agent
through temporal difference learning Sutton & Barto (2018). For each stimulus i with current delay

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

τ ti , after observing reward of magnitude r at state s

RMTi(s
′, τ ′i , r

′) =

{
1 at s′ = s, τ ′i = τi, and r′ = r

0 otherwise
(31)

δTMDi(s
′, τ ′i , r

′) = RMTi(s
′, τ ′i , r

′)− TMDi(s
′, τ ′i , r

′) (32)
TMDi(s

′, τ ′i , r
′) ← TMDi(s

′, τ ′i , r
′) + αδTMDi(s

′, τ ′i , r
′) (33)

where RMTi(s
′, τ ′i , r

′) is just a dummy variable to compute the TD update.

During testing of the magnitude risk sensitive agent, the Q value would be computed by weighting
the TMD with weights w(r). These were computed by taking the reward distribution at each reward
location at each delay separately and applying a risk function to the distribution over magnitude. This
risk funtion only considers the lower half of the cumulative density function over magnitude.

w0.5(r|TMD) =

{
r for r ≤ VaR0.5(r)

0 otherwise
(34)

VaR0.5(r) = inf
{
r ∈ R : FR(r) ≥ 0.5

}
(35)

where FR(r) is the cumulative density function over magnitudes r of the TMD.

Then the magnitude risk sensitive TMRL agent found the greedy action through GPI while weighting
TMDt

total

Qj(st, at) =
∑
r

w(r|TMDt
total)TMDt

total(st+1, 0, r) +∑
s′,τ,r′

r′ Mπj (st+1, s
′, τ) · w(r|TMDt

total)TMDt
total(s

′, τ + 1, r′) (36)

at = argmaxat
max

j
Qj(st, at) (37)

Supplementary Figure 12 shows the TMRL agent often chose the risky choice with higher expected
value but the risk-sensitive TMRL agent almost never chose the risky choice, opting for the certain
option. Fig. 12b shows the magnitude risk sensitive agent achieves a slightly lower reward rate
compared to the TMRL agent which is directly trying to optimize expected rewards. However, the
risk sensitive agent is optimizing to minimize risk.

Parameters for the environment:

• number of runs for each model: 10

• number of states/stimuli: 3

• maximum reward delay: 10

• maximum reward magnitude: 8

• number of training steps: 200000

• number of test steps: 10000

• test every 1000 steps of training

B.4.3 TIME VARYING RISK SENSITIVITY

We again simulate the agent in the gridworld to show how risk sensitivity can vary through time.
Here, the environment had two cues, one with certain reward of value 1 at time delay 7 and the other
with certain reward of value 3 at time delay 9. Importantly, during testing, the first stimulus appears
with probability 0.2 at every time step while the second stimulus appears with probability 0.1. The
expected reward of the second is still larger than the first.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(a) (b) (c)

(d) (e)

Figure 12: TMRL (blue) and the magnitude risk sensitive agent (pink) in the gridworld environment.
(a) The distribution of choices of the agent during testing. (b) The reward rate achieved by the agents
through learning. (c) The distribution of reward magnitudes received by the agent during testing. (d)
The policy learned by the TMRL agent. Top is the policy when the certian stimulus is observed. The
highlighted square is the location of the reward. Middle is the risky reward stimulus. Bottom is the
control stimulus. (e) The policy learned by the magnitude risk sensitive agent.

We design an agent that learns the same way as the magnitude risk sensitive agent but the weights
depend on an internal state at satiety. The internal state xt+1 at time t + 1 given the reward Rt at
time t and the internal state xt is given by

xt+1 = max(2, 0.8xt +Rt) (38)

The internal state decays exponentially over time to zero and increases only when the agent encounters
a reward. The agent also has a maximum internal state of 2 signifying the agent is satiated.

We define a subjective value function dependent on xt as

V = (1− 0.1

(xt + 0.1)2
(39)

This nonlinear subjective value gives higher value to higher internal states xt.

Using this V , we compute the weights w(τ, r|xt) by finding the internal states xt, ..., xt+τD if a
reward of magnitude r were delivered at delay τ . The weight was then the summed subjective value
of these internal states:

w(τ, r|xt) =
∑

τD≥τ ′≥0

V (xt+τ ′) (40)

Using these weights we find the GPI action using the same equation 36. Supplementary Fig 13 shows
this time-varying risk sensitive agents subjective value compared to that of the TMRL agent. As

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

the time-varying risk sensitive agent is optimizing for this subjective value or utility, it achieves
higher values than the TMRL. Yet in Fig 13b, we see the TMRL achieves higher reward rate as it is
maximizing expected rewards.

(a) (b) (c)

(e)(d)

Figure 13: TMRL (blue) and the time-varying risk sensitive agent (orange) in the gridworld environ-
ment. (a) The subjective value of the agents over training. (b) The reward rate achieved by the agents
through learning. (c) The distribution of choices of the agent during testing. Choice 1 is the high
probability, low magnitude stimulus and choice 2 is the low probability, high magnitude stimulus.
(d) The policy learned by the TMRL agent. Top is the policy when the low magnitude stimulus
is observed. The highlighted square is the location of the reward. Bottom is the high magnitude
stimulus. (e) The policy learned by the time-varying risk sensitive agent.

Parameters for the environment:

• number of runs for each model: 10
• number of states/stimuli: 2
• maximum reward delay: 10
• maximum reward magnitude: 4
• number of training steps: 200000
• number of test steps: 10000
• test every 1000 steps of training

31

	Introduction
	Related work

	Optimal transport and gradient flows unify distributional reinforcement learning and efficient coding theory
	Learning multidimensional efficient population codes
	Comparing distributional neural learning with related work
	Approximately recovering the 1-dimensional distributional RL

	Learning multidimensional distributions in the brain
	Reward time and magnitude distribution for generalizable RL
	Decoding policies in multidimensional risk-sensitive RL
	Discussion and limitations
	Appendix
	Defining quantiles and expectiles
	Comparing distributional neural learning rules with maximum mean discrepancy learning rules
	Deriving the distributional neural learning rules in detail
	Deriving the 1-dimensional approximation to expectile learning rules in detail
	Deriving sufficient conditions for optimal distributional learning trajectory
	Deep distributional neural learning experiments
	Modeling cell adaptation in the brain via distributional neural learning

	Experimental Details
	Distributional neural learning convergence simulations
	Modeling cell adaptation via distributional neural learning
	Generalization in RL over reward dynamics using time-magnitude maps
	Patch experiments
	Gridworld experiments

	Modeling multidimensional risk sensitivity
	Risk sensitivity in human behavior
	Magnitude risk sensitivity
	Time varying risk sensitivity

