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ABSTRACT

To fix the ‘bias in, bias out’ issue in fair machine learning, it is essential to get ideal
training and validation data. Collecting ideal real-world data or generating ideal
synthetic data requires a formal specification of ideal distribution that would guar-
antee fair outcomes by downstream models. Previous work on fair pre-processing
does not address this gap, and could be significantly improved if it is resolved.
We call a distribution as ideal distribution if the minimizer of any cost-sensitive
risk on it is guaranteed to satisfy exact fairness (e.g., demographic parity, equal
opportunity). Given any data distribution for fair classification, we formulate an
optimization program to find its nearest ideal distribution in KL-divergence. This
optimization is intractable as stated but we show how it can be solved efficiently
when the distributions come from well-known parametric families (e.g., normal,
log-normal). We empirically show on synthetic datasets that our ideal distributions
are close to the given distributions and they can often suggest directions to steer
the original distribution to improve both accuracy and fairness simultaneously.

1 INTRODUCTION

The importance of clean or ideal data in fair machine learning cannot be emphasized more. Bias
in, bias out has been argued to be a root cause of unfair outcomes in machine learning models
Buolamwini & Gebru (2018); Mayson (2019); Rambachan & Roth (2020); Cowgill et al. (2020).
Models trained on biased data often learn, perpetuate, and amplify these biases. The problem of data
bias is not about training data alone. Fair in-processing or fairness-constrained training on biased
data cannot guarantee fairness on (unbiased) test data. Fair post-processing of model predictions
using biased validation data cannot guarantee fairness on (unbiased) test data. Biased data used for
assessment can lead to faulty fairness audits that may be hard to correct later in machine learning
pipelines Biswas & Rajan (2021); Bakalar et al. (2021).

Popular fairness metrics are functions of both a given model and a data distribution, e.g., demo-
graphic parity (equal positive rates across demographic groups), equal opportunity (equal true posi-
tive rates across groups). They offer two natural ways to correct unfair outcomes: either by correct-
ing the model or by correcting the data distribution. An ideal model can thus be defined as one that
satisfies exact fairness, and fair in-processing tries to fit an ideal model to the given data distribution
Agarwal et al. (2018); Donini et al. (2018). In this paper, we focus on the latter approach of finding
an ideal data distribution instead. In that sense, we are closest to the fair pre-processing literature.
A detailed discussion of pre-processing approaches is given in Appendix A.

A common goal of all fair pre-processing methods is to find an ideal data distribution close to
the given distribution so that any downstream model trained on it must have guaranteed fairness. A
stronger requirement that this should hold for downstream models optimized for multiple tasks leads
to impossibility results Lechner et al. (2021). If all downstream classifiers are required to be fair,
then the group-wise distributions must be nearly identical, which is absurd. Thus, we restrict our
downstream models only to Bayes optimal classifiers for cost-sensitive risks. Our first contribution
is to formally define an ideal distribution (Definition 3.1) as the one where the Bayes optimal clas-
sifier for any cost-sensitive risk satisfies exact fairness (e.g., satisfies equal opportunity perfectly).
To operationalize this definition, we assume group and class-conditioned distributions come from
well-known parametric families (e.g., Gaussian, log-normal) and show conditions on such ideal
distributions (Propositions 3.2, 3.3). This allows us to convert the ideal distribution optimization

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

10
.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10

.0
0.0

0.2

0.4

0.6

0.8

1.0 BE : 0.06, DP : 0.00, EO: 0.16
Y=0, A=0
Y=0, A=1
Y=1, A=0
Y=1, A=1
Bayes Opt. A=0
Bayes Opt. A=1

(a) Original Distribution
10

.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10
.0

0.0

0.2

0.4

0.6

0.8

1.0
KL: 0.81
 JS: 1.14

BE : 0.00, DP : 0.00, EO: 0.01

(b) Ideal-Affirmative
10

.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10
.0

0.0

0.2

0.4

0.6

0.8

1.0
KL: 0.33
 JS: 0.84

BE : 0.01, DP : 0.00, EO: 0.03

(c) Ideal-Changing All
10

.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10
.0

0.0

0.2

0.4

0.6

0.8

1.0
KL: 0.25
 JS: 0.25

BE : 0.07, DP : 0.00, EO: 0.18

(d) Mean Matching

Figure 1: Comparison of Different Interventions for Changing Data Distributions for Exact Fairness. Figure
(1a) captures the original distribution, its Bayes error (BE), and the unfairness differences (∆DP and ∆EO).
In Figure (1b), we only change the under-privileged group using Corollary C.2, and in Figure (1c) we change
all four subgroups using Proposition C.3. Finally, in Figure (1d), we match the means of the two groups using
Proposition C.4. Figures (1b) and Figures (1c) show that it is possible to construct ‘ideal’ distributions that are
close to the given distribution where the Bayes Optimal classifier is maximally accurate and fair.

problem, which is generally intractable, to a tractable problem that can be solved efficiently in some
cases and give closed form transformations (Theorem 4.1, Corollary C.2, Proposition C.3).

Bayes optimal classifier maximizes accuracy on a given distribution, and have been an important
object of study in statistical machine learning Devroye et al. (1996). Fair Bayes optimal classifier
maximizes accuracy subject to fairness constraints, and its mathematical characterization for binary
fair classification has been important in fair classification Menon & Williamson (2018); Chzhen et al.
(2019); Celis et al. (2021); Zeng et al. (2022). Blum & Stangl (2019) introduce a data bias model
that injects under-representation and label bias in an original unbiased distribution to create biased
data. They show that, for a stylized distribution under some conditions, the fair Bayes optimal
classifier on the biased distribution recovers the Bayes optimal classifier on the original unbiased
distribution. Their unbiased distribution is ideal by construction, i.e., the Bayes optimal classifier
on their unbiased distribution is guaranteed to be perfectly fair. Sharma & Deshpande (2024) extend
this observation to general hypothesis classes and distributions beyond the stylized setting of Blum
& Stangl (2019). Blum et al. (2023) study fair Bayes optimal classifier whether its accuracy is robust
to malicious corruptions in data distribution.

In contrast to these results, our focus is not on finding the ideal classifier but on finding the nearest
ideal distribution. By definition, our ideal distribution has no trade-off between accuracy (or cost-
sensitive utility) and fairness. If we find an ideal distribution close to our original distribution,
we can steer our distribution towards reducing fairness-accuracy trade-off. Moreover, if the ideal
distribution offers better accuracy, it suggests that we can steer our distribution to improve both
accuracy and fairness simultaneously. We highlight this in Fig. 1, and later in Figures 2, 3, 4 and 5.

2 PROBLEM SETUP AND PRELIMINARIES

Let (X,A, Y ) be a random data point from a joint distribution D over X ×A× Y , where X ,A,Y
denote the sets of features, sensitive attributes, and class labels, respectively. For simplicity of expo-
sition, we consider a binary labels (Y = {0, 1}) and a binary sensitive attributes (A = {0, 1}). Let
qia = Pr (Y = i, A = a) and Pia denote the distribution X

∣∣ Y = i, A = a with the probability
density pia(x) = Pr

(
X = x

∣∣ Y = i, A = a
)
. When Pia’s come from parametric families of dis-

tributions, we assume X = Rd. We work with the following well-known definitions of fairness in
classficiation Dwork et al. (2012); Hardt et al. (2016); Barocas et al. (2019).

Definition 2.1. For the case of binary labels and sensitive attributes, a group-aware classi-
fier h : X × A → Y satisfies: (1) Demographic Parity if the positive rates are equal
across groups, i.e., Pr (h(X,A) = 1|A = 0) = Pr (h(X,A) = 1|A = 1), and (2) Equal Oppor-
tunity if the true positive rates are equal across groups, i.e., Pr (h(X,A) = 1|Y = 1, A = 0) =
Pr (h(X,A) = 1|Y = 1, A = 1).

These lead to quantitative metrics of unfairness, e.g., ∆DP(h,D) denotes the absolute
value of difference between Pr (h(X,A) = 1|A = 0) and Pr (h(X,A) = 1|A = 1). Similarly,
∆EO(h,D) denotes the absolute value of difference between Pr (h(X,A) = 1|Y = 1, A = 0)
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and Pr (h(X,A) = 1|Y = 1, A = 1). We consider group-aware classifiers. We are particularly
interested in threshold classifiers ht(x, a) that apply a group and feature dependent threshold
t(x, a) to the class probability of an example: ht(x, a) = I (η(x, a) ≥ t(x, a)) where η(x, a) =
Pr (Y = 1|X = x,A = a). It is well-known that the Bayes optimal classifier for a given distri-
bution has the form t(x, a) = 1/2 Devroye et al. (1996). For a cost matrix C ∈ R2×2 and the
associated cost sensitive loss lC , the Bayes optimal classifier is defined as I (η(x, a) ≥ tC), for a
threshold tC = (c10 − c00)/(c10 − c00 + c01 − c11) ∈ [0, 1], where cij denote the entries of the cost
matrix C ∈ R2×2 Elkan (2001); Scott (2012); Koyejo et al. (2014); Singh & Khim (2022). We defer
all proofs to appendix for a smoother flow of presentation.

3 IDEAL DISTRIBUTIONS FOR FAIR CLASSIFICATION

We define a data distribution as ideal when minimizing any cost-sensitive risk on it is guaranteed to
give exact fairness (e.g., demographic parity, equal opportunity). In practice, downstream models
trained on a distribution are typically optimized for some performance or utility metric that may
not be known in advance. Our definition of ideal distribution allows the flexibility to choose any
cost-sensitive risk as the performance metric for downstream models and still gives exact fairness
guarantee for any optimal model downstream.
Definition 3.1. Let H be a hypothesis class of group-aware classifiers h : X × A → Y and let
∆(h,D) be a given unfairness metric, e.g., demographic parity difference, equal opportunity differ-
ence. Given a distribution D over X × A × Y and a cost-sensitive risk defined by C ∈ R|Y|×|Y|,
let h∗

C = argmin
h∈H

Pr (ℓC(h(X,A), Y )). We call D an ideal distribution if ∆(h∗
C , D) = 0, for all

C ∈ R|Y|×|Y|.

Examples of fairness metrics include Demographic Parity, Equal Opportunity and Equalized Odds
(Definition 2.1) and examples of cost-sensitive risk include the usual 0 − 1 loss and different per-
formance metrics which are functions of the confusion matrix metrics Elkan (2001); Koyejo et al.
(2014); Singh & Khim (2022). Our definition gets around the impossibility theorems about fair rep-
resentation for multiple tasks Lechner et al. (2021). However, we need to be careful of two things.
First, our definition should not be too restrictive to just force the group-conditioned distributions to
be similar or identical, as that would be impractical. Second, we need an efficient and equivalent
way of expressing the constraint of being ideal. We show how to express it as a parametric condition
when the group and class-conditioned distributions belong to certain well-known parametric fami-
lies of distributions. This helps in checking if a given distribution is ideal, and otherwise, finding its
nearest ideal distribution.

3.1 PARAMETRIC CONDITIONS FOR IDEAL DISTRIBUTIONS

Borrowing a simple set up of parametric distributions from previous work on fair machine learn-
ing Pierson et al. (2018), we assume that the class and group-conditioned feature distributions
X
∣∣ Y = i, A = a belong to a parametric family of distributions, e.g., univariate or multivari-

ate Gaussians, log-normal. In that case, we show that the property of being ideal (Definition 3.1)
can be equivalently expressed as certain parametric conditions. For example, here is what we get
when X

∣∣ Y = i, A = a are univariate normal distributions.
Proposition 3.2. Let (X,Y,A) denote the features, binary class label, and binary group
membership, respectively, of a random data point from any data distribution D with qia =
Pr (Y = i, A = a), for i ∈ {0, 1} and a ∈ {0, 1}, and let X|Y = i, A = a ∼ N (µia, σ

2
ia) be

univariate normal distributions, for i ∈ {0, 1} and a ∈ {0, 1}. Then the distribution D is ideal for
equal opportunity (see Definition 3.1) if and only if

µ01 − µ11

σ11
=

µ00 − µ10

σ10
,

σ11

σ01
=

σ10

σ00
,

q10
q00

=
q11
q01

.

It is interesting to note that the same parametric conditions imply that the Bayes optimal classifier on
the corresponding distribution simultaneously satisfies multiple fairness criteria, viz., demographic
parity, equal opportunity, and equalized odds. Moreover, the same condition works for both univari-
ate Gaussian and log-normal distributions. Using our proof technique, it is easy to derive similar
conditions for other parametric families too.
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Kamiran & Calders (2012) reweighing method essentially reweighs qia by a multiplicative factor
of Pr (Y = i) Pr (A = a) /Pr (Y = i, A = a). Let us call the resulting probabilities q̃ia. Using
Pr (Y = i) = qi0 + qi1, Pr (A = a) = q0a + q1a and Pr (Y = i, A = a) = qia, we get

q̃ia ∝ qia
(qi0 + qi1)(q0a + q1a)

qia
=⇒ q̃10

q̃00
=

q̃11
q̃01

=
q10 + q11
q00 + q01

.

It is the same condition on qia’s stated in Proposition 3.3. Thus, our result can be thought of as a
second stage pre-processing of Pia distributions after applying the reweighing of Kamiran & Calders
(2012) to qia’s in the first stage. Now we state our result for multivariate Gaussians.
Proposition 3.3. Let (X,Y,A) denote the features, binary class label, and binary group
membership, respectively, of a random data point from any data distribution D with qia =
Pr (Y = i, A = a), for i ∈ {0, 1} and a ∈ {0, 1}. Let X|Y = i, A = a ∼ N (µia,Σia) be
multivariate Normal distributions with mean µia ∈ Rd and covariance matrix Σia ∈ Rd×d, for
i ∈ {0, 1} and a ∈ {0, 1}. If q10/q00 = q11/q01 and the means µia and the covariance matrices Σia

satisfy

Σ
−1/2
10 (µ10 − µ00) = Σ

−1/2
11 (µ11 − µ01) and Σ

1/2
10 Σ−1

00 Σ
1/2
10 = Σ

1/2
11 Σ−1

01 Σ
1/2
11

then the group-aware Bayes optimal classifier on D satisfies equal opportunity.

Proposition 3.2 shows that our parametric condition is equivalent to ∆C(h
∗
C , D) = 0, for all cost

matrices C ∈ R2×2. When we use a fixed cost matrix for 0-1 loss, and consider the Bayes op-
timal classifier in Proposition 3.3, our parametric condition is sufficient but not always necessary.
However, the same condition ensures the Bayes optimal classifier to satisfy multiple fairness criteria
simultaneously, viz., demographic parity, equal opportunity, equalized odds.
Remark 3.4. As an interesting consequence, our conditions on µia and Σia imply
DKL

(
P̃00||P̃01

)
= DKL

(
P̃10||P̃11

)
. When the classes are balanced, the error rate of the Bayes

optimal classifier on group A = a in D̃ equals
1

2

(
1− dTV(P̃0a, P̃1a)

)
, where dTV denotes the total

variation distance Nielsen (2014). Thus, achieving dTV(P̃00, P̃10) = dTV(P̃01, P̃11) ensures equal
error rates across both the groups. However, there is no closed form expression for the total vari-
ation distance between two univariate Gaussians, and KL-divergence can be thought of as a proxy
using Pinsker’s inequality Canonne (2023). This is similar to information theoretic argument used
by Dutta et al. (2020), which is why their optimization cannot guarantee outcome fairness.

4 FINDING THE NEAREST OPTIMAL DISTRIBUTION

When a given distribution D is not ideal, then a natural question is to find its nearest distribution D̃
that is ideal. We formulate this problem as follows.

minimize
D̃ : D̃ is ideal

DKL

(
D̃||D

)
.

In the above optimization problem, the KL-divergence objective is well-known and convex but the
constraint of D′ being ideal is extremely non-trivial to express. We show that when the group and
class-conditioned distributions X

∣∣ Y = i, A = a come from certain well-known parametric fami-
lies of distributions, this constraint can be equivalently expressed as a constraint on the distribution
parameters. We now give a concrete formulation of the optimization problem described in Section
using the constraints derived in Proposition 3.3.

4.1 AFFIRMATIVE ACTION

We first focus on a class of interventions for which solving the optimization program is efficient.
We define Affirmative Action as changing the underprivileged group to obtain the ideal distributions
where fairness and accuracy are in accord.
Theorem 4.1. Let (X,Y,A) denote the features, binary class label, and binary group membership,
respectively, of a random data point from any data distribution D with q10/q00 = q11/q01. Let
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X|Y = i, A = a ∼ N (µia,Σia) be multivariate Normal distributions, with mean µia ∈ Rd

and covariance matrix Σia ∈ Rd×d, for i ∈ {0, 1} and a ∈ {0, 1}. Let D̃ denote a distribution
obtained by keeping (Y,A) unchanged and only changing X|Y = i, A = a to X̃|Y = i, A = a ∼
N (µ̃ia, Σ̃ia). Then in the case of Affirmative action (changing only µ̃i0 and Σ̃i0), we can efficiently

minimize DKL

(
D̃||D

)
as a function of the variables µ̃i0 and Σ̃i0 subject to the constraints in

Proposition 3.3, so that the Bayes optimal classifier on the optimal D̃ is guaranteed to be EO-fair.

While we show that the optimization program is convex, obtaining a closed-form expression for
the change in means and covariances is extremely cumbersome for the general case. However, we
can show how the closed form expressions for µ̃i0 and σ̃i0 for univariate distributions (Corollary
C.2). Another intervention we can follow is to change all the subgroups of the given distribution.
However, a quick check through the proof of Theorem 4.1 shows that this will lead to a non-convex
program. However, just like Corollary C.2, we can show a reasonable intervention for the univariate
case, where we change all four subgroups and search over a non-convex function using line search
over a fairly large grid size. We demonstrate this in Proposition C.3.

Finally, we also consider another intervention where we match the first moment of the under-
privileged group with the privileged group, inspired by the commonly studied Calders-Verwer gap
Calders & Verwer (2010); Kamishima et al. (2012); Chen et al. (2019). The resulting program is
convex and we specify the closed-form expressions for µ̃i0 and σ̃i0 in Proposition C.4. We will lever-
age these interventions in Section 5 to study their ability to obtain ideal fair and optimal distributions
that are also close to the given distribution.

4.2 CONSEQUENCES FOR FAIRNESS AND ACCURACY

Let h̃ be the Bayes optimal classifier on our ideal distribution D̃ and let h be the Bayes optimal
classifier on D. The error rate and fairness guarantees of h̃ can be translated approximately from D̃
to D as follows.

err(h̃, D) ≤ err(h̃, D̃) + dTV(D̃,D) ≤ err(h,D) +O(dTV (D̃,D)) + dTV (D̃,D)

≤ err(h,D) +O(

√
DKL

(
D̃||D

)
.

The first inequality follows from writing the error as expected 0-1 loss and using the definition of
total variation distance. The second inequality follows from using a result of Kearns & Li (1993)
on learning under malicious noise. The last line follows from Pinsker’s inequality Canonne (2023).
Thus, the optimal value of our optimization problem can be used to approximately translate the
accuracy guarantee of h̃ from D̃ to D. A similar proof works for fairness.

5 CASE STUDY ON GAUSSIAN DISTRIBUTIONS

In this section, we modify a stylized setting of Gaussian distributions from previous work (see Def-
inition 3.1 in Pierson et al. (2018), Section 5.3 in Bakalar et al. (2021)) to investigate the unfairness
and the Bayes optimal error on the original and ideal distributions obtained through various inter-
ventions. Details of the setup can be found in Appendix D. The different interventions we try are
as follows: (a) a simple Bayes optimal classifier on the original distribution without any correction,
(b) Affirmative Action for Exact fairness (EF-Affirmative), where we change the underprivileged
group (A=0) using the solution of the univariate KL divergence program from Corollary C.2, (c)
Changing all subgroups for Exact fairness (EF-All Subgroups), where we change all subgroups to
minimize the KL divergence with respect to the true distribution subject to exact fairness constraints
from Proposition C.3, and (d) Mean Matching, where we minimize the KL divergence with respect
to the true distribution subject to matching the means of the sensitive groups from Proposition C.4.
Note that EF-All Subgroups lead to a non-convex optimization program, unlike the EF-Affirmative
program. Therefore, we employ line search to approximate the factor γ that determines the optimal
means and variances.

We measure the Demographic Parity (∆DP) and Equal Opportunity (∆EO) Difference of the Bayes
optimal classifier on the new distributions, along with the KL and Jensen-Shannon (JS) divergence

5
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(c) EF-All Subgroups
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Figure 2: Comparison of Different Interventions when the original distribution is already fair. In this case,
EF-All ensures that it stays close to the true distribution, as no intervention as required, while others relatively
deviate.
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Figure 3: Comparison of Different Interventions when the ∆DP on the original distribution is high. In this
case, EF-All manages to stay close to the true distribution and achieves perfect fairness and error rate, while
others deviate significantly.

with respect to the true distribution. For the case of univariate gaussians, we precisely know the
Bayes Optimal Classifier and the threshold (from Lemma B.1), and therefore, we use that to plot
the group-aware decision thresholds and report the Bayes Error (BE). Furthermore, ∆DP and ∆EO
can be computed analytically using differences of Cumulative Distribution functions of the standard
gaussian.

First, we look at a case where the Bayes optimal classifier is already fair (∆EO is close to 0 while
∆DP=0) in Figure 2. The expected solution here should be that any intervention must leave the
distribution as it is. EF-Affirmative intervention keeps the unfairness and error rate numbers as it
is, but deviates from the true distribution, as indicated by the KL/JS divergences. However, the
EF-All intervention only makes major changes to variances and stays close to the true distribution.
The Mean Matching intervention shifts both the under-privileged subgroups and strays away from
the true distribution, as indicated by relatively high KL/JS values. We next construct a distribution
where ∆DP is very high in Figure 3. Here, the affirmative action intervention transforms both the
under-privileged subgroups to high-variance ones, which results in a reduction of BE and ∆DP, but
at the cost of and high KL/JS-divergence with respect to the true distribution. However, the EF-All
intervention simply tries to match the variances of under-privileged and privileged subgroups and,
as a result, archives perfect fairness and accuracy while staying close to the true distribution. Mean
Matching is very similar to EF-Affirmative in this case and, as a result, has relatively high KL/JS
numbers. In Appendix D, we study the case of symmetric and shifted subgroup distribution and a
different threshold in Figures 4 and 5 respectively.

6 DISCUSSION AND FUTURE WORK

In this work, we approach the problem of fair classification through the lens of ideal distributions.
We first define what it means for a distribution to be ideal for fairness and Bayes optimal classifica-
tion and then demonstrate that for well-known parametric families of distributions. We demonstrated
when such an optimization problem is feasible and efficiently solvable. We show that these inter-
ventions can steer the given distribution to achieve perfect fairness and accuracy while staying close
to the given distribution in many cases. Some important future directions include generalizing the
above results for approximate fairness and studying the feasibility of the ideal distribution optimiza-
tion program with finitely many samples or a bounded distance away from the given distribution.
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A RELATED WORK

A.1 FAIR PRE-PROCESSING

Kamiran & Calders (2012) propose simple heuristics to pre-process data for binary fair classification
with binary groups. Their most popular heuristic is to reweigh the data points in class i and group a
by Pr (class i) Pr (group a) /Pr (class i and group a). Note that this reweighing is independent of
feature distribution, and hence cannot provide any provable guarantee on fairness when we maxi-
mize accuracy after reweighing. Calmon et al. (2017) formulate fair pre-precessing as an optimiza-
tion problem to learn a data transformation that minimizes distance to the given distribution subject
to bounds on discrimination (or group unfairness) and distortion control (or individual unfairness).
They show conditions under which this optimization is convex and can be solved efficiently, how-
ever, it can be infeasible when group fairness (near equal outcomes for two groups) and individual
fairness (similar outcomes for similar individuals across groups) cannot be satisfied simultaneously
Friedler et al. (2021). Jiang & Nachum (2020) propose reweighing as a way to correct label bias in
data. Plečko & Meinshausen (2020) and Plečko et al. (2024) propose a fair adaptation methods based
on causal model of the data. More recently, Xiong et al. (2024) reformulate the task of reweighing
given data for fair pre-processing as a large-scale mixed-integer program and propose an efficient
algorithm to solve it via cutting-plane method. In general, pre-processing is practical and useful
and comes as part of popular fairness toolkits along with in-processing and post-processing methods
Bellamy et al. (2018); Bird et al. (2020). Even the simple reweighing of Kamiran & Calders (2012)
that comes without any provable guarantees is surprisingly effective at bias mitigation on standard
datasets in fair machine learning Sharma et al. (2023); Blow et al. (2024); Xiong et al. (2024).

A.2 IDEAL DISTRIBUTIONS AND FAIR REPRESENTATION LEARNING

Dutta et al. (2020) characterize a similar objective using Chernoff Information (see Cover (1999))
and formulate an optimization program to find the nearest distribution in KL-divergence on which
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the Chernoff Information gap between two group-conditional feature distributions vanishes. Their
optimization problem is not known to be efficiently solvable and the fairness guarantees in terms of
Chernoff Information gap does not translate easily to standard fairness metrics such as demographic
parity, equal opportunity etc. In contrast, we formulate an optimization problem to find the nearest
ideal distribution in KL-divergence to given distribution and give efficient algorithms to solve it for
various parametric families of distributions.

For completeness, we want to also make the reader aware of a long line of work on fair representation
learning where the data transformations can map the distributions to another space Zemel et al.
(2013); Madras et al. (2018); McNamara et al. (2019); Liu et al. (2022); Cerrato et al. (2024).
Our work is not directly related but can potentially be used to refine fair representations to achieve
provable and exact fairness guarantees.

B PROOFS FOR SECTION 3

We will require a helper result about threshold classifiers to prove our next set of results.

Lemma B.1. Let η(x, a) = Pr (Y = 1|X = x,A = a), qia = Pr (Y = i, A = a) and pia(x) =
Pr
(
X = x

∣∣ Y = i, A = a
)
. Then the Bayes optimal classifier can be written as h∗(x, a) =

I
(
log p1a(x)

p0a(x)
≥ log q0a

q1a

)
.

Proof. Let η(x, a) = Pr (Y = 1|X = x,A = a), qia = Pr (Y = i, A = a) and pia(x) =
Pr
(
X = x

∣∣ Y = i, A = a
)
. We consider group-aware threshold classifiers on D of the form

ht(x, a) = I (η(x, a) ≥ t), which can be equivalently written as

ht(x, a) = I (η(x, a) ≥ t)

= I
(
Pr
(
Y = 1

∣∣ X = x,A = a
)
≥ t
)

= I

(
Pr
(
Y = 1

∣∣ X = x,A = a
)

Pr
(
Y = 0

∣∣ X = x,A = a
) ≥ t

1− t

)

= I
(
Pr (Y = 1, X = x,A = a)

Pr (Y = 0, X = x,A = a)
≥ t

1− t

)
= I

(
Pr
(
X = x

∣∣ Y = 1, A = a
)
Pr (Y = 1, A = a)

Pr
(
X = x

∣∣ Y = 0, A = a
)
Pr (Y = 0, A = a)

≥ t

1− t

)

= I
(
p1a(x)

p0a(x)
≥ t

1− t
· q0a
q1a

)
= I

(
log

p1a(x)

p0a(x)
≥ log

t

1− t
+ log

q0a
q1a

)
.

It is well-known that the group-aware Bayes optimal classifier h∗ = h1/2 by setting t = 1/2, or
equivalently,

h∗(x, a) = h1/2(x, a) = I
(
log

p1a(x)

p0a(x)
≥ log

q0a
q1a

)
.

Proof. (Proof of Proposition 3.2) For any cost matrix C ∈ R2×2, the group-aware classifier
that minimizes its corresponding cost-sensitive risk is given by I (η(x, a) ≥ tC), for a threshold
tC = (c10 − c00)/(c10 − c00 + c01 − c11) ∈ [0, 1]; see Equation (2) in Elkan (2001) and Scott
(2012). The distribution D is ideal for equal opportunity if Pr

(
η(X,A) ≥ t

∣∣ Y = i, A = 0
)
=

Pr
(
η(X,A) ≥ t

∣∣ Y = i, A = 1
)
, for all thresholds t ∈ [0, 1] and i ∈ {0, 1}. Since the CDFs are

identical, the random variables η(X,A)
∣∣ Y = i, A = 0 and η(X,A)

∣∣ Y = i, A = 1 must be
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identical. Note that

η(x, a) = Pr
(
Y = 1

∣∣ X = x,A = a
)

=
Pr (Y = 1, X = x,A = a)∑1
i=0 Pr (Y = i,X = x,A = a)

=
Pr (Y = 1, A = a) Pr

(
X = x

∣∣ Y = 1, A = a
)∑1

i=0 Pr (Y = i, A = a) Pr
(
X = x

∣∣ Y = i, A = a
)

=
q1aP1a(x)∑1
i=0 qiaPia(x)

=

q1aσ
−1
1a exp

(
− (x− µ1a)

2

2σ2
1a

)
∑1

i=0 qiaσ
−1
ia exp

(
− (x− µia)

2

2σ2
ia

)
=

1

1 + exp

(
(x− µ1a)

2

2σ2
1a

− (x− µ0a)
2

2σ2
0a

+ log
q0aσ1a

q1aσ0a

)
=

1

1 + exp

(
(µia + rσia − µ1a)

2

2σ2
1a

− (µia + rσia − µ0a)
2

2σ2
0a

+ log
q0aσ1a

q1aσ0a

)

=



1

1 + exp

(
1

2

(
σ2
0a

σ2
1a

− 1

)
r2 − σ0a(µ1a − µ0a)

σ2
1a

r +
(µ1a − µ0a)

2

2σ2
1a

+ log
q0aσ1a

q1aσ0a

) , for i = 0

1

1 + exp

(
1

2

(
1− σ2

1a

σ2
0a

)
r2 − σ1a(µ0a − µ1a)

σ2
0a

r +
(µ0a − µ1a)

2

2σ2
0a

+ log
q0aσ1a

q1aσ0a

) , for i = 1.

If X|Y = i, A = a ∼ N (µia, σ
2
ia), then X

∣∣ Y = i, A = a ∼ N (µia, σ
2
ia). Thus, for

η(X,A)
∣∣ Y = i, A = 0 and η(X,A)

∣∣ Y = i, A = 1 to be identical, we must have

1

2

(
σ2
00

σ2
10

− 1

)
R2 − σ00(µ10 − µ00)

σ2
10

R+
(µ10 − µ00)

2

2σ2
10

+ log
q00σ10

q10σ00
and

1

2

(
σ2
01

σ2
11

− 1

)
R2 − σ01(µ11 − µ01)

σ2
11

R+
(µ11 − µ01)

2

2σ2
11

+ log
q01σ11

q11σ01

as identically distributed for R ∼ N (0, 1). Similarly, we must also have

1

2

(
1− σ2

10

σ2
00

)
R2 − σ10(µ00 − µ10)

σ2
00

R+
(µ00 − µ10)

2

2σ2
00

+ log
q00σ10

q10σ00
and

1

2

(
1− σ2

11

σ2
01

)
R2 − σ11(µ01 − µ11)

σ2
01

R+
(µ01 − µ11)

2

2σ2
01

+ log
q01σ11

q11σ01

as identically distributed for R ∼ N (0, 1). Therefore, we must have

µ01 − µ11

σ11
=

µ00 − µ10

σ10
and

σ11

σ01
=

σ10

σ00
and

q10
q00

=
q11
q01

.

In the other direction, it is easier to prove that the above conditions imply the distribution to be ideal.
It can be proved by simply backtracking the steps above.

Proof. (Proof of Proposition 3.3) From Lemma B.1, the group-aware Bayes optimal classifier can
be written as

h∗(x, a) = I
(
η(x, a) ≥ 1

2

)
= I

(
log

p1a(x)

p0a(x)
≥ log

q0a
q1a

)
.

12
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The EO-fairness condition Pr
(
h∗(X,A) = 1

∣∣ Y = 1, A = 0
)

=

Pr
(
h∗(X,A) = 1

∣∣ Y = 1, A = 1
)

means

Pr

(
log

p10(X)

p00(X)
≥ log

q00
q10

∣∣ Y = 1, A = 0

)
= Pr

(
log

p11(X)

p01(X)
≥ log

q01
q11

∣∣ Y = 1, A = 0

)
.

Since X|Y = i, A = a ∼ N (µia,Σia) are multivariate Normal distributions for i, a ∈ {0, 1}, their
probability densities are

pia(x) = (2π)−d/2 det(Σia)
−1/2 exp

(
−1

2
(x− µia)

TΣ−1
ia (x− µia)

)
.

Now we can write

log
p1a(x)

p0a(x)
=

1

2

(
(x− µ0a)

TΣ−1
0a (x− µ0a)− (x− µ1a)

TΣ−1
1a (x− µ1a) + log det(Σ0a)− log det(Σ1a)

)
=

1

2

(
(Σ

1/2
1a r + µ1a − µ0a)

TΣ−1
0a (Σ

1/2
1a r + µ1a − µ0a)− rT r − log det(Σ

1/2
1a Σ−1

0a Σ
1/2
1a )

)
by substituting x = Σ

1/2
1a r + µ1a, where r ∼ N (0, Id×d)

=
1

2
rTΣ

1/2
1a Σ−1

0a Σ
1/2
1a r + (µ1a − µ0a)

TΣ−1
0a Σ

1/2
1a r − 1

2
log det(Σ

1/2
1a Σ−1

0a Σ
1/2
1a )

=
1

2
rTΣ

1/2
1a Σ−1

0a Σ
1/2
1a r + (µ1a − µ0a)

TΣ
−1/2
1a Σ

1/2
1a Σ−1

0a Σ
1/2
1a r − 1

2
log det(Σ

1/2
1a Σ−1

0a Σ
1/2
1a ).

Hence,

Pr

(
log

p1a(X)

p0a(X)
≥ log

q0a
q1a

∣∣ Y = 1, A = a

)
= Pr

(
1

2
RTΣ

1/2
1a Σ−1

0a Σ
1/2
1a R+ (µ1a − µ0a)

TΣ
−1/2
1a Σ

1/2
1a Σ−1

0a Σ
1/2
1a R− 1

2
log det(Σ

1/2
1a Σ−1

0a Σ
1/2
1a ) ≥ log

q0a
q1a

)
,

for R ∼ N (0̄, Id×d). Now if we have
q10
q00

=
q11
q01

and

Σ
−1/2
10 (µ10 − µ00) = Σ

−1/2
11 (µ11 − µ01) and Σ

1/2
10 Σ−1

00 Σ
1/2
10 = Σ

1/2
11 Σ−1

01 Σ
1/2
11 ,

then the probability of the above event written in terms R ∼ N (0̄, Id×d) becomes identical for
a ∈ {0, 1}. Hence, the Bayes optimal classifier satisfies equal opportunity.

C PROOFS FOR SECTION 4

We first derive the KL divergence between two distributions, where each subgroup in the distribution
follows a multivariate normal distribution.

Lemma C.1. Let (X,Y,A) denote the features, binary class label, and binary group membership,
respectively, of a random data point from any data distribution D with qia = Pr (Y = i, A = a),
for i ∈ {0, 1} and a ∈ {0, 1}. Let X|Y = i, A = a ∼ N (µia,Σia) be multivariate Normal
distributions with mean µia ∈ Rd and covariance matrix Σia ∈ Rd×d, for i ∈ {0, 1} and a ∈ {0, 1}.
Let D̃ denote a distribution obtained by keeping (Y,A) unchanged and only changing X|Y =

i, A = a to X̃|Y = i, A = a ∼ N (µ̃ia, Σ̃ia). Then,

DKL

(
D̃||D

)
= −d

2
+

1

2

∑
(i,a)

qia(µ̃ia − µia)
TΣ−1

ia (µ̃ia − µia)

+
1

2

∑
(i,a)

qia

(
tr
(
Σ−1

ia Σ̃ia

)
− log det(Σ−1

ia Σ̃ia)
)
.

13
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Proof.

DKL

(
D̃||D

)
=
∑

(x,i,a)

Pr
(
X̃ = x, Ỹ = i, Ã = a

)
log

Pr
(
X̃ = x, Ỹ = i, Ã = a

)
Pr (X = x, Y = i, A = a)

=
∑

(x,i,a)

Pr
(
Ỹ = i, Ã = a

)
Pr
(
X̃ = x

∣∣ Ỹ = i, Ã = a
)
log

Pr
(
Ỹ = i, Ã = a

)
Pr
(
X̃ = x

∣∣ Ỹ = i, Ã = a
)

Pr (Y = y,A = a) Pr
(
X = x

∣∣ Y = i, A = a
)

=
∑

(x,i,a)

Pr (Y = i, A = a) Pr
(
X̃ = x

∣∣ Y = i, A = a
)
log

Pr (Y = i, A = a) Pr
(
X̃ = x

∣∣ Y = i, A = a
)

Pr (Y = i, A = a) Pr
(
X = x

∣∣ Y = i, A = a
)

=
∑
(i,a)

qia
∑
x

Pr
(
X̃ = x

∣∣ Y = i, A = a
)
log

Pr
(
X̃ = x

∣∣ Y = i, A = a
)

Pr
(
X = x

∣∣ Y = i, A = a
)

=
∑
(i,a)

qiaDKL

(
P̃ia||Pia

)

Pia denotes the distribution of X
∣∣ Y = i, A = a ∼ N (µia,Σia) and P̃ia denotes the distribution

of X̃
∣∣ Y = i, A = a ∼ N (µ̃ia, Σ̃ia). Their probability densities are

pia(x) = (2π)−d/2 det(Σia)
−1/2 exp

(
−1

2
(x− µia)

TΣ−1
ia (x− µia)

)
and

p̃ia(x) = (2π)−d/2 det(Σ̃ia)
−1/2 exp

(
−1

2
(x− µ̃ia)

T Σ̃−1
ia (x− µ̃ia)

)
,

respectively. Hence, the Kullback-Leibler divergence between P̃ia and Pia can be written as

DKL

(
P̃ia||Pia

)
= Elog

p̃ia(X̃)

pia(X̃)

∣∣ Y = i, A = a

=
1

2
E(X̃ − µia)

TΣ−1
ia (X̃ − µia)− (X̃ − µ̃ia)

T Σ̃−1
ia (X̃ − µ̃ia)− log det(Σ

1/2
ia Σ̃−1

ia Σ
1/2
ia )

∣∣ Y = i, A = a

=
1

2
E(X̃ − µia)

TΣ−1
ia (X̃ − µia)

∣∣ Y = i, A = a− d

2
− 1

2
log det(Σ

1/2
ia Σ̃−1

ia Σ
1/2
ia )

using E(X̃ − µ̃ia)
T Σ̃−1

ia (X̃ − µ̃ia)
∣∣ Y = i, A = a = Σ̃−1

ia • Σ̃ia = tr (Id×d) = d

=
1

2
E(X̃ − µ̃ia + µ̃ia − µia)

TΣ−1
ia (X̃ − µ̃ia + µ̃ia − µia)

∣∣ Y = i, A = a− d

2
+

1

2
log det(Σ

1/2
ia Σ̃−1

ia Σ
1/2
ia )

=
1

2
tr
(
Σ−1

ia Σ̃ia

)
+

1

2
(µ̃ia − µia)

TΣ−1
ia (µ̃ia − µia)−

d

2
+

1

2
log det(Σ

1/2
ia Σ̃−1

ia Σ
1/2
ia ).
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The Kullback-Leibler divergence between D̃ and D can now be written as

DKL

(
D̃||D

)
=
∑
(i,a)

qiaDKL

(
P̃ia||Pia

)
=
∑
(i,a)

qia

(
1

2
tr
(
Σ−1

ia Σ̃ia

)
+

1

2
(µ̃ia − µia)

TΣ−1
ia (µ̃ia − µia)−

d

2
+

1

2
log det(Σ

1/2
ia Σ̃−1

ia Σ
1/2
ia )

)

= −d

2
+

1

2

∑
(i,a)

qia

(
tr
(
Σ−1

ia Σ̃ia

)
+ (µ̃ia − µia)

TΣ−1
ia (µ̃ia − µia) + log det(Σ

1/2
ia Σ̃−1

ia Σ
1/2
ia )

)
= −d

2
+

1

2

∑
(i,a)

qia(µ̃ia − µia)
TΣ−1

ia (µ̃ia − µia) +
1

2

∑
(i,a)

qia

(
tr
(
Σ−1

ia Σ̃ia

)
+ log det(ΣiaΣ̃

−1
ia )
)

= −d

2
+

1

2

∑
(i,a)

qia(µ̃ia − µia)
TΣ−1

ia (µ̃ia − µia) +
1

2

∑
(i,a)

qia

(
tr
(
Σ−1

ia Σ̃ia

)
− log det(Σ−1

ia Σ̃ia)
)
.

Proof. (Proof for Theorem 4.1) Using Lemma C.1 and Proposition 3.3, our objective is to minimize

DKL

(
D̃||D

)
= −d

2
+
1

2

∑
(i,a)

qia(µ̃ia−µia)
TΣ−1

ia (µ̃ia−µia)+
1

2

∑
(i,a)

qia

(
tr
(
Σ−1

ia Σ̃ia

)
− log det(Σ−1

ia Σ̃ia)
)
,

subject to the constraints

Σ̃
−1/2
10 (µ̃10 − µ̃00) = Σ̃

−1/2
11 (µ̃11 − µ̃01) and Σ̃

1/2
10 Σ̃−1

00 Σ̃
1/2
10 = Σ̃

1/2
11 Σ̃−1

01 Σ̃
1/2
11 .

Suppose Σ̃i0 and Σ̃i1 do not commute. The constraints can be equivalently rewritten as follows.

µ̃10 − µ̃00 = Σ̃
1/2
10 Σ̃

−1/2
11 (µ̃11 − µ̃01) and Σ̃

−1/2
11 Σ̃

1/2
10 Σ̃−1

00 Σ̃
1/2
10 Σ̃

−1/2
11 = Σ̃−1

01 .

Let Γ = Σ̃
1/2
i0 Σ̃

−1/2
i1 . For any fixed positive semidefinite matrix Γ ∈ Rd×d, our optimization

problem can be divided into two separate parts that minimize∑
(i,a)

qia(µ̃ia − µia)
TΣ−1

ia (µ̃ia − µia) subject to µ̃10 − µ̃00 = Γ(µ̃11 − µ̃01)

over µ̃ia ∈ Rd, for i, a ∈ {0, 1}, and minimize (after substituting Σ̃
1/2
i0 = ΓΣ̃

1/2
i1 )

1∑
i=0

qi0

(
tr

(
Σ−1

i0

(
ΓΣ̃

1/2
i0

)2)
− log det(Σ−1

i0

(
ΓΣ̃

1/2
i0

)2)
+ qi1

(
tr
(
Σ−1

i1 Σ̃i1

)
− log det(Σ−1

i1 Σ̃i1)
)
,

subject to ΓΣ̃
1/2
11 Σ̃−1

00 Γ = Σ̃
1/2
11 Σ̃−1

01

over symmetric, positive semidefinite matrix-valued variable Σ̃i1 ∈ Rd×d, for i ∈ {0, 1}. The
first optimization in µ̃ia is a constrained eigenvalue problem with linear constraints, i.e., minimize
xTAx+ xT b subject to xT c = e Golub (1973).

Let’s consider the case of Affirmative Action, where we only change the means µ̃i0 and the covari-
ance matrices Σ̃i0 for the underprivileged group but keep those for the privileged group unchanged,
i.e., µ̃i1 = µi1 and Σ̃i1 = Σi1. In that case, Σ̃1/2

00 = ΓΣ
1/2
01 and Σ̃

1/2
10 = ΓΣ

1/2
11 get fixed. By

substituting µ̃10 = µ̃00 + Γ(µ̃11 − µ̃01) = µ̃00 + Γ(µ11 − µ01), we only need to optimize

q00(µ̃00−µ00)
TΣ−1

00 (µ̃00−µ00)+q10(µ̃00+Γ(µ11−µ01)−µ10)
TΣ−1

10 (µ̃00+Γ(µ11−µ01)−µ10),

or equivalently (ignoring the terms independent of µ̃00),

µ̃T
00

(
q00Σ

−1
00 + q10Σ

−1
10

)
µ̃00 − 2

(
Σ−1

00 µ00 +Σ−1
10 µ10 − Σ−1

10 Γ(µ11 − µ01)
)T

µ̃00.

This is a convex objective in µ̃00 because its Hessian is positive semidefinite, i.e., q00Σ
−1
00 +

q10Σ
−1
10 ≽ 0 Boyd (2004). By equating the gradient to zero, we get the optimal solution for µ̃00,
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and we denote it by µ∗
00(Γ). Thus, the optimal solutions µ∗

00(Γ), µ
∗
10(Γ),Σ

∗
00(Γ),Σ

∗
10(Γ) for a fixed

positive semidefinite Γ ∈ Rd×d are given by

µ∗
00(Γ) =

(
q00Σ

−1
00 + q10Σ

−1
10

)−1 (
Σ−1

00 µ00 +Σ−1
10 µ10 − Σ−1

10 Γ(µ11 − µ01)
)

and

µ∗
10(Γ) =

(
q00Σ

−1
00 + q10Σ

−1
10

)−1 (
Σ−1

00 µ00 +Σ−1
10 µ10 − Σ−1

10 Γ(µ11 − µ01)
)
+ Γ(µ11 − µ01)

Σ∗
00(Γ) = (ΓΣ

1/2
01 )2

Σ∗
10(Γ) = (ΓΣ

1/2
11 )2.

By substituting these, when we look at the objective as a function of a positive semidef-
inite matrix-valued variable Γ, it turns out to be convex. This requires rewriting the
expressions using the identities tr (AB) = tr (BA) ,det(AB) = det(A) det(B), and
most importantly, tr (AXBX) = tr

(
(A1/2XB1/2)(A1/2XB1/2)T

)
and log det(AXBX) =

log det
(
A1/2XB1/2)(A1/2XB1/2)T

)
, for symmetric, positive semidefinite matrices A,B,X Pe-

tersen et al. (2008). The convexity of the objective in Γ follows from the convexity of tr (AXBX)
and − log det(X) for matrix-valued variable X . Finally, we can solve it efficiently to get the optimal
Γ∗.

Corollary C.2. (Affirmative Action for the case of univariate distributions) For the case where
X|Y = i, A = a ∼ N (µia, σ

2
ia) are univariate normal distributions, for i ∈ {0, 1} and a ∈ {0, 1},

the optimal distribution D̃ from Theorem 4.1 can be written down as:

σ̃i0 = γ∗σi1, µ̃00 = µ̃10 + γ∗(µ01 − µ11), and

µ̃10 =

(
q00

µ00 − γ∗(µ01 − µ11)

σ2
00

+ q10
µ10

σ2
10

)
(
q00
σ2
00

+
q10
σ2
10

) ,

where γ∗ is a function of the original distribution parameters only.

Proof. (Proof of Corollary C.2)

DKL

(
D̃||D

)
=
∑

(x,i,a)

Pr
(
X̃ = x, Ỹ = i, Ã = a

)
log

Pr
(
X̃ = x, Ỹ = i, Ã = a

)
Pr (X = x, Y = i, A = a)

=
∑

(x,i,a)

Pr
(
Ỹ = i, Ã = a

)
Pr
(
X̃ = x

∣∣ Ỹ = i, Ã = a
)
log

Pr
(
Ỹ = i, Ã = a

)
Pr
(
X̃ = x

∣∣ Ỹ = i, Ã = a
)

Pr (Y = y,A = a) Pr
(
X = x

∣∣ Y = i, A = a
)

=
∑

(x,i,a)

Pr (Y = i, A = a) Pr
(
X̃ = x

∣∣ Y = i, A = a
)
log

Pr (Y = i, A = a) Pr
(
X̃ = x

∣∣ Y = i, A = a
)

Pr (Y = i, A = a) Pr
(
X = x

∣∣ Y = i, A = a
)

=
∑
(i,a)

qia
∑
x

Pr
(
X̃ = x

∣∣ Y = i, A = a
)
log

Pr
(
X̃ = x

∣∣ Y = i, A = a
)

Pr
(
X = x

∣∣ Y = i, A = a
)

=
∑
(i,a)

qiaDKL

(
P̃ia||Pia

)
Pia denotes the distribution of X

∣∣ Y = i, A = a ∼ N (µia, σ
2
ia) and P̃ia denotes the distribution

of X̃
∣∣ Y = i, A = a ∼ N (µ̃ia, σ̃

2
ia). Their probability densities are

pia(x) =
1

xσia

√
2π

exp

(
− (x− µia)

2

2σ2
ia

)
and p̃ia(x) =

1

xσ̃ia

√
2π

exp

(
− (x− µ̃ia)

2

2σ̃2
ia

)
,
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respectively. Hence,

DKL

(
P̃ia||Pia

)
= E

[
log

p̃ia(X̃)

pia(X̃)

∣∣ Y = i, A = a

]

= E

[
(X̃ − µia)

2

2σ2
ia

− (X̃ − µ̃ia)
2

2σ̃2
ia

+ log
σia

σ̃ia

∣∣ Y = i, A = a

]

= E

[(
1

2σ2
ia

− 1

2̃σ
2

ia

)
X̃2 +

(
µ̃ia

σ̃2
ia

− µia

σ2
ia

)
X̃ +

(
µ2
ia

2σ2
ia

− µ̃2
ia

2σ̃2
ia

)
+ log

σia

σ̃ia

∣∣ Y = i, A = a

]

=

(
1

2σ2
ia

− 1

2σ̃2
ia

)
(µ̃2

ia + σ̃2
ia) +

(
µ̃ia

σ̃2
ia

− µia

σ2
ia

)
µ̃ia +

(
µ2
ia

2σ2
ia

− µ̃2
ia

2σ̃2
ia

)
+ log

σia

σ̃ia

=
(µ̃ia − µia)

2

2σ2
ia

+
σ̃2
ia − σ2

ia

2σ2
ia

+ log
σia

σ̃ia
,

using E
[
log X̃

∣∣ Y = i, A = a
]
= µ̃ia and E

[
(log X̃)2

∣∣ Y = i, A = a
]
= µ̃2

ia + σ̃2
ia. Since we

only change group A = 0, we want to minimize

DKL

(
D̃||D

)
=

1∑
i=0

qi0DKL

(
P̃i0||Pi0

)
=

1∑
i=0

qi0

(
(µ̃i0 − µi0)

2

2σ2
i0

+
σ̃2
i0 − σ2

i0

2σ2
i0

+ log
σi0

σ̃i0

)
as a function of the variables µ̃i0 and σ̃i0 subject to the constraints

µ01 − µ11

σ11
=

µ̃00 − µ̃10

σ̃10
and

σ11

σ01
=

σ̃10

σ̃00
and σ̃ia ≥ 0, for all (i, a).

Let’s fix γ ∈ R≥0 and minimize

Lγ =

1∑
i=0

qi0

(
(µ̃i0 − µi0)

2

2σ2
i0

+
σ̃2
i0 − σ2

i0

2σ2
i0

+ log
σi0

σ̃i0

)
as a function of the variables µ̃ia and σ̃ia subject to the following constraints

µ̃00 − µ̃10

µ01 − µ11
=

σ̃10

σ11
=

σ̃00

σ01
= γ and σ̃ia ≥ 0, for all (i, a).

The objective Lγ is convex and for a fixed γ ∈ R≥0, the constraints on are linear in µ̃i0 and σ̃i0.
Let’s denote the optimal solution for a fixed γ ∈ R≥0 by µ∗

i0(γ) and σ∗
i0(γ), for i ∈ {0, 1}. For

a fixed γ ∈ R≥0, the above constraints fix σ∗
i0(γ) = γσi1, for i ∈ {0, 1}, and by plugging in

µ̃00 = µ̃10 + γ(µ01 − µ11), we only need to minimize the following convex, quadratic objective in
a single variable µ̃10,

minimize q00
(µ̃10 + γ(µ01 − µ11)− µ00)

2

2σ2
00

+ q10
(µ̃10 − µ10)

2

2σ2
10

.

By equating the derivative to zero, we get the optimal solution as

µ∗
10(γ) =

(
q00
σ2
00

+
q10
σ2
10

)−1(
q00

µ00 − γ(µ01 − µ11)

σ2
00

+ q10
µ10

σ2
10

)
,

and the optimal value at µ∗
10(γ) is (The min of ax2+bx+c occurs at x =

−b

2a
and has value c− b2

4a
)

q00
(γ(µ01 − µ11)− µ00)

2

2σ2
00

+ q10
µ2
10

2σ2
10

− 1

2

(
q00
σ2
00

+
q10
σ2
10

)−1(
q00

µ00 − γ(µ01 − µ11)

σ2
00

+ q10
µ10

σ2
10

)2

=
1

2

(
q00
σ2
00

+
q10
σ2
10

)−1
q00q10
σ2
00σ

2
10

((µ00 − µ10)− γ(µ01 − µ11))
2

=
1

2

(
σ2
00

q00
+

σ2
10

q10

)−1

((µ00 − µ10)− γ(µ01 − µ11))
2
.
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By plugging in the optimal solution, the minimum value of Lγ for a fixed γ ∈ R≥0 is given by

L∗
γ =

1∑
i=0

qi0

(
(µ∗

i0(γ)− µi0)
2

2σ2
i0

+
σ∗
i0(γ)

2 − σ2
i0

2σ2
i0

+ log
σi0

σ∗
i0(γ)

)

=
1

2

(
σ2
00

q00
+

σ2
10

q10

)−1

((µ00 − µ10)− γ(µ01 − µ11))
2
+ q00

γ2σ2
01 − σ2

00

2σ2
00

+ q10
γ2σ2

11 − σ2
10

2σ2
10

+ (q00 + q10) log
1

γ
+ q00 log

σ00

σ01
+ q10 log

σ10

σ11

=
1

2

(
σ2
00

q00
+

σ2
10

q10

)−1

((µ00 − µ10)− γ(µ01 − µ11))
2
+

q00
2

(
γ2σ

2
01

σ2
00

− 1

)
+ (q00 + q10) log

1

γ
+ q00 log

σ00

σ01
+ q10 log

σ10

σ11
.

This is a convex objective in γ (because the second derivative is non-negative) and by equating the
derivative to zero, we have that the optimal γ∗ must satisfy(
σ2
00

q00
+

σ2
10

q10

)−1

(µ01−µ11) (γ
∗(µ01 − µ11)− (µ00 − µ10))+γ∗

(
q00

σ2
01

σ2
00

+ q10
σ2
11

σ2
10

)
−q00 + q10

γ∗ = 0.

Multiplying with γ∗
(
σ2
00

q00
+

σ2
10

q10

)
, we can write it as a quadratic equation as follows.(

(µ01 − µ11)
2 + σ2

01 + σ2
11 +

q10σ
2
00

q00σ2
10

σ2
11 +

q00σ
2
10

q10σ2
00

σ2
01

)
γ∗2

− (µ01 − µ11)(µ00 − µ10)γ
∗

−(q00 + q10)

(
σ2
00

q00
+

σ2
10

q10

)
= 0

The discriminant of the above quadratic polynomial is non-negative because the leading coefficient
is positive and the constant term is negative. So this polynomial has two real roots. Moreover,
since the constant term is negative, it cannot have both positive or both negative roots. Its only
non-negative root is the optimal solution γ∗ ∈ R≥0 we want.

γ∗ =
(µ01 − µ11)(µ00 − µ10) +

√
∆

2
(
(µ01 − µ11)2 + σ2

01 + σ2
11 +

q10σ2
00

q00σ2
10
σ2
11 +

q00σ2
10

q10σ2
00
σ2
01

) , where ∆ = (µ01 − µ11)
2(µ00 − µ10)

2

+4

(
(µ01 − µ11)

2 + σ2
01 + σ2

11 +
q10σ

2
00

q00σ2
10

σ2
11 +

q00σ
2
10

q10σ2
00

σ2
01

)
(q00 + q10)

(
σ2
00

q00
+

σ2
10

q10

)
.

Another intervention we can follow is to change all the subgroups of the given distribution. However,
a quick check through the proof of Theorem 4.1 shows that this will lead to a non-convex program.
However, just like Corollary C.2, we can show a reasonable intervention for the univariate case,
where we change all four subgroups and search over a non-convex function using line search over a
fairly large grid size.
Proposition C.3. (All subgroup change for Exact Fairness) Let (X,Y,A) denote the features, bi-
nary class label, and binary group membership, respectively, of a random data point from any
data distribution D with qia = Pr (Y = i, A = a), for i ∈ {0, 1} and a ∈ {0, 1}, such that
q10/q00 = q11/q01, and let X|Y = i, A = a ∼ N (µia, σ

2
ia) be univariate normal distributions, for

i ∈ {0, 1} and a ∈ {0, 1}. Let D̃ denote a distribution obtained by keeping (Y,A) unchanged and

only changing X|Y = i, A = a to X̃|Y = i, A = a ∼ N (µ̃ia, σ̃
2
ia). Then minimizing DKL

(
D̃||D

)
as a function of the variables µ̃ia and σ̃ia subject to the constraints in Proposition 3.3 leads to a
non-convex program.

Furthermore, let γ∗ = argmin
γ∈(0,∞)

L∗
γ for some non-convex function of γ that is only dependent on

the original distribution parameters. Then, all the new distribution parameters µ̃ia and σ̃ia can be
expressed as a function of γ∗ and the original distribution parameters µia and σia.
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Proof. We consider the following optimization program

DKL

(
D̃||D

)
=
∑
(i,a)

qiaDKL

(
P̃ia||Pia

)
=
∑
(i,a)

qia

(
(µ̃ia − µia)

2

2σ2
ia

+
σ̃2
ia − σ2

ia

2σ2
ia

+ log
σia

σ̃ia

)
as a function of the variables µ̃ia and σ̃ia subject to the constraints

µ̃01 − µ̃11

σ̃11
=

µ̃00 − µ̃10

σ̃10
and

σ̃11

σ̃01
=

σ̃10

σ̃00
and σ̃ia ≥ 0, for all (i, a).

Let’s fix γ ∈ R≥0 and minimize

Lγ =
∑
(i,a)

qia

(
(µ̃ia − µia)

2

2σ2
ia

+
σ̃2
ia − σ2

ia

2σ2
ia

+ log
σia

σ̃ia

)
as a function of the variables µ̃ia and σ̃ia subject to the following constraints

µ̃01 − µ̃11

µ̃00 − µ̃10
=

σ̃11

σ̃10
=

σ̃01

σ̃00
= γ and σ̃ia ≥ 0, for all (i, a).

Now the objective Lγ is convex and for a fixed γ ∈ R≥0, the constraints on are linear in µ̃ia and
σ̃ia. Let’s denote the optimal solution for a fixed γ ∈ R≥0 by µ∗

ia(γ) and σ∗
ia(γ), for i, a ∈ {0, 1}.

To find this, we can split the above objective into parts that can be optimized separately as follows.

minimize
∑
(i,a)

qia
(µ̃ia − µia)

2

2σ2
ia

subject to µ̃01 − µ̃11 = γ(µ̃00 − µ̃10), and

minimize
∑
(i,a)

qia

(
σ̃2
ia − σ2

ia

2σ2
ia

+ log
σia

σ̃ia

)
subject to σ̃i1 = γσ̃i0, and σ̃ia ≥ 0, for all (i, a).

For each i ∈ {0, 1}, by substituting σ̃i1 = γσ̃i0, we need to optimize a function in only one variable
σ̃i0. The optimal solutions σ∗

ia(γ) turn out to be

σ∗
i0(γ) =

√√√√√ qi0 + qi1
qi0
σ2
i0

+
qi1γ

2

σ2
i1

and σ∗
i1(γ) = γ

√√√√√ qi0 + qi1
qi0
σ2
i0

+
qi1γ

2

σ2
i1

, for i ∈ {0, 1},

Now let’s find the optimal solutions µ∗
ia(γ). The gradient of the objective must be parallel to the

linear constraint, so

q00(µ
∗
00(γ)− µ00)

σ2
00

= −γλ,
q01(µ

∗
01(γ)− µ01)

σ2
01

= λ,

q10(µ
∗
10(γ)− µ10)

σ2
10

= γλ,
q11(µ

∗
11(γ)− µ11)

σ2
11

= −λ,

for some λ ∈ R, which gives

µ∗
00(γ) = −γλ

σ2
00

q00
+µ00, µ∗

01(γ) = λ
σ2
01

q01
+µ01, µ∗

10(γ) = γλ
σ2
10

q10
+µ10, µ∗

11(γ) = −λ
σ2
11

q11
+µ11.

Since µ∗
ia(γ) satisfies the constraint

µ̃01 − µ̃11

µ̃00 − µ̃10
= γ, we have

λ
σ2
01

q01
+ µ01 + λ

σ2
11

q11
− µ11

−γλ
σ2
00

q00
+ µ00 − γλ

σ2
10

q10
− µ10

= γ, and hence, λ =
γ(µ00 − µ10)− (µ01 − µ11)

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) .
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Thus, we can express µ∗
ia(γ) as

µ∗
00(γ) = −γ

γ(µ00 − µ10)− (µ01 − µ11)

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) σ2
00

q00
+ µ00

µ∗
01(γ) =

γ(µ00 − µ10)− (µ01 − µ11)

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) σ2
01

q01
+ µ01

µ∗
10(γ) = γ

γ(µ00 − µ10)− (µ01 − µ11)

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) σ2
10

q10
+ µ10

µ∗
11(γ) = − γ(µ00 − µ10)− (µ01 − µ11)

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) σ2
11

q11
+ µ11.

Thus, the optimal value of Lγ for a fixed γ ∈ R≥0 is given by

L∗
γ =

∑
(i,a)

qia

(
(µ∗

ia(γ)− µia)
2

2σ2
ia

+
σ∗
ia(γ)

2 − σ2
ia

2σ2
ia

+ log
σia

σ∗
ia(γ)

)
.

Dividing the above expression into three parts, the first part evaluates to∑
(i,a)

qia
(µ∗

ia(γ)− µia)
2

2σ2
ia

=
q00
2σ2

00

γ2λ2σ4
00

q200
+

q01
2σ2

01

λ2σ4
01

q201
+

q10
2σ2

10

γ2λ2σ4
10

q210
+

q11
2σ2

11

λ2σ4
11

q211

=
γ2λ2σ2

00

2q00
+

λ2σ2
01

2q01
+

γ2λ2σ2
10

2q10
+

λ2σ2
11

2q11

=
λ2

2

(
σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

))

=
1

2

 γ(µ00 − µ10)− (µ01 − µ11)

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

)


2(
σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

))

=
1

2

(γ(µ00 − µ10)− (µ01 − µ11))
2

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) .

The second part evaluates to∑
(i,a)

qia
σ∗
ia(γ)

2 − σ2
ia

2σ2
ia

=
∑
(i,a)

qia
2

(
σ∗
ia(γ)

2

σ2
ia

− 1

)

=

1∑
i=0

qi0
2

 qi0 + qi1

σ2
i0

(
qi0
σ2
i0

+
qi1γ

2

σ2
i1

) − 1

+

1∑
i=0

qi1
2

 γ2(qi0 + qi1)

σ2
i1

(
qi0
σ2
i0

+
qi1γ

2

σ2
i1

) − 1



=

1∑
i=0

qi0
2

qi1

(
1− σ2

i0γ
2

σ2
i1

)
qi0 + qi1

σ2
i0γ

2

σ2
i1

+

1∑
i=0

qi1
2

qi0

(
γ2 − σ2

i1

σ2
i0

)
qi0

σ2
i1

σ2
i0

+ qi1γ2

=

1∑
i=0

qi0
2

qi1

(
1− σ2

i0γ
2

σ2
i1

)
qi0 + qi1

σ2
i0γ

2

σ2
i1

+

1∑
i=0

qi1
2

qi0

(
σ2
i0γ

2

σ2
i1

− 1

)
qi0 + qi1

σ2
i0γ

2

σ2
i1

= 0,
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and the third part evaluates to

∑
(i,a)

qia log
σia

σ∗
ia(γ)

=

1∑
i=0

qi0
2

log
σ2
i0

σ∗
i0(γ)

2
+

qi1
2

log
σ2
i1

σ∗
i1(γ)

2

=

1∑
i=0

qi0
2

log

σ2
i0

(
qi0
σ2
i0

+
qi1γ

2

σ2
i1

)
qi0 + qi1

+
qi1
2

log

σ2
i1

(
qi0
σ2
i0

+
qi1γ

2

σ2
i1

)
γ2(qi0 + qi1)

=

1∑
i=0

qi0
2

log

qi0
qi1

+ γ2σ
2
i0

σ2
i1

qi0
qi1

+ 1
+

qi1
2

log

qi0
qi1

+ γ2σ
2
i0

σ2
i1

γ2
σ2
i0

σ2
i1

(
qi0
qi1

+ 1

)
=

1∑
i=0

qi0 + qi1
2

log

(
qi0
qi1

+ γ2σ
2
i0

σ2
i1

)
− qi0 + qi1

2
log

(
qi0
qi1

+ 1

)
− qi1 log γ − qi1 log

σi0

σi1
.

Putting it all together

L∗
γ =

∑
(i,a)

qia

(
(µ∗

ia(γ)− µia)
2

2σ2
ia

+
σ∗
ia(γ)

2 − σ2
ia

2σ2
ia

+ log
σia

σ∗
ia(γ)

)

=
1

2

(γ(µ00 − µ10)− (µ01 − µ11))
2

σ2
01

q01
+

σ2
11

q11
+ γ2

(
σ2
00

q00
+

σ2
10

q10

) +

1∑
i=0

qi0 + qi1
2

log

(
qi0
qi1

+ γ2σ
2
i0

σ2
i1

)
− qi0 + qi1

2
log

(
qi0
qi1

+ 1

)

− qi1 log γ − qi1 log
σi0

σi1
.

Minimizing L∗
γ leads to a non convex program. Since γ is the ratio between variances of the new

subgroup distribution, for a practical solution, we can do a line search over γ ∈ (0, B) for some
B < ∞.

A popular intervention in the fairness literature is to equalize the first moment of the two sensitive
groups or the mean outcomes of two groups, also known as the Calders-Verwer gap Calders &
Verwer (2010); Kamishima et al. (2012); Chen et al. (2019). We, therefore, also study an intervention
where we only change the mean of the under-privileged group and try to match it with the mean of
the privileged group. We can show that the resulting optimization program is convex.

Proposition C.4. (Affirmative Action by Equalizing First Moments) Let (X,Y,A) denote the fea-
tures, binary class label, and binary group membership, respectively, of a random data point from
any data distribution D with qia = Pr (Y = i, A = a), for i ∈ {0, 1} and a ∈ {0, 1}. Let
X|Y = i, A = a ∼ N (µia, σ

2
ia) be a univariate Normal distribution, for i ∈ {0, 1} and a ∈ {0, 1}.

Then in the case of Affirmative mean change, where we impose the following constraints:

q10 µ̃10

q10 + q00
+

q00 µ̃00

q10 + q00
=

q11 µ11

q11 + q01
+

q01 µ01

q11 + q01
,

we can efficiently minimize DKL

(
D̃||D

)
as a function of the variables µ̃i0 and Σ̃i0.

Proof. We are dealing with the following optimization problem:

DKL

(
D̃||D

)
=

1∑
i=0

qi0DKL

(
P̃i0||Pi0

)
=

1∑
i=0

qi0

(
(µ̃i0 − µi0)

2

2σ2
i0

+
σ̃2
i0 − σ2

i0

2σ2
i0

+ log
σi0

σ̃i0

)
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(a) Original Distribution
10

.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10
.0

0.0

0.2

0.4

0.6

0.8

1.0
KL: 0.41
 JS: 0.44

BE : 0.03, DP : 0.00, EO: 0.02

(b) EF-Affirmative
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(c) EF-All Subgroups
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(d) Mean Matching

Figure 4: Comparison of Different Interventions when the subgroup distributions are shifted version of each
other. While all methods achieve the same Bayes Error, Affirmative action is able to bring down the Bayes
Error and achieve exact fairness.
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Since we are only changing the means and keeping the variances the same, the objective only de-
pends on µ̃i0. Furthermore, let K = (q10+q00)/(q11+q01) · (q11µ11 + q01µ01) so that
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Substituting the constraint on µ̃00 in the objective L gives us a convex quadratic in µ̃10, and the
solution is obtained by setting the derivative to zero:
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, µ̃01 = µ01, and µ̃11 = µ11.

D CASE STUDY SETUP AND ADDITIONAL UNIVARAITE PLOTS

We fix qia ∈ (0, 1) such that q00 + q10 + q01 + q11 = 1, and our data generation works as follows.
We simulate a data distribution where Y = i, A = a with probability qia and X

∣∣ Y = i, A = a

is sampled from a univariate Gaussian N (µia, σ
2
ia). We choose homoskedastic Gaussians within

each group A = a, i.e., σ0a = σ1a, so the we can show the Bayes optimal classifier boundary as a
threshold. We choose different σia’s that cover ground truth distribution that can the entire spectrum
of being ideal or close to ideal to very far, and then we apply different interventions to change all
or some subset of µia’s and σia’s to find the nearest ideal distribution in KL-divergence as given in
Section 4.

We first look at a case where the subgroup distributions are the same shifted versions of each other in
Figure 4. Note that all interventions, in this case, result in the same Bayes error (BE), but affirmative
action brings the BE down with zero unfairness at the cost of incurring a deviation in terms of KL
and JS divergence. However, in the next subplot, changing all four subgroups not only helps reduce
the Bayes error and unfairness but also stays very close to the true distribution in the KL/JS sense.
Matching the means also helps reduce the unfairness while staying close to the true distribution, but
is sub-optimal compared to the EF-Affirmative and EF-All interventions.

Finally, in light of Proposition 3.2, we simulate the cost-sensitive risk for a different cost matrix C
other than 0-1 loss by considering a threshold tC = 3/4 on η(x, a) in Figure 5. The original distribu-
tion has high unfairness. EF-Affirmative intervention manages to achieve almost perfect fairness and
zero error rate, but incurs relatively high KL/JS numbers. However, once again, changing all four
subgroups, results in a solution that is perfectly fair and accurate, with low KL/JS. Mean Matching
is unable to address the fairness-accuracy tension at all in this case and also manages to drift away
from the true distribution, as indicated by non-zero KL/JS values.
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(a) Original Distribution
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(c) EF-All Subgroups
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Figure 5: Comparison of Different Interventions when we use a different threshold (3/4) than the Bayes
optimal threshold (1/2). As derived in Proposition 3.2, the EF-Affirmative and EF-All interventions work with
any threshold.
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