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Reproducibility Summary1

Scope of Reproducibility2

The authors of the original work do not supply any code for their work. Therefore, our goal is to validate the main claims3

of the paper with our own implementation. The claims that we try to verify are whether the proposed complex-valued4

neural networks perform similar to traditional real-valued networks in classification tasks and whether the introduced5

method provides better protection against privacy attacks.6

Methodology7

For our own implementation we follow the author’s description where possible. No explicit information about the8

training process and some architectures is mentioned, so we make our own assumptions where needed. Training all9

networks takes around 60 hours on a Nvidia RTX 2080 TI.10

Results11

In all experiments of our reproduction study, we were able to successfully validate the author’s claim that the proposed12

network architectures provide better protection against privacy attacks. However, the observed benefits are not as13

extensive as suggested by the original results. We also observed strong performance degradation when using the14

proposed complex-valued architectures during some classification experiments. This contradicts the author’s claim that15

the performance is on par with standard real-valued neural networks.16

What was easy17

The authors provide clear descriptions on how to transform a traditional neural network into a complex-valued neural18

network and how to implement the proposed complex-valued layers. Additionally, the paper does a good job at19

explaining how experiments are quantified.20

What was difficult21

Many implementation details are omitted in the paper, which made it difficult to get some parts to working as intended.22

Specifically, hyperparameter settings are not given which required us to make many assumptions. The large number of23

experiments also made it time consuming to test different hyperparameter settings and restricted us to only training one24

model per experiment.25

Communication with original authors26

Due to lack of time, we did not communicate with the authors.27
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1 Introduction28

As the progress of deep learning has improved in recent years, many services utilizing deep neural networks (DNN) have29

been introduced to solve a large variety of problems. In order to use larger and more computationally expensive models,30

companies have opted to use cloud-based solutions where user data is sent remotely to be processed and its results are31

transmitted back to the user. This approach, however, introduces many privacy concerns such as man-in-the-middle32

attacks or users being uncomfortable sending their raw and possibly sensitive data to an unknown location. Even when33

part of the model is computed locally and only intermediate features are sent remotely, previous work has shown that34

attackers can accurately reconstruct the original input from just these features [2, 11, 3, 13].35

Xiang et al. [17] propose a solution to protect against these attacks using complex-valued DNNs. Intermediate features36

are computed locally on the user’s device and then converted from real-valued to complex-valued tensors rotated by a37

random angle. The complex-valued features are processed in the cloud and returned to the user who can rotate back the38

results in order to obtain real-valued features. This makes the rotation angle act as a user’s private key. The authors39

introduce complex-valued alternatives to many commonly used layers and outline how to modify standard convolutional40

neural network (CNN) architectures such as ResNet [5], VGG [14], AlexNet [8] and LeNet [9] into their proposed41

complex-valued models. Their experiments present evidence that this apporach is highly effective against feature42

inversion and property inference attacks while reporting similar classification performance as real-valued networks.43

In this work, we examine the reproducibility of the quantitative results reported by Xiang et al. Since no publicly44

available implementation currently exists, we write our own implementation from scratch in PyTorch. We first outline45

the details of our implementations for the complex-valued DNN and the attack models in Section 2 and then present46

results of our experiments in Section 3. We conclude by discussing the reproducibility of the author’s central claims in47

Section 4. Our implementation is publicly available at https://github.com/romech/fact-ai.48

1.1 Scope of Reproducibility49

As the authors do not provide training details in their work, we do not aim to reproduce the exact reported numbers.50

Instead, we focus on validating the following main claims of the paper:51

• The proposed complex-valued architectures maintain a similar classification performance as their real-valued52

counterparts.53

• Reconstructing a model’s input or inferring properties about the input from intermediate features is more54

difficult when using complex-valued DNNs.55

2 Methodology56

2.1 Complex-Valued DNN57

The proposed model divides the layers of a standard DNN into three components: an encoder, processing module and58

decoder. The encoder and decoder are real-valued modules, identical to their real-valued counterparts, and are placed59

locally on the user’s device. The intermediate processing module uses complex-valued layers and is located remotely.60

The model processes an input I as follows:61

1. Compute intermediate encoder features using the encoder g:62

a = g(I)

2. Sample random noise b and a random phase θ and transform a into a complex-valued tensor:63

x = exp(iθ)[a+ ib] = (a · cos θ − b · sin θ) + i(b · cos θ + a · sin θ)

3. Compute complex-valued features using the processing module Φ:64

h = Φ(x)

4. Apply the inverse rotation with −θ and drop the imaginary component to revert the complex-valued features65

back to real-valued ones:66

f = <(exp(−iθ)h) = a · cos(−θ)− b · sin(−θ)

5. Compute the model’s output using the decoder d:67

ŷ = d(f)
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This framework mitigates potential attacks by only transmitting encoded complex-valued features between the user and68

the cloud.69

To ensure that the complex-valued features h can be successfully decoded, the processing module uses layers designed70

to preserve the feature’s phase θ. This allows the decoder to successfully recover real-valued features when applying the71

inverse rotation exp(−iθ). Following Trabelsi et al. [15], we represent complex numbers as two real-valued numbers72

corresponding to their real and imaginary parts. A complex-valued feature map of size (N×H×W ) is then represented73

as a real-valued tensor of size (2×N ×H ×W ).74

For the complex-valued convolutions, we use the variant proposed by Trabelsi et al [15]. A convolution operation with75

a kernel W = W< + iW= on an input X = X< + iX= is defined as:76

conv(X) = (X< ⊗W< − X= ⊗W=) + i(X= ⊗W< + X< ⊗W=)

The bias term is dropped to keep the convolution operation phase invariant.77

Similar to convolutions, we implement fully connected layers with weights W = W< + iW= as:78

fc(X) = (X<W< − X=W=) + i(X=W< + X<W=)

We implement the normalization, activation, pooling and dropout layers as described in the original work.79

One of the requirements to ensure protection against an adversary, is that when rotating encoded complex-valued features80

by some random phase θ′, which results in estimated features a∗ = <(exp(−iθ′)[a+ ib]), a∗ is indistinguishable from81

the real features a. If this does not hold, an adversary would be able to test different angles and know exactly when82

they have guessed the correct rotation. To address this issue, an adversarial framework [4] is introduced to enforce the83

encoder to produce indistinguishable features. An additional 3× 3 convolution is appended to the encoder g and its84

outputs are passed to a discriminator D consisting of a 4× 4 convolution with a stride of 2 and a fully connected layer.85

The encoder and discriminator are trained using the Wasserstein GAN (WGAN) loss [1] which is defined as:86

min
g

max
D

= E
I
[D(g(I))− E

θ,b6=g(I)
[D(<[(g(I) + ib) exp(iθ)])]]

By approximating the second expectation with k randomly selected phases θ and noise samples b, the authors claim87

that the model achieves a k-anonymity privacy which guarantees that any correctly decoded feature map cannot be88

distinguished from k − 1 other incorrectly decoded feature maps. In our experiments we use k = 5 and b is a randomly89

selected element from the same batch. Both the WGAN loss and the loss of the model’s target task are optimized90

simultaneously.91

2.2 Classification Models92

The original paper focuses on image classification models and we reproduce its experiments for the ResNet-20/32/44/5693

[5] and LeNet [9] architectures. We implement the networks following their respective papers and divide the networks94

into an encoder, processing module and decoder according to the original author’s description. Two ResNet variants95

are introduced, ResNet-α and ResNet-β, that differ in the position where the network is split between the decoder and96

processing module.97

The performance of the complex-valued DNNs is compared against three baselines:98

1. The original real-valued DNNs without modifications.99

2. The original real-valued DNNs with random noise ε added to the encoder’s outputs to produce features100

a′ = a+ γε where γ is a scaling constant. Since the authors do not report the random noise’s distribution, we101

use a normal distribution with unit covariance and mean equal to the average a within the batch.102

3. The original real-valued DNN with the additional 3 × 3 convolution layer introduced in the adversarial103

framework. This accounts for the possible performance change introduced by the additional layer.104

2.3 Attack Models105

Two types of attacks are carried out to assess the privacy protection capabilities of the proposed complex-valued DNNs:106

feature inversion attacks and property inference attacks.107

Feature inversion attacks [2, 11] aim to reconstruct a network’s original input from intermediate network features. We108

implement the attack model dec as a U-Net [12] as described by the authors. For real-valued classification networks,109
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the output of the encoder is passed to the attack model. For complex-valued networks two scenarios are tested. In110

the naive approach, the attacker is given the encoded complex-valued features x which are converted to real-valued111

tensors by concatenating the real and imaginary components. In the second approach, a regression model is trained to112

predict the rotation angle of x. The estimated angle is subsequently applied in a rotation to obtain estimated real-valued113

features a∗ which are used by dec to reconstruct the input. Since the authors do not specify the angle prediction model’s114

architecture, we use the same architecture as the previously mentioned discriminator. The angle prediction and inversion115

models are optimized with the `1 loss and both are trained separately.116

Property inference attacks [3, 13] aim to learn hidden properties about the input data from intermediate features. We117

implement three inference attacks used by Xiang et al.:118

• Inference attack 1: An attack model is trained on raw images to predict hidden properties and evaluates on119

the reconstructions from the inversion model dec(a∗).120

• Inference attack 2: Using the angle prediction network, an attack model is trained on estimated real-valued121

features a∗ to predict hidden properties.122

• Inference attack 3: Using the inversion model dec(a∗), an attack model is trained on input reconstruction to123

predict hidden properties.124

The attack models used to predict the hidden properties is a real-valued ResNet-56.125

2.4 Datasets126

In our experiments we use the CIFAR-10 and CIFAR-100 datasets [7]. CIFAR-10 is made up of ten classes each having127

5000 training and 1000 test images of size 32 × 32 × 3. During training, we apply the standard augmentations of128

normalization, random horizontal flip and random cropping with padding of 4. At test time we only apply normalization.129

CIFAR-100 labels the same images as CIFAR-10 into 100 classes each having 500 training and 100 test images. For the130

property inference attacks we also use the dataset’s coarse labels which classifies images into 20 superclasses. We use131

the same data augmentation steps as with CIFAR-10.132

2.5 Hyperparameters133

ResNet models on CIFAR-10 are trained using SGD with a momentum of 0.9, an initial learning rate of 0.1 and a134

batch size of 128 following He et al. [5]. ResNet-56 variants with additional layers have an initial learning rate of 0.05135

to stabilize training. Due to the large number of experiments, all other classification experiments are trained using136

Adam [6] with β1 = 0.9, β2 = 0.999, an initial learning rate of 10−3 and a batch size of 128. We train all classification137

networks for 200 epochs and decay the learning rate by a factor of 0.1 after 100 and 150 epochs. Complex networks use138

k = 5 for adversarial training.139

We train the feature inversion U-Net models using Adam with β1 = 0.9, β2 = 0.999, a learning rate of 10−4 and a140

batch size of 128 for 15 epochs. The angle prediction model is trained using the same settings for 50 epochs. For the141

property inference attacks, both the prototype and attack classification models are trained using Adam with β1 = 0.9,142

β2 = 0.999, an initial learning rate of 10−3 and a batch size of 128. The models are trained for 200 following the same143

learning rate decay schedule as above.144

2.6 Computational Requirements145

We run all of the experiments on an Nvidia RTX 2080 TI with 11 GB of memory. Due to the high number of146

experiments we only train each model once. The baseline ResNet and LeNet models take 30 minutes to train, while the147

complex-valued networks take between 90 minutes and four hours depending on the network depth. The inversion148

attacks require less training and take around 15 minutes to train. Inference attacks take between 30 and 60 minutes to149

train.150

3 Results151

3.1 Classification Performance152

We reproduce the classification experiments from the original work to investigate the author’s claim that complex-valued153

DNNs achieve similar performance to their real-valued counterparts. Table 1 shows the classification error rates154

for several complex-valued ResNet variants, their baseline real-valued counterparts and the baseline DNNs with an155
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Classification Error Rates (%)

Dataset Original
DNN

DNN with
additional layer

Complex-Valued
DNN

ResNet-20-α CIFAR-10 7.77 9.06 11.88
ResNet-20-β CIFAR-10 8.03 8.30 13.13
ResNet-32-α CIFAR-10 7.27 8.95 11.27
ResNet-32-β CIFAR-10 7.22 8.88 10.56
ResNet-44-α CIFAR-10 6.57 9.32 10.02
ResNet-44-β CIFAR-10 7.31 8.84 10.14
ResNet-56-α CIFAR-10 7.19 8.45 10.03
ResNet-56-β CIFAR-10 6.89 8.27 9.78

Table 1: Classification experiments on CIFAR-10 using several ResNet variants. We compare the complex-valued
DNNs against their original counterparts and DNNs with an additional convolutional layer.

additional layer on the CIFAR-10 test set. Complex-valued DNNs perform 3 - 5 % worse than the original network.156

The performance degradation reported in the original work never exceeds 2% for any ResNet variant with some157

complex-valued networks outperforming their real-valued counterparts.158

We furthermore reproduce the classification experiments with the LeNet and ResNet-56-α on the CIFAR-10 and159

CIFAR-100 datasets and compare the performance of the real-valued, noisy and complex-valued DNNs. Results can be160

seen in Table 2. We observe that the complex-valued LeNet performs significantly worse than the original network161

on both datasets, while the ResNet performs similar to what we observed on CIFAR-10. These findings contradict162

the reported results in the original work where the complex-valued LeNet reduced the error by roughly 2 % and the163

complex-valued ResNet-56-α on CIFAR-100 improved ∼ 11 % compared to the real-valued baseline. We found that164

while the noisy baselines perform consistently worse than the original DNNs, they all but in one experiment achieve a165

lower error than the complex-valued networks. The opposite was reported in the original work, with the complex-valued166

networks outperforming all noisy baselines by up to 30% in some experiments.167

Classification Error Rates (%)

Dataset Original
DNN

DNN with
additional layers

Noisy DNN
γ = 0.2

Noisy DNN
γ = 0.5

Noisy DNN
γ = 1.0

Complex-Valued
DNN

LeNet CIFAR-10 26.09 26.38 26.73 29.17 34.98 33.84
LeNet CIFAR-100 60.89 60.34 61.55 64.69 66.83 74.32
ResNet-56-α CIFAR-100 32.20 32.46 32.67 33.58 33.91 35.30

Table 2: Reproduction of classification experiments on CIFAR-10 and CIFAR-100 using LeNet and ResNet-56-α. We
compare the complex-valued DNNs against their original counterparts, DNNs with an additional convolutional layer
and the noisy baselines.

3.2 Protection Against Inversion Attacks168

We measure the performance of the angle prediction model by the mean absolute error (MAE) |θ′ − θ| where θ′ is169

the model’s prediction. Results on CIFAR-10 and CIFAR-100 can be seen in Table 3. The attack model performs170

well, achieving < 0.1 radians on ResNet variants while performing worst on LeNet. This contradicts the original work171

where all models achieve an MAE of ∼ 0.8 indicating that in our experiments, the complex-valued features x contain172

discriminating information about its phase.173

We measure the reconstruction performance of the feature inversion attack model by the pixel MAE. Table 4 shows174

results of reconstructing the input using intermediate network features from ResNet models on CIFAR-10. We compare175

the protection against this attack for real-valued DNNs, real-valued DNNs with an additional layer, complex-valued176

DNNs using the complex-valued features x and complex-valued DNNs using the approximated real-valued features a∗177

estimated by the angle prediction model. We see that complex-valued networks are much more difficult to reconstruct178

inputs from, having error rates 2-3 times higher than real-valued networks. These results are in line with what was179

reported by the original authors.180

Further experiments are performed with LeNet and ResNet-56-α on the CIFAR-10 and CIFAR-100 datasets and the181

results can be seen in Table 5. Again we see that complex-valued networks have higher error rates than real-valued182
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networks which follows what was originally reported. Noisy DNNs error rates fall between the original and complex183

DNNs which is the same as reported. However, the LeNet model on CIFAR-100 did not observe the same increase in184

MAE between the noisy and complex-valued networks.185

Dataset MAE (radian)

ResNet-20-α CIFAR-10 0.0842
ResNet-20-β CIFAR-10 0.0884
ResNet-32-α CIFAR-10 0.0875
ResNet-32-β CIFAR-10 0.0874
ResNet-44-α CIFAR-10 0.0817
ResNet-44-β CIFAR-10 0.0895
ResNet-56-α CIFAR-10 0.0839
ResNet-56-β CIFAR-10 0.0846
LeNet CIFAR-10 0.2371
LeNet CIFAR-100 0.3178
ResNet-56-α CIFAR-100 0.0812

Table 3: Reproduction of average rotation angle error of complex-valued encoder features.

Reconstruction Error (MAE)

Dataset Original
DNN

DNN with
additional layers

Complex-Valued
dec(a∗)

Complex-Valued
dec(x)

ResNet-20-α CIFAR-10 0.0750 0.1003 0.1904 0.2382
ResNet-20-β CIFAR-10 0.0807 0.1009 0.2268 0.2865
ResNet-32-α CIFAR-10 0.0927 0.1872 0.1931 0.2544
ResNet-32-β CIFAR-10 0.0748 0.2201 0.2050 0.2678
ResNet-44-α CIFAR-10 0.0735 0.2132 0.2219 0.2880
ResNet-44-β CIFAR-10 0.0642 0.2192 0.2261 0.2994
ResNet-56-α CIFAR-10 0.0581 0.0866 0.2092 0.2832
ResNet-56-β CIFAR-10 0.0582 0.0935 0.2459 0.3413

Table 4: Reproduction of inversion attacks against several ResNet variants on the CIFAR-10 dataset. For the attack
dec(a∗), we first estimate the real-valued features a∗ from the complex-valued features x.

Reconstruction Error (MAE)

Dataset Original
DNN

DNN with
additional layers

Noisy DNN
γ = 0.2

Noisy DNN
γ = 0.5

Noisy DNN
γ = 1.0

Complex
dec(a∗)

Complex
dec(x)

LeNet CIFAR-10 0.2070 0.2465 0.2108 0.2421 0.3637 0.4285 0.4423
LeNet CIFAR-100 0.1698 0.2374 0.2000 0.2042 0.2527 0.2836 0.2497
ResNet-56-α CIFAR-100 0.0830 0.0955 0.1005 0.1280 0.1489 0.1517 0.2135

Table 5: Reproduction of inversion attacks against LeNet and ResNet-56-α on the CIFAR-10 and CIFAR-100 datasets.
For the attack dec(a∗), we first estimate the real-valued features a∗ from the complex-valued features x.

3.3 Protection Against Inference Attacks186

The property inference attacks are performed on a ResNet-56 prototype network that is trained on the 20 superclasses187

of CIFAR-100. The hidden properties that the attacker tries to infer are the standard 100 classes of CIFAR-100. Results188

of inference attacks 1, 2 and 3 can be seen in Figure 1. Inference attack 1 exhibits a ∼ 30 % error increase when using a189

complex-valued network compared to real-valued models. Inference attacks 2 and 3 similarly show better protection190

from complex-valued networks with ∼ 7 % error increase in both attacks. While our experiments show improved191

protection from complex-valued networks, it is much less significant than the 85 % + error the original authors reported192

on all three attacks.193

4 Discussion194

We will now discuss whether our implementation supports the main claims that Xiang et al. reported in their work.195
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Figure 1: Reproduction of inference attacks. Plots show the classification error rates of a ResNet-56 attacker model on
the CIFAR-100 dataset. The prototype models are a complex-valued ResNet-56-α and a ResNet-56 with the additional
layer trained on the superclasses of CIFAR-100.

Complex-valued networks maintain similar performance as real-valued networks The authors report that196

complex-valued networks achieve similar or better classification performance across all the architectures and datasets197

they tested. We found this not to hold, with complex-valued networks performing consistently worse than their198

real-valued counterparts in our experiments. Deeper architectures such as ResNet-56 exhibit smaller performance199

losses compared to shallow architectures like LeNet which suggests that the conversion between real-valued and200

complex-valued features impacts the model’s ability to learn and that a larger processing module helps to mitigate201

this. Since no training details are provided in the original work, it is difficult to identify if the choice of optimizer202

or hyperparameters led to these discrepancies. However, since we used reasonable training settings in all of our203

experiments, we are confident in fairness of the comparisons. We did not reimplement the experiments on higher204

resolution datasets such as VGG-16 [14] on CUB-200 [16] or AlexNet [8] on CelebA [10] which would help understand205

if our observations hold outside of low resolution datasets.206

Complex-valued networks are less susceptible to attacks We found that these claims do hold for complex-valued207

networks in both inversion and inference attacks, however not all results are as strong as what the authors originally208

reported. The most contradicting result is that our angle prediction model is capable of estimating the phase of complex-209

valued features x within 0.1 radians on all ResNet variants. This is much lower than what was originally reported210

and indicates that x does contain discriminative information about its rotation. This discrepancy may have stemmed211

from issues in the adversarial training or the training procedure for the attacker. The value of k is not reported for the212

adversarial loss function, so we used k = 5 in all experiments. A much larger k might result in less distinguishable213

encoder features, however, this would significantly increase computational time. It is also unclear whether the angle214

prediction model was trained separate or end-to-end with the inversion model. When initially testing an end-to-end215

approach, training was unstable and the angle prediction model only produced random results, even worse than what216

the authors reported. Training the angle prediction model separately performed significantly better and we report these217

results since it is a more realistic approach from an attacker.218

Our results for the feature inversion attacks line up closely to what was originally reported in terms of MAE. Complex-219

valued networks have significantly worse reconstruction errors compared to real-valued networks, indicating that they220

are less vulnerable to inversion attacks. Since our angle prediction performs well, we find that using the estimated221

real-valued features is more effective than reconstructing from complex-valued features directly which contradicts what222

the authors report. We also observe a correlation between the classification performance of an architecture and the223

reconstruction error of the inversion attack. Networks that achieve better classification performance are shown to have224

lower reconstruction errors which can be seen when comparing LeNet and ResNet models on CIFAR-10. This suggests225

that architectures that produce better encoder features are more susceptible to inversion attacks. Inspecting the sample226

outputs for the LeNet variants in Figure 2, we can see that the reconstructions from complex-valued networks have less227

details and a slight tint from the original input, however, it is still evident that the reconstructions are simply distorted228

versions of the input image. In many situations, this level of obfuscation may not be sufficient for private information229

to be adequately protected. On the other hand, the visualizations presented by the authors are very strong with the230

reconstructions having no resemblance to the original image and containing many artifacts. The similar reconstruction231

errors and varying qualitative results may be caused by differences in how we measured error rates.232
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Complex dec(x)

Figure 2: Visualizations of reconstructed CIFAR-10 test images from inversion attacks on the complex-valued LeNet
and its real-valued baselines.

Inference attacks are similar to the inversion attacks, where we found that attacks performed worse on complex-valued233

networks compared to real-valued networks but not as effective as originally reported. Since the angle prediction and234

inversion models are utilized in inference attacks 2 and 3, it is expected that these attacks are more effective given that235

the inversion attacks in our implementation perform better than what is reported. Therefore, we cannot confirm the236

original claim that complex-valued DNNs prevent attackers from inferring any hidden properties, but we agree that they237

do hinder attackers ability to do so when compared with real-valued networks.238

4.1 What was easy239

It was fairly easy to follow the authors descriptions on how to split a real valued neural network into encoder, processing240

unit and decoder. Furthermore, most of the revised layers in the processing unit were also well described.241

4.2 What was difficult242

As no publicly available implementation was available, we were required to fully implement the complex-valued243

network, its training framework and all of the attacks which required a significant amount of time to complete. The244

original paper does not report any training details or model hyperparameters which made it impossible to reproduce245

the experiments exactly as reported. Other important details like exact architectures for the discriminator and angle246

prediction model and the training procedure for inversion attacks made the implementation difficult and require more247

trial and error than what we expected to encounter.248

4.3 Communication with original authors249

Due to lack of time, we did not have any communication with the original authors.250

5 Conclusion251

In this work we implemented the complex-valued DNN proposed by Xiang et al. Our reproduced experiments found252

that the complex-valued networks have consistently worse classification performance than their real-valued counterparts253

which contradicts what the authors report. We observed that the networks are less susceptible to feature inversion and254

property inference attacks however not as effective as originally described. The approach still provides some privacy255

protection, however, it may not be adequate in situations with very sensitive data.256
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