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ABSTRACT

Diffusion models have recently been found promising for Structure-based drug
design (SBDD). Yet, how to effectively fine-tune the models for generating more
desirable drug-like molecules given the relatively scarce pocket-ligand data re-
mains challenging. With the recent success of aligning diffusion models with
preference data, we introduce Reward-Focused Fine-Tuning (RFFT) which is a
novel framework for fine-tuning pretrained pocket-aware diffusion models using
direct preference optimization (DPO). Using a reward score and self-generated
ligand pairs from the pretrained model, RFFT constructs data with winner-loser
pairs as feedback and fine-tunes the model with DPO accordingly. The process
can be repeated iteratively to gain continuous improvement. To illustrate its ef-
fectiveness, we apply RFFT to fine-tune a diffusion model TargetDiff recently
proposed for SBDD. Our empirical results demonstrate that TargetDiff-RFFT af-
ter fine-tuning can gain substantial improvement on generation quality. Also, its
performance is highly competitive to the existing state-of-the-art baselines, being
first place in Chemical Property analysis and second place in Binding Affinity
analysis. Surprisingly, our substructure analysis results show that RFFT not only
preserves but actually enhances the model’s fidelity to real data distributions.

1 INTRODUCTION

Structure-based drug design (SBDD) is a fundamental problem in therapeutic design and biological
discovery. In the past few years, diffusion-based models, following their success in image gener-
ation (Rombach et al., 2022; |Dai et al., 2023; [Podell et al., [2023)), have been actively explored for
SBDD. Given pairwise pocket-ligand datasets, diffusion models can be trained to generate drug-like
molecules as ligands (Guan et al.,[2023a; |[Lin et al.,|2025a} |Schneuing et al.| 2024} [Lin et al.| 2024;
Guan et al., 2023b)). The success of learning powerful diffusion models relies on the availability of
high quality pocket-ligand datasets, which however are scarce.

Reinforcement learning based on human feedback (RLHF) has been demonstrated to be effective in
fine-tuning large language models (Achiam et al.| 2023} Touvron et al., |2023) and diffusion models
(Rombach et al., 2022; Dai et al.| 2023 [Podell et al.,2023) leveraging only human preference data,
or via an implicit reward model (Rafailov et al.| 2023). While the RLHF approach may suffer
from issues such as convergence difficulties, model drift, and inefficiency (Xiao et al., [2024; Wang
et al.l |2024), direct preference optimization (DPO) (Rafailov et al.l 2023) was recently proposed to
reformulate the RLHF problem with a simple classification loss via reparameterization. Diffusion-
DPO (Wallace et al., 2024) learns diffusion models using DPO with an implicit reward function
introduced to favor generation of more desirable data. Yet, even with these recent developments,
applying the approach to SBDD is still challenging, primarily due to the scarcity of preference data
of ligands where expert knowledge on drugs and medicines are required for preparing them.

Alternative approaches have also been explored to enhance diffusion generation quality. For ex-
ample, domain knowledge (e.g., chemical substructure) can be incorporated into diffusion models
to improve the validity of the generated ligands (Lin et al., [2024; |Guan et al.l |2023b). This how-
ever often compromises accuracy in docking pose prediction and explicit prioritization of desirable
molecules (Song et al., [2024), together with reduced sampling efficiency. In addition, classifier-
guided diffusion generation (Dhariwal & Nichol,|2021;|Ma et al.,|2024) has been shown effective in
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Figure 1: Overview of the RFFT framework. It first samples a subset of pockets from the original
dataset and generates two ligand candidates per pocket. Based on their reward scores, a winner-loser
pair dataset {(L., £;,P)} is constructed. The target diffusion model is then fine-tuned using DPO
for reward feedback alignment. The feedback loop repeats for iterative model enhancement.

enhancing image generation quality. Yet, for ligand generation, such classifier guidance is hard to
implement as the desirable properties are complex and non-differentiable.

To this end, we propose Reward-Focused Fine-Tuning (RFFT) which is a novel learning framework
making use of self-generated samples and a reward score derived from desirable drug-like properties
of a ligand molecule as feedback for fine-tuning a diffusion model. RFFT samples pairs of ligands
from a target diffusion model and computes their reward scores to obtain a set of winner-loser ligand
pairs as feedback. The DPO framework is then applied for fine-tuning the target model. As the model
after fine-tuning will generate samples of higher quality, we repeat the feedback loop by sampling
and fine-tuning the model iteratively so that it can be further refined to have a higher chance of
generating ligands of even higher quality. In other words, this iterative process allows RFFT to
systematically identify the model’s shortcomings and reinforces its strengths, thereby enhancing the
overall ligand generation quality.

To differentiate from a recently proposed model ALIDIFF-E2PO (Gu et al.,[2024) which also adopts
DPO for fine-tuning diffusion models but from the preference pairs sampled from the pocket-ligand
dataset, RFFT samples from the target model which makes the iterative model enhancement via the
feedback loop possible. Furthermore, sampling ligands from the target model to be paired allows
RFFT to have more control over the feedback design. Sampling from the pocket-ligand data as
adopted by ALIDIFF-E2PO will unavoidably pair up ligands of different sizes, which will bias the
model training as molecular size and binding affinity are known to be highly correlated (Lin et al.,
2025b).

The contributions of this paper can be summarized as:

* We design a novel learning framework based on direct preference optimization (DPO) for
fine-tuning diffusion models to generate pocket-specific ligands, where self-generated sam-
ples and a reward score are used to form a feedback-loop for iterative model enhancement.

* We demonstrate that diffusion models like TargetDiff fine-tuned using RFFT based on a
very limited number of self-generated samples can outperform the case using a larger sam-
ple selected from the original dataset within the DPO framework.

* Experimental results demonstrate that RFFT can achieve state-of-the-art performance in
regarding different metrics such as molecular validity, chemical properties, and binding
affinity, with the substructure fidelity of the target diffusion model also improved, validating
the rationality of our design.
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2 RELATED WORK

Alignment of Diffusion Models with Preference Feedback Aligning large language models
(LLMs) with human preference feedback for fine-tuning has been extensively explored. Reinforce-
ment Learning from Human Feedback (RLHF) is one of the key underlying approaches for opti-
mizing LLM alignment with human expectation, demonstrating remarkable effectiveness (Ouyang
et al., 2022} [Touvron et al. [2023). While RLHF is also known for its sensitivity to hyperparame-
ters, vulnerability to local optima, training instability, and high demand on computational resources
and data, Direct Preference Optimization (DPO) (Rafailov et al.l [2023) is one of the recently pro-
posed method for making the feedback alignment computationally more viable. While LLM align-
ment has received considerable attention, alignment of diffusion models remains is relatively under-
explored. Some initial efforts focus on fine-tuning diffusion models using higher-quality image
datasets (Podell et al., [2023; Rombach et al., [2022; [Dai et al., |[2023)), while some researchers lever-
aged datasets with enhanced text accuracy (Betker et al.,|2023)). Also, guided models have been em-
ployed in DOODL (Wallace et al.,2023), DRAFT (Clark et al.,|2024), and AlignProp (Prabhudesai
et al., 2023) to improve inference capabilities. They so far mostly focus on image generation and
generalizing them to molecule generation is non-trivial. Reinforcement learning-based diffusion
models have demonstrated promising alignment capabilities, albeit primarily under simple prompt
conditions. Alternatively, recent advances in diffusion models have leveraged implicit reward mod-
els trained on pairwise preference data to achieve more efficient alignment (Wallace et al., 2024;
Yang et al., 2024). Nevertheless, these methods rely heavily on the availability of human-annotated
preference data, which constrains their applicability and robustness.

Generative Models for SBDD  Generative modeling has rapidly advanced SBDD. Earlier voxel-
and grid-based methods such as LIGAN (Ragoza et al., 2022) and 3DSBDD (Luo et al., 2021)
suffer from limited 3D invariance and grid resolution issues. With EGNNs (Satorras et al.| |2021)),
models like Pocket2Mol (Peng et al.||2022) and GraphBP (Liu et al.,|2022) can achieve direct atomic
coordinate generation, which are limited by the autoregressive sampling.

Diffusion-based approaches, such as DiffBP (Lin et al. [2025a)), TargetDiff (Guan et al.l 2023a),
and DiffSBDD (Schneuing et al., [2024), have established themselves as state-of-the-art methods
for one-shot molecular generation conditioned on protein pockets. Recent works have further en-
hanced these models by integrating domain knowledge. For example, D3FG (Lin et al.| [2024) and
DecompDiff (Guan et al., [2023b) decompose molecules into functional groups or scaffolds to more
effectively guide the generative process. IPDiff (Huang et al., 2024) leverages prior knowledge of
protein-ligand interactions to improve molecular generation, while MolCraft (Qu et al.| |2024) uti-
lizes a framework of Bayesian Flow Network (BFN) (Graves et al., [2023)) to learn hyperparameters
of the data distribution to enable better hybrid attribute modeling and accelerate SBDD molecule
generation.

Despite these advances, most of the existing methods primarily focus on modeling pocket-ligand
structures and often lack explicit mechanisms to control molecular properties or binding affinities.
Notably, |Gu et al.| (2024), whose work is most closely related to ours, directly selects winner-loser
pairs from the original dataset for learning the alignment. This approach, while effective, mainly
utilizes the preferences inherent in the original data for the model fine-tuning, lacking mechanisms
to provide more focused feedback to address the model’s deficiencies. Furthermore, it tends to
overlook important correlations between molecular size, chemical properties, and binding affinity.
To overcome these limitations, our proposed RFFT framework learns from preference pairs self-
generated using the target diffusion model which is to be fine-tuned, thereby guiding the generative
process towards molecules with desirable properties and improved docking scores. This approach
aims to facilitate the discovery of drug-like molecules with both favorable chemical characteristics
and enhanced binding affinity.

3 PRELIMINARIES

3.1 DIFFUSION MODELS

Diffusion Models for Continuous and Discrete Data  Diffusion models generate data by grad-
ually corrupting samples from the data distribution ¢(xg) (or g(cg) for discrete data) through a
forward process, and then learning to reverse this process via denoising steps. In the continuous



Under review as a conference paper at ICLR 2026

case, noise is added according to a predefined schedule, transforming the data into a tractable prior
(Ho et al.} 2020; |Song et al.,|2021). The reverse process is modeled as a parameterized Gaussian:

o, .o
tt—19t-1
Pe(Xt71|Xt) =N <Xt1;N9(Xt7t>7 (721> . (D
t

The training objective is to minimize the Evidence Lower Bound (ELBO), which reduces to a sum
of KL divergences at each timestep:

T
ZDKL (q(x¢—1 | x¢,%0) || Po(xe—1%2)) - 2)
t=2

Specifically, the single-step KL term L, can be equivalently written in either mean or noise param-
eterization, weighted by functions of the signal-to-noise ratio (Rombach et al.| 2022} Kingma et al.,
2021; Ho et al., [2020):

Lt = Exg et [€100) [10(x1,%0) = po (0, )| = Bt [wa (M) lex = €a(xi )], 3)

where € ~ N (0,I) and ¢t ~ U(0,7T). The noisy sample at timestep ¢ is drawn from q(x¢|x¢) =
N (xt; X, crtZI), and the signal-to-noise ratio is \; = a?/0?.

For discrete data, multinomial diffusion models extend this framework to categorical variables, rep-
resenting each data point as a one-hot vector and adding uniform noise at each step (Hoogeboom!
et al.| 20215 |Guan et al.| 2023a). The forward process is defined as:

q(ctlei—1) =C (Ct; (1= Bi)ei—1 + f;l) ; “4)
with the marginal distribution after ¢ steps given by
_ 1—a
q(ctleo) = C | ci5 e + 7 1) &)

where &; = Hizl(l — Br).

The training objective similarly involves minimizing the KL divergence between the true and model

posteriors at each step: X

Z 0post(ct7 CO)k . IOg

k=1

epost(ct; CO)k
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(6)

where cg and ¢ represent the real initial state and the predicted initial state. In both cases, the core
principle is to learn a parameterized reverse process by minimizing the KL divergence between the
true and model posteriors at each timestep, enabling the generation of high-fidelity samples from
complex data distributions.

3.2 DIFFUSION-DPO FOR STRUCTURE-BASED DRUG DESIGN

In structure-based drug design (SBDD), the goal is to generate ligand molecules that optimally bind
to a given protein pocket. We represent a binding system as a protein-ligand pair (P, £), where
P = (Viee, Erec) denotes the protein receptor (nodes: atoms or residues; edges: interaction bonds),
and £ = (Vﬁg, Elig) denotes the ligand (nodes: atoms; edges: bonds). The generative model aims to
learn the conditional probability p(L | P) for de novo molecule generation, i.e., filling the protein
pocket with ligand atoms.

To incorporate human or oracle preferences, we adopt the Bradley-Terry (BT) model, which formu-
lates the probability that ligand LY is preferred over £} given protein pocket P as:

per(Ly = L4 | P) = o(r(P, L§) — (P, L)) 0]

where o is the sigmoid function, and r(P, L) is a reward function parameterized by a neural net-
work ¢, estimated via binary classification:

Ler(¢) = —Ep co 1 [log o (rg(P, LY) — re(P, LY))] ®)



Under review as a conference paper at ICLR 2026

To directly optimize the generative model with respect to such preferences, we employ Direct Prefer-
ence Optimization (DPO) in the diffusion model framework (Diffusion-DPO) (Rafailov et al., 2023;
Wallace et al., [2024)). The objective for SBDD can be formulated as:

maxEp, 20,7 ~pa(Lo.r|P) [M(P; Lo)] = BDkL (o (Lot | P)llpret (Lo | P)) )

where (P, Lg) is the marginal reward for the generated ligand, and p,. is a reference diffusion
model.

By applying an upper bound and an approximation, the loss function for Diffusion-DPO in SBDD
is:
_ po (LY 1LY, P) Po(Ly_1|L}.P)
Lovopinwsin(0) = ~Ecy oy)..ct, 080 (9T log 2GR Ty — 6T log 2 G )
(10)
where the preference label is £ = L}

4 METHODOLOGY

In this section, we present RFFT, a framework that fine-tunes pocket-conditioned diffusion models
using self-generated preference pairs. Our approach consists of three key components: (1) construct-
ing size-matched preference ligand pairs by sampling from a target diffusion model, (2) formulating
a DPO-based objective for fine-tuning the model, and (3) implementing fine-tuning driven by feed-
back iteratively for continuous model improvement.

4.1 PREFERENCE PAIR DATASET CONSTRUCTION

For fine-tuning a target diffusion model, rather than sampling ligand pairs from existing databases
like CrossDocked2020 (Francoeur et al.l 2020), we sample candidates from the model itself, which
forms a closed-loop feedback process. This self-sampling approach enables the model to be self-
guided for addressing its own weakness in ligand generation via the DPO framework.

To ensure fair subsequent optimization, we construct preference pairs with identical molecular size
(same heavy-atom count). The size control is important for the following two reasons: (i) Chemical
metrics are size-dependent. E.g., QED and SA decrease with molecular size (Bickerton et al., 2012;
Cremer et al.|[2024), while binding affinity increases with heavy-atom count up to a threshold (Kuntz
et al., [1999). Ligands with size differences inevitably confound property comparison; (ii) Size
imbalances introduce gradient variance [F]

Following the standard protocols (Ragoza et alJ, 2022} |Guan et al.l 2023a; [Lin et al. 2025b), we
randomly select 3,000 training pockets and generate two ligand candidates of the same size per
pocket. After filtering invalid molecules, approximately 2,600 valid pairs remain. For each pair,
we compute a composite reward score which combines scores of the chemical properties and the
docking affinity:

R =0.1 x (QED + SA + Lipinski) + 0.7 x (—Vina score) (11)

All scores are normalized (see Appendix [G). For each ligand pair generated based on the pocket
P, the one with a higher reward score is the winner £, and the other is the loser L forming a
preference tuple (L%, L', P). We subsample 80% (2,096) of these tuples for training.

4.2 DPO OBJECTIVE FOR FINE-TUNING DIFFUSION MODELS

We fine-tune the pocket-conditioned diffusion model using the DPO framework. The reverse process
is factorized into continuous coordinates and discrete atom types (Guan et al., [2023a)):

pe(ﬁtfl | ﬁt,P) = pé(xtfl | thP) p%(vH | ’Ut,P)» (12)

Given a preference pair L& = L} and reference model pyef, the Diffusion-DPO loss is:

po(Li_y | L, P) >
. (13)
pref(‘cf&fl | ‘Civlp)

po(L | LY, P)
pref(‘ctw—l | ‘C%U’,P)

Rewriting as KL divergence differences yields:

— BT log

Lppo(0) = _Etvﬁfilm log o (5T log
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L(0) = —E[logo(—BT - A)], A= X(E)A A+ Na(t)Ar. (14)

The continuous component A, measures noise-prediction improvements:

Ac= (e —eo(Ly )13~ lle” — erer (L1, 1)II3) — (Il —eo(Lh 13 — €' — erer (L1, 1)I[3), (15)
while the discrete component A, measures categorical alignment:

K

ﬂg(ﬁ%‘),t)k .
A = E wo(LY 1) log — 72~ — e (LY, t) 1o
k_1|: 9( + )k g W(C%U,Cg)k ref( t )k g

K
7o (Ll 1),
= - motct htog TG — (o
k=1 ﬂ-(ct7c0)k

Using standard forward noising x; = ayxo + o€ with € ~ N(0, I), and constant timestep weights
A1, A2 (Ho et al [2020; Kingma et al., [2021), this objective increases the likelihood of winners
relative to losers while staying close to pys. Full derivations are in Appendix

Wref(ﬁ;ls“a t)k:|
m(cy, €5k
Trl’ef(‘céa t)k:|

m(ch, €h)k

(16)

4.3 ITERATIVE FINE-TUNING DRIVEN BY FEEDBACK

RFFT implements an iterative fine-tuning process driven by feedback that creates a closed-loop
learning system. Given a target pretrained diffusion model py o), RFFT performs multiple rounds of
fine-tuning to systemically enhance the model performance using self-generated preference pairs as
feedback (Fig.[I).

In each round r > 1, RFFT will (1) sample training pockets P, and generates two ligand candidates
of the same size per pocket using pg(--1), (2) filter invalid molecules and compute reward scores
using Eq. , (3) assign winners/losers to form preference tuples (L%, L', P,.), (4) fine-tune the
target diffusion model by optimizing the DPO objective in Eq. (I0), keeping a frozen reference
model p,.¢ to prevent drift, and (5) update pg(- for the next round while keeping p,¢r fixed.

5 EXPERIMENTS

We used the publicly released pretrained TargetDiff model from CBGBench and fine-tuned it with
RFFT, yielding the model denoted as TargetDiff-RFFT. We conduct 4 rounds of model fine-tuning
through DPO. For each round, we randomly sample 3,000 pockets and generate pairs of ligand
candidates (same size) per pocket. After filtering out invalid or disconnected molecules, we then
randomly select 80% of these winner-loser pairs for training. The hyper-parameter details of the
experimental settings are provided in Appendix [H]

Baselines  For performance evaluation, we

adopt the following baselines: autoregressive — wo{ = - —
models (AR): 3DSBDD (Luo et al., 2021),
Pocket2Mol (Peng et al.,2022)), and GraphBP o
(Liu et al., 2022); diffusion models (DM):
DiffSBDD (Schneuing et al., 2024)), DiffBP
(Lin et al) 2025a), and TargetDiff (Guan
et al. 2023a); and Bayesian flow networks
model (BFN): MolCraft (Qu et al.,[2024)). For
methods that released neither model weights
nor test-time samples in CBGBench (Lin
et al., 2025b), we report the performance re-
ported by CBGBench (marked with an as-
terisk). We implemented an IPDiff variant  Figure 2: Pocket Count by Valid Ratio Threshold
(Huang et al.| 2024) within CBGBench, re-

taining the TargetDiff backbone while incorporating a pretrained interaction module. For fairness,
we strictly follow CBGBench experimental settings for the original baselines, including the number
of training iterations.

Number of Binding Pockets

40 60
Valid Ratio Threshold (%)

Note that baselines using CNN-based models (Ragoza et al., 2022} [Pinheiro et al., 2024) are not
included in our detailed comparison due to their limited performance on generating valid ligands as
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Table 1: Performance Comparison on Chemical Properties and Interaction Analysis

Metrics e Avg. | Vina Score Vina Min Vina Dock Avg.

P2l \ethods Validity% QED SA  LPSK|p i Evina IMP% | Evina IMP% | 2y IMP% MPBG% LBE Rank
3DSBDD* 5400 048 063 472 4 | - 399 [3.75 1798|645 3146 9.18 03839] 55

AR |  GraphBP* 6600 044 0.64 473 |425| - 000 | - 167 |-457 1086 -30.03 0.3200|8.25
Pocket?Mol | 39.32 0375 0.649 4.63 |5.75|-5.13 26.02|-5.80 30.82|-6.82 45.13 -3.51 0.4545| 475
" | " DiffSBDD | 4053 0391 0.614 460 | 65 | - 1.07 | - 13.54|-5.86 31.84 -14.48 0.3024]7.625
DffBP* 7800 047 059 447 |625| - 860 | - 19.68|-7.34 4924 623 0.3481|5.75

DM IPDiff 9322 0465 0576 435 | 7 |-432 36.85|-579 4584|738 5186 5.1  0.3592|4.625
TargetDiff 97.05 0487 0.598 4.57 |425|-5.73 3851 |-6.44 47.14 |-739 52.17 553 03545|3.625
TargetDif-RFFT| 97.41 0.500 0.606 4.61 | 3 |-6.54 49.55|-6.99 54.65|-7.70 58.68 887 0.3608|1.875
BEN| ~ MolCraft* | 95.00 048 0.66 439 [3.75]-6.15 54.25|-6.99 56.43|-7.79 5622 838 0.3638] 1.75

they are not 3D invariant (as mentioned in Section[2). As shown in Fig.[2] LIGAN (Ragoza et al.
2022) generates samples of ligands with low validity across many pockets, indicating limited gener-
alization to unseen pockets. To focus on the effectiveness of using feedback for enhancement diffu-
sion generation quality, models requiring prior knowledge on chemical substructures (like functional
groups) are also not included (e.g., D3FG (Lin et al., 2024), DecompDiff (Guan et al., [2023b)).

5.1 EXPERIMENTAL RESULTS

We conducted evaluation on 200 sampled ligands across the pockets in the test set against the base-
lines. Our evaluation metrics focus on several key aspects of generation quality: chemical properties,
and protein-ligand interaction. In addition, we also analyze the substructures between the generated
and reference molecules.

Performance on Chemical Properties = We evaluated the generated molecules based on several
key chemical properties, including validity (1), QED (1), SA (1), and Lipinski (LPSK, 1) scores.
Validity is defined following the CBGBench protocol, where a molecule is considered valid if its
largest fragment contains more than 85% of the total atoms after 3D reconstruction—using either the
"Refine’ method or Open Babel (O’Boyle et al.| 2011)) tool. As reported in Table[I] TargetDiff-RFFT
attains the best performance on Validity and QED. Although its SA is lower than some autoregressive
(AR) baselines and MolCraft, and its LPSK lags behind certain AR models, it nevertheless achieves
the best average performance (3) across chemical-property metrics. Notably, as QED, SA, and
Lipinski form the components of the reward score as feedback, the consistent increases of these
scores of TargetDiff-RFFT as compared to TargetDiff indicate effective alignment.

Performance on Interaction For pocket-ligand interaction assessment, we follow CBGBench
and report three AutoDock Vina protocols (Trott & Olson, [2010; |[Eberhardt et al., 2021): (1) Score
Only (direct scoring), (2) Minimize (energy minimization before scoring), and (3) Dock (full dock-
ing process). We evaluate mean Vina energy (Eyina, ) and improvement percentage (IMP%, 1) for
all three protocols, and mean percent binding gap (MPBG, 71) and ligand binding efficacy (LBE, 1)
for Dock. As shown in Table [I] TargetDiff-RFFT is highly competitive across the affinity metrics.
Specifically, for E;,, it ranks first in Score Only, ties for first in Minimize, and places second in
Dock (slightly behind MolCraft); for IMP it ranks second in Score Only and Minimize, and first in
Dock. It further attains the second-best MPBG while LBE is worse than some AR models, yielding
an overall average rank of 1.875, slightly behind MolCraft (1.75). Importantly, incorporating feed-
back learning consistently improves over the original TargetDiff across all metrics, with substantial
gains.

Performance on Substructure Analysis To assess our model’s ability to capture the underly-
ing data distribution after incorporating feedback preference learning, we employ Jensen-Shannon
divergence (JSD, |) and mean absolute error (MAE, |)[[]to quantify the differences between gener-
ated and reference distributions of atom types, ring types, and functional groups (Lu et al.| 2021). As
shown in Table [2] we surprisingly find that TargetDiff-RFFT significantly outperforms the original
TargetDiff across all evaluation dimensions. For atom types, our model achieves the lowest MAE;
for ring types, it secures the best JSD and second-best MAE; for functional groups, it attains the sec-
ond best JSD and best MAE. This improvement indicates that feedback learning enables TargetDiff
to fine-tune itself to generate molecules which can better align with the real drug molecule distribu-
tions, validating the rationality of our design. Overall, our model ties best in average performance
with the SOTA model MolCraft.
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Table 2: Performance Comparison on Substructure Analysis

Type Metrics Atom type Ring type Functional Group Avg.
Methods JSDas MAE, JSDy¢ MAE;¢ JSDs, MAE¢, Rank
3DSBDD* 0.086 0.844 0.319 0.246 0.268 0.049 4.67
AR GraphBP* 0.164 1.227 0.506 0.438 0.626 0.071 8.33
Pocket2Mol 0.085 1.422 0.392 0.391 0.356 0.066 6.33
| DiffSBDD | ( 0.053 0632 0385 0344 0552 0071 | 583
DiffBP* 0.259 1.549 0.453 0.407 0.535 0.067 8
DM IPDiff 0.116 0.624 0.286 0.203 0.395 0.057 5
TargetDiff 0.053 0.247 0.230 0.157 0.291 0.045 2.5
TargetDiff-RFFT 0.054 0.219 0.219 0.135 0.269 0.041 2
" BFN | MolCraft* | 0049 0321 0247 0026 0120 0048 | 2

In summary, across the three evaluation aspects, TargetDiff-RFFT exhibits consistent and robust
improvements. Chemical Property: It achieves the best validity and improves QED/SA/Lipinski
over TargetDiff. It gives the best average chemical-property ranking (3.0), though SA and Lipinski
are not the highest among all baselines. Interaction: Across Vina-based protocols, it remains in top-
2 - being first in mean energy and second in IMP under Score Only; tied first in energy and second
in IMP under Minimize; second in energy, first in IMP, and second-best in MPBG under Dock,
while LBE lags behind the best AR and BFN baselines. Overall, our model is second-best in affinity
analysis, slightly behind MolCraft, and significantly outperforms TargetDiff across all interaction
metrics. Substructure Analysis: Our empirical results show that RFFT via the feedback alignment
can enhance the distributional fidelity. It achieves best atom-type MAE; best JSD and second-best
MAE for ring types; and competitive JSD with best MAE for functional groups, yielding an overall
average that ties MolCraft for best. Taken together, TargetDiff-RFFT delivers strong and stable
performance across protocols, achieving top-tier chemical properties and consistently top-2 results
in binding affinity and substructure fidelity, highlighting the effectiveness of our RFFT approach in
generating drug-like, pocket-compatible molecules.

We further verify that the aforementioned gains persist across backbone architectures, hyperparame-
ter choices, and reward variants (including Boltz-2; Eq.[5T)). See Appendix Table 5|for more details.

5.2 ITERATIVE IMPROVEMENT OF TARGETDIFE-RFFT

To illustrate how well the performance of TargetDiff is enhanced over iterations, we recorded the
model performance after each round of iterative training. We also conduct experiments to compare
the cases between fine-tuning on model-sampled winner-loser pairs (adopted by RFFT) and fine-
tuning on 12,546 pairs directly extracted from the original dataset. As shown in Table [3] after just
one round of training, RFFT achieves performance comparable to applying DPO directly on the
original dataset which is much larger than the self-generated ones used by RFFT. Across most met-
rics, TargetDiff-RFFT shows continuous improvement and has not reached a performance plateau
after four rounds of fine-tuning. Notably, the attributes considered in the reward score consistently
exhibit upward trends throughout the iterative process. This demonstrates the power of the iterative
feedback in enabling more efficient learning.

Table 3: Performance comparison of TargetDiff fine-tuned under different settings. TargetDiff-
RFFT improves consistently over iterative rounds of fine-tuning and outperforms TargetDiff fine-
tuned using a much larger dataset of preference pairs.

L Vina Score Vina Min Vina Dock

Method QED  SA  LPSK  Validity% - ype T 1MP% | Esnn IMP% MPBG%  LBE
TargetDilt 0487 0398 457 9705 | 573 3851 | 644 47014 | 739 5207 553 03545

DPO on original dataset | 0.460 0.622 458 9408 | -6.05 4239 | -6.67 4853 | -733 5346 501 03524
1-Round RFFT 0491 0598 458 9698 | 605 43.19 | 663 50 | -749 5461 618 0358
2-Round RFFT 0494 0.6 458 9697 | 623 447 | 673 5191 | -7.54 5590 571 03585
3-Round RFFT 0494 0599 459 9706 | -6.44 4808 | -6.89 5326 | 770 5637 970  0.3642
4-Round RFFT 0500 0.606 461 9741 | -6.54 4955 | 699 5465 | 770 5868 887  0.3608

5.3 CASE STUDY

In Figure[3] we visualize four ligand pairs generated under the same pocket condition from the held-
out test set (pocket “4yhj”). Both methods were initialized from identical noisy ligands with the
same random seed and sampling settings for fairness. The displayed pairs were randomly selected
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without cherry-picking. In case (1), both methods produce structurally similar ligands, but Target-
Diff generates a seven-membered ring while TargetDiff-RFFT yields a six-membered ring, which
is easier to synthesize due to lower ring strain. In case (2), TargetDiff-RFFT generates a simpler
scaffold with fewer rings, improving synthetic accessibility despite a slight QED decrease. In cases
(3) and (4), TargetDiff-RFFT avoids complex ring systems, achieving better overall QED and SA
scores. We provide more case study examples in Appendix [[]

0C100230040C50CC(=C5C4021CCC(0)C2CC(0)
0=P(0)(0)CC1=C0=CC2=G(c3ecnlrHIBICOCC2=C1 Clo=c(02CIEI10

TargetDiff

QED: 0.740 QED: 0.293 QED: 0.613 QED: 0.550
SA:0.68 SA:0.25 SA:0.49 SA:0.62
Vina Score: -6.507 Vina Score: -7.921 Vina Score: -7.351 Vina Score: -5.432

0=P(0)(0)COE1cee26(e1)COCC2eTcenlnH]1

Ours

QED: 0.741 QED: 0.673 QED: 0.781
SA:0.71 SA: 0.3¢ SA:0.53 .
Vina Score: -6.597 Vina Score: -8.648 Vina Score: -7.706 Vina Score: -5.498

(1) @ 3) 4

Figure 3: Four randomly selected ligand pairs from the randomly chosen test pocket “4yhj”. For
each pair, TargetDiff and TargetDiff-RFFT are sampled with identical noise seeds and inference
settings.

6 CONCLUSION AND LIMITATIONS

In this work, we present Reward-Focused Fine-Tuning (RFFT), a framework that strengthens
diffusion-based SBDD by learning from preference pairs (winner-loser) generated by the model
itself. By explicitly applying self-generated direct preference optimization (DPO), RFFT optimizes
its strengths while recognizing its shortcomings. Extensive experiments show consistent gains across
molecular validity, chemical properties, pocket-ligand binding affinity, and distributional fidelity. It-
erative feedback training over four rounds yields sustained improvements and enables RFFT to sur-
pass state-of-the-art baselines. Notably, TargetDiff-RFFT after four rounds is one of only two meth-
ods that consistently rank within the top three across all key evaluation axes. Moreover, TargetDiff-
RFFT yields the highest number of pockets meeting each success-rate threshold. Despite relying
on a much smaller, model-generated preference set, RFFT matches methods trained on substantially
larger winner-loser collections sampled from the original dataset. Our empirical results further indi-
cate that iterative feedback training clearly outperforms the setting with DPO directly applied to the
original dataset.

While our results are promising, the current framework assumes a linear mapping from reward sig-
nals to molecular properties, which may under-represent nonlinear structure—activity relations. Fu-
ture extensions include: (i) multi-reward/multi-objective formulations, (ii) online preference learn-
ing from model committees and human feedback, (iii) learnable reward functions to better capture
complex trade-offs, and (iv) integration of competitive BFN-based models like MolCraft with our
feedback paradigm. Although multi-round feedback training improves performance, learning has
not saturated; we will progressively increase the number of feedback rounds to probe the attainable
upper bound. Moreover, the iterative-feedback paradigm is inherently more favorable to sampling-
efficient models; for approaches with lower sampling efficiency (e.g., IPDiff), collecting preference
pairs is substantially more time-consuming. Consequently, improving sampling efficiency for SBDD
constitutes an important and promising avenue for future work.
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7 ETHICS STATEMENT

This study does not involve any ethical issues, as all data used are either publicly available and
anonymized or generated through model sampling, with no involvement of personal or sensitive
information.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a comprehensive description of the reward
computation method, including normalization details in Appendix |G| The process for constructing
the preference pair dataset is thoroughly outlined in Section [5]and Algorithm [T} Furthermore, the
model architectures and hyperparameter settings used in our experiments are detailed in Appendix[H]
We are committed to open-sourcing all code and trained models upon publication of this paper.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

This manuscript was prepared with the assistance of large language models (LLMs), which were
used to improve the clarity and grammar of the content. The authors take full responsibility for all
aspects of the manuscript, including any issues related to plagiarism and factual accuracy. No LLM
is listed as an author of this work.

B DETAILED DERIVATION OF THE DIFFUSION-DPO OBJECTIVE

We give a concise derivation of the objective summarized in Sec. Conditioning on the pocket P
is omitted for brevity. The goal is to cast the per—timestep DPO preference comparison into a logistic
objective whose margin combines continuous (coordinate) and discrete (atom/state) improvements
of py over a frozen reference pyes.

Factorized reverse step. A single reverse step factorizes into continuous coordinates and discrete
states:

po(Liov | L1) = pp(xe—1 | x¢) pg(ve—1 | 1), (17)
with pyef of the same form. For a preference pair (LY = L}) the per—timestep Diffusion-DPO loss
is

Po (LY 4|LY) Po(Ly_4|L4)
Lppo(0) = _E@ﬁfill:t [log U(BT[log prif(llf’_lllllé”) —log pr:f(ﬁi,,lllﬁi)])}' (18)

This mirrors standard DPO: we apply a logistic loss to the difference of two log-likelihood improve-
ments (winner vs. loser) relative to the reference.

KL difference rewriting. Let q(L;—1 | Lo, L:) = ¢*(x¢—1 | X0.1)q*(ve—1 | vo¢) be the forward
posterior. Using the identity

Y4
E, [mg 2 ] — _KL(qllps) + KL(qllprer).

ref

each log-ratio is a (negative) KL improvement. Substituting for the winner and loser separately
converts the margin inside log o into a difference of improvements:

Pe(ﬁt{l‘q‘)) pe(ﬁifﬂffé)

lo —1lo = —[AY, — AL ], (19)
& pret() & pret() (Ao — A
with
Ak = (KL(¢"*[lpg) — KL(¢"*Ipter)) + (KL(¢**[p5) — KL(¢**[|p}s)), * € {w,1}. (20)
Hence

Loro(8) = ~E[loga(—T-A)], A= AR~ Ay, @1
Intuitively, a positive A means the model reduces KL more (vs. reference) on the winner than on the

loser, thus the logistic pushes probability mass toward such states.

Continuous term. For fixed variance DDPM parameterized by noise prediction €g,
KL(q" [p}) = KL(q" Ipkee) = M () (lle = o(Les )l = lle = ewer(Le.O3), @2

where schedule-dependent constants are absorbed into A; (¢). Thus improvement is exactly a reduc-
tion in noise-prediction squared error relative to the reference:
A= e —eo (L, )3 = lle” — ener (L7, )]]3-
A negative A* indicates py has better (lower) MSE than p,¢ on that sample.
Discrete term. Let m(c;, o) be an exact (or proxy) posterior target for v;_q. The categorical

improvement is the difference of two cross-entropies (equivalently KL differences up to a shared
entropy term):

2 k ‘ ﬁ*)
A* — 2 k *\ 1 pG( t
> | £y 10g

If p2 aligns better with 7 than p?, this term becomes negative (an improvement).

— Prer(k | £7)log

2 *
pref(k | ‘Cf):| (23)

W(C?> ég)k
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Combined form.
A=M((AY =AY + Xt (AY —AL),  Lppo() = —E[logo(—8TA)]. (24

Thus A is a weighted net advantage of py over p,of on the winner relative to the loser, combining
continuous and discrete evidence. Note A; and Ay are commonly set as constants in practice [Ho
et al.| (2020); Kingma et al.| (2021)).

C RFFT PSEUDO-CODE

The pseudocode for dataset construction in our method is provided in Algorithm[I] while the training
procedure is detailed in Algorithm 2] It is important to note that RFFT operates as an iterative
framework, allowing Algorithm [T]and Algorithm 2]to be executed in multiple rounds of training.

Algorithm 1 RFFT Dataset Construction pseudo-code

Require: Number of diffusion steps 7', original training SBDD dataset Dgppp with size | D |,
blank Winner-Loser dataset D,,;, learning rate 7, initial model parameters 6.
1: Initialize model parameters 6 < 6,
2: ford=1to|D|do
3: forn=1to N do

4: Sample a data (£, P) from the Dsppp, record the Ligand L size as | L |.
5: Sample 2 initial states £}. and £% with fixed size | £ |

6: fort=T—-1to0do

7: Compute prediction £} | = fo(L}) and L7_; = fo(L?)

8: end for

9: Calculate the chemical properties of £§ and £3 and their affinities to P
10: Determine to get the Winner and Loser £¥' and £}.
11: Add (LY, L, P) to Dy
12:  end for
13: end for

Algorithm 2 Training RFFT pseudo-code

Require: Number of epochs N, number of steps T, Winner-Loser dataset D,,;, learning rate 7,
initial model parameters 6
1: Initialize model parameters 6,r < 6, 6 < 0y and set the gradient of 8¢ to be fixed
2: forn =1to N do

3:  Shuffle dataset D
4:  for each batch B in D do
5: for each data sample (LY, £}, P) in D,,; do
6: Sample time step ¢ from [1, T — 1]
7: Sample £ and £! using the same noise €
8: Compute the L(6) = _E((X’o“»716”)v(Xé-,vlo))’t»Xi”fl,f,vv;wfu [logo (=BT - A)]
9: Update parameters: 6 < 6 — nVyL
10: end for
11:  end for
12: end for

D DIFFUSION MODELS FOR CONTINUOUS DATA

Diffusion models operate by gradually introducing noise to samples drawn from the data distribution
q(xo) according to a predefined schedule. This forward process progressively transforms the data
distribution into a prior distribution ¢(x7). During inference, the generative process employs a
denoising diffusion approach via reverse Markov sampling as formulated in |Ho et al.|(2020); [Song
et al.[|(2021):
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0%

0'2 O'2
tlt—17t—1
po(Xi-1]x) =N (Xt1§ﬂ9(xt7t)7 21> : (25)

The training objective is formulated as minimizing the Evidence Lower Bound (ELBO), which
simplifies to minimizing the KL divergence at each timestep:

T
Z Dx1, (Q(thl‘xta XO)|p9(Xt71|Xt)) . (26)
t=2

Specifically, the single-step loss term L; can equivalently be expressed in two parameterizations:
Ly = Exg et [w1(Ae) e (xe,%0) — po(x6, ) 2] = Exey et [wo(Ne)|€r — €a(xe, )], 27

where € ~ N(0,I) denotes standard Gaussian noise, ¢ ~ U(0,T") represents uniformly sampled
timesteps, and the noisy sample at timestep ¢ is drawn from:

q(x¢|x0) =N (xt; OétXO,UtQI) . (28)

Here, a; and o; define the noise schedule as described in [Rombach et al.| (2022). The parameter
A\t = ai/o? represents the signal-to-noise ratio (SNR) Kingma et al. (2021), and the weighting
functions w1 (\;) and wo(\;) are typically chosen as constants following |Ho et al.| (2020).

E DIFFUSION MODELS FOR DISCRETE DATA

Multinomial diffusion models extend continuous diffusion frameworks to categorical data, where
each discrete data point c; € {0, 1}K is represented as a one-hot vector [Hoogeboom et al.| (2021));
Guan et al.[ (2023a). The forward process gradually introduces uniform noise across the K cate-
gories:

B
q(celci—1) =C (Ct; (1—=pB)ei—1+ Etl ) (29)
where C denotes a categorical distribution. The marginal distribution at timestep ¢ given cy is:
1—a
q(cileg) =C (Ct;dtco + K L 1) ) (30)
withay =1 — §; and &y = Hizl a.. The posterior distribution can be computed in closed form:
q(ci—1lce, €o) = C (Cr—1; Oposi(ct; €0)) (€1}
where
0 ~ 11—« 1—a;_
0p05t(ct7c0) = =K 0= |:OétCt + t1:| ® |:Oét1C0 + Ttll . (32)
Zk:l O

For the generative process, we predict the original data point as ¢g = pf(cy,t), and define the
reverse transition probability as:

po(ci—1]ct) = C(ci—1; Oposi(ct, €o)) - (33)

Following the continuous case shown in Eq. (26)), the training objective for discrete diffusion models
is formulated by minimizing the KL divergence between the true posterior and the model’s approx-
imation at each timestep:

Dk, (q(ce—1]ct, co)|po(ci—1lct)) = Dxr, (C(Bposi(ct, €0))|C(Oposi(Ct, €0))) - (34)
Explicitly, this KL divergence is computed as:

X 0,05t (ct, Co)
Dxr, =Y Opoq(ct, o)y - log 200200k
KL ; post( ¢, Co) gepost(ct,co)k

(35)

where cg and ¢, represent the real initial state and the predicted initial state.
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F LIGAND SIZE AND GRADIENT VARIANCE IN DIFFUSION-BASED DPO
TRAINING

Controlling ligand size is important in diffusion-based Direct Preference Optimization (DPO) train-
ing, as it directly impacts the variance of the gradients used for optimization. Here, we provide a
detailed mathematical explanation for why controlling ligand size reduces gradient variance.

F.1 DPO Loss AND ITS GRADIENT
Follow Eq.[I8] the DPO loss is defined as:
Lppo(0) = —Efloga(r - A)] (36)

where o (-) is the sigmoid function, S is a temperature parameter, and A is given by:

pe(L%U—1|L%UaP) 710g p9(Li—1|Lfi7p)

A=log —F=——" "~ —_
pref(LZ‘,U—llL%U7 P) pref(Léfl‘Liyp)

(37

where L* and L' denote the winner and loser ligands, respectively.

The gradient of the loss with respect to 6 is:
VoLppo = —E [0’ (BrA) - Br - VoA (38)

where o”(-) is the derivative of the sigmoid function.

F.2 DECOMPOSITION BY MOLECULAR SIZE

For molecular graphs, the log-probability can be decomposed atom-wise:

|L]
log pg(Li—1|Lt, P) =Y log pg(xi, vi| Ly, P) (39)

i=1
where |L| is the number of atoms in ligand L, and (z;, v;) are the features of atom 1.

Thus, the gradient of A becomes:

|L*] |L']

VA= g -3¢ (40)
i=1 j=1

where g; and gé are the per-atom gradients for the winner and loser molecules, respectively.

F.3 GRADIENT VARIANCE CALCULATION

Assume the per-atom gradients g have mean p, and variance Ug. Then, the variance of VA is:

| 1|

Var [VoA] = Var | Y g =) g (41)
i=1 j=1

= |L*|oy + |L'|og + Var [(IL*] — |L'|) ] (42)

= (1L + Loy + (1L = |L')p (43)

The key term here is the quadratic dependence on the size difference:
(L] = 1) g (44)

This term grows rapidly as the difference in ligand sizes increases.
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F.4 CONCLUSION

When ligand sizes are not controlled (i.e., |L”| # |L!|), the variance of the gradient VA in-
creases quadratically with the size difference. This increased variance can destabilize training and
slow down convergence. Therefore, controlling ligand size—by matching sizes or restricting their
range—directly reduces the gradient variance, leading to more stable and efficient optimization in
diffusion-based DPO training.

G NORMALIZATION OF THE CHEMICAL SCORES AND AFFINITY SCORE

To enable fair comparison and combination of different chemical property scores and affinity scores,
we analyzed the distribution of these scores in the original CrossDock2020 dataset Francoeur et al.
(2020) and applied min-max normalization. Specifically, the affinity scores were computed using
AutoDock Vina in ”Score Only” mode [Trott & Olson| (2010). Vina scores greater than 0, which
indicate no binding interaction, were set to 0. The detailed normalization ranges are summarized in
Table[d]

Table 4: Normalization Ranges for Reward Components

Property Min Value Max Value

QED 0.0154 0.9475
LogP -15.2306 15.6260
SA 0.1800 1.0000
Lipinski 0 5
Affinity -17.3050 0

H DETAILED MODEL TRAINING SETTINGS AND COMPUTATIONAL
RESOURCES

We adopt the TargetDiff architecture |Guan et al.[ (2023a) and the Diffusion-DPO algorithm in our
experiments. The pretrained TargetDiff model is provided by |Lin et al.|(2025b)). The model com-
prises nine EGNN [Satorras et al.| (2021) layers with GAT |Velickovi¢ et al.| (2018)) and a hidden
dimension of 128. We set the number of diffusion steps to 1000. For the alignment training stage,
we use a learning rate of 1 x 1079, clip the gradient norm at 0.0001, set the batch size to 2, and
train for 5 epochs. The hyperparameters are: 5 € {2,5} (8 = 5 in main text), A\;(¢) = 1, and
Ao (t) € {1,100} (A2(t) = 1 in main text). We use the Adam optimizer Kingma & Bal (2014) for
training. All experiments are conducted on a Tesla V100S-PClIe-32GB GPU.

I DETAILED METRIC DEFINITIONS

We define the metrics used in the main text, following |Lin et al.| (2025b).

1.1 JENSEN-SHANNON DIVERGENCE (JSD)

The Jensen-Shannon divergence (JSD) between two probability distributions P and @ is defined as:
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M= %(P +Q)
LPIM) = Y P(x)log = (f})
reX (45)
L@IM) =3 QG M(‘?)
reX

JSD(PQ) = S KL(PIM) + SKL(@Q|M)

where P is the reference distribution, @ is the model-generated distribution, and M is the mixture
distribution.

1.2 MEAN ABSOLUTE ERROR (MAE)

For a set of substructure types S, the mean absolute error (MAE) is defined as:

MA gen — fret 46
= 5] o I (46)
€S
where f#°" and fr*! denote the frequencies of substructure i in the generated and reference
molecules, respectively.

1.3 IMPROVEMENT PERCENTAGE (IMP%)

Improvement Percentage (IMP%) measures the fraction of generated molecules whose binding affin-
ity (e.g., docking score) is better (lower) than that of the reference molecule.

IMPY — Vmprowed 007 (47)

total

where Nimproved i the number of generated molecules with better (lower) binding affinity than the
reference molecule, and N, is the total number of generated molecules.

1.4 MEAN PERCENTAGE BETTER GAP (MPBG%)

MPBG quantifies the average percentage improvement in binding energy relative to the reference
molecule.

N

o 1 Ei,gen - Eref
MPBG% = N ; <Ef % 100%) (48)

where E; o is the binding energy of the i-th generated molecule, Er; is the binding energy of the
reference molecule, and N is the number of generated molecules.

1.5 LIGAND BINDING EFFICIENCY (LBE)

LBE measures the average binding energy contribution per ligand atom.

Ez',gen

,lig

LBE; = — (49)

where E; o, is the binding energy of the i-th generated molecule, and V; jje is the number of atoms
in that molecule.
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J RATIONALE FOR USING WEIGHTED REWARD SCORE AS REWARD
FUNCTION

In SBDD, the goal is to generate molecules that simultaneously optimize multiple chemical proper-
ties and binding affinities. Given the complexity of balancing these competing objectives, we em-
ployed a weighted reward function that combines various molecular properties with binding affinity
scores.

While certain chemical properties exhibit correlations—such as the positive relationship between
synthetic accessibility (SA) and quantitative estimate of drug-likeness (QED) reported in
(2024)—this does not guarantee simultaneous optimization of all desirable traits. Previous
studies have demonstrated inherent trade-offs in multi-objective molecular optimization. For in-
stance, MARS showed that separate optimization of QED and SA leads to sig-
nificant degradation in the other metric when improving one property. Similarly, Pareto frontier
analysis in [Homberg et al| (2024)) revealed that enhancing QED typically results in decreased SA
values, confirming the existence of fundamental trade-offs between these properties.

Given that SBDD requires concurrent consideration of multiple molecular attributes rather than
isolated optimization, our weighted reward approach provides a practical solution for navigating
these trade-offs.

QED SA
(Top 1000) (Top 1000)

Overlap Regions
QED only: 728 (72.8%)

SA only: 751 (75.1%)

W Lipinski only: 726 (72.6%)

116 (11.6%)
only: 141 (14.1%)
nly: 118 (11.8%)

Lipinski n:
(Top 1000) 1 All three: 15 (1.5%)

Figure 4: Empirical Analysis of Molecular Property Correlations: Overlap Distribution of Top-
Performing Ligands (Analysis of 11,740 Total Ligands)

To empirically validate these trade-offs, we analyzed the top 1000 ligands from our training set of
11,740 molecules across QED, SA, and Lipinski scores, examining their pairwise and collective
overlaps as illustrated in Figure[d] The results reveal limited overlap between high-performing sets:
only 131 molecules appear in both top QED and SA categories, 156 in QED and Lipinski, and 133
in SA and Lipinski. Strikingly, only 15 ligands achieve top performance across all three metrics
simultaneously. This analysis provides concrete evidence that despite observed correlations, these
properties cannot be universally optimized together.

To further quantify these trade-offs, we compared the top 1000 QED performers (set S1) with the
top 1000 SA performers (set S2). The QED distributions show significant divergence: S1 achieves
a mean QED of 0.8698 + 0.0323, while S2 has a substantially lower mean of 0.6607 + 0.1436.
Conversely, SA scores reveal the opposite pattern: S1 has a mean SA of 0.7897 + 0.0854, com-
pared to S2’s superior mean of 0.9111 + 0.0230. These statistical differences provide definitive
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evidence that QED and SA optimization represents fundamentally competing objectives that cannot
be simultaneously maximized across all molecules.

K MODEL GENERALIZATION STUDY

To validate the generalization capability of our proposed RFFT approach, we conduct comprehen-
sive experiments across different model architectures, hyperparameter configurations, and reward
function settings. The experimental results demonstrate consistent performance improvements in
three key dimensions: (1) different backbone architectures, (2) different hyperparameter settings,
and (3) different reward function formulations.

K.1 GENERALIZATION ACROSS DIFFERENT BACKBONE ARCHITECTURES

We evaluate RFFT on two distinct diffusion models: TargetDiff and IPDiff|Huang et al.[(2024). The
successful application of RFFT to both models provides validation of our method’s generalization
capability and broad applicability to various diffusion-based molecular generation frameworks.

K.2 GENERALIZATION ACROSS DIFFERENT HYPERPARAMETER SETTINGS

We investigate the robustness of our method under different hyperparameter configurations, specif-
ically varying the temperature parameter 3 in {2,5}. The results show consistent improvements
across different 3 values, demonstrating the stability of our approach.

K.3 GENERALIZATION ACROSS DIFFERENT REWARD FUNCTION CONFIGURATIONS

We examine the performance of RFFT under different reward function formulations. In addition to
the main reward function used in the paper:

R =0.125 x (QED + SA + LogP + Lipinski) + 0.5 x (—Vina score) (50)

We also incorporate Boltz-2 [Passaro et al.[ (2025) predictions as an additional reward component.
Boltz-2 predicts protein-ligand interactions similar to re-docking scenarios, which aligns well with
the improvements observed in both Vina-min and Vina-dock modes. The enhanced reward function
is formulated as:

reward = 0.125 x (QED+SA+LogP+ Lipinski)+0.3 x (—Vina score)+0.2 X (— log(ICsq)) (51)

For the Boltz-2 enhanced experiments, we used 360 labeled winner/loser pairs to train the model.

The experimental results are presented in Table [5] demonstrating the consistent performance im-
provements achieved by RFFT across all three dimensions.

Table 5: Model Generalization Study Results

. Vina Score Vina Min Vina Dock

Method QED  SA  LPSK  Validity% } Fema IMP% | Fuyina IMP% | Fuma IMP% MPBG% LBE
Different Backbone Architectures

TargetDiff 0487 0598 457 97.05 -5.73 3851 -6.44 4714 | -7.39  52.17 553 0.3545

TargetDiff-RFFT(3 = 5) 049 0.607 4.9 96.47 -6.1 435 | -6.68 50.78 | -7.6 5537 8.26 0.3614

IPDiff 0.465 0.576 4.348 93.22 -432 3685 | -5.79 4584 | -7.38 51.86 5.1 0.3592

IPDiff-RFFT(5 = 5) 0.471 0.586 4.388 92.46 -5.66 4541 | -642 515 | -7.61 5519 7.21 0.365
Different Hyperparameter Settings

TargetDiff-RFFT(3 = 2) 0.493 0599 459 97.4 -6.08 44 -6.67 51.07 | -754 5473 7.11 0.357

TargetDiff-RFFT(3 = 5) 049 0.607 4.59 96.47 -6.1 435 | -6.68 50.78 | -7.6 5537 8.26 0.3614
Different Reward Functions

TargetDiff-RFFT(5 = 5, Standard) 049 0.607 4.59 96.47 -6.1 435 | -6.68 5078 | -7.6 5537 8.26 0.3614

TargetDiff-RFFT(5 = 5, with Boltz-2) | 0.487 0.599 457 97.33 -5.96  40.16 ‘ -6.67  50.16 ‘ -7.54 5497 7.46 0.3581

The results clearly demonstrate that RFFT achieves consistent improvements across all experimental
dimensions. Compared with the baseline results, we observe significant enhancements in binding
affinity metrics (Vina scores, IMP%, MPBG%) while maintaining or improving molecular qual-
ity metrics (QED, SA, Lipinski). The successful generalization to different backbone architectures
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(TargetDiff and IPDiff) validates the broad applicability of our method, while the consistent perfor-
mance across different hyperparameter settings and reward function configurations demonstrates its
robustness and flexibility.

L ADDITIONAL CASE STUDY EXAMPLES

To further demonstrate the effectiveness of RFFT, we provide additional case study examples that
complement the main text analysis. Figure [5] shows four randomly selected ligand pairs from 3
test pocket which are ”5w2g”, ”2v3r”, and ”Sbur”, where both TargetDiff and TargetDiff-RFFT are
sampled with identical noise seeds and inference settings. These examples illustrate the consistent
improvement in molecular quality and binding affinity achieved through our reward-based fine-
tuning approach.

The examples in Figure [5] further validate our findings from the main ablation study, showing that
RFFT consistently generates molecules with improved chemical properties and better binding affin-
ity compared to the baseline TargetDiff model across different molecular structures and binding
contexts.
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TargetDiff
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Figure 5: Additional case study examples.
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