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Abstract
The high cost of obtaining high-quality annotated
data for in-context learning (ICL) has motivated
the use of self-generated annotations as a substi-
tute for ground-truth labels. While such methods
have shown promise in few-shot settings, their
effectiveness in many-shot scenarios remains
underexplored. To address this gap, we propose
a simple baseline, Naive-SemiICL, which
follows a three-step framework—annotation
generation, demonstration selection, and in-
context inference—and demonstrates clear
scaling trends across both discriminative and
generative tasks. Naive-SemiICL outperforms
few-shot ICL at various ground truth data
budgets, notably surpassing 16-shot baselines
by 9.94% across 16 tasks on GPT-4o-mini.
We further introduce IterPSD, an annotation
method that iteratively improves pseudo-
annotation quality by augmenting its prompt
with self-annotated examples. IterPSD yields
additional 6.8% gains on 5 classification tasks
compared to Naive-SemiICL. Code is available at:
https://anonymous.4open.science/
r/semi-supervised-icl-FA07

1. Introduction
In-context learning (ICL) has emerged as a powerful
paradigm in natural language processing, enabling language
models (LMs) to learn, adapt, and generalize from exam-
ples presented within their input context. This approach
eliminates the need for extensive retraining and parame-
ter modifications, facilitating more flexible and efficient
learning (Brown et al., 2020; Min et al., 2022; Agarwal
et al., 2024; Fang et al., 2025). The high cost of obtaining
high-quality annotated data for ICL has motivated the de-
velopment of methods (Zhang et al., 2023; Li & Qiu, 2023;
Mamooler et al., 2024; Li et al., 2024a; Chen et al., 2023)
that use self-generated annotations in place of ground-truth
labels. However, previous research has not examined ICL
performance with self-generated annotations in many-shot

Un-Annotated Data

Pseudo-Demo
Annotation

Ground
Truth

Demos

ICL Inference

Pseudo-Demo
Candidates

Data
Selection

Figure 1: Semi-supervised ICL Framework. Ground truth
data are used as demonstration for generating pseudo-
demonstrations from unannotated data. The generated
pseudo-demonstrations conjunctively with a small ground
truth demonstration, are selectively used as demonstrations
for the final prompting.

settings. Recently, (Agarwal et al., 2024) established a scal-
ing law, showing that ICL performance improves with the
number of demonstrations—up to thousands of examples.
Inspired by this finding, we pose the following question:

Research Question:

Can we scale ICL performance using self-generated
demonstrations up to thousands of examples as
well?

We systematically investigate this question under a three-
step framework (Figure 1): ① annotation generation, ②
demonstration selection, and ③ semi-supervised inference,
which we term Semi-Supervised ICL. We first introduce a
simple baseline, Naive-SemiICL, which annotates unlabeled
data in a single iteration, scoring each annotation using the
LLM’s verbalized confidence. Naive-SemiICL consistently
outperforms ICL baselines in zero-shot, few-shot, and many-
shot settings, as well as prior methods. We highlight that
Naive-SemiICL achieves optimal performance with 1000
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demonstrations on certain tasks (Figure 2).

With potentially thousands of self-annotated examples in
the prompt, each demonstration can be viewed as a dataset,
which motivates the following question:

Research Question:

In what ways can techniques from traditional semi-
supervised learning be leveraged to improve ICL
performance?

We address this question by proposing IterPSD, an iterative
approach that progressively refines pseudo-demonstration
quality by incorporating self-generated annotations at each
iteration. IterPSD further improves semi-supervised ICL
performance on five classification tasks, achieving gains of
up to 6.8% (Table 1).

2. Method
2.1. Semi-Supervised ICL

Semi-supervised ICL is a three-step framework consist-
ing of ① pseudo-demonstration generation, ② pseudo-
demonstration selection, and ③ in-context inference. During
step ①, Semi-supervised ICL annotates large set of unanno-
tated data Xu = {xi}Nu , using a small set of ground-truth
data Eg = {(xi, yi)}Nl (or none) as demonstrations. For
each annotation, we generate a confidence measure c along
with the prediction y by conditioning on a prompt ρ, a set
of demonstrations E , and an input x.

y, c = LLM(ρ, E , x) (1)

We define the prediction y broadly here. y could be labels
in a classification task, a short paragraph in a question an-
swering task, or a reasoning chain that includes the final
answer in a reasoning task. We denote the resulting set of
annotations as

DPSD = {(x, y, c)|x ∈ Xu}, (2)

where y and c are generated from Equation 1.

We then sample pseudo-demonstrations from annotations
whose confidence surpasses some threshold c ≥ λ.

Eu = Sampler(DPSD, λ) (3)

During inference, we prompt the LLM with both sampled
pseudo-demonstrations and the ground-truth data used to
annotate them.

y = LLM(ρ, Eu ∪ Eg, x) (4)

Algorithm 1 IterPSD

1: Input: prompt ρ, ground-truth demonstrations Eg,
chunk size K, ratio of random examples ϵ, maxi-
mum number of pseudo-demonstrations κ, sampler
for unannotated data Sampleru, sampler for pseudo-
demonstrations SamplerPSD;

2: Initialize DPSD = ∅; {Set of all the annotated pseudo-
demonstrations.}

3: Initialize DPSD = Xu; {Set of data yet to be annotated.}
4: Initialize E = Eg; {Demonstration for generating pseudo-

demonstrations.}
5: while DPSD ̸= ∅ do
6: if |E| > κ then
7: E = top-κ confident examples in DPSD;

{Cap the demonstration at a maximum size}
8: end if
9: Su = Samplerϵ(DPSD,DPSD,K, ϵ); {Retrieves a

sample of size K using ϵ-Random Sampler}
10: SPSD = Naive-SemiICL(S, ρ, Eg ∪ Dλ

PSD);
{One iteration of Naive-SemiICL.}

11: Sλ
PSD = Filter(SPSD, λ);

12: E = E ∪ Sλ
PSD;

13: DPSD = DPSD ∪ SPSD;
14: DPSD = DPSD − SPSD;
15: end while
16: Return DPSD;

2.2. A Simple Baseline for Semi-Supervised ICL

We propose a simple method, Naive-SemiICL, that gen-
erates pseudo-demonstrations in a single iteration. Naive-
SemiICL generates a prediction y and a confidence score c
for each unlabeled instance by going through unannotated
data exactly once. As a basic form of Semi-Supervised
ICL, Naive-SemiICL’s effectiveness relies on the successful
filtering of low-quality annotations. We detail the Naive-
SemiICL in Algorithm 2.

2.3. Iterative Pseudo-Demonstration Generation

As we will show in Section 4, ICL inference accuracy be-
gins to improve with a relatively small amount of pseudo-
demonstrations well below the amount that achieves the
optimal performance. One could improve the quality of
subsequent annotations by incorporating self-annotated ex-
amples as demonstrations during pseudo-annotation. Moti-
vated by this insight, we design IterPSD (Algorithm 1). In
each iteration, IterPSD samples and annotates K pseudo-
demonstrations. Pseudo-demonstrations with a confidence
higher than λ are added to the existing set of demonstra-
tions used for pseudo-annotation. When the number of
demonstrations in the prompt reaches an upper limit κ, we
resample the κ most confident examples from all previously
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Figure 2: Scaling trend of Naive-SemiICL (Verbalized Confidence) on classification and translation tasks with GPT-4o and
GPT-4o-mini. The dashed gray line represents the few-shot baseline. Both model exhibits a scaling trend on most tasks.

annotated examples whose confidence score is higher than
λ. We offer additional empirical motivations for IterPSD in
Appendix F.1.

Curriculum Learning. In curriculum learning (Soviany
et al., 2021), training examples are organized and presented
in increasing order of difficulty to facilitate more effective
learning. We adapt this idea to ICL by sampling unanno-
tated examples that are similar to those already annotated,
thereby introducing harder examples progressively. How-
ever, we find that sampling only similar examples introduces
a strong bias toward examples annotated later in the process.
Thus, we design the sampler for unannotated data to retrieve
both similar and diverse data. The ϵ-Random Sampler (Al-
gorithm 3) selects (1 − ϵ) of the examples to be similar
and randomly samples the rest. We compute the similarity
between an annotated example and an unannotated exam-
ple using the text embedding of their problem statement x.
Since it has been shown that simply seeing similar exam-
ples could boost in-context prediction accuracy of LLMs
(Min et al., 2022), the random portion of the sample ensures
that subsequent annotations are covered by previously seen
examples. In practice, we find that sampling 80% of each
batch randomly yields the best performance.

3. Experimetnal Setup
Benchmark. Our evaluation covers 16 datasets spanning
classification, translation, and reasoning tasks. Detailed
descriptions of the datasets are provided in Appendix A, and
the prompts used for each task are summarized in Table 4.

Evaluation Metrics. For all classification and reasoning
tasks, we report accuracy as the performance metric. For
translation tasks, following (Agarwal et al., 2024), we re-
port the ChrF++ score (Popović, 2015) using the default
configuration from TorchMetrics (Detlefsen et al., 2022).

Baselines & Configurations. We compare Naive-SemiICL
to k-shot ICL, ensuring both methods use the same amount
of ground-truth data. To assess the role of confidence-based
data selection, we include an unfiltered variant of Naive-
SemiICL that samples pseudo-annotations without applying
the filtering step. We also compare Naive-SemiICL to MoT
(Li & Qiu, 2023), a method tailored to reasoning tasks;
all comparisons with MoT are conducted using 16 ground-
truth examples. For IterPSD, we use the same ground-truth
budget (16 examples) and compare its performance to Naive-
SemiICL under the identical budget. Hyperparameter set-
tings are detailed in Appendix B.

Confidence Scores. We primarily report results using Ver-
balized Confidence, where the LLM is prompted to generate

3
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Figure 3: Scaling trend of IterPSD (Verbalized Confidence) on five benchmark tasks. Blue horizontal dashed line represents
the best performing Naive-SemiICL on the same dataset.
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Figure 4: Scaling trend of Naive-SemiICL with no initial
ground truth data. Grey dash line represents the prediction
performance of zero-shot prompting. All results obtained
from GPT-4o-mini

a confidence score for each prediction. For IterPSD, we
also evaluate Self-Consistency, which estimates confidence
by sampling nn predictions and using the majority vote
frequency. Additional details are provided in Appendix D.

Models. All experiments are conducted using GPT-4o-mini
and GPT-4o, checkpointed on 2024-07-18 and 2024-11-
20, respectively. We discuss the computational cost of our
experiments in Appendix C.

4. Experimental Results
Figure 2 illustrates the scaling behavior of Naive-SemiICL
as the number of pseudo-demonstrations increases, using
16 ground-truth examples. Naive-SemiICL consistently
matches or outperforms the baseline across all tasks, ex-
hibiting a clear scaling trend. For classification tasks, peak
performance typically occurs between 500 and 1000 pseudo-
demonstrations, while for translation tasks, it is reached
between 100 and 200. A comparison of Naive-SemiICL
under different confidence scoring methods is provided in
Appendix F.

A similar pattern is observed for IterPSD (Figure 3), which
also achieves optimal performance between 500 and 1000
pseudo-demonstrations on classification tasks. A more de-
tailed comparison between IterPSD and Naive-SemiICL is
included in Appendix E.2.

Importantly, the scaling trend of Naive-SemiICL remains
consistent across different ground-truth budgets. Figure 4
shows its performance in the zero-shot setting, where it
outperforms the baseline on all tasks, achieving an average
gain of 11.36% under GPT-4o-mini. This exceeds the 9.94%
improvement observed in the 16-shot setting, highlighting
Naive-SemiICL’s effectiveness in resource-constrained sce-
narios. Additional results under many-shot ground-truth
settings are presented in Appendix E.1.

5. Conclusion
By observing empirical scaling trends with both Naive-
SemiICL and IterPSD, we demonstrate that in-context learn-
ing performance can be scaled using thousands of self-
generated pseudo-demonstrations. We further highlight the
versatility of Naive-SemiICL, showing that it consistently
outperforms k-shot ICL across a wide range of ground-
truth data budgets. Finally, we validate the framework
of semi-supervised in-context learning by incorporating
curriculum learning principles into the design of IterPSD,
which achieves superior performance over Naive-SemiICL
on classification tasks.
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A. Datasets
Classification Datasets.

• BANKING77. The BANKING77(Casanueva et al., 2020) dataset is a fine-grained intent classification benchmark in
the banking domain, consisting of 13,083 customer queries labeled into 77 intent categories.

• CLINC. The CLINC150 (Larson et al., 2019) dataset is a benchmark for intent classification, containing 22,500 user
queries across 150 intent categories grouped into 10 domains, along with an out-of-scope category. We refer to the
intent classification task of CLINC150 as CLINC.

• CLINC(D). We refer to the domain classification annotation of CLINC150 as CLINC(D).

• FewEvent. The FewEvent(Deng et al., 2020) dataset contains 4,436 event mentions across 100 event types, with each
event type having only a few annotated examples (typically 5 to 10 per type).

• FP. Financial Phrasebank(Malo et al., 2013) The Financial PhraseBank dataset consists of 4840 sentences from English
language financial news categorised by sentiment.

Low-Resource Language Translation. FLORES-200 (Costa-Jussà et al., 2022) contains 200 languages translated
from a common corpus. It is an extension of the original FLORES-101 (Goyal et al., 2022) dataset, which covered 101
languages. The dataset covers low-resource and high-resource languages, including many languages with little prior data on.
It includes many African, South Asian, and Indigenous languages, making it one of the most diverse multilingual benchmarks.

Reasoning Datasets.

• GPQA. GPQA(Rein et al., 2024) is a multiple-choice question answering benchmark, with graduate-level questions
that involves reasoning in biology, physics, and chemistry.

• LiveBench Math. LiveBenchMath contains 368 contamination-free mathematical problems, sampled from high school
math competitions, proof-based fill-in-the-blank questions from Olympiad-level problems, and an enhanced version of
the AMPS dataset.

• BigBenchHard. We include three tasks from BigBenchHard(Suzgun et al., 2022). Logical7 evaluates a model’s ability
to deduce the order of a sequence of objects based on provided clues about their spatial relationships and placements.
The Geometric Shapes task within the BigBenchHard evaluates a model’s ability to interpret and identify geometric
figures based on SVG path data. The Date task within the BigBenchHard benchmark evaluates a model’s ability to
comprehend and manipulate date-related information.

A.1. Train-Test Split

For classification tasks with more than 5,000 examples, we randomly sample 5,000 examples for demonstration and 200
for evaluation. For tasks with less than 5,000 examples, we randomly sample 200 for evaluation and use the rest for
demonstration. Each FLORES dataset is comprised of a development set with 997 examples and a development test set with
1012 examples. We use all of 997 for demonstration and randomly sample 200 from the development test examples for
evaluation. We use the diamond split (198 examples) of GPQA following (Agarwal et al., 2024), out of which 99 are used
for evaluation and the other 99 are used for demonstration. Since LiveBench Math contains math problems from three
sources, we evenly sample 150 questions from different sources for evaluation and use the rest for demonstration. Each
BigBenchHard dataset contains 250 examples. We randomly sample 100 for evaluation and use the rest for prompting.

B. Hyperparameters
Confidence Thresholds. Unless stated otherwise, we filter all generated pseudo-demonstrations using the confidence
threshold at the 90th percentile.
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IterPSD. We found the optimal chunk size K to be 500 on most tasks except on FP. We uses ϵ = 0.8 on all tasks. We also
find that κ = 1000 yielded the best results on all tasks except on FP where the optimal κ = 300.

MoT. Following (Li & Qiu, 2023), we use 5 clusters for demonstration retrieval. Like IterPSD, we use OpenAI’s text-
embedding-3-large for similarity-based retrieval. We set the confidence threshold to 90-th percentile for the entropy-based
filtering.

C. Computational Budget
All experiments were conducted on an Apple M3 chip. During IterPSD, embedding-based retrieval accounted for less than
1% of the total computation time. Embeddings were retrieved from the OpenAI API at a latency of approximately 400ms
per example and can be precomputed during dataset preprocessing, as each embedding needs to be computed only once.
The cost of generating embeddings is 0.13 per million tokens. All experiments were completed within a 1, 000 budget.

D. Confidence Metrics
We primarily evaluate three confidence metrics: Verbalized Confidence, Entropy, and Self-Consistency, as defined below.
We also experimented with Back-Translation for translation tasks.

Verbalized Confidence. Verbalized Confidence (Xiong et al., 2024) prompts the LLM to generate the confidence score as
part of its response. See Table 4 for how we induce the Verbalized Confidence scores from LLMs in prompts.

Entropy. Entropy (Shannon, 1948) estimates the uncertainty of generated content using the token probability P (wi | w<i),
where wi denotes the generated tokens and w<i represents the preceding tokens in the prompt:

cEnt = − 1

L

L∑
i=s

logP (wi | w<i). (5)

We find Entropy unsuitable for estimating uncertainty on classification tasks, as it predominantly returns a confidence score
of one, making the data selection step redundant.

Self-Consistency. Self-consistency (Wang et al., 2023) samples multiple responses using diverse decoding paths and
selects the most consistent answer based on majority voting. The relative frequency of the majority answer ymaj naturally
defines a confidence score for the generated annotations. Let Ki be the size of the equivalence class yi ⊆ {ỹi}. Then the
Self-Consistency Confidence equals

cSC = max
i

Ki

K
. (6)

Back-Translation. Suppose an LLM has translated a source language input s into a target language output t. We then use
the same LLM to translate t back to the original language

ŝ = LM(t, ρb),

where ρb is a prompt that induces the back-translation. Then, the Back-Translation Confidence is the cosine similarity
between the original input s and the back-translation ŝ

c = simcos(ϕ(ŝ), ϕ(s)),

where ϕ is an embedding function.

E. Extended Experiments
E.1. Naive-SemiICL with Expanded Ground Truth Budget

we found Naive-SemiICL to be effective in high-resource settings. Figure 5 compares the performance of Naive-SemiICL
and ground-truth ICL when kl ∈ {64, 100, 500} ground-truth examples are available. Across three tasks, Naive-SemiICL
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consistently outperforms the corresponding k-shot baselines. We observe diminishing returns in performance gains as the
number of annotated demonstrations increases. On average, kg = 64 improves performance by 10.49% over the baseline,
whereas kg = 500 yields only a 4.73% improvement across the three tasks. Combining these results, Naive-SemiICL is
most effective when ground-truth data is scarce, although it can still be effective in high-resource settings.

Method BANKING CLINC CLINC(D) FewEvent FP

Naive-V 75.67 69.00 90.00 66.50 98.00

Naive-S 75.00 73.50 91.50 69.00 98.00

Iter-V 78.00 69.00 90.50 73.50 98.00

Iter-S 78.00 78.50 94.50 70.00 98.50
Improvement 3.10% 6.80% 3.28% 6.52% 0.50%

Table 1: Comparison of Naive-SemiICL (Naive) and IterPSD (Iter) methods on various datasets using GPT-4o-mini,
evaluated using verbalized (-V) and self-consistency (-S) confidence scores. The best-performing results for each dataset are
highlighted in bold, while the second-best results are underlined.

E.2. Extended Experiments on IterPSD

IterPSD outperforms Naive-SemiICL across five classification tasks, as shown in Table 1. We evaluate both methods
using Verbalized Confidence and Self-Consistency. Notably, IterPSD achieves significant gains on BANKING, CLINC,
CLINC(D), and FewEvent (over 3.0% performance gain), but not on FP. Similar to Naive-SemiICL, we observe a scaling
law with respect to the number of pseudo-demonstrations used in IterPSD. Clear scaling trends are observed in four out of
five tasks, as shown in Figure 3. On these tasks, IterPSD attains peak performance with 500 to 1,000 pseudo-demonstrations.
The lack of scaling on FP may be attributed to the relative ease of the dataset, as Naive-SemiICL already achieved 98%
accuracy on this task.
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Figure 5: We compare Naive-SemiICL accuracy across different ground truth demonstration sizes, with baseline perfor-
mances indicated by dashed lines. On FewEvent, the maximum number of pseudo-demonstrations is capped at 1000 due to
the limited availability of pseudo-demonstrations after filtering.

We also benchmark IterPSD on translation tasks, but the improvement over Naive-SemiICL is not consistent. We attribute
this to the fact that each iteration of IterPSD needs to accumulate at least 100 demonstrations to avoid bias from sampling
noise. However, Semi-Supervised ICL typically degrades after approximately 200 demonstrations, resulting in IterPSD
terminating after 2 to 3 iterations.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for LCFM 2024

Method GPQA Math Logical7 Shapes Date

Naive-SemiICL 42.42 40.78 90.00 78.00 79.00
MoT 44.44 25.86 88.00 64.00 58.00

Reinforced ICL 54.54 42.63 93.00 78.00 89.00

Table 2: Comparison of Naive-SemiICL (Naive) and MoT on reasoning datasets using GPT-4o-mini.

E.3. Comparing Naive-SemiICL & MoT

On reasoning datasets, Naive-SemiICL outperforms MoT on all tasks except GPQA, as shown in Table 2. Surprisingly,
the performance gap between the two methods is substantial on LiveBench Math, Shapes, and Date. We attribute this
to two key differences between Naive-SemiICL and MoT: (1) MoT uses Entropy to filter low-quality demonstrations,
which we show to be less reliable than Verbalized Confidence (see Table 3); and (2) in preliminary experiments, we found
similarity-based retrieval to be less effective than diverse sampling. Naive-SemiICL samples diversely from a large pool
of pseudo-demonstrations, which MoT is unable to do due to its requirement to query the LLM for each demonstration
retrieval.

GPT-4o-mini GPT-4o

Task Type Task Verbalized Self-Consistency Entropy Back-Translation Verbalized Self-Consistency Entropy Back-Translation

Classification BANKING 75.33± 0.20 75.16± 0.20 - - 72.17± 0.20 72.30± 0.20 - -
CLINC 89.16± 0.80 91.17± 0.40 - - 95.50± 0.70 95.80± 0.90 - -
CLINCD 66.33± 0.50 69.17± 0.20 - - 79.33± 0.20 77.80± 0.20 - -
FewEvent 69.33± 0.50 73.33± 0.20 - - 76.17± 0.50 77.17± 0.20 - -
FP 97.50± 0.50 97.83± 0.20 - - 96.50± 0 97.83± 0.20 - -
AVG 79.53 81.33 - - 83.93 84.18 - -

Translation Bemba 27.93± 0.10 - 26.66± 0.20 27.42± 0.30 29.16± 0.20 - 27.65± 0.20 28.34± 0.20
Fijian 36.70± 0.20 - 35.96± 0.10 36.14± 0.10 42.67± 0.40 - 41.42± 0.30 41.98± 0.40
Faroese 43.97± 0.20 - 42.32± 0.20 43.95± 0.20 49.69± 0.40 - 48.01± 0.40 48.93± 0.30
Venetian 44.41± 0.20 - 43.84± 0.10 43.26± 0.20 45.05± 0.30 - 44.53± 0.50 44.67± 0.40
Tuvan 19.61± 0.30 - 19.53± 0.10 19.02± 0.20 23.75± 0.30 - 23.01± 0.30 22.57± 0.40
Sardinian 41.27± 0.20 - 40.53± 0.10 40.63± 0.20 47.94± 0.20 - 46.82± 0.10 47.85± 0.30
AVG 35.65 - 34.81 35.07 39.71 - 38.57 39.06

Reasoning GPQA 40.40± 0.50 42.42± 0.50 41.41± 0.50 - 52.52± 0.50 47.47± 0.50 52.52± 0.50 -
LB Math 40.78± 0.30 35.52± 0.50 35.48± 0.30 - 36.33± 0.80 39.78± 0.30 30.10± 0.30 -
logical7 90.00± 0.50 84.00± 0 86.00± 0.50 - 98.00± 0.50 100.00± 0.50 100.00± 0.50 -
Geometric 70.00± 0 66.00± 0 78.00± 0.50 - 61.00± 0 67.00± 0 70.00± 0.50 -
Date 42.00± 0.80 32.00± 0 35.00± 0 - 68.00± 0.80 65.00± 0 67.00± 0.50 -
AVG 56.64 51.99 55.18 - 63.17 63.85 63.92 -

Table 3: Comparison of GPT-4o-mini and GPT-4o performance using different confidence scores. Each task is evaluated
using different inference strategies: Verbalized, Self-Consistency, Entropy, and Back-Translation (where applicable).
Reported values on represent average accuracy and ChrF++ with standard deviations.

F. Effects of Different Confidence Methods
In this section, we examine the performance Naive-SemiICL paired with different confidence methods, which we compile as
Table 3. We observe that classification and translation tasks each have a dominant confidence measure. For classification
tasks, Self-Consistency emerges as the most effective confidence method. It surpasses the Verbalized Confidence method
on 4 out of 5 datasets across both models. Verbalized Confidence is the leading measure for translation tasks, consistently
achieving the highest performance across all languages. For reasoning tasks, no single method clearly dominates. Under
GPT-4o-mini, Verbalized Confidence yields the best average performance, while under GPT-4o, Entropy slightly outperforms
Self-Consistency, securing the top position by a narrow margin.

Overall, Self-Consistency improves classification and reasoning tasks, but its effect varies across translation tasks and is
not applicable to all tasks. Entropy is sometimes useful in reasoning tasks, but fall short on translation tasks. Verbalized
inference remains a strong and economical baseline across all tasks but is generally outperformed by Self-Consistency on
classification tasks.
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F.1. Analyzing Performance Decline of Naive-SemiICL

We hypothesize that Naive-SemiICL’s decline in performance beyond a certain demonstration size stems from the accumu-
lation of errors in pseudo-demonstrations. To isolate the negative impact of long contexts on the LLMs, we examine the
scaling behavior when all demonstrations are ground-truth data. Figure 6 shows that both GPT-4o-mini and GPT-4o continue
to improve as the number of demonstrations increases, even beyond the optimal demonstration size for Naive-SemiICL
in the 16-shot setting. This suggests that the performance degradation is not caused by long context length, but rather by
the accumulated errors in pseudo-demonstrations. This finding motivates the design of IterPSD, which addresses error
accumulation in pseudo-annotations through curriculum learning and iterative refinement.
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Figure 6: Many-shot scaling performance of GPT-4o-mini (top) and GPT-4o (bottom) across six selected datasets. The
x-axis represents the number of shots (log scale), and the y-axis represents performance. The solid blue lines indicate
many-shot in-context learning (ICL), while the dashed vertical lines mark the peak performance of Naive-SemiICL. Both
models scale beyond the peak the performance of pseudo-demonstration approach.

G. Related Work
Self-Generated Demonstrations. Large Language Models (LLMs) exhibit remarkable zero-shot capabilities, allowing
them to perform tasks without task-specific fine-tuning or prior examples. Their zero-shot predictions have proven to be
effective sources of demonstration for in-context learning (Kojima et al., 2022; Zou et al., 2025a).

Auto-CoT (Zhang et al., 2023) prompts the LLM with self-generated rationales on diversely sampled inputs. Rationales
consisting of more than five reasoning steps are excluded from the demonstration to maintain the simplicity and accuracy of
the demonstration. Such task-specific heuristic does not generalize to most recently published datasets such as LiveBench
Math, as most of the generated rationales contain more than five steps. (Li & Qiu, 2023) builds on top of Auto-CoT with
extra an extra step of semantic filtering. At each example during inference, the LLM is prompted to choose the demonstration
for itself after retrieving the semantically relevant demonstrations through an embedding model. Like Auto-CoT, Reinforced
ICL (Agarwal et al., 2024) generates rationales for reasoning problems and filters out those leading to incorrect answers.
While this method requires ground truths, our filtering method do so with self-generated confidence score.

PICLe (Mamooler et al., 2024) generates new demonstrations by annotating unlabeled examples and filtering out those with
incorrect named entity types through self-verification prompting. Similarly, SAIL (Li et al., 2024a) employs an annotation
strategy for the bilingual lexical induction task, discarding predictions that fail to translate back to the original input.
Both methods rely on task-specific filtering and require additional LLM queries for self-verification or back-translation.
In contrast, our Verbalized Confidence approach is task-agnostic and requires only a single prompt for pseudo-labeling,
significantly reducing inference overhead. Z-ICL (Li et al., 2024b) leverages the zero-shot generative capability of large
language models to synthesize demonstrations for subsequent in-context learning inference. In contrast, our approach

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for LCFM 2024

assumes access to abundant unlabeled data and a small set of ground-truth labels, using the LLM only for annotation rather
than for input generation.

Many-Shot ICL. (Agarwal et al., 2024) observed a significant performance increase in a variety of generative and
discriminative tasks, as well as a scaling law between the number of examples in the demonstration and ICL performance.
Our method hinges on this ability as our proposed method, Naive-SemiICL, fits at least 64 examples in the prompt. We
report a similar scaling law for Semi-Supervised ICL in this work.

Traditional Semi-Supervised Learning. Semi-supervised learning seeks to reduce reliance on labeled data by leveraging
abundant unlabeled data to enhance model performance (Lee et al., 2013; Sohn et al., 2020; Zou et al., 2025b). Self-training
(McLachlan, 1975; Xie et al., 2020) iteratively refines the model by using its own predictions on unlabeled data for training.
Pseudo-labeling (Lee et al., 2013; Sohn et al., 2020; Zou et al., 2023a;b) employs confidence-based filtering, retaining only
high-confidence pseudo-labels to reduce error propagation and confirmation bias. JointMatch (Zou & Caragea, 2023) further
alleviates error accumulation by using two independently initialized networks that teach each other through cross-labeling.
Our work is the first to integrate confidence filtering and leverage both labeled and pseudo-labeled data in an in-context
learning framework.

H. Impact Statement
This work investigates scalable semi-supervised approaches for in-context learning using self-generated pseudo-
demonstrations. Our methods, Naive-SemiICL and IterPSD, reduce reliance on labeled data and enable effective use
of large language models in low-resource settings. These techniques have the potential to broaden access to high-quality
language technologies across domains and languages with limited annotation resources.

However, the use of self-generated data raises concerns about the propagation of biases or errors inherent in the language
model. Careful filtering and evaluation are necessary to mitigate unintended effects, particularly in sensitive applications.
We encourage future research on aligning pseudo-demonstrations with human intent and fairness objectives.
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Table 4: The prompt template we use for classification, translation, and reasoning tasks, respectively.

Types Prompts

Classification

You are a helpful assistant who is capable of performing a classification task (mapping an Input
to a Label) with the following possible labels:
{A LIST OF POSSIBLE LABELS}

Here are zero or more Input and Label pairs sampled from the classification task.

{DEMONSTRATIONS}

Now, Label the following Input among the following
Input: {INPUT}

Translation

You are an expert translator. I am going to give you zero or more example pairs of text snippets
where the first is in the source language and the second is a translation of the first snippet into
the target language. The sentences will be written in the following format:
¡source language¿: ¡first sentence¿
¡target language¿: ¡translated first sentence¿

{DEMONSTRATIONS}

Now, Translate the following $source text into $target. Also give the Confidence of your given
Answer in the following format:
**Confidence**: ¡a confidence score between 0 and 1¿:

English: {INPUT SENTENCE}
{TARGET LANGUAGE}:

Reasoning

First, I am going to give you a series of Questions that are like the one you will be solving.

{DEMONSTRATIONS}

Now, Answer the following Question. Think step by step.
Question: {QUESTION}
Also give the Confidence of your given Answer in the following format:
**Confidence**: ¡a confidence score between 0 and 1¿
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Algorithm 2 Naive-SemiICL.

1: Input: prompt ρ, ground-truth demonstrations Eg , unlabeled data Xu;
2: Initialize DPSD = ∅;
3: for x ∈ Xu do
4: ŷ, ĉ = LM(ρT , El, x);
5: DPSD = DPSD ∪ {(x, ŷ, ĉ)};
6: end for
7: Return DPSD;

Algorithm 3 ϵ-Random Sampler

1: Input: annotated demonstration Dl, un-annotated demonstration Dl, chunk size K, random ratio ϵ, prompt ρ, embedder
ϕ.

2: Initialize S = ∅;
3: Krandom = ϵK,Ksim = (1− ϵ)K;
4: Compute dij = simcos(ϕ(xi), ϕ(xj)) for all xi ∈ Dl, xj ∈ Dl;
5: Compute dj = mini dij for all xj ∈ Dl;

{Compute distance to the nearest annotated example.}
6: Ssim = {xj |dj ∈ SmallestKsim{dj}};

{select the Ksim examples with the smallest distance to its nearest annotated demonstrations}
7: Compute Srandom, a random sample of size Krandom from Dl − Ssim);
8: S = Ssim ∪ Srandom;
9: Return S;
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