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Abstract
Although contrastive learning greatly improves
sentence representation, its performance is still
limited by the size of existing monolingual
datasets. So can semantically highly correlated
massively parallel translation pairs be used for
pre-training of monolingual models? This pa-
per proposes an exploration of this. We leverage
parallel translated sentence pairs to learn single-
sentence sentence embeddings and demonstrate
superior performance in balancing alignment and
consistency. We achieve new state-of-the-art per-
formance on the mean score of Standard Semantic
Text Similarity (STS), outperforming both Sim-
CSE and Sentence-T5.

1. Introduction
Gao et al. 2021 demonstrates that a contrastive objective can
be extremely effective when coupled with pre-trained lan-
guage models and sentence-pair datasets. However, the gen-
erality and capability of the language model are strictly lim-
ited by the size of existing sentence-pair datasets (Bowman
et al., 2015; Williams et al., 2017). Meanwhile, there have
accumulated large-scale parallel translation datasets (100x
larger than existing monolingual sentence-pair datasets) in
multilingual learning community (Yang et al., 2019a; Feng
et al., 2020; Pan et al., 2021), which have not been uti-
lized for learning sentence representations. Furthermore,
given parallel translation pairs, previous contrastive learn-
ing frameworks (Radford et al., 2021; Gao et al., 2021)
cannot well balance the alignment and uniformity (Wang &
Isola, 2020) of monolingual sentence embeddings, where
alignment calculates the expected distance between pos-
itive embeddings and uniformity measures how well the
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embeddings are uniformly distributed.

In this paper, we build on the top of dual encoder (Radford
et al., 2021; Yang et al., 2019b), and adopt a similar strat-
egy as Frozen (Tsimpoukelli et al., 2021), where we freeze
the source language encoder and only train the target lan-
guage encoder for better monolingual sentence embeddings.
The source language encoder is fixed and provides consis-
tent embeddings to supervise the target language encoder
via contrastive learning. The corresponding source-target
translation pairs are regarded as positives.

We conduct a comprehensive evaluation protocol following
SimCSE (Gao et al., 2021) on seven standard semantic
textual similarity (STS) tasks (Agirre et al., 2012; 2013;
Marelli et al., 2014; Agirre et al., 2014; 2015; 2016; Cer
et al., 2017). We outperforme SimCSE (Gao et al., 2021)
and Sentence-T5 (Ni et al., 2021) by a large margin. On
the average score of STS tasks, our pre-trained BERTbase

with or without fine-tuning surpasses SimCSE-BERTbase by
4.39% and 3.25% respectively, and RoBERTalarge achieves
85.58 on average. Surprisingly, BERTbase with fine-tuning
achieves better results than Sentence-T5 (11B) with only
1% parameters in comparison.

In summary, we provide an exploration of utilizing existing
large-scale parallel translation pairs for learning monolin-
gual sentence representation, based on cross-lingual con-
trastive learning framework that well balances alignment
and uniformity.Our approach achieves a new state-of-the-
art on standard semantic textual similarity (STS), and the
best performance in corresponding tracks on transfer tasks
evaluated by SentEval1.

2. Proposed Approach
2.1. Background

Scaling up the size of training dataset (Radford et al., 2021;
Jia et al., 2021) has proved to be effective to improve ro-
bustness and generalization of representations in contrastive
learning framework. However, previous works (Reimers
& Gurevych, 2019; Gao et al., 2021) only utilize limited
size of monolingual sentence pairs to learn sentence em-

1https://github.com/facebookresearch/SentEval
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Figure 1. Comparison of preliminaries and our approach for utilizing parallel translation pairs. (A), (B) and (C) represent a
multilingual encoder, dual encoder and our modified dual encoder, respectively.
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Figure 2. Training pipeline. We first obtain a target (Chinese)
encoder given a pre-trained SimCSE model as the source encoder.
Then, we take the pre-trained Chinese encoder as the source en-
coder and freeze it to supervise a target (English) encoder. Step
(A) and step (B) both follow our proposed framework.

beddings, such as MNLI datasets (Williams et al., 2017)
and SNLI (Bowman et al., 2015). In contrast, there have
existed large-scale well-annotated parallel translation pairs
(100x larger than monolingual paired datasets) in the com-
munity of multilingual learning. Instead of training on lim-
ited monolingual sentence pairs, utilizing existing parallel
translation datasets shows better flexibility and a potential
to further improve the performance of sentence embeddings,
where a parallel translation pair that is highly correlated in
semantic can be treated as a positive sample.

Preliminaries. To utilize paired inputs, single multilingual
encoder (Ma et al., 2020; Pan et al., 2021) and dual encoder
(He et al., 2020; Radford et al., 2021; Ni et al., 2021) are the
most commonly adopted strategies for learning multilingual
representations. Multilingual encoder embeds sentences
from different languages into a single semantic space using
a unified encoder, based on the hypothesis that multilingual
learning leads to better multilingual sentence representation.

Its architecture is illustrated in A, Figure 1. Dual encoder,
also known as two-tower, models the paired data with two in-
dependent encoders, and projects the embeddings of paired
inputs into the same semantic space through joint training.
Its architecture is illustrated in B, Figure 1.

2.2. Method

Although multilingual encoder and dual encoder can use
parallel translation pairs straightforwardly, they both suffer
from the imbalance between alignment and uniformity, as
source language encoder and target language encoder keep
updating in the training process. In other words, while they
pull the positive samples (source-target translation pairs)
closer and the negative samples (source-non target trans-
lation pairs) farther away through an explicit contrastive
learning objective, the alignment and uniformity of embed-
dings from monolingual sentence pairs cannot be guaran-
teed. Specifically, let (si, ti) denote the representation of a
parallel translation pair generated by the source language
encoder and target language encoder, respectively. We sim-
plify the explicit contrastive objective as Eq 1.

Lexplicit = α1 ∗ Lp − α2 ∗ Ln (1)

Where Lp and Ln represent the distance for positives and
negatives of parallel translation pairs as defined in Eq 2 and
Eq 3, α denote the linear weights, D is a distance function,
and i ̸= j. The explicit contrastive objective is to minimize
the distance between positives and maximize the distance
between negatives.

Lp = D(si, ti) +D(sj , tj) (2)

Ln = D(si, tj) +D(sj , ti) (3)
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Figure 3. Illustration of contrastive objectives. (si, ti) and
(sj , tj) are two paired samples. In (SimCSE), (si, ti) denotes
monolingual pairs, while in (Preliminaries) and (Ours), it denotes
parallel translation pairs.

Given parallel translation pairs, we also define the implicit
or actual objective that has not been considered into con-
trastive learning framework in Eq 4, which measures the
alignment and uniformity of monolingual sentence embed-
dings. Although Limplicit is not considered in the explicit
contrastive objective, we expect to retain good alignment
and uniformity of monolingual sentence embeddings from
the target encoder, as the actual objective is to learn mono-
lingual sentence embeddings from parallel translation pairs.

Limplicit = β1 ∗ L
′

p − β2 ∗ L
′

n (4)

Where L
′

p and L
′

n represent the distance for positives and
negatives of monolingual pairs as defined in Eq 5 and Eq 6.
s+i and t+i represent the monolingual positive samples for
si and ti, respectively. β denote linear weights.

L
′

p = D(si, s
+
i ) +D(ti, t

+
i ) (5)

L
′

n = D(si, sj) +D(ti, tj) (6)

In preliminaries, as shown in (A) and (B), Figure 1, the
source language encoder keeps updating in training and can
not provide consistent supervision for the target language
encoder. The implicit objective for preliminaries is Eq 4,
where the alignment and uniformity of source embeddings
and target embeddings are both required to be implicitly
optimized. However, given two independent implicit objec-
tives, it becomes hard to find a local optimum through Eq 1
without any constraints.

To effectively improve the uniformity and retain the align-
ment simultaneously, and optimize the implicit objective (4)

through an explicit objective (1), we propose to soften the
implicit objective for better optimization with our modified
architecture, built on the top of regular dual encoder. To be
clear, we freeze the side of the source language encoder, so
that the alignment and uniformity of source embeddings are
frozen in the training. In this case, the implicit objective
degrades to Eq 7.

Limplicit = β1 ∗D(ti, t
+
i )− β2 ∗D(ti, tj) (7)

As the optimization space shrinks and the implicit objective
relaxed, finding the local optimal solution becomes easier
and more efficient. We show the differences between our
approach (C) and preliminaries (A, B) in Figure 1.

2.3. Visualization of alignment and uniformity

To validate the effectiveness of our approach, we take the
checkpoint of our model and preliminaries every 100 steps
during training and visualize their alignment and unifor-
mity (Wang & Isola, 2020) on a monolingual sentence-pair
dataset and parallel translation dataset in Figure 4, train-
ing details can be found in 3.4.2. Figure 4, we show the
promising results of implicit objective (the alignment and
uniformity of target encoder), given monolingual sentence
pairs as input, where we greatly improve uniformity and
retain a steady alignment, while others dramatically degrade
alignment.

Ours
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Ours
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Figure 4. lalign and luniform Plot. Checkpoints are saved every
100 training steps, the arrows indicate the training direction. For
both ‘align’ and ‘uniform’, lower numbers are better.

3. Experiments
3.1. Training Datasets

We adopt WMT and source-mixed datasets that have parallel
translation pairs for cross-lingual contrastive learning, while
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the Chinese NLI dataset2 that has monolingual Chinese
sentence pairs is only utilized for fine-tuning.

WMT Dataset3 is a common-used machine translation
dataset composed of various sources. We perform an elabo-
rate cleaning process following (Meng et al., 2020) to filter
out low-quality pairs. We get 19,442,200 Chinese-English
translation parallel pairs after cleaning.

Source-mixed Dataset collects from more open-sourced
translation datasets built on the top of WMT dataset, includ-
ing AIC (Wu et al., 2017), translation2019zh (Xu, 2019),
UN Corpus (Ziemski et al., 2016), etc. Finally, we establish
a larger-scale dataset including 56,741,808 Chinese-English
translation pairs. This dataset is used to show that further
scaling up the size of the training set helps improve overall
performance.

3.2. Training Details

We elaborate the training details of our pipeline that is shown
in Figure 2. We maintain a consistent memory queue (He
et al., 2020) of negative embeddings, where the current
mini-batch of the source language encoder’s embeddings
are enqueued and the oldest are dequeued. The pooling
method used in the training is [CLS] with an MLP layer
following SimCSE. All experiments are conducted on 8
V100 GPUs. The batch size in experiments represents the
batch size on each GPU.

3.2.1. TRAINING A CHINESE ENCODER

As shown in (A), Figure 2, the first step is to train
a target language (Chinese) encoder. Specifically, we
adopt the pre-trained SimCSE-RoBERTalarge model as the
source language (English) encoder, and initialize a Chinese
RoBERTalarge model4 with pre-trained weights as the target
language (Chinese) encoder. We adopt a series of hyper-
parameters from 3.2.2: learning rate is 5e-5, batch size is
200, dropout is 0.1, and the input sentence length is 50.
We freeze the source language (English) encoder and only
update the target language (Chinese) model. We evaluate
every 250 training steps on the development set of Chinese
STS-B and save the best checkpoint.

3.2.2. TRAINING AN ENGLISH ENCODER

As shown in B, Figure 2, we train a target language (English)
encoder that generates sentence embeddings. Specifically,
we reuse the pre-trained Chinese encoder from 3.2.1 as the
source language (Chinese) encoder and freeze its parameters.
We evaluate every 250 training steps on the development set
of STS-B and save the best checkpoint.

2https://github.com/pluto-junzeng/CNSD
3http://www.statmt.org/wmt20/
4https://huggingface.co/hfl/chinese-RoBERTa-wwm-ext-large

For BERTbase (or RoBERTabase), the learning rate is 1e-4,
batch size is 400, and the dropout is defaulted set as 0.1. In
the term of RoBERTalarge (or BERTlarge), we set the learn-
ing rate to 5e-5, batch size to 200, all other hyperparameters
keep the same as BERTbase.

3.3. Evaluation Results

Following Gao et al., we evaluate our models on seven
transfer and seven STS tasks by SentEval tools. As the
main goal of learning sentence embeddings is to cluster
semantically similar sentences, we also take STS result as
the main metric.

Semantic textual similarity tasks. We evaluate our ap-
proach under zero-shot and fine-tuned settings, respec-
tively. To fairly compare with previous works (Gao et al.,
2021; Ni et al., 2021), we adopt seven STS tasks includ-
ing STS 2012–2016 (Agirre et al., 2012; 2013; 2014;
2015; 2016), STS Benchmark (Cer et al., 2017) and SICK-
Relatedness (Marelli et al., 2014). STS tasks are widely
used in measuring the discriminative power of sentence
embeddings.

We compare several well-known benchmarks, include:
Sentence-BERT (Reimers & Gurevych, 2019), CT-
BERT (Carlsson et al., 2020), SimCSE and Sentence-T5 (Ni
et al., 2021) 11B model, which contains 11 billion pa-
rameters. Table 1 reports the evaluation results on seven
STS tasks. Our approach can substantially improve results
on all the datasets with or without extra NLI supervision,
greatly outperforming the previous state-of-the-art models.
Specifically, our approach outperforms the averaged scores
of SimCSE by 1.27-2.65 under a zero-shot setting in all
tracks. When using NLI datasets, Ours-BERTbase further
pushes the state-of-the-art results from 84.94 to 85.15. The
gains are more pronounced on RoBERTa encoders, and our
method achieves 85.58 with RoBERTlarge.

3.4. Ablation Studies

We investigate the impact of source language encoder and
contrastive objectives. We use BERTbase (WMT) without
fine-tuning as our benchmark.

3.4.1. THE EFFECT OF SOURCE LANGUAGE ENCODER

To analyze the role of source language encoder, we train a
SimCSE-RoBERTalarge model on the Chinese NLI dataset
directly and use it as the source language (Chinese) encoder.
For comparison, we train two RoBERTalarge models on the
WMT dataset following the steps in 3.2.1 with and without
fine-tuning. Then, we train three target language (English)
encoders as 3.2.2 given different source language models
and evaluate them on the SST-B development set. We report
the results in table 2.
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Model Fine-tune data STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg
SBERTbase NLI 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
SBERTbase-flow NLI 69.78 77.27 74.35 82.01 77.46 79.12 76.21 76.60
SBERTbase-whitening NLI 69.65 77.57 74.66 82.27 78.39 79.52 76.91 77.00
CT-SBERTbase NLI 74.84 83.20 78.07 83.84 77.93 81.46 76.42 79.39
SimCSE-BERTbase NLI 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
Ours-BERTbase(WMT) - 80.73 85.82 83.20 88.57 82.50 86.60 80.64 84.01
Ours-BERTbase(SMD) NLI 80.26 88.70 84.05 88.62 84.57 87.95 81.87 85.15
SBERTlarge NLI 72.27 78.46 74.90 80.90 76.25 79.23 73.75 76.55
SimCSE-BERTlarge NLI 75.78 86.33 80.44 86.60 80.86 84.87 81.14 82.21
Ours-BERTlarge(WMT) - 80.71 86.10 83.18 89.13 83.25 86.75 81.43 84.36
Ours-BERTlarge(SMD) - 79.18 87.75 82.85 88.53 82.60 86.85 81.51 84.18
Ours-BERTlarge(WMT) NLI 81.88 88.78 84.04 88.42 84.94 88.08 81.38 85.36
Ours-BERTlarge(SMD) NLI 80.86 89.47 84.35 88.97 85.04 88.58 81.63 85.56
SRoBERTabase-whitening NLI 70.46 77.07 74.46 81.64 76.43 79.49 76.65 76.60
SimCSE-RoBERTabase NLI 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
Ours-RoBERTabase(WMT) - 80.59 85.36 82.16 87.84 82.30 85.96 80.90 83.59
Ours-RoBERTabase(SMD) - 78.60 87.33 83.22 88.64 83.04 86.59 81.15 84.08
Ours-BRoBERTabase(WMT) NLI 80.25 86.97 82.92 87.97 83.78 87.10 81.06 84.29
Ours-RoBERTabase(SMD) NLI 80.02 87.90 83.64 88.59 85.26 87.59 81.32 84.90
SRoBERTalarge NLI 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68
SimCSE-RoBERTalarge NLI 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76
Ours-RoBERTalarge(WMT) - 79.26 87.80 83.76 88.51 83.76 86.94 81.86 84.56
Ours-RoBERTalarge(SMD) - 80.86 88.19 84.34 89.20 83.90 87.47 81.26 85.03
Ours-RoBERTalarge(WMT) NLI 81.24 88.69 84.58 88.59 85.55 88.05 82.00 85.53
Ours-RoBERTalarge(SMD) NLI 80.07 89.45 84.64 88.85 85.14 88.60 82.28 85.58
ST5-Enc mean (11B) NLI 77.42 87.50 82.51 87.47 84.88 85.61 80.77 83.74
ST5-EncDec first (11B) NLI 80.11 88.78 84.33 88.36 85.55 86.82 80.60 84.94
Ours-BERTlarge(SMD) NLI 80.86 89.47 84.35 88.97 85.04 88.58 81.63 85.56
Ours-RoBERTalarge(SMD) NLI 80.07 89.45 84.64 88.85 85.14 88.60 82.28 85.58

Table 1. Comparison with previous state-of-the-art works in STS tasks. All results are from Gao et al., 2021; Ni et al., 2021; Reimers
& Gurevych, 2019; WMT and SMD represent the model is trained on WMT dataset and source-mixed dataset, respectively. The pooling
methods used for comparison can be found in Appendix ??, and the Ours-RoBERTalarge(WMT)’s pooling method is [CLS] with MLP.

Source Encoder SimCSECN Ours Ours+F
STS-B 86.58 86.91 88.06

Table 2. Performance of target language encoders given differ-
ent source language encoders on STS-B development dataset.
SimCSECN represents the Chinese SimCSE-RoBERTalarge.
Ours+F and Ours are RoBERTalarge that trained by our strat-
egy with and without fine-tuning, respectively.

Models Multilingual Dual Ours
STS-B 71.02 73.13 86.82

Table 3. The effect of contrastive objectives. Dual, Multilingual
and Ours represent dual encoder, multilingual encoder and our
modified dual encoder.

3.4.2. THE EFFECT OF CONTRASTIVE OBJECTIVES

To show the effectiveness of our cross-lingual contrastive
learning scheme, we train models with multilingual encoder,
dual encoder and our modified dual architecture, respec-
tively, and evaluate their performance on STS-B develop-
ment set. For dual encoder, we adopt the pre-trained source
language (Chinese) encoder from 3.2.1 and a pre-trained
RoBERTabase, then train it via contrastive learning. For

multilingual encoder, we adopt a RoBERTabase-xlm (Lam-
ple & Conneau, 2019) model that accepts multilingual input.
For our modified dual architecture, we use the same source
and target encoder as dual encoder, while keeping the source
encoder frozen. All models are trained on WMT dataset.

For a fair comparison, we unify the hyperparameters of
different objectives: batch size is 128, learning rate is 2e-
4. The only difference between dual encoder and ours is
whether the source language encoder is frozen in the training.
Table 3 shows the effectiveness of our approach.

4. Conclusion
In this work, we provide the first exploration of utilizing
existing large-scale parallel translation pairs for learning
sentence representation, propose a modified dual architec-
ture that well balances the alignment and uniformity of
embeddings. We demonstrated that our method achieves
a new state-of-the-art on standard semantic textual simi-
larity (STS), and the best performance on corresponding
tracks on transfer tasks, outperforming both SimCSE and
Sentence-T5.
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