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ABSTRACT

The emergence of large-scale multimodal generative models has drastically ad-
vanced artificial intelligence, introducing unprecedented levels of performance
and functionality. However, optimizing these models remains challenging due to
historically isolated paths of model-centric and data-centric developments, lead-
ing to suboptimal outcomes and inefficient resource utilization. In response, we
present a novel sandbox suite tailored for integrated data-model co-development.
This sandbox provides a comprehensive experimental platform, enabling rapid
iteration and insight-driven refinement of both data and models. Our proposed
“Probe-Analyze-Refine” workflow, validated through applications on state-of-the-
art LLaVA-like and DiT-based models for image-to-text and text-to-video tasks,
yields significant performance boosts, such as topping the VBench leaderboard.
We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding
light on the critical interplay between data quality, diversity, and model behavior.
All codes, datasets and models are open-sourced to foster future progress.

1 INTRODUCTION

The advent of multimodal generative models has revolutionized artificial intelligence, pushing the
boundaries of functionality and creativity across various domains (OpenAI, 2024a;b; Wang et al.,
2024b). Recognizing the pivotal role of training data in shaping model performance, there are
fast-growing efforts to curate datasets of larger scales and higher quality (Jakubik et al., 2024).

However, the development trajectories of these models and datasets have historically diverged, guided
more by intuition than by systematic co-development methodologies. Recent advances in enhancing
multimodal generative models tend to be either model-centric or data-centric, rarely bridging the two
aspects cohesively. For example, model-centric methods focus on algorithmic enhancements and
architectural innovations under fixed data priors, while data-centric strategies usually concentrate
on processing and cleaning datasets independently of specific model training contexts (Qin et al.,
2024). Both approaches usually suffer from a lack of systematic guidance and cooperative synergy,
relying heavily on heuristic exploration and single-perspective expertise. This fragmented landscape
presents a significant barrier to achieving optimal model performance, as the interplay between data
characteristics and model capabilities remains largely underexploited.

Moreover, the practical implementation of multimodal generative models is further complicated by
infrastructure constraints, escalating computational costs, and the accelerating pace of development
cycles (Xu et al., 2024c). In the age of large-scale models with rapidly growing model parameters
and dataset sizes, the processes of data processing and model training become increasingly resource-
intensive, demanding substantial time and computations. Due to the absence of cost-effective
platforms that simplify and speed up data-model co-development, researchers and developers often
face the dilemma of prioritizing result-driven development at the expense of thorough, insight-led
exploration. This deficiency hinders the iterative refinement for both domains, leading to sub-optimal
outcomes as improvements in one domain are hard to inform, apply and enhance each other directly.

To fill this gap, we introduce the Data-Juicer Sandbox, a comprehensive suite for facilitating the
co-development of multimodal data and generative models. Building upon an open-source data
processing system tailored for multimodal generative models, Data-Juicer (Chen et al., 2024a), our
sandbox suite further integrates a wealth of off-the-shelf components optimized for usability and
compatibility with existing model-centric infrastructures. Collectively, it offers flexibly customizable
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Figure 1: Overview of the Data-Juicer Sandbox Laboratory. The workflow involves four stages, each
allowing flexible customization at different levels within the data-model co-development lifecycle.

orchestration from different levels including end-to-end workflows, specific development behaviors,
and underlying data-model development capabilities. Within the sandbox laboratory, users are
empowered to rapidly explore different data pipelines and model configurations on cost-controlled
datasets and models. This accelerates the discovery of insightful patterns and informed decision-
making, ultimately paving the way for scalable, resource-efficient data-model development.

To exemplify the efficacy of our sandbox, we propose a “Probe-Analyze-Refine” workflow, metic-
ulously crafted to explore the synergies between data processing operators (OPs), target model
metrics, and the scalability of these enhancements. We apply this workflow to three cutting-edge
models: Mini-Gemini (Li et al., 2024b), an LLaVA-inspired model for image-to-text generation,
EasyAnimate (Xu et al., 2024b) and T2V-Turbo (Li et al., 2024a), two Diffusion Transformer based
models for text-to-video generation, and a CLIP model Gadre et al. (2023) for image-text foundation
model training. Thanks to the sandbox’s capabilities, we attain significant advancements in data
quality and model performance, such as achieving top spot on the VBench (Huang et al., 2024)
leaderboard, outperforming strong competitors such as Gen-3 (RunwayML, 2024) and VEnhancer
(He et al., 2024a). These achievements are underpinned by a series of insights linking more than
40 data processing OPs and 30 model metrics, including analysis of the fine-grained impact of data
processing for model training, the delicate balance between data diversity and model performance,
and the strategic optimization of data scaling for enhanced model-data co-development.
Our contributions can be summarized as follows:

• Innovative Sandbox Suite: To the best of our knowledge, this is the first open-source sandbox
suite tailored for co-development between multimodal data and generative models, rendering
experimental exploration in this field more insightful, systematic, convenient and reusable.

• Effect-Proven Workflow: We present a new progressive workflow for data-model co-development
and substantiate its impact through extensive empirical evidence such as achieving new top-tier
performance in image understanding and video generation tasks.

• Practical Guidance: We conduct extensive experiments on benchmarking the effects of dozens
of data processing operators and model metrics, providing fruitful and valuable insights toward
further advancements in multimodal generative models.

2 RELATED WORKS

Model-Centric Progress in Multimodal Large Models. Multimodal large models have gained
prominence for their remarkable capabilities (OpenAI, 2024a;b). Advances in training algorithms
(Caffagni et al., 2024; Li et al., 2024a) and model architectures (He et al., 2024a; Yin et al., 2024)
have fueled this interest. Transformer scaling remains a prevalent approach (Xu et al., 2023), though
high computational demands and optimization challenges often restrict insights to specific datasets
and create a gap in understanding how implicit data biases affect model performance.

Trends in Data-Centric Development. Recently, a shift towards data-centric development has
emerged (Jakubik et al., 2024), emphasizing data handling as key to efficacy of large models such
as CLIP (Gadre et al., 2023). Despite the increasing recognition of data processing, the heteroge-
neous nature of multimodal data leads to predominantly heuristic approaches (Long et al., 2024),
underscoring the pressing need for more systematic methodologies for data-model co-development.
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Open-Source Infrastructure. The ecosystem for multimodal model development has expanded
with fruitful open-sourced frameworks (Wolf et al., 2020; Liu et al., 2023). However, contributions
to multimodal data infrastructure often consist of raw datasets and preprocessing scripts, lacking
standardized practices. Most existing data processing frameworks are tailored for single-modal data
(TogetherAI, 2023), highlighting the early stage of multimodal data development. To address these
gaps, our work presents an innovative intermediary layer that connects advanced model infrastructures
with the Data-Juicer system, facilitating better co-development between models and data.

More detailed discussions on related works can be found in Appendix A.

3 THE PROPOSED DATA-JUICER SANDBOX LABORATORY

3.1 MOTIVATION AND DESIGN

Why do we need data-model co-development? In the era of large models, the development of both
data and models necessitates collaboration involving numerous algorithm researchers and system
engineers. Training data for large models is often highly heterogeneous in terms of quality, context,
type, and timeliness. The processing and mixing of these datasets, known as data recipes, are complex
and varied (Ge et al., 2024). The scale of data amplifies the stakes for refinement attempts on both
data and models, imposing substantial computational and time burdens. Traditional data-centric or
model-centric strategies fall short by optimizing in isolation, leading to diminished overall efficiency
and resource misallocation (Qin et al., 2024). When either component requires adjustment, the dual
optimization challenge inflates costs, as one part may have already reached near-optimal status.

Why do we need a sandbox laboratory? Given the high cost associated with iterative development,
existing methods often resort to heuristic approaches for improving data or models. For example,
scaling up “cleaned” datasets can be problematic because determining what constitutes a “clean”
dataset and measuring its quality qualitatively remains a challenge. Further, the impact of iterations
on data and models is difficult to attribute due to numerous influencing factors and considerable
engineering effort required. More insightful solutions are thus needed for data-model co-development.

A unified sandbox environment offers controlled experimentation with low overhead, high trans-
ferability, and guided optimization. It permits users to swiftly iterate and optimize data recipes
using cost-controlled datasets and models, with insights readily scalable to full-scale production
environments, thus addressing larger computational demands of data processing and model training.

The three-layer orchestration of Data-Juicer sandbox. To accommodate the multifaceted work-
flows intrinsic to data-model co-development, we design a versatile, user-friendly sandbox laboratory,
as depicted in Fig. 1. The laboratory incorporates a spectrum of components for activities such as data
analysis, filtering, recipe optimization, model training, inference, and evaluation, all orchestratable
via configuration files. The architecture is stratified into three tiers: bespoke end-to-end workflows,
generic development behaviors, and foundational data-model development capabilities.

The top tier delineates co-development workflows executed sequentially across four phases: probing
data/models, refining data recipes, executing data/model operations, and evaluation. The sequence of
tasks within each phase is adjustable through an input configuration file, permitting users to leverage
pre-established and effect-proven workflows or customize their own with ease. Moreover, users
can flexibly introduce or innovate classes at the capabilities level (such as novel models, metrics, or
data processing algorithms) and behavior hooks (like multidimensional data quality assessments and
adaptive adjustments based on multiple probe outcomes) interchangeably.

This design allows for streamlined configuration and reuse of established infrastructure. Importantly,
it expedites the prototyping of data and model development solutions, integrating actionable and
measurable capabilities for swift feedback derivation and informed decision-making.

3.2 FLEXIBLE CAPABILITY FACTORY AND BEHAVIOR HOOKS

Advanced data processing. Within the sandbox, we design numerous factory classes and behavior
hooks for data processing and evaluation, simplifying and unifying interfaces provided by the open-
source system Data-Juicer. Users gain great flexibility to leverage over 100 feature-rich OPs and
dedicated tools for efficient data analysis, evaluation, filtering, modifying and synthesis.

From an actionable perspective, classes for data processing invoke off-the-shelf OPs from Data-
Juicer, such as Filters and Mappers, enabling accelerated and scalable data processing through system
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optimization and parallel support. Besides, classes for refining data recipes automatically utilize
dedicated tools from Data-Juicer, such as adjusting percentile distributions to differentiate data subsets
or applying k-sigma rules to filter out outlier data points. From a measurable perspective, classes for
data analysis and evaluation are also provided. They encapsulate various observational capabilities
within Data-Juicer, enabling efficient computations of target metrics such as text perplexity, video
aesthetic value, and image quality scores based on GPT-4V API calls, providing common statistical
values, including mean, variance, and percentiles.

Streamlined model advancement. Similarly, model development classes integrate state-of-the-art
open-source tools and libraries, streamlining interfaces and enhancing usability for rapid and user-
friendly development experiences. Classes for actionable capabilities encompass diverse training
functionalities, such as Mini-Gemini for image-to-text, EasyAnimate and T2V-Turbo for text-to-video,
and ModelScope for general generative models. Classes for measurable capabilities offer evaluation
interfaces like VBench and FVD (Unterthiner et al., 2019) for synthesized video assessment, GPT-
4 (OpenAI, 2023) for generated text ranking, and TextVQA (Singh et al., 2019), MMBench (Liu
et al., 2023), and MME (Fu et al., 2023) for image-to-text synthesis evaluation.

Model development is facilitated through the use of subprocesses to call bash scripts of integrated
libraries, with code and parameter adjustments ensuring a cost-controlled environment where, for
example, a single GPU card can complete a training session within one day, providing rapid feedback.

3.3 A PROBE-ANALYZE-REFINE WORKFLOW FOR DATA-MODEL CO-DEVELOPMENT

To demonstrate the usage of the sandbox laboratory, here we elucidate a built-in systematic workflow
illustrated in Fig. 2. We commence with a series of cost-effective contrastive explorations answering
several key questions that can enhance large-scale data-model co-development:

(1) Considering the variability in data sources, models, and downstream tasks, we initially seek to
ascertain which data processing operators (OPs) contribute most effectively to enhancing specific
target model metrics. This involves creating equal-size data pools, each processed uniquely by a
singular OP and subsequently ranked by data metrics. Models are trained on these data pools, enabling
us to perform an in-depth analysis of OP effectiveness and its correlation with model performance
across various quantitative and qualitative indicators.

(2) Guided by insights derived from the most impactful OPs that ranked highest by model metrics,
we proceed to study whether these OPs can be effectively combined into data recipes and scaled
up. To facilitate this exploration, we establish a hierarchical data pyramid, wherein data pools are
categorized across different tiers based on their ranked model metric scores. This stratification also
elucidates the viability of OP combinations when scaled with increased data volumes.

(3) Finally, we delve into optimizing data utilization through a dual analysis focusing on duplication
and diversity. We will assess whether the training process would benefit more from the repeated
use of high-quality data pools or from the inclusion of lower-quality data to expand the overall data
pool. Through a systematic examination of cost-controlled experiments, we can formulate optimized
data recipes and datasets, which are then leveraged in more resource-intensive training sessions to
cultivate models with superior performance.

3.3.1 SINGLE-OPERATOR DATA POOLS

Starting with an initial dataset D, we define a single-OP data pool Pi as the dataset processed
exclusively by the i-th OP (OPi) available in Data-Juicer as Pi = DJ [OPi(ρi)](D), where DJ
denotes the data-processing function implemented by Data-Juicer, and ρi is the hyper-parameters
governing the operation of OPi. The OPs of Data-Juicer can compute specific statistics for every
data pool, and apply threshold criteria to selectively filter or modify the data based on these statistics.
Within this workflow (demonstrated in the upper left part of Fig.2), the initial dataset D is processed
by N studied filter OPs, and each Pi is sorted by statistical measures and segmented into three
equal-sized data pools Pi,low, Pi,middle and Pi,high, representing data with low, middle and high stats,
respectively. Besides, D is randomly sampled to serve as a control group Drandom such that all the
3N + 1 data pools have the same data size. This stratification fosters discriminative insights across
varying degrees of data processing intensity.

4
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Figure 2: A probe-analyze-refine workflow for systematic data-model co-development.

Subsequently, models are trained independently on each data pool, undergoing comprehensive
evaluation across multiple performance metrics. Throughout the training, we uphold consistent
hyper-parameters and ensure Drandom is of substantial size to yield a reliable and robust average
performance across all downstream tasks. This setup enables the identification of best-performing
OPs that universally excel or excel under specific evaluation criteria.

Importantly, we adhere to a cost-conscious design and implement strategies to minimize expenses,
such as adopting efficiency-enhancing techniques like LoRA and limiting training iterations to only
those necessary for achieving reasonable performance improvements (detailed in Appendix B.6). It
enables one trial of the entire experimental workflow to be completed affordably within a single day.

3.3.2 MULTI-OPERATORS DATA POOLS

Having explored the individual impact of each OP, our next step logically involves understanding
the dynamics when multiple OPs are applied sequentially, as seen in a data “recipe” (illustrated
in the bottom left part of Fig.2). This sequence of OPs is referred to as S. Our aim is to discern
whether these OPs complement or counteract each other’s effects. To achieve this, we extend the data
pool construction methodology from previous individual OP scenarios to multi-OP recipe scenarios:
PS =

(
DJ [OPi(ρi)] ◦ DJ [OPj(ρj)] ◦ · · · ◦ DJ [OPk(ρk)]

)
(D), where i, j, ..., k ∈ S.

The number of possible multi-OP data pools grows exponentially with the addition of each new
OP, necessitating a strategic selection of combinations to explore. Drawing on insights from single-
OP experiments, we propose two pragmatic strategies: (1) combining “Top” OPs based on their
progressively diminishing impacts on model performance and (2) clustering OPs based on their
Pearson correlation coefficients and then combining “Top” OPs within each category. More details
and empirical results on these strategies can be found in Appendix B.5 and C.3 respectively.

In alignment with our methodology for single-OP data pools, we consistently train and evaluate
models for each selected multi-OP data pool, while ensuring the process remains cost-effective by
maintaining a small pool size still yielding reasonable and distinguishable training outcomes.

3.3.3 PYRAMID-SHAPED DATA POOLS

Incorporating a greater number of OPs in a recipe may lead to enhanced data quality; however,
the resultant data pool volume decreases exponentially with each additional OP. This phenomenon
prompts a critical investigation: should we prioritize reusing high-quality data or incorporate lower-
quality yet more abundant data to escalate training dataset sizes?

To encapsulate this inherent trade-off between data scale and quality, we devise a hierarchical pyramid
architecture for data pools. Given m “top” OPs, we can create 2m − 1 combinations of these OPs,
as depicted in the left-bottom area in Fig. 2. For example, the combination of three OPs, OP1,2,3,
resides at the highest level of the hierarchy but results in the smallest data pool after Data-Juicer
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data processing. The combinations of two OPs, such as OP1,2, are placed at a lower level, and
the resulting data pool encompasses that of OP1,2,3 is several times larger in volume. Leveraging
findings from Section 3.3.2, we can pinpoint preferred OP combinations within this pyramid structure.
Progressing downward through the pyramid, data pools exhibit a descending average OP ranking
(potentially indicative of reduced data quality) alongside an increase in volume.

To reconcile the desire for larger datasets without compromising quality, we devise two experimental
strategies built upon this data pyramid: (1) iterative model training with data repetition from the
top-layer (highest-quality) data pools, and (2) non-repetitive training incorporating progressively
lower-quality, larger-volume data pools from the lower-layer pools. Specifically, we extract a
predetermined quantity of data from the top-layer pool for iterative training with variable repetition
rates. In parallel, as a baseline, we assemble a non-repeating dataset by consolidating pools from the
upper to lower pyramid levels to match the size of the iterated dataset.

These comparative studies allow us to qualitatively assess the efficacy of data reuse compared to
the inclusion of suboptimal data within a fixed dataset size. Notably, all training data is uniformly
sampled from the corresponding data pools derived from D, ensuring that the relative proportions
of the pyramid data pools remain consistent as D expands. Consequently, the insights gained from
these experiments can be extrapolated to larger-scale data contexts, informing efficient and effective
scaling of data-model co-development practices.

4 PRACTICAL APPLICATIONS AND INSIGHTS

4.1 USE-CASES AND EXPERIMENTAL SETTINGS

In this section, we demonstrate the versatility of the Data-Juicer sandbox through two practical
scenarios: image-to-text and text-to-video generation, illustrating its effectiveness in multimodal
data-model co-development. These examples instantiate the behavior hooks and capability classes
detailed in Sec. 3.2, following the probe-analyze-refine workflow outlined in Sec. 3.3.

In the subsections, we delve into the primary findings and insights, with complete results provided in
Appendix C. Initially, we investigate the impact of single-OP data pools and summarize fundamental
insights (Sec. 4.2). Building upon the identified “Top” OPs, we then explore different combinations
(Sec. 4.3) and construct a data pyramid hierarchy to shape optimal data recipes (Sec. 4.4). Finally,
leveraging the insights gained, we scale up the data and models to train superior models (Sec. 4.5).

Specifically, in the main page, we adopt the Mini-Gemini model for the image-to-text task, and
the EasyAnimate and T2V-Turbo models for the text-to-video task. In Appendix C.7, we extend
our experiments to the CLIP models and summarize all conducted experiments from different scale
aspects in Appendix C.8. Our evaluation occurs on established benchmarks with over 30 metrics,
employing more than 40 Data-Juicer OPs to gain in-depth insights into data-model co-development.
We report the average performance compared to the baseline model trained on Drandom. More
detailed configurations can be found in Appendix B, including the sources and sizes of data pools
(D,Drandom,Pi,PS ), model performance metrics, and functionalities of studied OPs.

4.2 RANKING SINGLE-OPERATOR DATA POOLS

Table 1 illustrates the results of models trained on top-performing data pools alongside some of par-
ticular interest. For detailed experimental results of all examined OPs, please refer to Appendix C.1.

Observation 1 (Data vs. Model)
Generative models’ efficacy is intimately tied to the fidelity of modalities they are trained to
generate, which can be explicitly reflected in filtering processes on training data.

In text-to-video generation, video-related OPs occupy the top performance ranks, with the top three
results all being video-related (0.96 for high video aesthetics score, 0.82 for low video NSFW score,
and 0.79 for high frames-text similarity), presenting a notable gap over the fourth-ranked text-related
OP (0.54 for low special-characters ratio). Conversely, in image-to-text generation, text-related
statistics such as text action number and language score appear to be highly influential.

6
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Task Rank OP-Generated Statistics Average Performance Changes (%)

Pi,low Pi,middle Pi,high

Image-to-Text

1 Image NSFW Score 7.13 ± 4.29 18.44 ± 18.45 66.38 ± 32.65
2 Text Action Number 59.90 ± 46.49 0.29 ± 2.16 -2.05 ± 2.48

3 Language Score 49.90 ± 53.82 0.85 ± 2.87 -1.43 ± 2.40

4 CLIP Image-Text Similarity 1.20 ± 4.86 -1.81 ± 2.88 49.81 ± 44.72
5 Phrase Grounding Recall -0.49 ± 3.87 -0.58 ± 6.12 49.39 ± 29.83
15 Aesthetics Score 11.94 ± 12.21 16.58 ± 25.70 0.16 ± 3.67

Text-to-Video

1 Video Aesthetics Score -0.98 ± 0.08 0.13 ± 0.09 0.96 ± 0.13
2 Video NSFW Score 0.82 ± 0.36 -0.05 ± 0.07 -0.57 ± 0.07

3 Frames-Text Similarity -1.45 ± 0.69 0.23 ± 0.21 0.79 ± 0.15
4 Special-Characters Ratio 0.54 ± 0.36 -0.13 ± 0.70 -0.14 ± 0.10

11 Text Action Number 0.18 ± 0.56 -0.71 ± 0.28 0.37 ± 0.28
13 Video Motion Score -0.55 ± 0.40 0.33 ± 0.21 0.32 ± 0.15

18 Language Score -0.21 ± 0.01 -0.03 ± 0.38 0.09 ± 0.03

Table 1: The results for some investigated OPs gaining top performance with models trained on
single-OP data pools, including their statistical dimensions and the average performance changes
relative to the baselines trained on Drandom. Full ranking table can be found in Appendix C.1.

Observation 2 (Diversity vs. Quality)
Image-to-text models place greater emphasis on data diversity, whereas text-to-video models
prioritize data quality.

A deeper analysis of Table 1 in terms of NSFW scores and language scores reveals that the studied
image-to-text model requires more diverse data compared to the text-to-video model. Intuitively,
high-scoring images or videos in terms of NSFW (Not Safe For Work) content are generally rare and
occupy the long tail of the data distribution. Consequently, datasets with high NSFW scores tend
to be more diverse. Similarly, texts with low language scores indicate that the language of the text
is more difficult to identify, suggesting that such texts are less common and correspond to a more
diverse data pool. Please refer to Appendix C.2 for further quantitative evidence and analysis.

Observation 3 (Spatiotemporal Dynamics)
Dynamic information in the data presents a heightened learning challenge for image-to-text
generation compared to text-to-video generation.

Moreover, given the static nature of images, image-to-text generation sometimes requires parsing
dynamic content, which compels models to engage in creative inference for accurate interpretation
and response. This challenge is evident in the difficulties image-to-text models encounter when
trained on data rich in dynamic information. As shown in Table 1, image-to-text models perform
commendably with fewer text action numbers, while text-to-video models display contrasting trends
regarding the values of text action numbers and video motion scores.

Observation 4 (Modality Alignment)
A high degree of alignment between different modalities within the data is crucial for model
performance in both image-to-text and text-to-video generation.

Finally, both image-to-text and text-to-video models show a common preference for a higher degree
of alignment between modalities. This is supported by their exemplary performance in scenarios
where measures of image-text similarity, phrase grounding recall, and frames-text similarity are high.

7
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4.3 SHAPING DATA RECIPES OF TOP-3 OPERATOR COMBINATIONS

Based on insights from single OP experiments, we can combine “Top” OPs into recipes for data
filtering to obtain higher-quality data. Fig. 3 illustrates model performance changes trained on
different recipes PS compared to the models trained on Drandom.
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(± 0.56)

1.03
(± 0.59)1.23

(± 0.35)

0.34
(± 0.82)

0.61
(± 3.37)

7.69
(± 9.85)

3.90
(± 3.26)

Image NSFW Score
(high)

Text Action Number
(low)

Language Score (low)

(a) Top-recipes for image-to-text model
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(± 0.13)
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(± 0.36)

1.91
(± 0.16)

0.79
(± 0.15)

1.28
(± 0.32)

2.48
(± 0.01)

1.88
(± 0.19)

Aesthetics Score
(high)

Video NSFW Score
(low)

Frames-Text Similarity (high)

(b) Top-recipes for text-to-video model

Figure 3: The model performance changes (%) from recipes combined with the top-3 overall OPs
listed in Table 1. In image-to-text generation, the degree of performance change is smaller than in
single-OP experiments due to the reduced data volume of PS . Details can be found in Appendix B.1.

Observation 5 (Effect of Sequential Combination)
The optimal data recipe does not necessarily arise from combining the best individual OPs, nor
does adding more high-performing OPs always lead to superior outcomes.

Given the exponential growth in possible OP combinations, we focus on experimenting with com-
binations of three OPs at a time. An intuitive strategy is to combine the top three OPs with the
best overall performance from Table 1. However, as shown in Figures 3(a) and 3(b), combining
higher-performing OPs does not always yield better results. For instance, in the image-to-text experi-
ment depicted in Fig. 3(a), the data pool with a high image NSFW score, despite performing best in
single-OP experiments, generally diminishes performance when combined with others. Similarly, in
Fig. 3(b), while pairwise combinations of OPs show positive gains, integrating the top-performing OP
into the combination of high frames-text similarity and low video NSFW score reduces the relative
improvement over the baseline from 2.48% to 1.88%.

Additionally, we categorize OPs based on correlations and select the optimal OP from each category
to form recipes. However, detailed results in Appendix C.4 show that this approach also did not yield
better outcomes, challenging the common assumption in existing SOTA works that stacking various
intuitively useful data cleansing actions can synergistically enhance performance.

Observation 6 (Effect of Seed OPs)
The performance of a single OP is positively correlated with the performance of the recipe
created from its combination. Starting with high-performing OPs is a good initial step in
exploring optimal higher-order data recipes.

Although the Top-3 OP recipes exhibit suboptimal performance, we observe positive gains when
combining some pairs of OPs in them, outperforming both single top-1 and top-3 combinations. For
example, combining TextActionFilter and LanguageIDScoreFilter for the image-to-
text generation, as well as VideoNSFWFilter and VideoFramesTextSimilarityFilter
for the text-to-video generation, has proven to be highly effective.

4.4 HARNESSING MORE HIGH-QUALITY DATA

As discussed in Sec. 3.3.3, we can construct pyramid-shaped data pools by combining different “top”
OPs and then explore when to reuse high-quality data and when to introduce suboptimal data to
ensure diversity. Fig. 3 presents specific performance for PS within this pyramid structure, from
which we can select candidates to be duplicated. Specifically, for the image-to-text model, we choose

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the data pool with low text action number and language score, and for the text-to-video model, we
select the data pool with a low video NSFW score and a high frames-text similarity.

Observation 7 (Effect of Duplicates)
Duplicating high-quality data benefits both image-to-text and text-to-video models. For the
image-to-text model, four repetitions of high-quality data yield the best empirical performance,
while for the text-to-video model, a larger repetition ratio of six to ten times proves effective.

For the text-to-video model (Fig. 4(b)), we find that setting the expansion rate to 2 allows the model
to achieve performance comparable to that obtained by training with the same data volume while
incorporating data from the suboptimal pool. This indicates that data duplication does not negatively
impact performance. The results further demonstrate that this trend continues up to six repetitions,
with linear performance improvements. After six repetitions, some detrimental effects begin to
emerge, although improvements are still noted even after ten repetitions, suggesting a relatively
minor negative impact. In contrast, for the image-to-text model (Fig. 4(a)), repeating the data twice
results in a 15% reduction in relative improvement compared to using double the amount from the
suboptimal pool. Additionally, the benefits of reusing this data diminish with further repetitions, and
negative effects become apparent after eight repeats.
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Figure 4: Relative improvement over the baseline for both image-to-text and text-to-video models
is observed when these are trained on repeated top data pools and when additional suboptimal data
pools are included. The pools are sourced from pyramid hierarchy in Fig. 3.

Furthermore, Fig. 4(b) shows that the introduction of suboptimal data significantly impacts per-
formance compared to reusing high-quality data. At an expansion rate of 4, including suboptimal
data results in a notable performance gap, even though it comprises only 8% of the data. Although
expansion to 6 allows for some performance gain from data diversity, the overall performance declines
with a higher proportion of suboptimal data.

Besides, experiments with the image-to-text model highlight the critical role of data quality, as
shown in Fig. 4(a), where performance does not improve with the addition of suboptimal data. These
findings suggest that while the text-to-video model shows greater tolerance for data diversity, both
models underscore the importance of data quality, aligning with Observation 2 in Section 4.2.

4.5 APPLYING DATA-MODEL INSIGHTS IN LARGER-SCALE SCENARIOS

In this section, we apply the insights gained from our previous experiments to larger-scale models and
datasets. Specifically, for the image-to-text generation task, we follow Observations 6 and 7, utilize
the top data pool from Fig. 3(a) with 4x repetition, resulting in a pretraining dataset of 637k samples,
which constitutes only half of its original pre-training dataset size. Then we train the MGM-2B model
using this new pretraining dataset and its original full fine-tuning dataset.

Table 2 presents the experiment results. Since the official MGM-2B model has not been evaluated on
MMBench-CN, we trained a reproduced version using the official training scripts, and its performance
is closely aligned with the benchmarks reported for the official model. We can see that compared to
the baseline trained on the full dataset, our Data-Juicer version—trained on only 1/10 of the distinct
instances and 1/2 of the total instances—achieves superior performance. Notably, the only difference
between these models is the pretraining data, which underscores the effectiveness of our insights.
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MGM-2B Num. of
Instances

Avg. Perf.
Changes (%)

MMBench MMBench-
CN

MME-
Perception

MME-
Cognition

Baseline* 1226k - 59.2 51.6 1334 302
Data-Juicer 159k (x4) +2.12 62.08 52.32 1323.37 311.07

Table 2: Performance of MGM-2B with different pretraining datasets. MGM-2B pretrained with only
1/10 distinct instances and 1/2 of the total instances performs better. than the baseline trained on the
full dataset. The “*” indicates our reproduced version that is comparable with the official version.

For the text-to-video task, in line with the best data recipe from Fig. 3 and Observation 6, we scale
up the data pool on the full-size candidate video datasets introduced in Sec. B.2, with low video
NSFW score and high frame-text similarities, encompassing approximately 375k instances totally.
Additionally, following Observation 7, we conduct no more than six model training passes through
this dataset. From a data development view, this transition allows us to probe the scalability of our
methodologies, advancing from the 40k data pool used in Sec. 4 to a significantly more voluminous
dataset (228k), approximately 5.7× larger. From a model development view, we undertake a stringent
challenge to assess the transferability of our findings across different model architectures, by replacing
the training model from the previous EasyAnimate with another SOTA model.

Models (Ranked by leaderboard) Board Avg.
(%)

Uniform Avg.
(%)

Quality Avg.
(%)

Semantic
Avg. (%)

1. Data-Juicer (DJ, 228k) 82.53 81.26 83.38 79.13
Data-Juicer (T2V, 147k) 82.10 80.54 83.14 77.93

2. Gen-3 (RunwayML, 2024) 82.32 79.64 84.11 75.17
3. VEnhancer (VC2) (He et al., 2024a) 81.97 80.00 83.27 76.73
4. Kling (2024-07) (Kuaishou, 2024) 81.85 79.54 83.39 75.68
8. T2V-Turbo (VC2) (Li et al., 2024a) 81.01 78.67 82.57 74.76

Table 3: Leading models on the VBench leaderboard as of Sep 23, 2024. “Board Avg.” denotes
the weighted average scores across 16 metrics defined by VBench and “Uniform Avg.” denotes the
arithmetic average. Full training details and ranking table are in Appendix C.5 and C.6 respectively.

Table 3 showcases our notable performance on the VBench leaderboard, achieving a new rank-one
SOTA model. We first enhance T2V-Turbo (the last row) with data-enhanced distillation training
on 147k instances (the second row), and then self-distill it with other 228k instances (the first
row). Compared to our baseline, our method yields a notable uplift of 1.53% on the Board Av-
erage score, with the Quality Average score experiencing a boost of 0.82%, and a particularly
pronounced elevation in the Semantic Average score, which escalates by 4.38%. This underscores
the pivotal role played by our proposed data-model refinement strategies within this context. The
VideoFramesTextSimilarityFilter effectively bolsters the alignment between the gener-
ated videos and the corresponding prompts, while the VideoNSFWFilter safeguards the mainte-
nance of high video generation quality standards. It is also worth highlighting that our approach charts
a novel trajectory for the advancement of text-to-video models. While both T2V-Turbo and VEn-
hancer embody architectural refinements building upon the foundation of VideoCrafter-2.0 (VC2),
our method augments T2V-Turbo’s performance through a synergistic data-model co-development
workflow. For detailed experimental setups and supplementary ablation studies regarding T2V-Turbo,
readers are directed to Appendix C.5.

5 CONCLUSIONS

In this paper, we introduced the Data-Juicer Sandbox, a pioneering open-source suite designed to
facilitate the co-development of multimodal data and generative models. By integrating a flexible and
comprehensive array of customizable components at different levels, our sandbox enables systematic,
cost-effective exploration and optimization, effectively bridging often-disjointed domains of data
and model development. Through applying the proposed “Probe-Analyze-Refine” workflow, we
showcased how our sandbox can yield not only significant improvements in both dataset and models,
but also valuable insights into the complex interplay between data processing and model performance.
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REPRODUCIBILITY STATEMENT

Reproducibility is essential for validating research outcomes. To facilitate this, we have organized
detailed description within the appendix of our paper. Key components of our experimental setup,
including implementation details for the image-to-text and text-to-video use cases can be found
in Appendix B.1 and Appendix B.2 respectively. We provide details into the methodologies for
combining multiple operators based on their correlations in Appendix B.5, as well as comprehensive
descriptions of model training configurations (Appendix B.6) and performance metrics (Appendix
B.7). Furthermore, Appendix B.8 outlines the functionalities and statistics of the Data-Juicer OPs
utilized in our experiments.

All codes, datasets, and models of our work are openly accessible and actively maintained at the
anonymous link.
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APPENDIX

Our appendix is organized as follows:

• In Appendix A, we present more detailed introduction to related works.

• In Appendix B, we present details about the sandbox implementation and experimental
setup, including the image-to-text use case (Appendix B.1), the text-to-video use case
(Appendix B.2), the two strategies used to combine multi-OPs into recipes based on their
correlations (Appendix B.5), the model training configurations (Appendix B.6), the adopted
model performance metrics (Appendix B.7), and the functionalities and corresponding
statistics of the studied Data-Juicer OPs (Appendix B.8).

• In Appendix C, we present more experimental results, including the complete operator
ranking (Appendix C.1), the data diversity analysis (Appendix C.2), the correlation anal-
ysis (Appendix C.4), model performance on recipes derived from the correlation analysis
(Appendix B.5), a detailed performance and ablation study of the Data-Juicer T2V models
(Appendix C.5), and the detailed V-Bench leaderboard results (Appendix C.6). We also ex-
tended our experiments to the image-text foundation model pretraining task in Appendix C.7.
Finally, we provided an overview of our experiments in Appendix C.8.

A DISCUSSION ON MORE RELATED WORKS

Model-Centric Progress in Multimodal Large Models. Multimodal large models have captivated
researchers with their formidable capabilities (OpenAI, 2024a;b), leading to a surge in model-centric
development efforts. These focuses mainly lie in refining training algorithms (Caffagni et al., 2024;
Li et al., 2024a; Zhang et al., 2024), advancing model architectures and components (He et al., 2024a;
Yin et al., 2024; Jiao et al., 2024), and harnessing the models’ potential for various applications (Wang
et al., 2024b; Liu et al., 2024; Zhou et al., 2024). There is a growing consensus that transformer-
based scaling is predominant (Xu et al., 2023). However, the high computational requirements
imposed by scaling laws (Xu et al., 2024c) and the optimization challenges inherent to large models
(Manduchi et al., 2024) often confine insights to specific datasets or vague data characteristics. This
situation leaves a significant gap in comprehending the extent to which models’ performance and
behavior hinge upon implicit assumptions and inductive biases embedded within the underlying data
distributions. In contrast, our work demonstrates a feasible and promising path to fill in this gap by
explicitly linking data processing effects with the downstream performance of trained models through
numerous contrastive sandbox experiments.

Trends in Data-Centric Development for Multimodal Large Models. An emerging trend shifts
the focal point from models to data (Jakubik et al., 2024; Bai et al., 2024), underscored by the notion
that large models function akin to data compressors (Delétang et al., 2024). Echoing the principle
of “garbage in, garbage out”, meticulous data processing is recognized as pivotal. Efforts now
isolate data manipulation as a primary experimental variable in multimodal generative modeling (He
et al., 2024b). Nonetheless, multimodal data processing involves highly heterogeneous processing
workflows, vast quantities, diverse types, and the high cost of training downstream models. This
complexity results in predominantly heuristic approaches, such as data filtering and synthesis guided
by human intuition (Long et al., 2024).

For example, one well-studied model type is CLIP. DataComp (Gadre et al., 2023) introduces a
benchmark to filter out high-quality data from 12.8 billion image-text pairs in Common Crawl to
train better CLIP models, considering Filter Operators such as CLIP score, image size, and caption
length. MetaClip (Xu et al., 2024a) aims to reproduce CLIP’s data by introducing a raw data pool
and finding a balanced subset based on CLIP’s concepts. Unlike these data-centric approaches that
isolate the model and training settings, focusing solely on the quality and scale of training datasets,
our work emphasizes systematic methodologies for data-model co-development, considering both
data and models equally important. Specifically, we incorporate performance signals from sandbox
reference models on many downstream tasks, conducting importance and correlation analysis to link
data pools and these model metrics. Additionally, we explored more model types beyond CLIP, such
as LLaVA-like and DiT-based models for image-to-text and text-to-video tasks, and identified better
training datasets for these models using our workflow.
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Open-Source Infrastructure for Multimodal Large Model Development. The landscape for
multimodal model development has advanced significantly, boasting a variety of strong infrastructures
and frameworks for training and evaluation. Prominent examples include Transformers (Wolf et al.,
2020), Diffusers (von Platen et al., 2022), NeMo (Harper et al.), MMagic (MMagic Contributors,
2023), ESPNet (Peng et al., 2023), and MMBench (Liu et al., 2023).

However, when it comes to multimodal data infrastructure, the primary contributions have been
datasets and dataset-specific preprocessing tools, such as DatasetsHub from HuggingFace (Lhoest
et al., 2021). The standardization and efficient utilization of practical expertise and foundational data
processing capabilities remain unaddressed. Existing frameworks for data processing predominantly
focus on single-modal data (TogetherAI, 2023; Bradski, 2000; Hwang et al., 2023), underlining the
early stages of development in systematic platforms for multimodal data (Chen et al., 2024a; Du
et al., 2023).

Recognizing the critical interplay between datasets and models—where comprehensive, high-quality
datasets enhance model performance, and advanced models contribute to the generation of even more
refined datasets—our work stands out by introducing an innovative intermediary layer. We seamlessly
integrate cutting-edge model-centric multimodal infrastructure with the Data-Juicer system. This
integration fosters a streamlined and insightful co-development environment for both models and
data, bridging the current gap and setting a standard for future efforts in the multimodal domain.

B DETAILS OF SANDBOX APPLICATION

In this section, we present the implementation and experiment details about the two use cases in
4, which illustrate the applications of the Data-Juicer sandbox and demonstrate its versatility and
effectiveness in enhancing multimodal data-model co-development.

B.1 IMAGE-TO-TEXT GENERATION

Our first task focuses on foundational image understanding ability, by experimenting on Mini-Gemini
(MGM-2B), a state-of-the-art (SOTA) 2 billion parameter multimodal LLM (Li et al., 2024b). The
training protocol for MGM-2B involves two stages: pretraining and fine-tuning. Our experimental
focus lies in the pretraining phase, which seeks to harmonize visual and textual representations. We
utilize the original pretraining dataset as our original dataset D, consisting of approximately 1.2M
instances. We set the size of Dsample as 200k. The single-OP data pools Di and multi-OP data pools
DS are capped at a maximum of 200k instances, ensuring consistency of data pool size. To match the
down-sampling rate used during pretraining, the fine-tuning dataset is sampled into a 240k instance
subset.

We first conduct single-OP experiments (Section 4.2) that encompasses 22 text-image relevant OPs
from Data-Juicer, split evenly between text-only and image-related multimodal OPs. After the
two-stage training, model evaluation is conducted on established benchmarks including TextVQA
(Singh et al., 2019), MMBench (Liu et al., 2023), and MME (Fu et al., 2023).

For multi-OP data pools (Section 4.3), we identify the top-3 highest-performing OPs from single-OP
experiments and study their possible combinations. Additionally, we analyze the correlations among
the 23 data statistics produced by 22 OPs capable of generating instance-level stats 1. Employing a
hierarchical clustering algorithm (Ward Jr, 1963), these OPs are grouped into three clusters based on
correlation coefficients, with the highest-performing OP from each cluster selected for combination
testing. To ensure a robust and fair comparison, we must acknowledge the constraints imposed by the
limited data volume within the highest-tier data pool. As the number of combinations increases, the
available dataset size diminishes. In particular, the size of PS was reduced from 200k samples to
159k samples during the Top-3 combination experiments. Similarly, in the cluster-wise combination
experiments, the dataset size decreased from 200k samples to 126k samples.

Next, in Section 4.4, we explore the optimal OP combination based on previous experiments and
adopt the methodology from Section 3.3.3 for comparative experiments on training with repeated
data versus non-repeated data. Note that due to filtering, the final instance count decreases from 200k

1The image height and width are produced by one OP.
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to approximately 159k after the OP combination. These data are then repeated in increments from
double to eightfold, mirroring the size of the original pretraining set.

Collectively, all these experiments yield profound insights into image-to-text model training, data
processing, and iteration strategies from a data-model co-development perspective, further verified in
the larger-scale scenario in Section 4.5.

B.2 TEXT-TO-VIDEO GENERATION

For the second task, text-to-video generation, we adopt the advanced DiT-based models, EasyAnimate
(Xu et al., 2024b), which originally integrates diverse datasets totaling 1.2M instances from InternVid
(Wang et al., 2023b) (606k), Panda-70M (Chen et al., 2024c) (605k), and MSR-VTT (Xu et al., 2016)
(6k). The studied baseline model is trained on a subset of 40k instances, employing LoRA (Hu et al.,
2021) for efficiency. As a result, the size of D is 1.2M, and the size of Dsample, the single-OP data
pools Di and multi-OP data pools DS are all 40k. Model outputs are assessed using VBench (Huang
et al., 2024) across 16 metrics on video quality and video-text matchness.

Our investigation covered 21 OPs, including 13 text-only OPs and 10 video-related multimodal
OPs. Analogous to the image-to-text generation, we conduct single-OP and multi-OP combination
experiments, in Section 4.2 and Section 4.3 respectively. However, given the reduced relevance of
data statistics in video-related OPs, our analysis centers on the correlations among the 16 VBench
evaluation metrics. These metrics are clustered into three groups, with the best-performing OP
selected from each group.

Through OP combination experiments, we pinpoint the most effective set of OPs. In Section 4.4,
we then sample 40k instances from the filtered data pool and repeat the training process for up to
10 epochs. For comparative analysis, we adhere to the method outlined in Section 3.3.3, selecting
larger data volumes (80k, 120k, ..., up to 400k instances) for single-epoch training. To examine
the effectiveness of the derived insights for text-to-video data-model co-development, we finally
incorporate them into larger-scale scenarios in Section 4.5.

B.3 DISCUSSION ON THE DETERMINATION OF DATA POOLS

In the sandbox experiments in Section 4, we split the data pools into three buckets. The number of
buckets reflects the trade-off between data intervention intensity (via operator stats) and the reliability
of model feedback (the metric changes ∆ of post-training downstream tasks compared to the models
trained on random sampled data pools). More buckets lead to greater statistical differences between
buckets with different ranks (especially the first and last ones), strengthening attribution to data
processing effectiveness. However, more buckets also reduce per-bucket data, increasing the risk of
inadequate data for models to exhibit reasonable ∆.

As a result, we do not aim for models to be “training done” or “converged” in this sandbox experiment
setting. Instead, we want to observe enlightening changes—positive or negative—in models after
targeted data intervention versus random data sampling. In our early experiments, we tested bucket
counts of [2,3,4,5] to evaluate whether a model trained on randomly sampled data could reasonably
decrease loss after one epoch and show statistically significant changes on downstream tasks. Our
findings indicate that three buckets are empirically good for our scenarios. Once determined, all
controlled experiments are aligned to one complete epoch and matched to the random pool data size.

B.4 EXTENSIBILITY OF THE SANDBOX SUITE

As a middleware, the sandbox itself does not impose any additional specific hardware dependencies.
Instead, it inherits the dependencies of the integrated underlying libraries/frameworks. Besides, to
simplify dependencies and avoid redundancy in an “all-in-one” environment, we have introduced and
employed a lazy-loader mechanism at the Python package level.

Besides, the utilized Data-Juicer’s operators are not limited to simple data filters; they now encompass
a wide range of functionalities, including 100+ Mappers, Filters, Deduplicators, and Selectors. This
diversity allows for research on various types of data processing utilities within the Sandbox. For
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example, Mappers can be employed to examine the effects of data augmentation and editing on
downstream model task performance. We reserved further exploration beyond filters for future work.

B.5 STRATEGIES TO COMBINE OPS ACCORDING TO CORRELATIONS

In addition to assembling the OPs with the overall best performance, we also incorporate an analysis
of inter-OP relationships into our recipe formulation process. Our workflow accommodates two
strategies, with specific applications detailed in Section C.3:

• The first method involves computing Pearson correlation coefficients between the statistics gener-
ated by these OPs. Using a hierarchical clustering algorithm (Ward Jr, 1963), we group the OPs
into k clusters. From each cluster, we select the OP whose data pool yields the strongest model
performance to form potential combinations.

• Alternatively, leveraging the outcomes of single-OP tests, we calculate Pearson correlation coeffi-
cients for each pair of dimensions within the evaluation metrics. Hierarchical clustering is again
employed to categorize the metrics into k classes. The top-performing OP from each class is chosen
to create the combinations. This approach allows us to investigate whether these combinations lead
to concurrent improvements or mutual inhibition across the evaluative metrics.

B.6 TRAINING CONFIGURATIONS

For the image-to-text generation, we conducted experiments on one of the state-of-the-art MLLMs,
Mini-Gemini-2B (Li et al., 2024b). We train the whole model from scratch with less training data
(about 1/6 of the original training datasets) in baseline experiments to make sure each experiment
can be finished within one day. We keep every training setting (e.g. learning rate scheduler, global
batch size) the same as the original model except for training datasets and training devices. For
single-OP and OP combination experiments are trained on only 1 A100 GPU for each experiment so
we increase the number of gradient accumulation steps from 4 to 32 to keep the same global batch
size. For experiments of duplicating high-quality datasets, 8 A100 GPUs are involved to train the
model, and the number of gradient accumulation steps is restored to 4. Each experiment is repeated 3
times with different random seeds to make the final results more reliable.

For text-to-video generation, we adopt the advanced DiT-based EasyAnimate (Xu et al., 2024b) model,
which integrates diverse datasets totaling 1.2M instances from InternVid (Wang et al., 2023b) (606k),
Panda-70M (Chen et al., 2024c) (605k), and MSR-VTT (Xu et al., 2016) (6k). Baseline experiments
are executed on a subset of 40k instances, employing LoRA (Hu et al., 2021) for efficiency. During
training, we maintain a video resolution of 256x256, sample every other frame, and randomly select
sequences of 16 consecutive frames. The training process involves performing a backward pass for
the loss of every 8 samples, with single-OP and OP combination experiments trained on a single
GPU with a batch size of 8 for 5k steps, amounting to approximately 16 GPU hours per training run.
Experiments for duplicating high-quality data, as well as larger-scale training, are conducted with a
batch size of 1 across 8 GPUs. The models employ the Adam optimizer for training, with a learning
rate set to 2 × 10−5, weight decay parameter at 3 × 10−2, and epsilon configured to 10−10. Each
experiment is repeated twice with random seeds of 42 and 45, respectively.

B.7 PERFORMANCE METRICS

In the paper, we mainly report overall performance as the relative changes over the baseline in terms
of the average across all model metrics with normalization as follows:∑N

i si/N −
∑N

i s′i/N∑N
i s′i/N

=

∑N
i (si − s′i)∑N

i s′i
, (1)

where N is the number of involved metrics, si is the score of i-th model measurement metric, s′i is
the corresponding score gained by the baseline model trained on randomly sampled data. Below are
the specific evaluation metrics involved in this study.

TextVQA, MMBench, MME. These benchmarks serve as critical evaluators of MLLM’s proficiency
in understanding images. TextVQA (Singh et al., 2019) specifically targets the assessment of
MLLMs’ abilities to read and reason about textual content embedded within images. MMBench (Liu
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et al., 2023), a vast multimodal benchmark, encompasses perception and reasoning skills through a
plethora of multi-choice questions, numbering in the thousands. Additionally, a Chinese translation,
MMBench-CN, is integrated for broader accessibility. MME (Fu et al., 2023) focuses on the
perceptual and cognitive competencies of MLLMs, incorporating 14 finely categorized subtasks, each
addressing Yes/No inquiries underpinned by meticulously crafted guidelines.

VBench. We engage with VBench (Huang et al., 2024), a holistic benchmark suite tailored for the
rigorous evaluation of video generative models. It facilitates granular and objective assessment across
a spectrum of dimensions, deconstructing the concept of “video generation quality” into 16 discrete
metrics. Each metric is assessed using a carefully curated suite of prompts, comprising 946 unique
prompts, with the requirement to produce 5 videos per prompt.

Owing to the disparity in evaluation criteria and the inherent variability across different modalities,
we discern that the magnitude of performance fluctuation in the image-to-text generation substantially
exceeds that observed in the text-to-video generation. This discrepancy underscores again the need
for nuanced data-model co-development in addressing the complexities inherent in each modality.

Across all experiments, results are reported as averages with standard deviations from 2 to 5 repetitions
for the image-to-text and text-to-video tasks, respectively, due to their differing levels of variance.

B.8 OPERATOR DESCRIPTIONS

The study involves 22 OPs for the image-to-text task and 21 OPs for the text-to-video task, comprising
a distinct set of 31 OPs from Data-Juicer (Chen et al., 2024a). Their corresponding statistics and
detailed descriptions are provided in Table 4.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 COMPLETE OPERATOR RANKING

In Table 5, we present complete numeric results conducted on individual OP experiments (Section
4.2), from which we can discern some more detailed observations.

In image-to-text generation, it is preferable for the input of training images to align as closely as
possible with the original configuration of the vision tower, such as training dimensions (height,
width, and sizes). Additionally, CLIP similarity scores tend to be more reliable than BLIP similarity
scores. The BLIP similarity does not show much distinction and paradoxically, a lower similarity
often results in better performance, which defies common sense. Images with excessively high
aesthetic quality may offer limited assistance in feature alignment, while watermarks might have
certain impacts on the OCR performance of the model.

In text-to-video generation, having a consistent aspect ratio for the training data is better than having
ratios that are inconsistent but close to the 1:1 ratio used during training. For instance, a data pool
with a ’middle’ video aspect ratio consistently at 16:9 performs optimally. Videos with high video
aesthetics scores and low video NSFW scores, as well as those with low video OCR-area ratios and
high video motion scores, tend to be of higher quality. While single-text-related operators might not
be as critical in text-to-video generation, they can still effectively filter out some dirty data.

C.2 DIVERSITY ANALYSIS

In this subsection, we delve into the diversity of the data in interested data pools. Here, we confine
our focus to statistical analysis of words within text data and compute their entropy. We operate under
the assumption that the texts provide an accurate description of the images and videos. Consequently,
the diversity inferred from the texts also serves as a proxy for the diversity of the associated images
and videos.

The Table 6 shows the entropy of text words for different data pools, which can be normalized as
follows: ∑

w

−P(w) logP(w), (2)
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OP Name Modality Statistics Description

alphanumeric_filter text Alphanumeric Ratio Alphanumeric ratio in the text.
character
_repetition_filter

text Character Repeti-
tion Ratio

Char-level n-gram repetition ratio in
text.

flagged_words_filter text Flagged Word Ratio Flagged-word ratio in the text
image_aesthetics
_filter

image Image Aesthetics
Score

Aesthetics score of the image

image_aspect_ratio
_filter

image Image Aspect Ratio Aspect ratio of the image

image_nsfw_filter image Image NSFW Score NSFW score of the image
image_shape_filter image Image Width/Height Width and height of the image
image_size_filter image Image Size Size in bytes of the image
image_text_matching
_filter

text,
image

BLIP Image-Text
Similarity

Image-text classification matching
score based on a BLIP model

image_text
_similarity_filter

text,
image

CLIP Image-Text
Similarity

Image-text feature cosine similarity
based on a CLIP model

image_watermark
_filter

image Image Watermark
Score

Predicted watermark score of the image
based on an image classification model

language_id_score
_filter

text Language Score Predicted confidence score of the speci-
fied language

perplexity_filter text Text Perplexity Perplexity score of the text
phrase_grounding
_recall_filter

text,
image

Phrase Grounding
Recall

Locating recall of phrases extracted
from text in the image

special_characters
_filter

text Special Character
Ratio

Special character ratio in the text

stopwords_filter text Stopword Ratio Stopword ratio in the text
text_action_filter text Text Action Number Number of actions in the text
text_entity
_dependency_filter

text Entity Dependency
Number

Number of dependency edges for an
entity in the dependency tree of the text

text_length_filter text Text Length Length of the text
token_num_filter text Token Number Token number of the text
video_aesthetics
_filter

video Video Aesthetics
Score

Aesthetics score of sampled frames in
the video

video_aspect_ratio
_filter

video Video Aspect Ratio Aspect ratio of the video

video_duration
_filter

video Video Duration Duration of the video

video_frames_text
_similarity_filter

text,
video

Frames-Text Similar-
ity

Similarities between sampled frames
and text based on a CLIP/BLIP model

video_motion_score
_filter

video Video Motion Score Motion score of the video

video_nsfw_filter video Video NSFW Score NSFW score of the video
video_ocr_area_ratio
_filter

video Video OCR-Area Ra-
tio

Detected text area ratio for sampled
frames in the video

video_resolution
_filter

video Video Width/Height Width and height of the video

video_watermark
_filter

video Video Watermark
Score

Predicted watermark score of the sam-
pled frames in the video based on an
image classification model

words_num_filter text Word Number Number of words in the text
word_repetition
_filter

text Word Repetition Ra-
tio

Word-level n-gram repetition ratio in
the text

Table 4: Overview of involved OPs in the study, including the modality they pertain to, along with
their statistical data and detailed descriptions of these statistics.

where w is a word and P is the distribution of words in a data pool. As we can see, data pools
with higher NSFW scores and lower language scores have higher word entropy, suggesting greater
diversity within these data pools.
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Task OP-Generated Statistics Average Performance Changes (%)

Data Pool (Low) Data Pool (Mid) Data Pool (High)

Image-to-Text

Image NSFW Score 7.13 ± 4.29 18.44 ± 18.45 66.38 ± 32.65
Text Action Number 59.90 ± 46.49 0.29 ± 2.16 -2.05 ± 2.48

Language Score 49.90 ± 53.82 0.85 ± 2.87 -1.43 ± 2.40

CLIP Image-Text Similarity 1.20 ± 4.86 -1.81 ± 2.88 49.81 ± 44.72
Phrase Grounding Recall -0.49 ± 3.87 -0.58 ± 6.12 49.39 ± 29.83
Image Width 42.04 ± 57.27 10.31 ± 12.59 1.35 ± 4.36

Special Character Ratio -3.08 ± 0.63 -0.75 ± 1.61 39.67 ± 58.82
Flagged Word Ratio 38.48 ± 27.76 -0.39 ± 0.43 22.49 ± 29.81

Image Height 35.66 ± 48.62 12.91 ± 10.42 18.73 ± 27.32

Word Repetition Ratio 33.14 ± 23.39 2.59 ± 5.31 -0.55 ± 2.90

Text Length 30.67 ± 28.54 -0.44 ± 0.73 -3.71 ± 0.39

Stopword Ratio 3.34 ± 5.05 24.62 ± 36.73 -1.56 ± 1.59

Image Size 0.76 ± 0.55 19.16 ± 27.29 1.58 ± 2.20

Text Perplexity -1.69 ± 1.30 16.70 ± 24.49 18.26 ± 23.02
Image Aesthetics Score 11.94 ± 12.21 16.58 ± 25.70 0.16 ± 3.67

Word Number 15.96 ± 29.01 -2.48 ± 0.26 -1.97 ± 2.05

BLIP Image-Text Similarity 11.76 ± 22.83 1.74 ± 2.49 1.34 ± 2.21

Image Watermark Score -1.50 ± 2.41 7.51 ± 12.82 11.54 ± 13.14
Alphanumeric Ratio 2.35 ± 7.63 -0.66 ± 0.69 8.71 ± 12.87
Character Repetition Ratio 0.00 ± 1.13 -1.42 ± 0.60 7.94 ± 14.63
Entity Dependency Number 1.35 ± 1.81 -0.87 ± 1.15 6.67 ± 8.44
Token Number 6.31 ± 7.86 0.80 ± 0.92 0.33 ± 6.45

Image Aspect Ratio 0.00 ± 1.34 1.89 ± 2.71 -0.02 ± 1.12

Text-to-Video

Video Aesthetics Score -0.98 ± 0.08 0.13 ± 0.09 0.96 ± 0.13
Video NSFW Score 0.82 ± 0.36 -0.05 ± 0.07 -0.57 ± 0.07

Frames-Text Similarity -1.45 ± 0.69 0.23 ± 0.21 0.79 ± 0.15
Special-Characters Ratio 0.54 ± 0.36 -0.13 ± 0.70 -0.14 ± 0.10

Token Number 0.53 ± 0.04 0.18 ± 0.32 0.41 ± 0.25

Character Repetition Ratio -0.29 ± 0.27 0.47 ± 0.80 0.18 ± -0.52

Video Height -0.10 ± 0.21 0.12 ± 0.13 0.46 ± 0.44
Video OCR-Area Ratio 0.44 ± 0.04 0.02 ± 0.63 -0.66 ± 0.23

Word Number -0.49 ± 0.07 -0.41 ± 0.72 0.44 ± 0.45
Entity Dependency Number 0.40 ± 0.01 0.28 ± 0.48 -0.18 ± 0.44

Text Action Number 0.18 ± 0.56 -0.71 ± 0.28 0.37 ± 0.28
Alphanumeric Ratio -0.10 ± 0.19 0.20 ± 0.19 0.33 ± 0.17
Video Motion Score -0.55 ± 0.40 0.33 ± 0.21 0.32 ± 0.15

Video Watermark Score -0.27 ± 0.27 -0.25 ± 0.25 0.29 ± 0.16
Text Perplexity 0.15 ± 0.69 -0.13 ± 0.27 0.09 ± 0.56

Stopword Ratio -0.01 ± 0.05 -0.48 ± 0.22 0.12 ± 0.07
Video Aspect Ratio -0.32 ± 0.14 0.11 ± 0.18 -0.02 ± 0.40

Language Score -0.21 ± 0.01 -0.03 ± 0.38 0.09 ± 0.03
Word Repetition Ratio 0.00 ± 0.17 0.06 ± 0.24 -0.43 ± 0.24

Video Duration -0.58 ± 0.05 -0.16 ± 0.09 0.04 ± 0.84
Text Length -0.09 ± 0.63 -0.66 ± 0.08 0.03 ± 0.22

Table 5: The complete OP ranking, including their statistical dimensions and the improvements
relative to the baseline. We consider three splits with low, middle, and high statistical values for each
OP. The baseline used is based on random sampling with equal data volume.

C.3 CORRELATION ANALYSIS

To investigate the intrinsic relationships between OPs and to support our recipe formulation, we
explore relevance from the following two perspectives.
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Task OP-Generated Statistics Word Entropy

Data Pool (Low) Data Pool (Mid) Data Pool (High)

Image-to-Text Image NSFW Score 6.97 7.35 7.29
Language Score 7.47 7.32 6.98

Text-to-Video Video NSFW Score 5.84 6.03 6.01
Language Score 6.30 5.85 5.73

Table 6: The entropy of text words for data pools with different levels of Image NSFW score and
Language score.

Alphanumeric Ratio

Image Aspect Ratio

Character Repetition Ratio

Flagged Word Ratio

Image Aesthetics Score

Image Height

Image NSFW Score

Image Size

BLIP Image-Text Similarity

CLIP Image-Text Similarity

Image Watermark Score

Image Width

Language Score

Text Action Number

Entity Dependency Number

Token Number

Word Number

Text Perplexity

Phrase Grounding Recall

Special Character Ratio

Stopword Ratio

Text Length

Word Repetition Ratio

Alphanumeric Ratio

Image Aspect Ratio

Character Repetition Ratio

Flagged Word Ratio

Image Aesthetics Score

Image Height

Image NSFW Score

Image Size

BLIP Image-Text Similarity

CLIP Image-Text Similarity

Image Watermark Score

Image Width

Language Score

Text Action Number

Entity Dependency Number

Token Number

Word Number

Text Perplexity

Phrase Grounding Recall

Special Character Ratio

Stopword Ratio

Text Length

Word Repetition Ratio

1.00 0.09 0.49 -0.01 0.08 0.41 -0.01 0.18 -0.15 0.01 -0.04 0.46 0.80 0.78 -0.04 0.78 0.80 -0.66 -0.66 -0.96 0.64 0.80 0.01

0.09 1.00 0.07 0.00 0.07 -0.18 -0.02 0.04 -0.01 -0.05 -0.02 0.34 0.11 0.08 -0.03 0.08 0.08 -0.09 -0.07 -0.08 0.12 0.09 0.00
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0.78 0.08 0.55 -0.01 0.06 0.51 -0.02 0.21 -0.17 0.07 -0.02 0.54 0.71 0.96 -0.07 1.00 0.99 -0.64 -0.62 -0.74 0.65 0.99 0.01

0.80 0.08 0.55 -0.01 0.08 0.50 -0.02 0.21 -0.16 0.06 -0.03 0.54 0.73 0.96 -0.05 0.99 1.00 -0.66 -0.62 -0.76 0.67 1.00 0.00

-0.66 -0.09 -0.35 0.01 -0.08 -0.34 0.01 -0.15 0.11 0.01 0.04 -0.38 -0.73 -0.64 -0.06 -0.64 -0.66 1.00 0.57 0.68 -0.75 -0.65 0.05

-0.66 -0.07 -0.37 0.01 -0.02 -0.33 0.01 -0.14 0.14 -0.01 0.01 -0.36 -0.64 -0.60 0.04 -0.62 -0.62 0.57 1.00 0.63 -0.58 -0.63 0.01
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Figure 5: Pearson correlation coefficients for OP statistics in image-to-text generation.

First, we adopt the most direct approach by examining the Pearson correlation coefficients between
the statistics of OPs, as illustrated in Figures 5 and 6. Intuitively, the associations between the
statistics of OPs utilized in image-to-text generation appear to be significantly stronger than those in
text-to-video generation. For instance, in image-to-text generation, phrase grounding recall shows
a strong positive correlation with text perplexity and special character ratio, while exhibiting a
strong negative correlation with the alphanumeric ratio, language score, number of text actions,
stopword ratio, and text length. In contrast, in text-to-video generation, we observe relationships
primarily among the purely textual OPs, while video-related operators are largely orthogonal to
others. Therefore, for image-to-text generation, we categorize OPs into three groups based on the
correlation of their statistics and select the optimal OP from each category to create combinations.
However, this method does not appear appropriate for text-to-video generation due to the sparser
correlations observed.
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Alphanumeric Ratio

Character Repetition Ratio

Flagged Word Ratio

Language Score

Text Action Number

Entity Dependency Number

Token Number

Word Number

Text Perplexity

Special Character Ratio

Stopword Ratio

Text Length

Word Repetition Ratio

Video Aesthetics Score

Video Aspect Ratio

Video Duration

Video Height

Frames-Text Similarity

Video Motion Score

Video NSFW Score

Video OCR-Area Ratio

Video Watermark Ratio
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Text Length
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Video Aesthetics Score
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Video Duration

Video Height
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Video Motion Score

Video NSFW Score

Video OCR-Area Ratio

Video Watermark Ratio
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Figure 6: Pearson correlation coefficients for OP statistics in text-to-video generation.

In the second approach, we categorize the evaluation metrics based on their correlations, as illustrated
in Figure 7 for image-to-text generation and Figure 8 for text-to-video generation. In image-to-text
generation, several evaluation metrics are highly specific and possess unique characteristics, such as
those for OCR and coding tasks, resulting in a greater number of categories upon classification. In
contrast, VBench’s evaluation metrics can be broadly divided into several classes, including static
video metrics (e.g., subject and background consistency), dynamic metrics (e.g., dynamic degree),
and video quality indicators (e.g., aesthetic quality and imaging quality).

Notably, the dynamic degree negatively correlates with many other metrics, particularly those favoring
static videos, thus preventing videos without movement from being rated as optimal. Based on these
observations, for text-to-video generation, we apply a hierarchical clustering algorithm (Ward Jr,
1963) to classify the VBench metrics into three categories based on their correlations: static video
metrics, dynamic video metrics, and video quality along with video-text matching. We then select the
best-performing OP for each of these three metric categories, where each excels in different aspects.
These selected OPs are subsequently combined and experimentally evaluated together.

C.4 RECIPES BASED ON CORRELATION ANALYSIS

In addition to selecting the overall best-performing OPs, we aim to identify operators with distinct
advantages to explore whether combining these operators can synergistically leverage their strengths
for improved outcomes. We selected operators with unique strengths based on correlation infor-
mation obtained from single-operator experiments. Detailed correlation analyses can be found in
Appendix C.3.

Specifically, for the image-to-text generation, we categorize the OPs by calculating
correlations between their statistics. We then select representative operators within
each category: TextActionFilter for text, ImageNSFWFilter for images, and
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TextVQA
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MMBench-cn

MME-perception

MME-cognition

MME-perception.existence

MME-perception.count

MME-perception.position

MME-perception.color

MME-perception.posters

MME-perception.celebrity

MME-perception.scene

MME-perception.landmark

MME-perception.artwork
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MME-cognition.numerical_calculation
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MME-cognition.code_reasoning
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0.65 0.97 0.95 1.00 0.56 0.97 0.87 0.44 0.70 0.77 0.86 0.93 0.82 0.91 0.30 0.71 0.37 0.28 -0.00

0.45 0.57 0.56 0.56 1.00 0.56 0.43 0.24 0.41 0.42 0.56 0.48 0.46 0.50 0.21 0.61 0.41 0.75 0.40
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Figure 7: Pearson correlation coefficients for each dimension in TextVQA, MMBench, and MME.

PhraseGroundingRecallFilter for combined text-image relevance. For the text-to-video
generation, based on single-operator experiments, we categorize the metrics of VBench (Huang
et al., 2024) into three classes according to their relevance and select the best-performing opera-
tor from each category. The chosen operators are VideoMotionScoreFilter, which excels
in video static features; VideoDurationFilter, which is superior in dynamic features; and
VideoAestheticsFilter, which exhibits the best composite performance in video quality and
video-text matching. We summarize the experiment results in Figures 9(a) and 9(b).

Observation 8 (Effect of Orthogonal Combination)
Combining OPs that excel in orthogonal dimensions on model or data does not guarantee
complementary effects; rather, it is more likely that they will impede each other’s performance.

As depicted in Figures 9(a) and 9(b), regardless of how these top-performing OPs are combined,
they ultimately reduce the model’s performance in both image-to-text and text-to-video generation.
This observation challenges the naive assumption widely used in existing SOTA works, that var-
ious intuitively useful data cleansing actions, when stacked serially, can synergistically enhance
performance.

C.5 SETTING AND ABLATION STUDY BASED ON T2V-TURBO

The results shown in Table 3 represent the enhancements we achieved based on T2V-Turbo (Li
et al., 2024a). T2V-Turbo applies LoRA (Hu et al., 2021) to VideoCrafter-2.0 (Chen et al., 2024b)
and is trained on the WebVid (Bain et al., 2021) dataset, using VideoCrafter-2.0 as a teacher for
distillation and incorporating reinforcement learning with rewards for the generated videos. The loss
L of T2V-Turbo is defined as:

L = LCD − 1×Rimg − 2×Rvid, (3)
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Figure 8: Pearson correlation coefficients for evaluation metrics in VBench.
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Figure 9: The improvements (%) of recipes with different OP combinations. The cluster recipes stem
from the combinations of the best OPs in 3 categories. In the image-to-text generation, due to the
limited data volume in the top-level data pool, the size of PS decreased from 200k to 126k in the
cluster recipes.

where LCD is the loss of consistency distillation (Song et al., 2023), Rimg is the reward of image
quality of generated video frames from HPSv2.1 (Wu et al., 2023) and Rvid is the reward of video
quality from InternVideo2 (InternVid2 S2) (Wang et al., 2024a). In the paper, we make the following
cumulative modifications to T2V-Turbo:
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1. Proposed Data Pool. Utilizing the optimal data pool identified in Section 4.4, which consists
of 147k instances with low video NSFW scores and high frame-text similarities, we replace the
WebVid data and train for 6 epochs based on the insight from Section 4.4.

2. Initialization for LoRA. We use the T2V-Turbo model to initialize the parameters for training
with LoRA.

3. Self-Distillation. When we initialize with the T2V-Turbo model, the student model is already
outperforming the teacher model, VideoCrafter-2.0, potentially leading to unstable training. To
mitigate this, we use the T2V-Turbo model itself as the teacher to ensure that the reinforcement
learning does not diverge excessively.

4. Real-Data Loss. To enhance the role of the proposed data pool during training, we add a real-data
loss between the generated videos and the input videos to the distillation loss and reward loss.
Furthermore, we set the weights of both the real-data loss and the distillation loss to 0.5. The
modified loss from Equation 3 can be specified as:

L = 0.5× LCD + 0.5× Lreal − 1×Rimg − 2×Rvid, (4)

where ×Lreal is the real-data loss. Training on 147k instances with 6 epochs, we obtain the model,
Data-Juicer (T2V, 147k).

5. Self-Evolution. To validate the scalability of our methodologies, we expanded
the original data pool and, by applying the video_aesthetics_filter and
video_motion_score_filter to the existing recipes, we select an additional 228k in-
stances to evolutionary self-distill Data-Juicer (T2V, 147k). Meanwhile, in order to further amplify
the impact of data, we have reduced the emphasis on reinforcement learning, thereby:

L = 0.5× LCD + 0.5× Lreal − 0.2×Rimg − 0.4×Rvid. (5)

We finally get Data-Juicer (DJ, 228k) in 4 epochs training.

Model Total Score (%) Quality Score (%) Semantic Score (%)

T2V-Turbo (VC2) 81.01 82.57 74.76
+ Enhanced Data Pool 81.84 83.40 75.60
+ Initialization for LoRA 81.82 83.47 75.19
+ Self-Distillation 79.16 79.48 77.92
+ Real-Data Loss 82.10 83.14 77.93
+ Self-Evolution 82.53 83.38 79.13

Table 7: Our model undergoes ablation experiments on the VBench leaderboard evaluation. Each ‘+’
sign in the row indicates that the modification is added on top of the previous row’s configuration.

Table 7 presents the ablation experiments of our modifications in the VBench evaluation. It is clear
that when we replace the WebVid data with our proposed data pool, the model experiences a notable
improvement, with the total score increasing from 81.01% to 81.84%. Subsequently, initializing
the LoRA training parameters with the T2V-Turbo model does not lead to further enhancements
in model performance. We suspect this might be because the teacher model is less effective than
the T2V-Turbo model. Therefore, we use the T2V-Turbo model for self-distillation. While this
method effectively raises the semantic score, it results in unstable video generation characterized by
significant temporal flickering, which severely lowers the video quality. To counteract this, we add a
real-data loss with the input data to secure the quality of the generated videos. Moreover, we evolve
the model by using our trained model as the teacher model for continuous training on additional data,
rather than T2V-Turbo. Ultimately, as we continue to enhance both the quality and semantic scores,
we establish a new state-of-the-art.

C.6 FULL RESULTS ON VBENCH LEADERBOARD

Backed by our proposed methodology and experiments, our Data-Juicer (DJ, with 228k) model
refreshes the state-of-the-art on VBench (Huang et al., 2024), surpassing models like Gen-3 (Run-
wayML, 2024) and Kling (Kuaishou, 2024), as illustrated in Figure 10 and detailed in Table 3.
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Figure 10: The VBench Leaderboard as of September 23, 2024, illustrating the rank 1 achievement
empowered by our data-model co-development workflow.

Models (Ranked by leaderboard) Board Avg.
(%)

Uniform Avg.
(%)

Quality Avg.
(%)

Semantic
Avg. (%)

1. Data-Juicer (DJ, 228k) 82.53 81.26 83.38 79.13
Data-Juicer (T2V, 147k) 82.10 80.54 83.14 77.93

2. Gen-3 (RunwayML, 2024) 82.32 79.64 84.11 75.17
3. VEnhancer (VC2) (He et al., 2024a) 81.97 80.00 83.27 76.73
4. Kling (2024-07) (Kuaishou, 2024) 81.85 79.54 83.39 75.68
5. LaVie-2 (Wang et al., 2023a) 81.75 79.50 83.24 75.76
6. CogVideoX-5B (Yang et al., 2024) 81.61 79.90 82.75 77.04
7. Vchitect 2.0-2B (Vchitect, 2024) 81.57 80.15 82.51 77.79
8. T2V-Turbo (VC2) (Li et al., 2024a) 81.01 78.67 82.57 74.76

Table 8: Leading models on the VBench leaderboard as of Sep 23, 2024. “Board Avg.” denotes
the weighted average of normalized scores across 16 metrics defined by VBench. “Quality Avg.”
represents the aggregated scores from 7 video quality metrics, whereas “Semantic Avg” aggregates
scores from 9 metrics evaluating the consistency between prompts and generated videos. “Uniform
Avg.” indicates the simple average of scores related to quality and semantic metrics. Data-Juicer
(T2V, 147k) is based on T2V-Turbo distillation training on 147k instances. In order to demonstrate
the scalability of our methodologies, we then further self-distilled our model to obtain Data-Juicer
(DJ, 228k) on other 228k instances.

C.7 EXPERIMENTS ON CLIP MODELS

To further assess the robustness of our sandbox, we extended our experiments to the image-text
similarity and classification tasks using the CLIP model (Radford et al., 2021). We utilize data from
the small track of the DataComp competition (Gadre et al., 2023) and adhere to its evaluation metrics,
which include 40 distinct evaluation subsets. Due to some broken links, we successfully downloaded
85.2% of the dataset, resulting in a total of 10.9 million samples as our D. All baseline models were
trained on an equivalent volume of data as used in the contrastive experiments, sampled randomly
from this dataset. As illustrated in Figure 2, the experiments are also conducted in three phases: first,
single-operation processing; second, multi-operation processing; and finally, scaling experiments
with increased data volume across various model sizes and computational scales.
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OP-Generated Statistics Average Performance Changes (%)

Data Pool (Low) Data Pool (Mid) Data Pool (High)

CLIP Image-Text Similarity -32.57 -6.39 39.53
BLIP Image-Text Similarity -24.28 1.82 25.39
Image NSFW Score 12.18 1.28 -18.38
Word Number -18.65 0.74 9.78
Stopword Ratio -4.28 -3.33 8.97
Special Character Ratio 8.86 4.15 -16.03
Phrase Grounding Recall 7.79 1.85 -10.60
Text Length -8.31 1.81 7.29
Character Repetition Ratio 1.99 0.04 6.63
Image Aspect Ratio 4.93 -4.55 5.87
Text Perplexity 5.27 2.46 -9.56
Image Width -6.66 4.97 5.23
Image Height -4.03 5.02 0.89
Image Size -12.11 5.00 2.87
Image Aesthetics Score -9.61 -8.13 4.64
Image Watermark Score 3.84 -3.74 -4.72
Flagged Word Ratio 3.66 3.47 1.59
Entity Dependency Number -5.53 -0.39 2.50
Word Repetition Ratio -3.16 -0.91 1.84
Alphanumeric Ratio -2.55 1.65 0.63
Token Number -6.35 1.44 0.27

Table 9: The complete OP ranking, including their statistical dimensions and the improvements
relative to the baseline for image-text similarity/classification task. We consider three splits with low,
middle, and high statistical values for each OP. The baseline used is based on random sampling with
equal data volume.

Table 9 presents the results from single-operation processing. From which we can
find that the top three performing operations are image_text_similarity_filter,
image_text_matching_filter, and image_nsfw_filter.

16.00 7.415.00

1.18

15.20 9.99

13.32

CLIP Image-Text Similarity
(high)

BLIP Image-Text Similarity
(high)

Image NSFW Score
(low)

Figure 11: Percentage improvements of recipes with different operation combinations. The top-
performing recipes originate from combinations of the best three operations. Due to data limitations in
the top-level data pool, the training dataset size is reduced to 880k for the top recipes. Correspondingly,
the default computation scale of DataComp is adjusted to 0.25 expansion rate for the sandbox
experiment.

In the multi-operation processing phase, we evaluated all possible combinations of the
top three operations. The results, illustrated in Figure 11, show that using the
image_text_similarity_filter operation alone outperforms other combinations. This
observation may be attributed to the filtering process relying on a high-quality CLIP model to
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train another CLIP model, effectively creating a form of model distillation. Consequently, the
image_text_similarity_filter operation consistently dominated the performance out-
comes of the other operations.
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Figure 12: Relative improvement over the baseline with different FLOPS and computation scaling.
“Top1 Only” refers to applying the recipe using only the image_text_similarity_filter.
“Top1&2 Comb” indicates the use of both image_text_similarity_filter and
image_text_matching_filter. “ViT-B-32” and “ViT-B-16” are image encoders of dif-
ferent version of CLIP, with FLOPS of 8.82G and 35.13G respectively.

Finally, we validated whether our findings in the small-scale sandbox experiments could generalize
to larger scales from a scaling law perspective. Specifically, we increased the data volume from 880k
to 2,683k and examined our conclusions across various models (from ViT-B-32 to ViT-B-16) and
different computational scales (1/4, 1/2 and 1x relative to the default computation of the DataComp-
Small Track). As depicted in Figure 12, the image_text_similarity_filter operation,
identified as the best performer in small-scale experiments, continued to outperform the recipe, which
combines image_text_similarity_filter and image_text_matching_filter.

Furthermore, Figure 12 illustrates notably consistent improvements when both model and computa-
tional scales are increased. The linear growth in relative improvement with the exponential increase
of computation aligns with known scaling laws (Cherti et al., 2023), which suggest that expanding
model size and data, alongside computational scaling, yields consistent performance gains.

C.8 OVERVIEW OF THE SANDBOX EXPERIMENTS

The table 10 provides an overview of our sandbox experiments on image-to-text generation, text-to-
video generation, and image-text similarity and classification tasks.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Sandbox
Scenario

Image-to-Text Genera-
tion

Text-to-Video Generation Text-Image Foundation
Model
(New in Rebuttal)

Main Effec-
tiveness Evi-
dence

Optimal recipe derived
from small data pools
(Sec. 4.2) achieves supe-
rior model performance
in larger data pools (Sec.
4.5)

Optimal recipe from small
data pools (Sec. 4.2)
results in VBench-Top1
model with varying data
size, model scales, and
model architectures (Sec.
4.5)

Best recipe identified in
the model with fewer
FLOPS maintains opti-
mal performance with in-
creased model FLOPS
and compute resources.

Model Scale
Range

MGM-2B in all experi-
ments

EasyAnimate to T2V-
Turbo
(Heterogeneous architec-
tures)

CLIP: ViT-B-32 to ViT-
B-16
(Different FLOPS)

Data Scale
Range
(w.r.t
Distinct
Dataset
Size)

126k to 200k 40k to 147k and 228k 880k to 2,683k

Compute
Scale Range
(w.r.t Num-
ber of
Trained
Sample)

1 to 8 Epochs (Sec. 4.4) 1 to 10 Epochs (Sec. 4.4) 4 to 14 Epochs

Table 10: Overview of sandbox scenarios and their effective evidence across different scales.
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