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ABSTRACT

To fix the ‘bias in, bias out’ issue in fair machine learning, it is essential to get ideal
training and validation data. Collecting ideal real-world data or generating ideal
synthetic data requires a formal specification of ideal distribution that would guar-
antee fair outcomes by downstream models. Previous work on fair pre-processing
does not address this gap, and could be significantly improved if it is resolved.
We call a distribution as ideal distribution if the minimizer of any cost-sensitive
risk on it is guaranteed to satisfy exact fairness (e.g., demographic parity, equal
opportunity). Given any data distribution for fair classification, we formulate an
optimization program to find its nearest ideal distribution in KL-divergence. This
optimization is intractable as stated but we show how it can be solved efficiently
when the distributions come from well-known parametric families (e.g., normal,
log-normal). We empirically show on synthetic datasets that our ideal distributions
are close to the given distributions and they can often suggest directions to steer
the original distribution to improve both accuracy and fairness simultaneously.

1 INTRODUCTION

The importance of clean or ideal data in fair machine learning cannot be emphasized more. Bias
in, bias out has been argued to be a root cause of unfair outcomes in machine learning models
Buolamwini & Gebrul (2018); Mayson| (2019); Rambachan & Roth| (2020); |[Cowgill et al.| (2020).
Models trained on biased data often learn, perpetuate, and amplify these biases. The problem of data
bias is not about training data alone. Fair in-processing or fairness-constrained training on biased
data cannot guarantee fairness on (unbiased) test data. Fair post-processing of model predictions
using biased validation data cannot guarantee fairness on (unbiased) test data. Biased data used for
assessment can lead to faulty fairness audits that may be hard to correct later in machine learning
pipelines Biswas & Rajan| (2021)); Bakalar et al.|(2021).

Popular fairness metrics are functions of both a given model and a data distribution, e.g., demo-
graphic parity (equal positive rates across demographic groups), equal opportunity (equal true posi-
tive rates across groups). They offer two natural ways to correct unfair outcomes: either by correct-
ing the model or by correcting the data distribution. An ideal model can thus be defined as one that
satisfies exact fairness, and fair in-processing tries to fit an ideal model to the given data distribution
Agarwal et al.| (2018); |Donini et al.|(2018]). In this paper, we focus on the latter approach of finding
an ideal data distribution instead. In that sense, we are closest to the fair pre-processing literature.
A detailed discussion of pre-processing approaches is given in Appendix [A]

A common goal of all fair pre-processing methods is to find an ideal data distribution close to
the given distribution so that any downstream model trained on it must have guaranteed fairness. A
stronger requirement that this should hold for downstream models optimized for multiple tasks leads
to impossibility results [Lechner et al.| (2021). If all downstream classifiers are required to be fair,
then the group-wise distributions must be nearly identical, which is absurd. Thus, we restrict our
downstream models only to Bayes optimal classifiers for cost-sensitive risks. Our first contribution
is to formally define an ideal distribution (Definition [3.T) as the one where the Bayes optimal clas-
sifier for any cost-sensitive risk satisfies exact fairness (e.g., satisfies equal opportunity perfectly).
To operationalize this definition, we assume group and class-conditioned distributions come from
well-known parametric families (e.g., Gaussian, log-normal) and show conditions on such ideal
distributions (Propositions [.3). This allows us to convert the ideal distribution optimization
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Figure 1: Comparison of Different Interventions for Changing Data Distributions for Exact Fairness. Figure
captures the original distribution, its Bayes error (BE), and the unfairness differences (ADP and AEO).
In Figure (TB), we only change the under-privileged group using Corollary [C.2] and in Figure we change
all four subgroups using Proposition [C.3] Finally, in Figure (Id), we match the means of the two groups using
Proposition Figures and Figures show that it is possible to construct ‘ideal’ distributions that are
close to the given distribution where the Bayes Optimal classifier is maximally accurate and fair.

problem, which is generally intractable, to a tractable problem that can be solved efficiently in some
cases and give closed form transformations (Theorem[4.1] Corollary [C.2} Proposition[C.3).

Bayes optimal classifier maximizes accuracy on a given distribution, and have been an important
object of study in statistical machine learning Devroye et al|(1996). Fair Bayes optimal classifier
maximizes accuracy subject to fairness constraints, and its mathematical characterization for binary
fair classification has been important in fair classification Menon & Williamson|(2018));|(Chzhen et al.
(2019); (Celis et al.| (2021); [ Zeng et al.[(2022). Blum & Stangl| (2019) introduce a data bias model
that injects under-representation and label bias in an original unbiased distribution to create biased
data. They show that, for a stylized distribution under some conditions, the fair Bayes optimal
classifier on the biased distribution recovers the Bayes optimal classifier on the original unbiased
distribution. Their unbiased distribution is ideal by construction, i.e., the Bayes optimal classifier
on their unbiased distribution is guaranteed to be perfectly fair. |Sharma & Deshpande{(2024) extend
this observation to general hypothesis classes and distributions beyond the stylized setting of |Blum!
& Stangl|(2019). Blum et al.[(2023) study fair Bayes optimal classifier whether its accuracy is robust
to malicious corruptions in data distribution.

In contrast to these results, our focus is not on finding the ideal classifier but on finding the nearest
ideal distribution. By definition, our ideal distribution has no trade-off between accuracy (or cost-
sensitive utility) and fairness. If we find an ideal distribution close to our original distribution,
we can steer our distribution towards reducing fairness-accuracy trade-off. Moreover, if the ideal
distribution offers better accuracy, it suggests that we can steer our distribution to improve both
accuracy and fairness simultaneously. We highlight this in Fig. [T] and later in Figures and 5]

2 PROBLEM SETUP AND PRELIMINARIES

Let (X, A,Y) be a random data point from a joint distribution D over X x A x ), where X', A, Y
denote the sets of features, sensitive attributes, and class labels, respectively. For simplicity of expo-
sition, we consider a binary labels () = {0, 1}) and a binary sensitive attributes (A = {0,1}). Let

o« = Pr(Y =4, A =a) and P;, denote the distribution X ‘ Y =i, A = a with the probability
density piq(2) = Pr (X =2 | Y =4, A =a). When P,,’s come from parametric families of dis-
tributions, we assume X = R%. We work with the following well-known definitions of fairness in
classficiation Dwork et al.| (2012); Hardt et al.| (2016); Barocas et al.|(2019).

Definition 2.1. For the case of binary labels and sensitive attributes, a group-aware classi-
fier h : X x A — Y satisfies: (1) Demographic Parity if the positive rates are equal
across groups, i.e., Pr(h(X,A) =14 =0) = Pr(h(X,A) =1|A = 1), and (2) Equal Oppor-
tunity if the true positive rates are equal across groups, i.e., Pr(h(X,A)=1Y =1,4A=0) =
Pr(h(X,A)=1Y =1,A=1).

These lead to quantitative metrics of unfairness, e.g., App(h,D) denotes the absolute
value of difference between Pr (h(X,A) = 1]A =0) and Pr(h(X,A) =1|A=1). Similarly,
Ago(h, D) denotes the absolute value of difference between Pr(h(X,A) =1]Y =1,A4A=0)



Under review as a conference paper at ICLR 2025

and Pr(h(X,A) =1]Y =1,A=1). We consider group-aware classifiers. We are particularly
interested in threshold classifiers h:(z,a) that apply a group and feature dependent threshold
t(z,a) to the class probability of an example: hi(z,a) = I(n(z,a) > t(x,a)) where n(x,a) =
Pr(Y =1|X =z,A =a). Itis well-known that the Bayes optimal classifier for a given distri-
bution has the form ¢(z,a) = 1/2 Devroye et al.| (1996). For a cost matrix C' € R?*? and the
associated cost sensitive loss /¢, the Bayes optimal classifier is defined as I (n(z,a) > t¢), for a
threshold tc = (c10 — co0)/(c10 — coo + co1 — c11) € [0, 1], where ¢;; denote the entries of the cost
matrix C' € R%*2Elkan|(2001); Scott| (2012); [Koyejo et al|(2014); |Singh & Khim|(2022). We defer
all proofs to appendix for a smoother flow of presentation.

3 IDEAL DISTRIBUTIONS FOR FAIR CLASSIFICATION

We define a data distribution as ideal when minimizing any cost-sensitive risk on it is guaranteed to
give exact fairness (e.g., demographic parity, equal opportunity). In practice, downstream models
trained on a distribution are typically optimized for some performance or utility metric that may
not be known in advance. Our definition of ideal distribution allows the flexibility to choose any
cost-sensitive risk as the performance metric for downstream models and still gives exact fairness
guarantee for any optimal model downstream.

Definition 3.1. Let H be a hypothesis class of group-aware classifiers h : X x A — ) and let

A(h, D) be a given unfairness metric, e.g., demographic parity difference, equal opportunity differ-

ence. Given a distribution D over X x A x ) and a cost-sensitive risk defined by C' € RIY ‘XD",

let hf, = argminPr ({c(h(X, A),Y)). We call D an ideal distribution if A(h¢,, D) = 0, for all
H

he
C e RIYVIXIYI

Examples of fairness metrics include Demographic Parity, Equal Opportunity and Equalized Odds
(Definition [2.1)) and examples of cost-sensitive risk include the usual 0 — 1 loss and different per-
formance metrics which are functions of the confusion matrix metrics [Elkan| (2001); [Koyejo et al.
(2014);Singh & Khim|(2022)). Our definition gets around the impossibility theorems about fair rep-
resentation for multiple tasks |Lechner et al.|(2021). However, we need to be careful of two things.
First, our definition should not be too restrictive to just force the group-conditioned distributions to
be similar or identical, as that would be impractical. Second, we need an efficient and equivalent
way of expressing the constraint of being ideal. We show how to express it as a parametric condition
when the group and class-conditioned distributions belong to certain well-known parametric fami-
lies of distributions. This helps in checking if a given distribution is ideal, and otherwise, finding its
nearest ideal distribution.

3.1 PARAMETRIC CONDITIONS FOR IDEAL DISTRIBUTIONS

Borrowing a simple set up of parametric distributions from previous work on fair machine learn-
ing [Pierson et al.| (2018)), we assume that the class and group-conditioned feature distributions
X | Y = i,A = a belong to a parametric family of distributions, e.g., univariate or multivari-
ate Gaussians, log-normal. In that case, we show that the property of being ideal (Definition [3.1)
can be equivalently expressed as certain parametric conditions. For example, here is what we get
when X | Y =i, A = a are univariate normal distributions.

Proposition 3.2. Let (X,Y,A) denote the features, binary class label, and binary group
membership, respectively, of a random data point from any data distribution D with q;, =
Pr(Y =i,A=a), fori € {0,1} and a € {0,1}, and let X|Y = i, A = a ~ N(pia,02,) be
univariate normal distributions, for i € {0,1} and a € {0,1}. Then the distribution D is ideal for

equal opportunity (see Definition[3.1)) if and only if
Hor = _ o= o on _ 0w dw _ G

bl

011 J10 001 J00 doo qo1

It is interesting to note that the same parametric conditions imply that the Bayes optimal classifier on
the corresponding distribution simultaneously satisfies multiple fairness criteria, viz., demographic
parity, equal opportunity, and equalized odds. Moreover, the same condition works for both univari-
ate Gaussian and log-normal distributions. Using our proof technique, it is easy to derive similar
conditions for other parametric families too.
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Kamiran & Calders| (2012)) reweighing method essentially reweighs ¢;, by a multiplicative factor
of Pr(Y =4)Pr(A=a)/Pr(Y =1i,A=a). Let us call the resulting probabilities G;,. Using
Pr(Y =) = qo+ g1, Pr(A=a) = qoa + q1a and Pr (Y =i, A = a) = g4, we get

- i0 T q + q q +

Gia X Gia (gio + ¢i1)(goa + g1a) . C{ﬂ _ q~£ — foT o
Qia oo  Go1 Qoo+ qo1

It is the same condition on g;,’s stated in Proposition [3.3] Thus, our result can be thought of as a

second stage pre-processing of P;, distributions after applying the reweighing of|Kamiran & Calders

(2012) to g;4’s in the first stage. Now we state our result for multivariate Gaussians.

Proposition 3.3. Let (X,Y,A) denote the features, binary class label, and binary group
membership, respectively, of a random data point from any data distribution D with q;, =
Pr(Y=i,A=a), fori € {0,1} and a € {0,1}. Let X|Y = i,A = a ~ N(pia, Xiq) be
multivariate Normal distributions with mean p;, € R and covariance matrix ¥;, € RI¥*d, for
1 € {0,1} and a € {0,1}. If 910/q00 = 011/q01 and the means ;. and the covariance matrices ¥;,
satisfy

—1/2 —1/2 1/2¢—1x1/2 1/2¢—1x1/2
Z310/ (110 — poo) = 211/ (H11 — po1) and 216 Z001216 = 21{ 201121{
then the group-aware Bayes optimal classifier on D satisfies equal opportunity.

Proposition shows that our parametric condition is equivalent to Ac(hy, D) = 0, for all cost
matrices C € R?*2. When we use a fixed cost matrix for 0-1 loss, and consider the Bayes op-
timal classifier in Proposition [3.3] our parametric condition is sufficient but not always necessary.
However, the same condition ensures the Bayes optimal classifier to satisfy multiple fairness criteria
simultaneously, viz., demographic parity, equal opportunity, equalized odds.

Remark 3.4. As an interesting consequence, our conditions on p;, and ;, imply
Dxi, (]500”]501) = D1, (1510||]511). When the classes are balanced, the error rate of the Bayes

- 1 S
optimal classifier on group A = a in D equals 5 (1 — drv(Poa, Pla)) , where dty denotes the total

variation distance Nielsen| (2014). Thus, achieving drv(Poo, P1o) = drv(Po1, P11) ensures equal
error rates across both the groups. However, there is no closed form expression for the total vari-
ation distance between two univariate Gaussians, and KL-divergence can be thought of as a proxy
using Pinsker’s inequality (Canonne| (2023). This is similar to information theoretic argument used
by Dutta et al.|(2020), which is why their optimization cannot guarantee outcome fairness.

4 FINDING THE NEAREST OPTIMAL DISTRIBUTION

When a given distribution D is not ideal, then a natural question is to find its nearest distribution D
that is ideal. We formulate this problem as follows.

minimize Dyr, (D| \D) .
D : D isideal

In the above optimization problem, the KL-divergence objective is well-known and convex but the
constraint of D’ being ideal is extremely non-trivial to express. We show that when the group and
class-conditioned distributions X ] Y =i, A = a come from certain well-known parametric fami-
lies of distributions, this constraint can be equivalently expressed as a constraint on the distribution
parameters. We now give a concrete formulation of the optimization problem described in Section
using the constraints derived in Proposition 3.3

4.1 AFFIRMATIVE ACTION

We first focus on a class of interventions for which solving the optimization program is efficient.
We define Affirmative Action as changing the underprivileged group to obtain the ideal distributions
where fairness and accuracy are in accord.

Theorem 4.1. Let (X, Y, A) denote the features, binary class label, and binary group membership,
respectively, of a random data point from any data distribution D with q10/qo0 = q11/qo1- Let
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XY = i,A = a ~ N(ia,Xia) be multivariate Normal distributions, with mean j;, € R?
and covariance matrix ¥, € R4, for i € {0,1} and a € {0,1}. Let D denote a distribution
obtained by keeping (Y, A) unchanged and only changing X|Y = i,A=ato X|Y =i,A=a ~
N (ftia, im) Then in the case of Affirmative action (changing only [i;o and Yi0), we can efficiently
minimize Dk, (BHD) as a function of the variables [i;0 and Yio subject to the constraints in

Proposition so that the Bayes optimal classifier on the optimal D is guaranteed to be EO-fair.

While we show that the optimization program is convex, obtaining a closed-form expression for
the change in means and covariances is extremely cumbersome for the general case. However, we
can show how the closed form expressions for ji;o and ;9 for univariate distributions (Corollary
[C.2). Another intervention we can follow is to change all the subgroups of the given distribution.
However, a quick check through the proof of Theorem 4.1] shows that this will lead to a non-convex
program. However, just like Corollary[C.2] we can show a reasonable intervention for the univariate
case, where we change all four subgroups and search over a non-convex function using line search
over a fairly large grid size. We demonstrate this in Proposition [C.3]

Finally, we also consider another intervention where we match the first moment of the under-
privileged group with the privileged group, inspired by the commonly studied Calders-Verwer gap
Calders & Verwer| (2010); Kamishima et al.| (2012)); (Chen et al.| (2019). The resulting program is
convex and we specify the closed-form expressions for f;9 and 79 in Proposition[C.4] We will lever-
age these interventions in Section[5]to study their ability to obtain ideal fair and optimal distributions
that are also close to the given distribution.

4.2 CONSEQUENCES FOR FAIRNESS AND ACCURACY

Let & be the Bayes optimal classifier on our ideal distribution D and let h be the Bayes optimal

classifier on D. The error rate and fairness guarantees of h can be translated approximately from D
to D as follows.

err(h, D) < err(h, D) + dpy(D, D) < err(h, D) + O(dpv (D, D)) + dpy (D, D)
< ert(h, D) + O(,/ Dx1, (D||D).

The first inequality follows from writing the error as expected 0-1 loss and using the definition of
total variation distance. The second inequality follows from using a result of |[Kearns & Li| (1993
on learning under malicious noise. The last line follows from Pinsker’s inequality |Canonne| (2023).
Thus, the optimal value of our optimization problem can be used to approximately translate the

accuracy guarantee of h from D to D. A similar proof works for fairness.

5 CASE STUDY ON GAUSSIAN DISTRIBUTIONS

In this section, we modify a stylized setting of Gaussian distributions from previous work (see Def-
inition 3.1 in|Pierson et al.[(2018), Section 5.3 in|Bakalar et al.| (2021)) to investigate the unfairness
and the Bayes optimal error on the original and ideal distributions obtained through various inter-
ventions. Details of the setup can be found in Appendix [D} The different interventions we try are
as follows: (a) a simple Bayes optimal classifier on the original distribution without any correction,
(b) Affirmative Action for Exact fairness (EF-Affirmative), where we change the underprivileged
group (A=0) using the solution of the univariate KL divergence program from Corollary ©
Changing all subgroups for Exact fairness (EF-All Subgroups), where we change all subgroups to
minimize the KL divergence with respect to the true distribution subject to exact fairness constraints
from Proposition and (d) Mean Matching, where we minimize the KL divergence with respect
to the true distribution subject to matching the means of the sensitive groups from Proposition [C.4]
Note that EF-All Subgroups lead to a non-convex optimization program, unlike the EF-Affirmative
program. Therefore, we employ line search to approximate the factor  that determines the optimal
means and variances.

We measure the Demographic Parity (ADP) and Equal Opportunity (AEO) Difference of the Bayes
optimal classifier on the new distributions, along with the KL and Jensen-Shannon (JS) divergence
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Figure 2: Comparison of Different Interventions when the original distribution is already fair. In this case,
EF-All ensures that it stays close to the true distribution, as no intervention as required, while others relatively
deviate.
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Figure 3: Comparison of Different Interventions when the ADP on the original distribution is high. In this
case, EF-All manages to stay close to the true distribution and achieves perfect fairness and error rate, while
others deviate significantly.

with respect to the true distribution. For the case of univariate gaussians, we precisely know the
Bayes Optimal Classifier and the threshold (from Lemma [B.T), and therefore, we use that to plot
the group-aware decision thresholds and report the Bayes Error (BE). Furthermore, ADP and AEO
can be computed analytically using differences of Cumulative Distribution functions of the standard
gaussian.

First, we look at a case where the Bayes optimal classifier is already fair (AEO is close to 0 while
ADP=0) in Figure 2] The expected solution here should be that any intervention must leave the
distribution as it is. EF-Affirmative intervention keeps the unfairness and error rate numbers as it
is, but deviates from the true distribution, as indicated by the KL/JS divergences. However, the
EF-All intervention only makes major changes to variances and stays close to the true distribution.
The Mean Matching intervention shifts both the under-privileged subgroups and strays away from
the true distribution, as indicated by relatively high KL/JS values. We next construct a distribution
where ADP is very high in Figure[3| Here, the affirmative action intervention transforms both the
under-privileged subgroups to high-variance ones, which results in a reduction of BE and ADP, but
at the cost of and high KL/JS-divergence with respect to the true distribution. However, the EF-All
intervention simply tries to match the variances of under-privileged and privileged subgroups and,
as a result, archives perfect fairness and accuracy while staying close to the true distribution. Mean
Matching is very similar to EF-Affirmative in this case and, as a result, has relatively high KL/JS
numbers. In Appendix D] we study the case of symmetric and shifted subgroup distribution and a
different threshold in Figures 4] and [5| respectively.

6 DISCUSSION AND FUTURE WORK

In this work, we approach the problem of fair classification through the lens of ideal distributions.
We first define what it means for a distribution to be ideal for fairness and Bayes optimal classifica-
tion and then demonstrate that for well-known parametric families of distributions. We demonstrated
when such an optimization problem is feasible and efficiently solvable. We show that these inter-
ventions can steer the given distribution to achieve perfect fairness and accuracy while staying close
to the given distribution in many cases. Some important future directions include generalizing the
above results for approximate fairness and studying the feasibility of the ideal distribution optimiza-
tion program with finitely many samples or a bounded distance away from the given distribution.
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A RELATED WORK

A.1 FAIR PRE-PROCESSING

Kamiran & Calders|(2012)) propose simple heuristics to pre-process data for binary fair classification
with binary groups. Their most popular heuristic is to reweigh the data points in class ¢ and group a
by Pr (class 7) Pr (group a) /Pr (class ¢ and group a). Note that this reweighing is independent of
feature distribution, and hence cannot provide any provable guarantee on fairness when we maxi-
mize accuracy after reweighing. (Calmon et al.|(2017) formulate fair pre-precessing as an optimiza-
tion problem to learn a data transformation that minimizes distance to the given distribution subject
to bounds on discrimination (or group unfairness) and distortion control (or individual unfairness).
They show conditions under which this optimization is convex and can be solved efficiently, how-
ever, it can be infeasible when group fairness (near equal outcomes for two groups) and individual
fairness (similar outcomes for similar individuals across groups) cannot be satisfied simultaneously
Friedler et al.|(2021)). Jiang & Nachum| (2020) propose reweighing as a way to correct label bias in
data. |Plecko & Meinshausen|(2020) and |Plecko et al.[(2024)) propose a fair adaptation methods based
on causal model of the data. More recently, Xiong et al.|(2024) reformulate the task of reweighing
given data for fair pre-processing as a large-scale mixed-integer program and propose an efficient
algorithm to solve it via cutting-plane method. In general, pre-processing is practical and useful
and comes as part of popular fairness toolkits along with in-processing and post-processing methods
Bellamy et al.|(2018)); Bird et al.|(2020). Even the simple reweighing of [Kamiran & Calders| (2012
that comes without any provable guarantees is surprisingly effective at bias mitigation on standard
datasets in fair machine learning |Sharma et al.[(2023)); Blow et al.| (2024)); Xiong et al.|(2024).

A.2 IDEAL DISTRIBUTIONS AND FAIR REPRESENTATION LEARNING

Dutta et al.| (2020) characterize a similar objective using Chernoff Information (see |(Cover| (1999))
and formulate an optimization program to find the nearest distribution in KL-divergence on which
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the Chernoff Information gap between two group-conditional feature distributions vanishes. Their
optimization problem is not known to be efficiently solvable and the fairness guarantees in terms of
Chernoff Information gap does not translate easily to standard fairness metrics such as demographic
parity, equal opportunity etc. In contrast, we formulate an optimization problem to find the nearest
ideal distribution in KL-divergence to given distribution and give efficient algorithms to solve it for
various parametric families of distributions.

For completeness, we want to also make the reader aware of a long line of work on fair representation
learning where the data transformations can map the distributions to another space Zemel et al.
(2013)); Madras et al.| (2018); McNamara et al.| (2019); [Liu et al.| (2022); |Cerrato et al.| (2024).
Our work is not directly related but can potentially be used to refine fair representations to achieve
provable and exact fairness guarantees.

B PROOFS FOR SECTION[3]

We will require a helper result about threshold classifiers to prove our next set of results.

Lemma B.1. Let n(z,a) = Pr(Y =1|X =2, A=a), ¢;o = Pr(Y =i, A=a) and p;,(x) =
Pr( =x ’ Y=iA= a). Then the Bayes optimal classifier can be written as h*(x,a) =

I (log plagtg > log q"—“)

q1a

Proof. Let n(z,a) = Pr(Y=1X=2,A=a), ¢i¢a = Pr(Y =i,A=a) and p;u(z) =
Pr (X =x ’ Y=iA= a) We consider group-aware threshold classifiers on D of the form
he(z,a) = T(n(z, ) , which can be equivalently written as

hi(x, a)

_q P (Y—1|X—x,A:a) t
S \Pr(Y=0|X=2A=a)  1-t
_1 PriY =1,X=z,A=aq) t
o\ Pr(Y=0,X=z,A=a) " 1t
1 Pr(X=z|Y=1A=0a)Pr(Y=1,A=aq) t
o \Pr(X=2|Y=0A4=a)Pr(Y =0,A=a) ~ 1—t
-1 (pla(x) Z t B qu)

poa(z) ~ 1=t qua
_ pla(x) t qoa
=1 log > log +1

pOa(m) 1- la

It is well-known that the group-aware Bayes optimal classifier h* = hi/, by setting t = 1/2, or
equivalently,

. P1a(2) qu)
h*(x,a) = hiy(x,a) =1 lo >log— | .
(:0) = hups(ar ) < ® poa(@) = g1

O

Proof. (Proof of Proposition For any cost matrix C' € R?X2, the group-aware classifier
that minimizes its corresponding cost-sensitive risk is given by I (n(x,a) > t¢), for a threshold
te = (c10 — ¢co0)/(c10 — coo + co1 — c11) € [0, 1]; see Equation (2) in [Elkan| (2001) and |Scott
(2012). The distribution D is ideal for equal opportunity if Pr (n(X,A) >t |Y =i, A=0) =
Pr(n(X,A) >t |Y =i, A=1), for all thresholds ¢ € [0,1] and i € {0,1}. Since the CDFs are
identical, the random variables (X, A) | Y = i,A = 0 and n(X,A) | Y =i, A = 1 must be
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identical. Note that
n(sc,a):Pr(Y:l‘X:;mA:a)
PriY =1,X=zA=aqa)
Z;ZOPr(Y:i,X:x,A:a)
_ Pr(Y=1A=a)Pr(X=z|Y=1A=a)
B ZgZOPr(Y:i,A:a)Pr(X:x |Y =i,A=a)
q1aPra(T)
Y izo GiaPia(2)

q1407, exp (—

2
1 -1 (33 — M )
> im0 Tia0i, €XP (—202W>

ia

(z — ,ula)2>

2
201,

- 1
B — 3 — 5
1+ exp ((:E ,léla) _ (.’,E ,LQLOa) +log q0a01a)
201@ 20—0(1 91a00a
_ 1
B ia T 700 — a2 ia T 700 — a2 a0la
1_|_eXp((M z H1a) _(M ‘ 10a) _Hoqu 1>
207, 203, 41a00a
1
for: =0
1 2 a a a a a 2 aVla '
1+exp ( (Uga —1) r2— 20 (,u12 al )r—f— i 2/10 ) +10gq0 7 )
= 2 \o1, Ula,l 207, q1a00a
fori = 1.

1 2 _ _ 2 )
Lpexp (2 (1-%a) 2 01a(uoa2 Fia) | n (Hoa 2u1a) + log 90271
2 90a 90a 204, 41a00a

If XY =i, A =a~ N, 0%), then X | Y =i, A = a ~ N(piq,0%). Thus, for
n(X,A) | Y =i,A=0andn(X,A) | Y =i, A =1tobe identical, we must have

1 (o} - — p100)2
1 (‘Tgo . 1) R2 _ 000(#102 ,LLOO)R+ (p10 2/uboo) +log 400010 and
2 \ o1 010 207 410000
1 (o3 _ _ 2
1 (ng1 _ 1) R2 _ <701(/tl12 m)l)R+ (p11 2u01) +log 401011
2 \o1y o1 207, Q11001
as identically distributed for R ~ A/(0,1). Similarly, we must also have
1 2 _ _ 2
1 (1 _ Géo) R? _ 010(#002 Nlo)R+ (Koo 2Mlo) + log 400010 and
2 900 900 2070 410000
1 0'2 o — _ 2 o
- (1 _ ;1) R2_ 11(/~L012 llll)RJr (o1 2/111) + log 401011
2 901 901 200, 411001

as identically distributed for R ~ N(0, 1). Therefore, we must have

oL = foo—fa0 01010 G0 din

011 J10 001 J00 doo do1

In the other direction, it is easier to prove that the above conditions imply the distribution to be ideal.
It can be proved by simply backtracking the steps above. O

Proof. (Proof of Proposition [3.3) From Lemma[B.1] the group-aware Bayes optimal classifier can

be written as
* 1 pla(x) q0a>
h*(x,a) =1 r,a)> = |=1I1lo >log— .
(z,a) (77( ) 2) ( 8 on(@) = %% o
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The EO-fairness condition Pr(n*(X,A)=1]Y =1,4=0) =
Pr(h*(X,A)=1|Y =1,A=1) means

X X
Pr(logplo( )zlogqoo|Y:1,A:O):Pr(logpn( )zloquI|Y:1,A:O).
poo(X) q10 po1(X) Qi1

Since X|Y =i, A = a ~ N(iia, i) are multivariate Normal distributions for i, a € {0, 1}, their
probability densities are

_ _ 1 _
prale) = (27) /2 det(Si) 2 ex (0 = i) 55 o - ) ).

Now we can write

o 1 _ _
lo 212(1) ECC; =3 ((x — uOG)TE()al(x — poa) — (x — ula)TZlal(z — p1a) + logdet(3g,) — logdet(Ela))
1 _ _
~2 (mif/f?“ + 10 — H0a) T Sog (B10°7 + fi1a — fioa) — 177 — log det(ziézxojziéz))
by substituting z = 21227’ + p14, where 7 ~ N (0, Igxq)
1 _ _ 1 _
- 5 rTE%éQEO;EL/zZT + (,ula - :LLOG)TEO;E}(/;T B 5 log det(zit/zZZOalEic/LQ)
1 _ 1
= 5 IS0 Bl (e — oa) S, PR S0, B — 2 log det(£1475g, 51.7).
Hence,
P1a(X) Qoa
Pr(log > log — Yl,Aa)
< pOa(X) q1a |

1 B _ B 1 _
—Pr (2 RTSY2S0IS PR 4 (e — pioa) TS0, 251285 01 R — 3 log det(£1/°55151/2) > log

la la la

for R ~ N(0, I5xq). Now if we have Qo _ M1 g

qoo qo1
—1/2 —1/2 1/2¢—1w1/2 1/2¢—1w1/2
210/ (Mlo - ,Uoo) = 211/ (p11 — po1) and 216 E00121(/) = 21{ Z01121{ )

then the probability of the above event written in terms R ~ N ((_), I4x4) becomes identical for
a € {0,1}. Hence, the Bayes optimal classifier satisfies equal opportunity. O

C PROOFS FOR SECTION 4]

We first derive the KL divergence between two distributions, where each subgroup in the distribution
follows a multivariate normal distribution.

Lemma C.1. Let (X,Y, A) denote the features, binary class label, and binary group membership,
respectively, of a random data point from any data distribution D with ¢;, = Pr(Y =i, A = a),
fori € {0,1} and a € {0,1}. Let X|Y = i,A = a ~ N(tia, i) be multivariate Normal
distributions with mean ji;, € R? and covariance matrix ¥;, € R¥, fori € {0,1} and a € {0,1}.
Let D denote a distribution obtained by keeping (Y, A) unchanged and only changing X|Y =
wA=ato X|Y =i, A =a~N(fia, Xia) Then,

~ d 1 _ 1.
Dk (DHD> =—5+3 > Gia(fiia — ttia) "S5 (ia — ftia)
(i,a)
1 —1% 1<
+ 3 (z: Gia (tr (Zia Zm) —logdet(X;, Ew)) .

i,a)
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= ZPr(Y:i,A )Pr( —x‘Y—zA—a>logP
(z,i,a)

‘ Pr( —x|Y—2A—a
qumZPr( *x|Y:z,A:a>logPr( :x‘Y:Z,Aza

(i,a)

= Z Qi(LDKL (B{IHPIG)

(4,a)

———

P;,, denotes the distribution of X ‘ Y =i, A =a~ N(tia, Zia) and P,,, denotes the distribution
of X | Y =4, A =a~ N(fia, Zia). Their probability densities are

pia(x) = (27) Y2 det(Diq) "% exp < ;(x — i) T um)) and
(- - s )

)

Dia(T) = (27r)_d/2 det(i?ia)_l/2 exp

respectively. Hence, the Kullback-Leibler divergence between pia and P,;, can be written as

E(X - .uia)TZ‘_l(X — fhia) — (X ,uza)Tii_al(X — fiiq) — log det(X 1/22 123({2) | Y=iA=a
- d
E(X — i) TSN (X — pia) Y =i,A=a— 373 logdet(El/QZ 121/2)
using B(X — fiia) 55,1 (X — fiia) | Y =i, A=a=23%;"

a

° Zm =tr (Idxd) =d

o d
E’(X Hia + fia — /”/ia)Tz;al (X — Mia + fia — ,U/za ’ Y=i,A=a— 5 +5 ) logdet( 1/22 123(52)

~ 1
(Z;}Zia> + §<ﬂia - /J/ia)TZ;al (ﬂia - /’Lia) - 5 2 log det( 1/22 123({2)'

14
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The Kullback-Leibler divergence between D and D can now be written as
Dy, (DHD) = Z QiaDKL (jjiaHPia)
(4,a)

1 d
Z -1 s NIyl oy @ 1/2¢\—1571/2
- Qia ( ( Eza) 2(,“/2(1 Mza) Zza (M'La ,U/za) 2 + = 2 IOg det(z E Zza ))

za)

4l (tr (3250 + o = 10a) "S5 (i — p1ia) + log det (1251512 )
2 2 (o

d 1 N 1/~
=——-+ 5 qia(,ulia - ,uia)TZial (Mz‘a - ,U/w, Z Gia (tI’ ( ) + IOg det(zzaz ))

2 ’
(i,a) (Z a)
_ a1 ~ Ty—1/~ 1 1 1
=3 + 32 Gia(flia — Pia)” Liy (fia — Hia) + 5 Z Gia (tr (Eia Em) — log det(X;, Em)) .
(i,a) (i,a)
O

Proof. (Proof for Theoremm Using Lemma|C.T|and Proposition | our objective is to minimize

Dxkr, (D||D) = —f—i— Z Gia(flia—ttia) " 25, (flia—ttia)+ Z Gia (tr (E Em) —log det(E;aliia)) ,
(1 a) (1 a)

subject to the constraints

S10 (Ao — fioo) = =1y P (i — fin)  and TSGR = SPEGIE

Suppose 3,0 and 3,1 do not commute. The constraints can be equivalently rewritten as follows.
fi1o — floo = i%2iﬁl/2(ﬂu — fio1) and X7, 1/2 %22 121/2 1/2 =357
Let ' = /°S7"% For any fixed positive semidefinite matrix ' € RdXd, our optimization
problem can be divided into two separate parts that minimize
Z Gia(fiia — tia) T S (flia — Hia) subjectto  fizo — figo = I'(fin1 — fio1)
(4,a)

over fii, € R, fori,a € {0,1}, and minimize (after substituting 3; /2 = 1"21/2)

! . 2 _ 2 _ .
3 dio <tr (z:;ol (rif?) ) ~ log det(y" (T?) > +an (b (3550) — logdet (25 Sa))

i=0
subject to Fi%{ziaoll“ = 21{22&1
over symmetric, positive semidefinite matrix-valued variable f)il e R¥Xd for § e {0,1}. The

first optimization in fi;, is a constrained eigenvalue problem with linear constraints, i.e., minimize
2T Az + 2Tb subject to 2T ¢ = e/Golub) (1973).

Let’s consider the case of Affirmative Action, where we only change the means fi;o and the covari-
ance matrices ;o for the underprivileged group but keep those for the privileged group unchanged,
ie., fij1 = W1 and i?il = Y;1. In that case, 21/2 = F21/2 nd 2162 = F21/2 get fixed. By
substituting fi1g = figo + I'(ft11 — fio1) = fioo + F(;LH — ,u01) we only need to 0pt1mize

q00(fioo — 100) " Sog (fioo — poo) +q10 (fioo + (111 — po1) — p10)” B16 (oo +T (111 — po1) — p10),
or equivalently (ignoring the terms independent of figg),

~ _ 1y - _ _ _ T .

fido (200200 + @102 10 ) foo — 2 (Zog Hoo + 16 110 — 210 T(pa1 — po1))” fioo-

This is a convex objective in figg because its Hessian is positive semidefinite, i.e., qooEgol +
qloEfol = 0Boyd| (2004). By equating the gradient to zero, we get the optimal solution for figg,

15
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and we denote it by £, (I"). Thus, the optimal solutions pg, (L), 5o (T'), X0 (T), X3¢ (') for a fixed
positive semidefinite I' € R4*¢ are given by

. _ vl _ _
poo(T) = ((]002001 + ‘I102101) (Eoollioo + 270 10 — B9 T(par — fio1)) and

. _ vl _ _
pio(T) = ((IOOEOO1 + ‘hOElol) (Eoolﬂoo + 270 10 — B9 T(par — NOl)) + T'(p11 — pot)
S50(T) = (I84(%)?

Sto(0) = (TE11%)2

By substituting these, when we look at the objective as a function of a positive semidef-
inite matrix-valued variable I', it turns out to be convex. This requires rewriting the
expressions using the identities tr (AB) = tr(BA),det(AB) = det(A)det(B), and
most importantly, tr (AXBX) = tr ((AY2XBY2)(AY2XB'?)T) and logdet(AXBX) =
log det (AY/2X BY/2)(AY2X BY/2)T), for symmetric, positive semidefinite matrices A, B, X [Pe-
tersen et al. (2008)). The convexity of the objective in I" follows from the convexity of tr (AX BX)
and — log det (X ) for matrix-valued variable X . Finally, we can solve it efficiently to get the optimal

Corollary C.2. (Affirmative Action for the case of univariate distributions) For the case where
XY =i, A= a~ N(ia,0?,) are univariate normal distributions, fori € {0,1} and a € {0,1},
the optimal distribution D from Theoremcan be written down as:

Gio =01, floo = fiio + Y (o1 — p11), and

poo — ¥ (po1 — g1 H10
q00 (2 L ) +CI102>
. 900 10
1o = )
400 q10
=t
900 %10

where v* is a function of the original distribution parameters only.

Proof. (Proof of Corollary [C.2)

Dyt (DIID)

) Pr(X=z|Y=iA=a
:(;a)qz‘a;PrQX:x‘Y:i,A:a)log PrEX—x‘Yzi,A:(g
= quDKL (ZsiaHPia>

(é,a)

P,,, denotes the distribution of X | Y =i,A=a~ N(ug,o2) and P,, denotes the distribution
of X ‘ Y =i, A =a~ N(ji,52,). Their probability densities are

€T — ,Uia)2

1 ( ~ 1 (z — ftia)
ia(T) = ————ex _ and pju(x) = ——ex —— |,
Pia(¥) = Zo——= exp ( 207 ) Bia(¥) = Z2——= exp ( 257

16



Under review as a conference paper at ICLR 2025

respectively. Hence,

Dxr, (Pm||Pm) —E ﬂ;M Y =i, A=a
s ~pia(X) N
=E _(X;(Tgi“)2 (XT:%“)Q —Hogg_: |V=iA=a
() o G2 (- f) sz
_ (ﬁmg(_;g/: ia)” | 5"'2“2_?;"2“ +log ZZ,

using E [log X | ¥ =i, A = a| = fiia and E [(log )* | Y =i, A = a = i, + 5%, Since we
only change group A = 0, we want to minimize

1
Dk, <D||D) = gioDxke (PiOHPiO)
i=0

1 ~ 2 ~2 2
Z Hi0 — M40 00 — 05 T30
= qi0 <( - 2 2 . ) + 202 D) {0 +10g ~Z )
=0 950 Ti0 940

as a function of the variables ji;o and ;o subject to the constraints
1— p1r floo — fi1 o1l 01 ~ .
Hor = M _ M00~ H10 - pg 1 = 20 and 5y, > 0, forall (i, a).
o11 J10 001 000

Let’s fix v € R>( and minimize

r ZI: ((ﬂio — ip)? n G — 0% 41 UiO)
= qi0 0g —
7 = ! 202, 202 7i0

as a function of the variables ji;, and 7;, subject to the following constraints

Moo — o _ 910 _ 990 _ .\ and 4y, > 0, forall (i, a).

Ho1 — M11 011 001
The objective £, is convex and for a fixed v € R>¢, the constraints on are linear in fi;o and &;.
Let’s denote the optimal solution for a fixed v € Rx¢ by pfy(vy) and oy(7), for i € {0,1}. For
a fixed v € Rxg, the above constraints fix ¢),(y) = ~ou1, for i € {0,1}, and by plugging in
ftoo = fi1o + (o1 — 111), we only need to minimize the following convex, quadratic objective in
a single variable i1,

. B Ry o,
minimize oo (fi0 + 7 (Ho1 2Mn) F00) + a0 (110 2#10) .
2040 207,

By equating the derivative to zero, we get the optimal solution as

-1
qoo q10 Hoo — ’Y(Mm - ,Ull) H10
pio(y) = ( =+ 2> (%0 + (J102> ,

oo oo o 910
—b 2
and the optimal value at 11§ (7) is (The min of az? + bz + ¢ occurs at & = g and has value c — 1a
a a
—1 2
“ (v(#o1 — p11) — poo)® Iy pio 1 (a0 a0 doo M — ¥(po1 — pi11) ot
o 203, v 20fy 2 \ogy ofy " oo v %o
1 (%0 CI10>1 00910 2
=5\ =2 T = ((too = p10) — (ko1 — pi11))
2\ofy iy 080010
1 (02, o2\ "
=3 (00 + 10) (oo — p10) — ¥(po1 — ,U11))2 .
2 \qo0 qo

17
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By plugging in the optimal solution, the minimum value of £, for a fixed v € R is given by

Zq ( tio (Y /MO)2 T 050(7)2 - 01'20 + log 40 )
0 *
2010 201-20 50 (7)

1 ("00 L oo
2 \ qo0 q10

-1 2 2 2
On1 — O,
) (o= s0) =1 = )+ 200
900

202, — g2 1 o o
+ Q107 ; % + (qoo + q10) log — + qoo log 0 4 grolog =2
[%Th) Y oo1 011
1 0(2)0 0%0 - 2, Yoo 20(2)1
= — _— _— — — — —_— — —1
5 <q00 + 7o (oo — pr10) — (o1 — p11))” + 5 \7 2,

1 000 010
+ (qoo + q10) 1og = + goo log == + g10 log —2.
Y 001 011

This is a convex objective in v (because the second derivative is non-negative) and by equating the
derivative to zero, we have that the optimal v* must satisfy

o5 o2\ " o8, ot Goo + q10
(OO + 10> (Ho1—p11) (Y (o1 — pa1) — (oo — f10))+7" <(JOO —3+ qu§1> ——0 =0
oo 410 900 010 Y

2

o o . .

Multiplying with ~+* ( 90 4 10) , We can write it as a quadratic equation as follows.
doo 410

_ 2 2 2, 910000 o |, 9000%0 o x2 _ _ *
(po1 — p11)” + opy + o7 + 5 011+ o2 oo |7 (o1 — p11) (oo — 10)7y

doo0 1 q10000
2
o o
—(q00 + g10) ( 0 4 10) =0
qoo q10

The discriminant of the above quadratic polynomial is non-negative because the leading coefficient
is positive and the constant term is negative. So this polynomial has two real roots. Moreover,
since the constant term is negative, it cannot have both positive or both negative roots. Its only
non-negative root is the optimal solution v* € R>q we want.

e SN .
2 ((Mm —p1)? +og, +Hop) + = 0000 i1t qmgwgm)

2 2
q100 qo00 o o

+4 ((MOl —p)® + oy + oy + go oty + ;o ‘731> (qoo + q10) (OO + 10) .
q00010 41000 qoo q10

O

Another intervention we can follow is to change all the subgroups of the given distribution. However,
a quick check through the proof of Theorem shows that this will lead to a non-convex program.
However, just like Corollary [C.2] we can show a reasonable intervention for the univariate case,
where we change all four subgroups and search over a non-convex function using line search over a
fairly large grid size.

Proposition C.3. (All subgroup change for Exact Fairness) Let (X,Y, A) denote the features, bi-
nary class label, and binary group membership, respectively, of a random data point from any
data distribution D with q;, = Pr(Y =i,A=a), for i € {0,1} and a € {0,1}, such that
q10/q00 = q11/q01, and let X|Y =i, A = a ~ N (l;q,02,) be univariate normal distributions, for
i € {0,1} and a € {0,1}. Let D denote a distribution obtained by keeping (Y, A) unchanged and
only changing X|Y =i, A=ato X|Y =i, A = a ~ N (jiia, 52,). Then minimizing D, (DHD)
as a function of the variables [u;, and &, subject to the constraints in Proposition [3.3]leads to a
non-convex program.

Furthermore, let v* = argmin L7 for some non-convex function of vy that is only dependent on
~v€(0,00)

the original distribution parameters. Then, all the new distribution parameters [i;, and 7;, can be

expressed as a function of v* and the original distribution parameters |i;q and 0;q.
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Proof. We consider the following optimization program

Dy, (DHD) = Z QiaDKL (-ZSiaHPia)
(i,a)
_ fia — ,Uv,a) 6'1'2(1 - Ui2a Oia
Z Gia < 2 + 20.2 + log &ia>

(i,a) Oja ia

as a function of the variables ji;, and 7;, subject to the constraints

o1 — A11  foo — f10 011 010 - .
i i _ . and — = = and G, > 0, forall (i,a).
011 010 001 g00

Let’s fix v € R>o and minimize

,Um ,um) &Z'Qa - Uzga Oja
= —+ lo -
7 Z Gia ( 2 207;20, + g Gia

(Z a HL

as a function of the variables i;, and 7;, subject to the following constraints

M:g:@—’y and &y, > 0, forall (z,a).

Moo — H10 010  0O00
Now the objective £, is convex and for a fixed v € R, the constraints on are linear in fi;, and
Giq. Let’s denote the optimal solution for a fixed v € Rx¢ by p,(v) and o}, (v), for i,a € {0,1}.
To find this, we can split the above objective into parts that can be optimized separately as follows.

minimize (z:) (Im(#WQUZ{W) subject to  fig1 — fi11 = Y(floo — fi10), and
i,a

ia

~2 2
L G0 — O; o . N N N .
minimize E Gia (M + log = ) subject to  Gy1 = 50, and &;, > 0, for all (i,a).

(4,a) ia o

For each i € {0, 1}, by substituting &;; = 59, we need to optimize a function in only one variable
;0. The optimal solutions o, () turn out to be

qio + qi1 * qio + Qi1 .
—————— and oj(y)=7 | ——————, forie {0,1},
qio g7’ at dio iy’ 0.1}
‘71'20 02'21 01'20 01'21

Now let’s find the optimal solutions 7, (). The gradient of the objective must be parallel to the
linear constraint, so

q00 (150 (7) — poo) _ A qo1 (161 (7) — po1) _ N

0(2)0 ‘781
qo(io(y) —po) _ o () —p)
2 =TA 2 - N
0] 011

for some A\ € R, which gives

02 02
M30(7)2—7A£+H007 por () = >\7+M017 wio(v) = YA 410, pi(y) = A*ﬂtn

q10 q11
Since p}, (7y) satisfies the constraint M =y, we have
Hoo — H10
at + po1 a0 — pi1
012 qu1 » — . andhence, A= 7(#00 #10) = (Hor — pu)
o} o} o o
00 T o0, Th g(oo+10>
doo d10 do1 q11 doo  q1o0
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Thus, we can express ), () as
* _ ¥(koo — f10) — (o1 — pa1) 030

MOO(V) =7 2 2 2 2
1A2 (000 ‘710) doo

g, g
Zot 71t 4
qdo1 q11 qoo 410

Y(poo — p10) — (o1 — 1) o4

po1(v) = 2 2 2 5~ T Ho1
g, g g, g
o1 i1 4 2 < 0 10> do1
qo1 q11 qoo q10
Y(poo — p10) — (o1 — pa1) o3
:U’TO(/V) =7 0_2 0_2 0_2 0_2 q11§ + K10
01 4 11+72< 00 4 10)
qo1 q11 400 q10

Yoo — p10) — (Ho1 — p11) ©
/u‘*ltl(’Y) = - o2 o2 o2 o2 qull + pa1-
Z01 + Z11 + ,}/2 (00 + 10)
qo1 q11 qoo q10
Thus, the optimal value of L., for a fixed v € Rx is given by

=Y g ((/ﬁa(é) - pia)” 02—2(7)22— %ia | log Oia ) .
(i.0) Tia 207, 77a(7)
Dividing the above expression into three parts, the first part evaluates to
Z iy (32 (¥) = p1ia)? _ oo YNagy | g Aoy | qo YVN0ly | qu Nafy
207, 208y ado 208, 43, 207, dio 207 qf

(i,a)
2122 2 2 212, 2 2 2
7’Y>\000 Aop | Y Aoty | Aforg

2qo00 2qo1 2q10 2q11
A2 (o2 o2 o2 o2
<Ol+11+72 <00+10>)
2 \go1 qu1 oo 410
2

_ 1 (koo — pao) = (ko1 — p11) ort] N o2, L o2,
o 2 0’2 0'2 0-2 0.2 _—
—or Tl +72 ( 00 4 1o> qo1 q11 qoo

qo1 q11 00

qoo q10

1 (¥(poo — pr10) — (por — p1)”

20—81+(T%1+72(0b2()+0—12(]>

qo1 q11 doo q10
The second part evaluates to

S 0 (V)? — o 3 Gia (05.(7)° ]
e 202 2 o2

(i,a) e (i,0) e

q10

1 1
22@ gio + qi1 1 +Zq£ 72 (gio + gi1)
—~ 2| , (a0 a7’ —~ 2| , (a0 Y
%i0 |\ ;2 + o2 i1\ 2 + 2
i0 i1 i0 i1

2.2 2

oy o
1 o qi1 <1 — 7102 ) 1 i qio <’Y2 - Z21>

2 : 7 Oil 2 : 7 Cz’O
— R S T + -~ w7

2 22 2 o2
=0 gio + ¢i1—% =0 %07121 + qin?
i1 i0
2 2 2 2
g ag;
L, qil(l ;07) L, i0<;027 1>
_ 0 1 il il
- Z 9 ,2272 T Z o e
=0 gio + ¢i1—% =0 qio + gi1—5
i1 il

20
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and the third part evaluates to

1

2 2
qi0 050 qi1 (o]
Qi — = — log — + —log —
Z fa () Z 2 ai(7)? 2 o5 (7)?

(i,a) Tia 1=0

2 2
qi0 |, g7 qi0 qi1Y
L h(BetE) (Gt
_ 2:@1% 90 il di1 o i0 il
2

+ —lo
= gio + Gin 2 v%(gio + ¢i1)
2 2
, o : o
I e S
_ L;O log qzlqio il + % 10g Qzl 7;1
=0 = +1 ,yz oi [ gio 1
il qi1
1 2
= = B) 2 1og (%o +720220) — 5 L og (qw + 1) — qunlogy — qinlog 72,
i—0 qi1 051 q 0i1
Putting it all together
(V) = pia)? | 08, (1)* = 0 Tia
L* — 4 ( ia 4 Zda ia | IOg
P2 G2 ke 7l

(4,a)

1 _ 2 ) .
(v (Moo 2#10) (o1 — p11)) n Z qio + di1 (%o 42 0120> _ Gio + g log <Qz0 " 1>
2 001 911 12 (Uoo + 010) qi1 01 2 qi1

_|_
qdo1 q11 qoo q10

o350
— g1 logy — g1 log —.
i1

Minimizing £ leads to a non convex program. Since 7 is the ratio between variances of the new

subgroup distribution, for a practical solution, we can do a line search over v € (0, B) for some
B < 0. O

A popular intervention in the fairness literature is to equalize the first moment of the two sensitive
groups or the mean outcomes of two groups, also known as the Calders-Verwer gap (Calders &
Verwer|(2010); Kamishima et al.|(2012); Chen et al.[(2019). We, therefore, also study an intervention
where we only change the mean of the under-privileged group and try to match it with the mean of
the privileged group. We can show that the resulting optimization program is convex.

Proposition C.4. (Affirmative Action by Equalizing First Moments) Let (X,Y, A) denote the fea-
tures, binary class label, and binary group membership, respectively, of a random data point from
any data distribution D Wlth Gia = Pr(Y=4,A=ua), fori € {0,1} and a € {0,1}. Let
X|Y =i, A=a~ N(ia,02,) be a univariate Normal distribution, for i € {0,1} and a € {0, 1}.
Then in the case of Aﬁ?rmatlve mean change, where we impose the following constraints:

q1o0 f10 4 oo floo _ quin ot for
q0o+q0  qo+go0 @1+ g1 @t gor’

we can efficiently minimize Dk, (D\ |D> as a function of the variables [i;0 and >io-
Proof. We are dealing with the following optimization problem:

Dk, (bHD) = iQiODKL (151‘0||Pi0)
i=0

1 ~ N2 ~2 . 2 )

= E qi0 (o 2,u i0) + 7io 2%0 + log ;ZO
. 207, 20 7i0
=0 g

i0
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(a) Original Distribution (b) EF-Affirmative (c) EF-All Subgroups (d) Mean Matching

Figure 4: Comparison of Different Interventions when the subgroup distributions are shifted version of each
other. While all methods achieve the same Bayes Error, Affirmative action is able to bring down the Bayes
Error and achieve exact fairness.

as a function of the variables ji;o and ;o subject to the constraints
q10 ~ qoo ~ q11 qo1
—— M0+ ———Hoo = pi1 +
q10 + qoo q10 + Qoo q11 + qo1 q11 + qo1

Since we are only changing the means and keeping the variances the same, the objective only de-
pends on fi;o. Furthermore, let K = (410+900)/(g114q01) - (q11411 + Go1/t01) SO that

Ho1

1 ~ 2 ~
S ) 5 K —
L= Z qio(’uloziéulo), subject to figg = ﬁ.
o g0 400

Substituting the constraint on figg in the objective £ gives us a convex quadratic in fi1g, and the
solution is obtained by setting the derivative to zero:

K _ :U'IO + #00 K ,u.oo + [L10
- dfyai0 7% 730 -~ 0807900 o2, o3 - d -
Hoo = 400 1 ) Hio = 710 1 ) o1 = Hot, an 11 = H11.
9ip°q10 730 035900 o3,

O

D CASE STUDY SETUP AND ADDITIONAL UNIVARAITE PLOTS

We fix ¢;, € (0,1) such that goo + q10 + go1 + g11 = 1, and our data generation works as follows.
We simulate a data distribution where Y = i, A = a with probability ¢;, and X ] Y=iA=a
is sampled from a univariate Gaussian N (11,4, 0%,). We choose homoskedastic Gaussians within
each group A = a, i.e., 09y = 014, SO the we can show the Bayes optimal classifier boundary as a
threshold. We choose different o;,’s that cover ground truth distribution that can the entire spectrum
of being ideal or close to ideal to very far, and then we apply different interventions to change all
or some subset of 1;,’s and ;,’s to find the nearest ideal distribution in KL-divergence as given in
Sectiondl

We first look at a case where the subgroup distributions are the same shifted versions of each other in
Figure Note that all interventions, in this case, result in the same Bayes error (BE), but affirmative
action brings the BE down with zero unfairness at the cost of incurring a deviation in terms of KL
and JS divergence. However, in the next subplot, changing all four subgroups not only helps reduce
the Bayes error and unfairness but also stays very close to the true distribution in the KL/JS sense.
Matching the means also helps reduce the unfairness while staying close to the true distribution, but
is sub-optimal compared to the EF-Affirmative and EF-All interventions.

Finally, in light of Proposition we simulate the cost-sensitive risk for a different cost matrix C
other than 0-1 loss by considering a threshold tc = 3/4on n(x, a) in Figure The original distribu-
tion has high unfairness. EF-Affirmative intervention manages to achieve almost perfect fairness and
zero error rate, but incurs relatively high KL/JS numbers. However, once again, changing all four
subgroups, results in a solution that is perfectly fair and accurate, with low KL/JS. Mean Matching
is unable to address the fairness-accuracy tension at all in this case and also manages to drift away
from the true distribution, as indicated by non-zero KL/JS values.
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Figure 5: Comparison of Different Interventions when we use a different threshold (3/4) than the Bayes
optimal threshold (1/2). As derived in Proposition the EF-Affirmative and EF-All interventions work with
any threshold.
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